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Abstract

The Internet-of-Things (IoT) is an ever growing network of devices connected to the Internet.
Such devices are heterogeneous in their protocols and computation capabilities. With the rising
computation and connectivity capabilities of these devices, the possibilities of their use in IoT
systems increases. Concepts like smart cities are the current pinnacle of the use of these systems,
which will involve a big amount of different devices in different conditions.

There are several tools for building complex IoT systems; some of these tools have different
levels of expertise required and employ different architectures. One of the most popular is Node-
RED. It provides users with a visual data flow architecture, with the side effect of making it
accessible for a non-developer as well.

Most of these mainstream tools employ centralized methods of computation where a main
component — usually hosted in the cloud — executes most of the computation on data provided
by edge devices, e.g. sensors and gateways. There are multiple consequences to this approach:
(a) edge computation capabilities are being neglected, (b) it introduces a single point of failure, and
(c) local data is transferred across boundaries (private, technological, political...) either without
need, or even in violation of legal constraints. Particularly, the principle of Local-First — i.e., data
and logic should reside locally, independent of third-party services faults and errors — is blatantly
ignored.

Previous works in the domain of visual programming attempt to mitigate some of these
consequences, going as far as to propose solutions to decentralize flows and their execution in
fog/edge devices. But they mostly require that the decomposition and partitioning effort to be
manually specified by the developer when building the system, limiting dynamic adaptation of the
system to failures or appearance of devices.

In this work we propose a method for extending Node-RED to allow the automatic decom-
position and partitioning of the system towards higher decentralization. With this in mind, we
implemented custom firmware for exposing the resources of the available devices, as well as new
nodes and modification in Node-RED that allow orchestration of tasks. This firmware is responsible
for low-level management of health and capabilities, as well as executing MicroPython scripts on
demand. Node-RED was modified to take advantage of this firmware by (1) implementing a device
registry that allows devices to announce themselves, (2) generating MicroPython code from flow
and nodes and (3) assigning nodes to devices based on pre-specified properties and priorities. Like-
wise, a mechanism was developed to automatically detect abnormal run-time conditions, providing
dynamic self-adaptation.

Our solution was tested by implementing home automation scenarios, where several experiments
were made with the use of both virtual and physical devices. Several metrics were measured to
allow understanding the impact on the resiliency, efficiency and elasticity of the system. With this
data, we were able to conclude that our approach scales in terms of number of devices and is more
robust. We further identified remaining open challenges to be tackled in the future.

Keywords: Internet-of-Things, Orchestration, Visual Programming, Distributed Systems, Real-
Time, Embedded

i



ii



Resumo

A Internet-of-Things (IoT) é uma rede de dispositivos conectados à Internet em constante cresci-
mento. Estes dispositivos são heterogéneos nos seus protocolos e capacidades de computação. Com
o crescimento das capacidades de computação e conectividade destes dispositivos, as possibilidades
do seu uso em sistemas IoT aumentaram. Conceitos como Cidades Inteligientes são o pináculo do
uso destes sistemas, que envolverão um grande número de dispositivos diferentes.

Existem várias ferramentas para construir sistemas IoT; algumas destas ferramentas requerem
diferentes níveis de perícia e usam diferentes arquiteturas. Uma das ferramentas mais populares é
Node-RED, que permite aos utilizadores construir sistemas usando uma arquitetura visual de data
flow, tornando o processo mais fácil para um não programador.

No entanto, a maioria das ferramentas convencionais usam métodos centralizados de com-
putação, onde um componente principal - normalmente alocado na cloud - executa a maioria
da computação nos dados provenientes dos dispositivos edge, e.g. sensores e gateways. Esta
abordagem tem diversas consequências: (a) capacidades de computação de dispositivos edge
estão a ser negligenciadas, (b) introduz um único ponto de falha, e (c) data local é transferida
através de limites (privados, tecnológicos, políticos...) sem necessidade ou violando restrições
legais. Especificamente, o princípio de Local-First - i.e., dados e lógica devem residir localmente,
independentemente de falhas e erros de serviços terceiros - é totalmente ignorado.

Trabalhos feitos no domínio de programação visual tentam mitigar algumas destas conse-
quências, propondo uma solução que consiste na descentralização de flows e a sua execução em
dispositivos de fog e edge. Atualmente, para obter a este tipo de descentralização é necessário que
o esforço de decomposição seja manualmente efetuado pelo programador na construção do sistema,
limitando a adaptação dinâmica do sistema a falhas e aparecimento de dispositivos.

Neste documento propomos a extensão da ferramenta Node-RED para permitir a decomposição
e partição automática do sistema para obter uma maior descentralização. Com isto em mente,
implementámos firmware específico que expõe os recursos dos dispositivos disponíveis, assim como
novos nós e modificações no Node-RED que permitem a orquestração de tarefas. Este firmware é
responsável pela gestão do estado e capacidades do dispositivo, assim como a execução de código
MicroPython sob demanda. Node-RED foi alterado com (1) uma implementação de um registo de
dispositivos que permite que estes se anunciem, (2) geração de código MicroPython a partir de flows
e nós e (3) alocamento de nós a dispositivos baseado em propriedades e prioridades pré-definidas.
Para além disto, foi desenvolvido um mecanismo que deteta automaticamente condições anormais
dos dispositivos em run-time, levando o sistema a adaptar-se.

Para testar a nossa solução foram implementados cenários de home automation, onde diversas
experiências foram feitas usando dispositivos virtuais e físicos. Foram medidas várias métricas
para permitir perceber o impacto na resiliência, eficiência e elasticidade do sistema. Com estes
dados, pudemos concluir que a solução desenvolvida escala no número de dispositivos e é robusta.
Foram identificados vários desafios por resolver, que ficam em aberto para trabalho futuro.

Keywords: Internet-of-Things, Orchestration, Visual Programming, Distributed Systems, Real-
Time, Embedded
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Chapter 1

Introduction

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

This chapter introduces the motivation and scope of this project, as well as the problems it aims to

solve. Section 1.1 details the context of this project in the area of Internet-of-Things. Section 1.2

explains the flaws in the current solutions and why they are problematic Section 1.3 defines the

problem we aim to solve, motivated by the problems mentioned in the previous section. The goals

of this dissertation are described in Section 1.4. Finally, Section 1.5 describes the structure of this

document and what content it contains.

1.1 Context

The Internet-of-Things (IoT) paradigm states that all devices, independently of their capabilities,

are connected to the Internet and allow for the transfer, integration and analytic of data generated

by them [20]. This paradigm has several characteristics, such as the heterogeneity and high

distribution of devices as well as their increasing connectivity and computational capabilities [7].

All these factors allow for a great level of applicability, enabling the realization of systems for the

management of cities, health services, and industries [23].

The interest in Internet-of-Things has been growing massively, following the rise of connected

devices along these past years. According to Siemens, there are around 26 billion physical devices

connected to the Internet in 2020 and predictions are pointing at 75 billion in 2025 [6]. Although

this allows for more opportunities, it is important to note that these devices are very different in their

hardware and capabilities, which causes several problems in terms of developing (e.g., designing,

constructing, testing and deploying) IoT systems that incorporate all these devices, as well as their

1



2 Introduction

scalability, maintainability, and security [32, 31, 30]. Building these IoT systems requires extensive

programming knowledge, which poses limitations to the majority of users which are non-developers.

Several solutions have been proposed, ranging from conversation-based systems [34] to visual

programming solutions [78].

Visual Programming Languages (VPLs) allow the user to communicate with the system by

using and arranging visual elements that can be translated into code [22]. It provides the user with

an intuitive and straightforward interface for coding at the possible cost of losing functionality.

There are several programming languages with different focuses, such as education, video game

development, 3D building, system design and Internet-of-Things [78]. Node-RED1 is one of the

most famous open-source visual programming tools, originally developed by IBM’s Emerging

Technology Services team and now a part of the JS Foundation, providing an environment for end-

users to develop their own Internet-of-Things systems, regardless of their programming knowledge.

Node-RED is a centralized system, as well as most of the visual programming environments

applied to IoT. A centralized architecture has a central instance that executes all computational

tasks on the data provided by the other devices in the network. However, centralized architectures

have several limitations, impacting non-functional attributes of a system, such as resiliency, fault-

tolerance and self-healing [32, 35]. In a centralized IoT system, the central instance is a single

point of failure, making the system totally unavailable if it fails, hindering its resiliency and

fault-tolerance. In addition to this, since all computation is aggregated in the main instance, the

computation capabilities of all the devices connected to it are being neglected.

On the other hand, in a decentralized architecture the central instance, if it exists, partitions

the computational tasks in independent blocks that can be executed by other devices. Apart from

taking advantage of the computational resources of the devices, it reduces the single point of

failure problem, increasing the system’s resiliency and fault-tolerance. In IoT, these decentralized

architectures are mentioned in Fog and Edge computing.

1.2 Motivation

Internet-of-Things is a rapidly growing concept that is being applied to several areas, such as home

automation, industry, health, city management, and many others. Given the number of existing

systems with different protocols and architectures, it becomes difficult for a user to build a system

that is in accordance with standards [5].

With the appearance of visual programming languages focused in IoT, more specifically Node-

RED, users can build their own systems in an easier and streamlined way, removing the overhead

of learning advanced programming concepts and protocols. These tools must be resilient, in order

to withstand flaws and non-availability of devices as well as failure in the network. However, the

majority of these tools are centralized, including Node-RED, and this type of architecture hinders

the resiliency of the system. Given the existence of only one unit that executes most or all the

processing of data, if this device fails, the system becomes non-functional. A possible solution

would be increasing the redundancy of the system, creating more than one instance of the main

unit [86]. However, this approach has several costs, not only monetary but also in the increase

1https://nodered.org/



1.3 Problem Definition 3

in complexity. Even for IoT systems that are cloud-based, they are based on centralized cloud

services, mostly due to the advantages in terms of management and costs (e.g., economics of scale

when building datacenters, automatic backup of all data, and enforce physical security [94]).

1.3 Problem Definition

Most mainstream visual programming tools focused on Internet-of-Things, Node-RED included,

have a centralized approach, where the main component executes most of the computation on

data provided by edge devices, e.g. sensors and gateways. There are several consequences to this

approach: (a) computation capabilities of the edge devices are being ignored, (b) it introduces a

single point of failure, and (c) local data is being transferred across boundaries (private, techno-

logical, political...) either without need or even in violation of legal constraints. The principle of

Local-First [56] - i.e, data and logic should reside locally, independent of third-party services faults

and errors - and NoCloud [77] - i.e, on-device and local computation should be prioritized over

cloud service computation - is being ignored.

Besides being a single point of failure, centralized systems can be less efficient than decentral-

ized ones and in this context, it might be the case, since there are computation capabilities that are

not being taken advantage of.

Chapter 4 expands on the problem definition, explaining it in bigger detail, defining its scope,

desiderata, use cases and research questions.

1.4 Goals

The main goal of this dissertation is to automatically leverage the computation capabilities of

the devices in an IoT network, increasing its overall efficiency, fault-tolerance, resiliency and

scalability. To achieve this goal, we present a prototype that extends Node-RED, which enables

IoT devices to communicate their "computational capabilities" back to the orchestrator, which is

the entity responsible for managing the system’s decentralization. In its turn, the orchestrator is

able to automatically partition the computation and send "tasks" back to the devices in the network,

leveraging their computation power.

As secondary goal, several other challenges were tackled, viz: (i) detection of devices’ non-

availability by the orchestrator and subsequent adaption, (ii) leveraging devices’ computational

resources by creating custom firmware that allows the execution of MicroPython scripts, (iii) com-

munication of devices’ capabilities to the orchestrator and (iv) maximizing partitioning results by

matching nodes to devices with specific properties.

1.5 Document Structure

This chapter introduced the objective of this dissertation by explaining its context and motivation

and addressing the problems it aims to solve. This document is composed of six more chapters,

structured as follow:
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• Chapter 2 (p. 5), Background, introduces the background information and explanation about

concepts necessary for the full understanding of this dissertation.

• Chapter 3 (p. 15), State of the Art, describes the state of the art regarding the ecosystem of

this project’s scope, including a Systematic Literature Review on the state of the art of visual

programming applied to the Internet-of-Things domain.

• Chapter 4 (p. 39), Problem Statement, presents the problem this dissertation aims to solve,

as well as the approach taken to solve it.

• Chapter 5 (p. 43), Solution, details how the solution was implemented and all the decisions

and efforts taken to answer the problem statement mentioned before.

• Chapter 6 (p. 55), Evaluation, analyzes the evaluation process and demonstrates the valida-

tion and evaluation of the developed solution.

• Finally, Chapter 7 (p. 75), Conclusions, concludes this dissertation with a reflection on the

success of the project by presenting a summary of the developed work and detailing the

difficulties and future work.



Chapter 2

Background

2.1 Internet-of-Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Visual Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Decentralized Orchestration . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

This chapter describes the necessary foundations regarding the Internet-of-Things context. Sec-

tion 2.1 describes the background of the Internet-of-Things paradigm and important concepts

in that area, with a description of IoT architectures, including Fog and Edge, in Section 2.1.1.

Finally, Section 2.2 mentions visual programming languages, their uses as well as their benefits

and drawbacks.

2.1 Internet-of-Things

The Internet-of-Things paradigm is defined by the committee of the International Organization for

Standardization and the International Electrotechnical Commission [1] as:

"An infrastructure of interconnected objects, people, systems and information resources

together with intelligent services to allow them to process information of the physical

and the virtual world and react."

IoT systems are, mostly, networks of heterogeneous devices attempting to bridge the gap between

people and their surroundings. According to Buuya [49], the applications of IoT systems can be

divided into four categories: (i) Home, at the scale of a few individuals or domestic scenarios,

(ii) Enterprise, at the scale of a community or larger environments, (iii) Utilities, at a national or

regional scale and (iv) Mobile, which is spread across domains due to its large scale in connectivity

and scale.

One might think that IoT only relates to machines and interactions between them. Most of

the devices we use in our day-to-day — e.g., mobile phones, security cameras, watches, coffee

5
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machines — are computation capable of making moderately complex tasks and are continually

generating and sending information. This incrementally translates towards the human-in-the-loop

concept, where humans and machines become part of a "symbiotic" relationship [71].

2.1.1 IoT architectures

Internet-of-Things systems deal with big amounts of data from different sources and have to process

it in an efficient and fast fashion [60]. Typical IoT systems are composed of three tiers [97], which

are:

Cloud Tier mostly composed of data centers and servers, normally running remotely. It is charac-

terized by having high computation power and latency.

Fog Tier composed of gateways and devices that are normally between the cloud servers and the

edge devices. This tier has less latency than the cloud, more heterogeneity, and, typically, is

more geographically distributed.

Edge Tier composed of all the peripheral devices (e.g., sensors, embedded systems, light sources

and air conditioners). These devices have several limitations in computational capabilities,

but exhibit less latency since the data is processed in the same place it is captured.

Complementary to these tiers, we can also partition IoT systems into an Application Layer,

a Network Layer, and a Perception Layer [65]. At first sight, these might seem compatible with

the tiers mentioned above (in the same order); however, not all devices in each tier map to their

respective layer. One example is a third-party service that provides readings, e.g., Application Pro-

gramming Interface (API) that provide temperature readings. It can be contained in the Perceptive

Layer, but it is not included in the Edge Tier.

New paradigms of computing emerged related to each of these tiers. The majority of IoT

systems use a Cloud Computing architecture [26], taking advantage of centralized computing

and storage. This approach poses some benefits, such as increased computational capabilities

and storage, as well as easier maintenance. However, it also comes with several shortcomings

such as (1) higher latency, and (2) higher usage of bandwidth, due to the need to send the data

generated from the sensors back to the centralized unit(s) [61]. Systems that only use cloud

computing face several challenges [2], especially in real-time applications, which are sensitive

to increased latency [79, 74]. But with the increasing computation capabilities of edge devices

and the requirement of reduced latency, two new paradigms appeared: Fog Computing and Edge

Computing.

2.1.1.1 Fog Computing

The improvement of wireless technologies and the increasing computational power and reduced

costs of lower-tier devices (i.e., fog and edge) allow the usage of these devices as computational

resources in IoT systems. By not depending so much on the cloud tier, communication and

resource sharing between devices can occur with lower latency and reduced amount of data

transferred to the central instance. The central coordinator (on-premises or cloud-based), which in
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Cloud Computing was responsible for all the computation, now serves as an orchestrator of the

communication between devices, occasionally providing necessary resources. This paradigm is

called Fog Computing, where fog and edge devices are leveraged as computational entities, instead

of merely sensors, actuators and gateways. It focuses on distributing data throughout the IoT system,

from the cloud to the edge devices, making the system distributed and bringing computation closer

to the perception tier [62].

According to Buuya [20], Fog Computing poses several advantages: (1) reduction of network

traffic by having edge devices filtering and analyzing the data generated and sending data to the

cloud only if necessary, (2) reduced communication distance by having the devices communicate

between them without using the cloud as a middleman, (3) low-latency by moving the processing

closer to the data source rather than communicating all the data to the cloud for it to be processed,

and (4) scalability by reducing the burden on the cloud, which could be a bottleneck for the system.

Figure 2.1: Fog Computing Architecture [20]

Despite all the advantages, Fog Computing has several challenges and difficulties. One of them

is the management of resources and service allocation, responsible for deciding which tasks will be

performed in the fog and where in the fog they will be allocated [66]. The complexity is also more

significant than Cloud Computing since it needs to work with heterogeneous devices with different

capabilities.

2.1.1.2 Edge Computing

Edge Computing, also known as Mist Computing, is a distributed architecture that uses the devices’

computational power to process the data they collect or generate. It takes advantage of the Edge tier,

which contains the devices closer to the end-user, such as smartphones, TVs and sensors. The goal

of this paradigm is to minimize the bandwidth and time response of IoT systems while leveraging

the computational power of the devices in them. It reduces bandwidth usage by processing data

instead of sending it to the cloud to be processed, which is also correlated to reduced latency since

it does not wait for the server response. In addition to these advantages, and related to their cause,
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Edge Computing also prevents sensitive data from leaving the network, reducing data leakage and

increasing security and privacy [64, 84].

In this paradigm, each device serves both as a data producer and a data consumer. Since each

device is constrained in terms of resources, this brings several challenges such as system reliability

and energy constraints due to short battery life. Other issues consist of the lack of easy-to-use tools

and frameworks to build cloud-edge systems, non-existent standards regarding the naming of edge

devices and the lack of security edge devices have against outside threats such as hackers [83].

There is some confusion in the research community regarding the concepts of Fog and Edge

computing. The publication from Iorga et al. [53] was used to inspire the definitions of these

terms. Edge Computing focuses on executing applications in constrained devices, without worrying

about storage or state preservation. On the other hand, Fog Computing is hierarchical and includes

devices with more capabilities, capable of control activities, storage, and orchestration.

2.1.2 IoT development tools

There are several tools that allow the development of IoT systems, with some of them being specific

to certain domains and use-cases. Section 2.1.2.1 presents and IoT development tool focused on

the home automation domain, where Section 2.1.2.2 presents a more generic tool.

2.1.2.1 Home Assistant

Home Assistant [9] is an open-source home automation system that supports several mainstream

IoT devices such as ESPs, Amazon Alexa, Google Assistant, and others. The configuration of

the system is made with the use of a .yaml file that is loaded by the system when it starts. This

configuration file contains the integrations to be made and their respective configurations.

After creating the system, the user can interact with it by using a progressive web application.

The interface, which consists of a dashboard, can be modified by the user to match its needs, with

the addition of new panels or even the creation of new elements. It has integration with their

Lovelace 1 front-end and React 2. An example of a Home Assistant dashboard can be seen in

Figure 2.2 (p. 9).

The backend is made using Python3 and is composed of three modules: (1) the Home Control,

responsible for collecting information and controlling the devices, (2) the Home Automation,

responsible for triggering commands based on the user configuration, and (3) the Smart Home, for

triggering commands based on previous interactions.

2.1.2.2 Device Hive

Device Hive [51] is an open-source IoT platform that supports multi-platform libraries for the

development of IoT system in several domains (e.g., home automation, smart energy, monitoring,

remote control and others). It integrates with different types of devices, allowing modularity

not only in the construction of client applications but also in the interfaces that connect with the

devices. Device Hive is composed of three components: (1) the Auth service, responsible for the

1https://github.com/home-assistant/frontend/
2https://reactjs.org/
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Figure 2.2: Example of a Home Assistant dashboard [8]

authorization and authentication of users and plugins, (2) the WebSocket Kafka Proxy, responsible

for establishing communication between devices as well as allowing users to interact with plugins,

and (3) the Plugin Management Service, that provides information about plugins, allows operations

upon them and also allows the management of device operations.

Although the main core of the tool is a server that deals with all the devices and their data, it

provides modules that can be integrated into the tool. They provide an Admin panel, which allows

users to visually manage the connected devices and the installed plugins. It also integrates with

Grafana 3 for data visualization.

2.2 Visual Programming Languages

Having seen the characteristics and different ties of IoT, we will now address one of the most

user-friendly ways of developing IoT systems.

Visual Programming, as defined by Shu [85], consists of using meaningful graphical represen-

tations in the process of programming. We can consider Visual Programming Languages (VPLs) as

a way of handling visual information and interaction with it, allowing the use of visual expressions

for programming. According to Burnet and Baker [18], visual programming languages are con-

structed to "improve the programmer’s ability to express program logic and to understand how the

program works". There are several applications of visual programming languages in different areas,

such as education, video game development, automation, multimedia, data warehousing, system

management, and simulation, with this last area being the one with the most use cases [78].

Visual programming languages exhibit several characteristics, such as a concrete and visual

process and depiction of the program, immediate visual feedback, and usually require less knowl-

edge of programming concepts [18]. VPLs can be categorized [17] in the following way:

Purely Visual Languages , where the system is developed using only graphical elements and the

subsequently debugging and execution is made in the same environment;
3https://grafana.com/
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Hybrid text and visual systems , where the programs are created using graphical elements, but

their execution is translated into a text language;

Programming-by-example systems , where a user uses graphical elements to teach the system;

Constraint-oriented systems , where the user translates physical entities into virtual objects and

applies constraints to them, in order to simulate their behaviour in reality;

Form-based systems , which are based on the architecture and behaviour of spreadsheets.

Some of these categories can be simultaneously present in a single system, making them not

mutually exclusive.

2.2.1 Node-RED

Node-RED [44] is a visual programming tool applied to the development of Internet-of-Things

systems. It was first developed to manipulate and visualize mappings between Message Queuing

Telemetry Transport (MQTT) topics in IBM’s Emerging Technology Services group. It then

expanded into a more general open-source tool, which is now part of the JS Foundation.

It is a web-based tool consisting of a run time built with the Node.js framework and a browser-

based visual editor. This tool provides the end-user with a simple interface to connected devices

and APIs, using a flow-programming approach [44]. Programs are called flows, built with nodes

connected by wires. Each node corresponds to an action, such as input, output, data processing, etc.

The Node-RED interface has three components: (1) Palette, (2) Workspace and (3) Sidebar.

The Palette contains all the nodes installed and available to use, divided into categories. They can

be used by dragging them into the workspace and additional features for each node are accessible

by double-clicking them. The Workspace is where the flows are created and modified. It is possible

to have several flows and sub-flows accessible with the use of tabs. Lastly, the Sidebar contains

information about the nodes, the debug console, node configuration manager and the context data.

Figure 2.3 showcases the visual interface of Node-RED and its elements.

Figure 2.3: Node-RED environment
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One example of a flow can be seen in Figure 2.4, where a request is being made in intervals of

5 minutes to an HTTP URL that returns a CSV with the feed of significant earthquakes in the last 7

days. The data from the CSV is then printed to a MQTT topic and, if the magnitude is equal or

bigger than 7, the message "PANIC!" is printed to other MQTT topic.

Figure 2.4: Example of a Node-RED flow

Node-RED is modular, allowing the installation of community-made extensions, such as

nodes. These custom nodes extend from the base class Node, which implements an event based

communication. Each node sends and receives messages, triggering events that execute each node’s

specific behaviour.

Being open-source, Node-RED takes advantage of a large community that contributes with new

nodes and improvements to the tool. It is the most popular open-source visual programming tool

for IoT, with more than 9,300 stars on Github.

2.2.2 Godot

There are also other domains besides IoT where visual programming languages are being used. One

example is the game engine Godot 4 with its visual scripting. Godot is an open-source game engine

that has recently increased in popularity, currently having 31,600 stars on GitHub 5. It offers several

alternatives for its users to program their games, from using C++ to their own GDScript. However,

to lower the barrier for a user to start using the engine, allowing people with no programming

experience to easily understand the flow of logic, they developed a visual alternative — visual

scripting (cf. Figure 2.5, p. 12).

Each node corresponds to a function in a normal text script. Each node contains properties,

ports and connections. Properties consist of arguments the function receives, as well as arguments

globally accessible by the script. Ports and connections consist of inputs and outputs it can receive,

either from other nodes or signals emitted during the events of the game.

Although most features are implemented in this visual alternative, it does not substitute pro-

gramming with code, since visual scripting takes more time to develop code and it hinders project

scalability.

2.2.3 Blender

Blender 6 is an open-source 3D creation suite that supports that entirety of the 3D pipeline. It is

open to the community, with its source code being under the GPL license. It contains a visual

4https://godotengine.org/
5https://github.com/godotengine/godot
6https://www.blender.org/
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Figure 2.5: Godot visual scripting [54]

programming editor, called Node Editor, which works with 3 types of nodes: (i) material, (ii)

composite and (iii) texture nodes. Figure 2.6 contains an example of a composition.

Figure 2.6: Blender composition node editor [16]

Each node contains a title, inputs, outputs, and properties. Properties are visible in each node

and can be altered, which possible results in different outputs.The inputs and outputs are located at

the bottom left and top right, respectively.
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2.3 Decentralized Orchestration

As mentioned in Section 2.1.1 (p. 6), several IoT architectures focus on a more decentralized

approach, allocating tasks in devices present in Fog and Edge tiers. This concept or decentralized

orchestration is present in other domains besides IoT. One example of decentralized orchestration

in Kubernetes 7.

Kubernetes is an open-source system for automating deployment scaling and management

of applications. It includes features such as load balancing, service discovery, self-healing and

scaling. When Kubernetes is deployed, a cluster is created. This cluster contains nodes that run

containerized applications, which in turn can host pods. Pods are processes that represent an

instance of an application, which might translate into a single container or multiple tightly-coupled

containers. They might have predicates, which are constraints that cannot be violated, and priorities,

which would be beneficial if accomplished but can violated if not possible.

Each Kubernetes instance is composed of a scheduler, an API server, an etcd, a kube controller

manager and a cloud controller manager [57]. The scheduler is responsible for assigning pods

to nodes. The API exposes the Kubernetes API, allowing users to interact with the system. The

etcd consists of a key-value store for storing all the cluster data. The controllers deal with process

specific management, i.e., noticing if nodes become unavailable and maintaining the replication

factor.

After the deployment of a Kubernetes instance, the scheduler assigns the pods to nodes. The

operation consists of two steps: (i) filtering, where the available nodes are filtered in order to not

violate the pod’s predicates, and (ii) scoring, where the scheduler uses the remaining nodes from

the filtering process and ranks them regarding their compliance to the pods priorities [58].

Finally, the scheduler assigns each pod to the node with the highest ranking. The filtering

process might result in an impossible assignment, if there are no nodes that comply with a pod’s

predicates.

2.4 Summary

This chapter introduces concepts regarding IoT, visual programming and decentralized orchestration,

which are fundamental to the understanding of this dissertation. Section 2.1 (p. 5) defines Internet-

of-Things, as well as its use cases. Fog and Edge computing paradigms are explained, which will

be mentioned throughout this document, as well as examples of tools for the development of IoT

systems. Section 2.2 (p. 9) introduces and explains the definition and categorization of visual

programming languages, with examples of their application in several domains. Finally, Section 2.3

exposes decentralized orchestration implementations such as Kubernetes.

7https://kubernetes.io/
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This chapter describes the state of the art for visual programming tools in the Internet-of-Things, as

well as decentralized methods of work distribution in flow-based architectures. Section 3.1 presents

a systematic literature review on the topic of visual programming tools applied to the Internet-of-

Things paradigm, which aims to answer the research questions defined in Section 3.1.1.1 (p. 16).

Section 3.1.2 (p. 18) contains the results of the Systematic Literature Review, as well as their

categorization. Section 3.1.3 (p. 24) contains the additional tools found in a survey and their

analysis. The discussion and analysis of the tools found as well as the answering of the research

questions made previously are made in Section 3.1.5 (p. 26). The Systematic Literature Review

conclusions are presented in Section 3.1.6 (p. 28). Lastly, Section 3.2 (p. 29) contains the state of

the art of visual programming tools applied to IoT that implement a decentralized architecture.

3.1 Systematic Literature Review

A Systematic Literature Review was made to gather information on the state of the art of visual

programming applied to the Internet-of-Things paradigm. The goal of a systematic literature review

is to synthesize evidence with emphasis on the quality of it [73].

3.1.1 Methodology

During this SLR, a specific methodology was followed to reduce bias and produce the best

results [73]. We started by defining the research questions to be answered as well as choosing data

sources to search for publications.
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3.1.1.1 Research Questions

To reveal the current practice, research and studies related to decentralization in Internet-of-Things

systems that leverage visual approaches, which enable us to find the current, and pending research

challenges, we outline the following survey research questions (SRQ):

SRQ1 What relevant visual programming solutions applied to IoT orchestration exist? Internet-

of-Things is a paradigm with several years, and its integration with visual programming

languages makes their development easier for the end-user. The tools that integrate these two

paradigms are useful and reduce the overhead of programming or prototyping IoT systems.

SRQ2 What is the tier and architecture of the tools found in SRQ1? IoT systems can belong

to one or more of tiers — Cloud, Fog and Edge — as well as implement a centralized or

decentralized architecture. A visual programming tool applied to IoT orchestration can be

used to facilitate the development of systems that operate on these tiers. Each tier and type of

architecture offers vantages and disadvantages, which are essential to understand the usages

and characteristics of a system.

SRQ3 What was the evolution of visual programming solutions applied to IoT orchestration over

the years? To understand the field of visual programming applied to IoT, more specifically,

its orchestration, it is essential to perceive its evolution. This evolution was measured by

examining the publication years of the tools found.

Answering these questions will provide insights that can be valuable for both practitioners, in

terms of summarizing what the current practices on the usage of visual programming methodologies

for IoT orchestration are, and researchers, by showing current challenges and issues that can be

further researched.

3.1.1.2 Databases

The publications retrieved during this research were retrieved from the following databases: (a)

IEEE, (b) ACM and (c) Scopus.

These electronic databases contain some of the most relevant digital literature for studies in the

area of Computer Science, thus being considered reliable sources of information.

3.1.1.3 Candidate Searching and Filtering

Our systematic literature review protocol followed the inclusion and exclusion criteria detailed in

Table 3.1 (p. 17) and outlined in Figure 3.1 (p. 17). We begun our search in these data sources using

a query that captured the most probable keywords to appear in our target candidates, namely visual

programming, node-red, dataflow, and Internet-of-Things. This led us to specify variants of the

following query that are understood by the mentioned databases:

((vpl OR visual programming OR visual-programming) OR (node-red OR node red OR

nodered) OR (data-flow OR dataflow)) AND (IoT OR Internet-of-Things OR

internet-of-things)
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This search was performed in October of 2019 and the number of results produced can be seen

in the first step of Figure 3.1.

I/E ID Criterion
E

xc
lu

si
on

EC1 Not written in English.
EC2 Presents just ideas, tutorials, integration experimentation, magazine publications,

interviews or discussion papers.
EC3 Presents a tool, framework or approach that does not support the orchestration of

multiple devices.
EC4 Has less than two (non-self) citations when more than five years old.
EC5 Duplicated articles.
EC6 Articles in a format other than camera-ready (PDF).

In
cl

us
io

n IC1 Must be on the topic of visual programming in Internet-of-Things.
IC2 Contributions, challenges and limitations are presented and discussed in detail.
IC3 Research findings include sufficient explanation on how the approach works.
IC4 Publication year in the range between 2008 and 2019.
IC5 Is a survey that focus visual programming in IoT or

Table 3.1: Inclusion and exclusion criteria.
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Figure 3.1: Pipeline overview of the SLR Protocol.

The evaluation process of the publications then followed eight steps with the following purposes:

1. Automatic Search: Query string was introduced in the different scientific databases and the

results were gathered;

2. Filtering (EC1, IC4, and EC6): Publications were selected regarding its (1) language, being

limited to the ones written in English language, (2) publication date, being limited to the

ones published between 2008 and 2019, and (3) publication status, being selected only the

ones that are published in their final versions (camera-ready PDF format);

3. Filtering to remove duplicates (EC5): The selected papers were filtered to remove dupli-

cated entries;

4. Filtering by Title and Abstract (EC2–EC4, and IC1–IC3): Selected papers were revised

by taking into account their Title and Abstract, by observing the (1) stage of the research,

only selecting papers that present approaches with sufficient explanation, some experimental



18 State of the Art

results and discussion on the paper contributions, challenges and limitations, (2) contextual-

ization with recent literature, filtering papers that have less that two (non-self) citations when

more than five years old, and (3) leverages the use of visual notations for orchestrating and

operating multi-device systems.

5. Filtering by Introduction and Conclusions (EC2–EC4, and IC1–IC3): The same proce-

dure of the previous point was followed but taking into consideration the Introduction and

Conclusion sections of the papers;

6. Selected Papers Analysis: Selected papers were grouped, and surveys were separated; their

content was analyzed in detail.

7. Surveys Expansion: For the survey papers found, the enumerated solutions were analyzed

and filtered taking into account their scope and checked if they are not duplicates of the

current selected papers.

8. Wrapping: Approaches and solutions gathered from the Selected Papers Analysis (individual

papers) and from the Survey Expansion were presented and discussed.

The total number of publications was 2698, and, after the evaluation process, 22 publications

were selected as can be seen in Figure 3.1 (p. 17). From those, one was a survey and the others

presented approaches relevant to our research questions.

3.1.2 Results

After analyzing the 22 publications, we organized them by categories; of these, one was a sur-

vey [78], and the remaining 21 were papers that address our research questions. In that survey, the

authors make an in-depth review of 13 visual programming languages in the field of IoT, comparing

them using four attributes: (1) programming environment, (2) license, (3) project repository and

(4) platform support. We used this survey to complement our research in Section 3.1.3 (p. 24).

The selected 21 articles described approaches that use visual programming in the IoT context

having orchestration considerations. One of the tools is described in two papers, which showcases

its evolution. The 20 unique solutions are:

• Belsa et al. [12] presents a solution for connecting devices from different IoT platforms, using

Flow-Based Programming with Node-RED, depicted in Figure 3.2 (p. 19). Its motivation is

based on the limitation imposed by the IoT platform on communication between components

and extensibility, which limits the possibility to interact with other platforms’ services. The

developed tool offers access to available services in a centralized visual framework, where

end-users can use them to build more complex systems. To validate their solution, they

implemented a use case in the domain of transportation and logistics, with a service that uses

five different types of applications. The validation was successful, resulting in communication

between the different applications and fulfilling the use case goal.

• Ivy [37] proposes the use of virtual reality applied to IoT, with a visual programming tool that

allows its users to link devices, inject logic, visualize real-time data flows, access debugging
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Figure 3.2: Belsa et al. [12] solution architecture. The Modeller is a Node-RED flow editor
canvas were new flows can be created by connecting nodes that correspond to the available services
(Service Catalog and Discovery) which are then stored in the Flow Repository.
The Orchestrator is responsible for managing and running the specified flows as required
(by running several instances of the Node-RED runtime) and converting Node-RED calls to the
different IoT Platforms native calls (aided by the Semantic Mediator).

tools, and real-time deployment. Each programming construct called node — data flow

architecture — has a distinct shape and colour, which facilitates the understanding of the

system being built by the user. To validate the tool, they asked 8 participants with IoT

knowledge to fix certain problems in two different test scenarios. The participants easily

understood how to operate the tool but demonstrated mixed opinions about the application of

Virtual Reality in building IoT systems, pointing out that it is slower and less direct than a

normal desktop experience.

• Ghiani et al. [45] proposition is to build a collection of tools that allow non-developer users

to customize their Web IoT applications using trigger-actions rules. The proposed solution

provides a web-based tool that allows users to specify rules using IFTTT, as well as a context

manager middleware that can adapt to the context and events of the devices and apply rules

to the system. To validate the developed tool, an example of a home automation application

was built, where 18 users had to create a set of rules given to them. The results were, for the

most part, positive, with the majority of the participants being able to implement most of the

requested rules, taking from 100 to 600 seconds to complete each task. The issues reported

by the users were related to usability and visual clues of the developed tools.

• ViSiT [4] uses the jigsaw puzzle metaphor [52] to allow its end-users to implement a system

of connected IoT devices. It provides a web-based visual tool connected with a web-service

that generates an executable implementation from the created visual representation. Their
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goal is achievable by adapting model transformations used by software developers into

intuitive metaphors for non-developers to use. They validated the developed tool with a

usability evaluation, which resulted in 80% of the participants being able to correctly define

transformations for the three scenarios proposed and a System Usability Score of 76.1.

In addition to this, 75% of the participants provided real-life scenarios where they could

implement it.

• Valsamakis and Savidis [93] propose a framework for Ambient Assisted Living (AAL)

using IoT technologies, which allows for customized automation. It uses visual programming

languages to facilitate their end-users - caretakers and elderly - to build and modify automa-

tion. They built a visual programming framework that introduces smart objects grouping

in tagged environments and real-time smart-object registration through discovery cycles.

It runs on typical smartphones and tablets and is built in Javascript, allowing it to run in

browsers. They validated their framework by automating the daily-life of an hypothetical

user. However, they did not validate using real end-users.

• WireMe [72] is a tool for building, deploying, and monitoring IoT systems, built with

non-developer end-users in mind but also extensible for advanced users to build over it. The

developed solution makes use of Scratch 1, a visual programming interface, to provide its

users with a customizable dashboard where they can monitor and control their IoT system as

well as program automation tasks. It has a Main Control Unit responsible for communicating

the device’s status to the dashboard via MQTT, which can be programmed using both their

visual interface and Lua programming language. Their tool was validated in an empirical

study with an unspecified number of students around 16 years old and engineering students

without programming experience. They found that some students were not able to create the

requested logic, but did not specify the difficulties faced or why they existed.

• VIPLE [27], Visual IoT/Robotics Programming Language Environment, is a new visual

programming language and environment. It provides an introduction to topics such as

computing and engineering and tools for more technical domains like software integration

and service-oriented computing. It focuses on complex concepts such as robot as a service

(RaaS) units and Internet of Intelligent Things (IoIT) while studying the programming issues

of building systems classified as such. The developed tool has been tested and used in several

universities since 2015 due to its large set of features and use cases. The feedback from the

widespread usage of VIPLE resulted in improvements made to the software. However, the

content of this feedback is not specified.

• Smart Block [11] is a block-based visual programming language similar and visual pro-

gramming environment applied to IoT systems, that allows non-developer users to build

their systems quickly. Their solution is specific to the home automation domain, like Smart

Things. The language was designed using IoTa calculus [68], used to generalize Event-

Condition-Action rules for home automation. The environment was built using a client-side

1https://scratch.mit.edu/
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Javascript library called Blockly 2, which allows for the creation of visual block languages.

No validation or evaluation was made to the developed tool.

• PWCT [42] is a visual programming language applied to build IoT, Data Computing, and

Cloud Computing systems. Its goal consists of reducing the cost of development of these

types of systems by providing a comfortable and more productive development tool. The

language was meant to compete with text-based languages such as Java and C/C++. It has

three main layers: (1) the VPL layer, composed of graphical elements, (2) the middleware

layers, responsible for connecting the VPL layer to the system’s view, which is the (3) System

Layer, responsible for dealing with the source code generated by the first layer. The created

solution became very popular on Sourceforge [43] with more than 70,000 downloads and

93% of user satisfaction. However, no validation was made.

• DDF [48] is a Distributed Dataflow (DDF) programming model for IoT systems, leveraging

resources across the Fog and the Cloud. They implemented a DDF framework extending

Node-RED, which, by design, is a centralized framework. Their motivation comes from the

possibility to develop applications from the perspective of Fog Computing, leveraging these

devices for efficiency and reduced latency, since there is a significant amount of resources

such as edge devices and gateways in IoT systems. They evaluated their prototype by building

an IoT application consisting in one sensor, two Raspberry Pis, a computer server and a cloud

instance. The assignment complied with all the given constraints, resulting in a successful

validation of their system. Their DDF framework provides an alternative for designing

and developing distributed IoT systems, despite some open issues such as the absence of a

distributed discovery of devices and networks.

• GIMLE [91], Graphical Installation Modelling Language for IoT Ecosystems, is a visual

language that uses visual elements to model domain knowledge using significant ontological

requirements. The goal of this language is to fill the gap of modeling requirements on the

physical properties of IoT installations by proposing a new process for configuring industrial

installations. It makes use of flow-based and domain-based visual programming to isolate

the requirements’ logical flow from their details. The developed tool supports reuse within

the models, which is valuable due to the repetitive nature of industrial installations. However,

it still needs to clarify its scope within the current practice and its use in production settings.

The evaluation of the tools was made by asking 5 participants to build a real-world scenario.

All participants were able to complete the challenge within 20 minutes.

• DDFlow [70] is a macro-programming abstraction that aims to provide efficient means to

program high quality distributed apps for IoT. The authors recognized a lack of solutions

for complex IoT systems programming, causing developers to build their systems from

scratch, which leads to a lack of portability/extensibility and results in a lot of similar systems

that do the same thing but are “different” just because different programmers created them.

Developers use Node-Red to specify the application functionalities, and DDFlow handles

scalability and deployment. The authors describe DDFlow’s goal to allow developers to

2https://developers.google.com/blockly
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formulate complex applications without having to care about low-level network, hardware,

and coordination details. This is done by having the DDFlow accompanying runtime and

dynamically scaling and mapping the resources, instead of the developer. DDFlow gives

developers the possibility to inject custom callbacks on a node when a message is received

and has custom logic if the available nodes are not enough for some tasks. The developed

solution was validated with the use of a simulated vigilance scenario were video capture and

processing is made. Device and network failures are injected, resulting in the recovery of the

system and validating the tool’s features.

• Kefalakis et al. [55] proposes a visual environment that operates over the OpenIoT architec-

ture and allows for the development of IoT applications with reduced programming effort.

Modeling IoT services with it is made by specifying a graph that corresponds to an IoT

application, which will be translated into code and performed over the OpenIoT middleware

platform. It aims to fill the gap of tools that provide support for the development and deploy-

ment of integrated IoT applications. The approach taken presents several advantages: (1) it

leverages standards-based semantic model for sensor and IoT context, making it easier to

be widely adopted, (2) it is based on web-based technologies which open the possibilities

of applications from developers and (3) it is open source. The validation of the tool was

made with the construction of several IoT applications that aim to demonstrate the developed

features. However, no specifics or examples were mentioned.

• Eterovic et al. [40] proposes an IoT visual domain-specific modeling language based on

UML, with technical and non-technical users in mind. To evaluate the proposed solution,

they invited 11 users of different levels of UML expertise to model a simple IoT system

with the developed language. The average System Usability Score was 81.56, and the Tasks

Success Rate was 100%. Despite the positive score, the authors propose further testing of the

language with more complex tasks as well as the usage of advanced UML notations.

• FRED [15] is a frontend for Node-RED, a development tool that makes it possible to host

multiple Node-RED runtimes. It can be used to connect devices to services in the cloud,

manage communication between devices, create new web app applications, APIs and event-

integrated services. To provide all these features, FRED allows the running of flows for

multiple users, in which all flows get fair access to resources such as CPU, memory, storage,

as well as secure access to flow editors and the flow runtime. The authors concluded that

FRED is useful for users learning about Node-RED and allows users to prototype cloud-

hosted applications rapidly.

• WoTFlow [14] is proposed as a cloud-based platform that which intention is to provide an

execution environment for multi-user cloud environments and individual devices. It aims to

take advantage of data flow programming, which allows parts of the flow to be executed in

parallel in different devices. Based on this, the tool will take advantage of the ability to split

and partition the flows and distribute them by edge devices and the cloud. The state of the

developed tool was in the early stages in 2014, with future expansions based on the use of
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optimization heuristics, automatic partitioning based on calculated constraints, security, and

privacy.

• Besari et al. [82, 13] proposes a visual programming interface for IoT systems that aims to

control sensors and actuators using an android application. The system was tested with a

Pybot, a robot with sensors and actuators that is programmable like an IoT system, created by

them. After testing and evaluating the system, the authors came to a System Usability Score

of 72.917 (out of 100) for the Pybot software, which is considered “good”, and an overall

system’s acceptability of "acceptable", which led the authors to consider the application

accepted by users.

• CharIoT [90] is a programming environment similar to IFTTT that proposes a solution

that unifies and supports the configuration of IoT environments. It provides three blocks of

support: capturing higher-level events using virtual sensors, construction of automation rules

with a visual overview of the current configuration and support for sharing configuration

between end-users using a recommendation mechanism. Two types of virtual sensors were

developed to capture higher-level events. The programmed virtual sensor provides more

accessible and understandable abstractions (defining that a room is “cold” if the temperature

is below 20oC). The demonstrated virtual sensors are more complex, requiring the user to

provide a demonstration of the occurrence and lack of occurrence of the event (for example,

the event of someone knocking on the door and the absence of someone knocking on the door),

and the training of a Random Forest classifier. No validation was made to the developed

solution.

• Desolda et al. [28] proposes a tangible programming language that allows non-programmers

to configure smart objects’ behavior to create and customize smart environments. The

authors defend that the synchronization of smart devices cannot limit the personalization of

a smart environment, and it may require experts to build their narrative. With this in mind,

they introduced custom attributes to assign semantics to connected objects to empower and

simplify the creation of event-condition-action rules. This is ongoing research focused on

developing new technology with an interaction paradigm that supports the input of domain

experts in the creation of smart environments, using a tabletop surface as the interaction

source. An interactive tabletop was built to implement the system, which recognizes user

tactile input and certain physical objects placed on it. However, no scenario or experiment is

mentioned to validate the solution.

• Eun et al. [41] proposes an End-User Development (EUD) tool that proposes a more gen-

eralized programming experience as well as the facility to build more complex programs

with simple modules. The proposed dataflow-based tool has three main components: Service

Template Authoring Tool, Service Template Repository, and Smartphone Application. The

first one allows the end-user to build more complex methods using atomic templates (compo-

nents with simple functionality, like opening a curtain if it receives a command). The Service

Template Repository contains the proprietary atomic templates as well as ones built by the

user. Lastly, the Smartphone Application runs and manages the applications built by the user,
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as well as their requirements and dependencies. The developed EUD tool was compared with

IFTTT and Zapier. IFTTT and the developed tool exhibit similar characteristics by focusing

on consumer development, IoT, and home environments, with Zapier focusing on business

environments such as industry. Both Zapier and IFTTT use the Trigger-Action paradigm

(TAP), which differs from the dataflow paradigm used in the developed solution.

3.1.3 Expanded Search

The results of the Systematic Literature Review were disclosed in the previous section. However,

other tools were found in a non-systematic survey Ray, P. [78] that are not present in the selected

papers. We consider that this divergence may result from not having academic publications

associated with them, thus not being present in the databases mentioned in Section 3.1.1.2 (p. 16).

One famous example is Node-RED [44]. The results from the Ray, P. [78] were analyzed, the

described tools were assessed against the evaluation process defined in Section 3.1.1 (p. 15), and

characterized by the categories mentioned in Section 3.1.2 (p. 18). Using this methodology, the

results are:

Figure 3.3: Node-RED [44] high-level architecture, identifying its development interface, runtime
and node.js dependency. The flows can be versioned and organized in projects and new modules
(i.e., nodes) can be added using the node.js dependency manager tool (i.e., npm).

• Node-RED [44] is a visual programming environment applied to the IoT domain. It makes

use of flow-based development (connecting communication and computation nodes in flows),

supporting a wide range of devices and APIs. It has two main modules: (1) a development

interface which consists of a flow drawing canvas and a node palette, and (2) a runtime module

that leverages the Node.JS event-loop to pass messages between the different nodes (cf.

Figure 3.3). Due to being open-source and extendable, its large community contributes with

features that enrich the tool, some of them already mentioned in Section 3.1.2 (p. 18) (e.g.,

FRED [15] and DDF [48]).

• NETLab Toolkit [92] is a visual environment that makes use of drag-and-drop actions to

allow users to build IoT applications. It provides a web interface or stand-alone application

to connect sensors, actuators, and others for quick prototypes. The runtime uses Node.js and

its front-end uses a widget-based architecture that provides modularity. Despite containing

several features similar to Node-RED, the support for this tool stopped in 2017, with its last

release in January 2017.
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• NooDL [69] is a platform that provides a visual programming interface for prototyping

applications. It allows for the creation of interfaces, using live data, and supporting several

types of hardware. Although it is not specific to IoT, NooDL is generic enough to support

programming of IoT systems. It makes use of MQTT broker agents for connecting devices

and visual paradigms such as nodes, connections, and hierarchies to allow the user to build

its system.

• DGLux5 [29] for DSA is a drag-and-drop visual language and environment that allows its

users to build applications tailored to manage Building Management Systems (BMS). It

provides a dashboard for analyzing and controlling device data in real-time. This tool is very

restrictive in its scope, only integrating with specific BMS frameworks and in-house systems.

• AT&T Flow Designer [10] is a visual tool incorporated in a cloud development environment,

applied to the development of IoT systems. It extends Node-RED, offering multi-tenant

cloud hosting, version management, debugger and log aggregation, besides other integrations

with AT&T products.

• GraspIO [63] is a Graphical Smart Program for Inputs and Outputs that contains a block

drag-and-drop visual paradigm that allows its users to build applications for the Cloudio

hardware. It offers a Cloud Service that connects and manages all Cloudio devices, making

them available at the user’s mobile device.

• Wyliodrin [95] is a browser-based visual programming environment that allows the devel-

opment of IoT systems of several devices, such as Raspberry Pi, Arduino, Intel Galileo,

Intel Edison, and others. It provides a drag-and-drop environment, as well as support for

text-based languages. A dashboard for visualizing the data collected is provided.

• Zenodys [21] provides a drag-and-drop interface to build application backends as well as

user interfaces. Its computing engine can run in several types of devices, from the cloud to

chips, devices, and distributed computers. Zenodys contains a visual debugger as well as

support for text-based programming and code generation.

3.1.4 Results Categorization

The mentioned frameworks and tools were divided into the following categories, according to

several characteristics:

1. Scope. Some tools have specific use cases in mind. Therefore, knowledge of the scope of a

tool is useful to assess if it solves a problem or fills a specific gap in the literature. Example

values consist of Smart Cities, Home Automation, Education, Industry, or Several if there is

more than one.

2. Architecture. Visual programming tools applied to the Internet-of-Things can be centralized

or decentralized, based on their use of Cloud, Fog or Edge Computing architecture. Possible

values are Centralized, Decentralized and Mixed.
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3. License. The license of software or tool is essential in terms of its accessibility and repro-

ducibility. Normally, an open-source software reaches a bigger user base and allows them to

expand and contribute to it. Possible values are the name of the tool license, or N/A if it does

not have one.

4. Tier. IoT systems, as explained in Section 2.1.1 (p. 6), are composed of three tiers - Cloud,

Fog and Edge. A tool can interact in several of these tiers, which shapes the features it

contains and how it is built.

5. Scalability. Defines how the tool or framework scales. It can be calculated based on metrics

used to test the performance of the system. In this case, we considered scalability in terms of

number and different types of devices supported. Possible values are low, medium, high or

N/A, in case there is no sufficient information available.

6. Programming. According to Downes and Boshernitsan [17] and also mentioned in Sec-

tion 2.2 (p. 9), visual programming languages can be classified in five categories: (1) Purely

Visual languages, (2) Hybrid text and visual systems, (3) Programming-by-example systems,

(4) Constraint-oriented systems and (5) Form-based systems. These classifications are not

mutually exclusive. It is important to know which type, so that it might be possible to assess

the type of experience the tool provides to the user.

7. Web-based. Defines if the visual programming language and/or environment can be used in

a browser. It is useful in terms of the accessibility of the tool.

The categorization of the SLR results is depicted in Table 3.2 (p. 27). Some key takeaways are

easily observable, namely: (1) most tools use a centralized architecture, (2) the hybrid visual-textual

programming paradigm is predominant, and (3) most of the tools are web-based. The extended

search findings and their categorization is presented in Table 3.3 (p. 28).

3.1.5 Analysis and Discussion

The tools presented in this Systematic Literature Review passed the evaluation process defined in

Section 3.1.1.3 (p. 16). Tools that only supported one device were left out, as well as tools that

extended a VPL applied to IoT.

3.1.5.1 Evolution Analysis

To understand the evolution of visual programming languages applied to IoT, the publication

years of the tools found in Section 3.1.2 (p. 18), as well as the launch years of the survey tools of

Section 3.1.3 (p. 24), were analyzed. Figure 3.4 (p. 29) contains the their evolution, where we can

observe that there was a more substantial amount of work related to this topic in the years 2017 and

2018. The year 2019 is still very recent to allow any conclusion to be deduced.

3.1.5.2 Result Analysis

By analysing the tools based on categories established in Section 3.1.4 (p. 25), the following

conclusions were taken:
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Tool Scope Architecture License Tier Scalability Programming Web-based

Belsa et al. [12] Several Centralized - Cloud High Hybrid •
Ivy [37] Several Centralized - Cloud Medium7 Purely visual
Ghiani et al. [45] Home Automation Centralized - Cloud - Form-based •
ViSiT [4] Several Centralized - Cloud High Hybrid •
Valsamakis and Savidis [93] Ambient Assisted Living Centralized - Cloud - Hybrid •
WireMe [72] Education, Home Automation Centralized - Cloud - Hybrid
VIPLE [27] Education Centralized - Cloud - Hybrid
Smart Block [11] Home Automation Centralized - Cloud - Hybrid •
PWCT [42] Several Centralized GNU GPL v2.0 -1 High Hybrid
DDF [48] - Decentralized Apache 2.0 Fog High Hybrid •
GIMLE [91] Industry Centralized - Cloud High Hybrid •
DDFlow [70] Security Decentralized - Fog and Edge - Hybrid •
Kefalakis et al. [55] - Centralized LGPL V3.03 Cloud - Hybrid
Eterovic et al. [40] Home Automation -4 - - - Hybrid -
FRED [15] Several Centralized -5 Cloud High Hybrid •
WoTFlow [14] - Decentralized - Fog and Edge - Hybrid •
Besari et al. [13] [82] Education Centralized - Cloud - Hybrid
CharIoT [90] Home Automation Centralized6 - Cloud and Edge6 High6 Form-based •
Desolda et al. [28] Smart Museums - - - - Hybrid
Eun et al. [41] Home Automation Centralized - - - Form-based •

Table 3.2: Visual programming solutions applied to IoT and their characteristics. Small circles (•)
mean yes, hyphens (-) means no information available and empty means no.

1 Used for several purposes, did not specify the tier it is located in regarding IoT.
2 Since it uses Node-RED, this information was based on its architecture.
3 Under the same license of OpenIoT.
4 No information is given regarding the architecture of the environment created, only the VPL.
5 No information about the license is given, but further research discovered that it had paid plans and no source code available.
6 CharIoT uses the Giotto stack [3] from where we retrieved this information.
7 Certainty regarding this information is low.

Scope Most of the tools found have several scopes, such as education, industry or home automation.

From the 28 tools, 6 were specific to home automation, 4 to education, 4 to specific domains,

and 1 for the industry; the remainder 13 had a wide range of use cases.

Architecture From the 28 tools found, 16 tools have a centralized architecture, three are decen-

tralized, and the remaining nine do not present enough information regarding this category.

License Although most of the tools that mention licenses are open-source (e.g., , GNU GPL2,

GNU GPL3, Apache 2.0 and LGPL3), 17 tools out of 28 not even mention one.

Scalability The majority of tools did not evaluate scalability — number of devices supported. The

ones that do evaluate this property have high scalability, allowing us to conclude that this

metric was only measured when the tool excelled in it.

Programming From the 28 tools, 22 employ a hybrid text and visual system visual programming

paradigm, 3 use a purely visual and the other 3 a use form-based one. This makes the hybrid

text and visual system visual programming paradigm the most common one.

Web-based The majority of tools are web-based, being accessible with the use of a browser.

Only one tool did not provide an environment, only a specification of a visual programming

language.

3.1.5.3 Research Questions

The research questions presented in Section 3.1.1.1 (p. 16) served as a way of directing the research

of this Systematic Literature Review and obtain answers to relevant questions regarding the available
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Tool Scope Architecture License Tier Scalability Programming Web-based

Node-Red [44] Several Centralized Apache 2.0 Cloud and Edge High Hybrid text and visual system •
NETLab Toolkit [92] Several - GNU GPL Edge2 - Hybrid text and visual system •
NooDL [69] Several - NooDL End User License1 Cloud2 - Hybrid text and visual system
DGLux5 [69] Building Management Systems - DGLux Engineering License Cloud and Fog2 High2 Purely visual language •
AT&T Flow Designer [10] Several - GNU GPL3 Cloud2 High2 Hybrid text and visual system •
GraspIO [63] Education - BSD Cloud2 - Purely visual language
Wyliodrin [95] Several - GNU GPL3 All2 - Hybrid text and visual system •
Zenodys [21] Several - GNU GPL3 Cloud2 High2 Hybrid text and visual system •

Table 3.3: Characterization of VPls applied to IoT from survey [78]. Small circles (•) mean yes,
hyphens (-) means no information available and empty means no.

1 Available at https://www.noodl.net/eula
2 Certainty regarding this information is low.

tools that apply visual programming languages to the IoT domain. We now revisit these questions

and provide out findings:

SRQ1 What relevant visual programming solutions applied to IoT orchestration exist? From the

analyzed tools in Sections 3.1.2 and 3.1.3, we found 28 visual programming tools applied to

IoT orchestration. The majority of the tools are very similar, with some of them extending or

re-writing Node-RED, and are applied to similar scopes, some of them being generic enough

to not focus on only one domain.

SRQ2 What is the tier and architecture of the tools found in RQ1? Tables 3.2 and 3.3 provide an

overview of the characteristics of all the tools found. In these tables and subsequent analysis

in Section 3.1.5.2 (p. 26), we conclude that the majority of the tools have a centralized

architecture and work in the Cloud tier.

SRQ3 What was the evolution of visual programming solutions applied to IoT orchestration over

the years? As it can be observed in Section 3.1.5.1 (p. 26) and more specifically in Fig-

ure 3.4 (p. 29), visual programming tools applied to the orchestration of IoT exist since 2003.

In 2017 and 2018, there was a significant increase of publications with a focus on building

these type of tools.

3.1.6 Conclusions

In this Systematic Literature Review, 2698 publications were analyzed from IEEE, ACM and

Scopus databases, resulting in 20 visual programming tools applied to the Internet-of-Things. A

survey made on the visual programming solutions applied to IoT found during the research process

resulted in 8 more tools, making a total of 28.

The results show that there is a significant number of tools that allow end-users to build IoT

systems using visual programming in several different scopes. The majority of these tools have a

centralized architecture and operate in the Cloud tier. Despite the considerable amount of tools,

most of them do not have their source code accessible nor have a license. The results from the

expanded search differ from this, with the majority of them being open-source, such as Node-

RED [44], NETLab Toolkit [92] and others. However, this poses a problem since there is an evident

lack of open source tools, reducing accessibility to these tools. This reduced accessibility does not

allow to confirm if the found tools actually apply what they proposed or how they apply it. Thus,

it propels the possibility of future research on designing and building a visual programming tool

https://www.noodl.net/eula
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Figure 3.4: Publications and tools of VPL tools applied to IoT per year.

applied to IoT that is (1) open-source, (2) has a decentralized architecture and (3) also operates in

the Fog and/or Edge tiers.

3.2 Decentralized Architectures in VPLs applied to the IoT para-
digm

Although the substantial amount of solutions found during our systematic literature (Section 3.1.2),

only a small fraction of those aim to offer a truly decentralized solution to visual orchestration for

Internet-of-Things systems. These solutions are now analysed in detail, followed by a comparison

and discussion.

3.2.1 DDF

The work made in WoTFlow [14], DDF [48] and subsequent works [46, 47] consists of a system

built on the Node-RED framework. Their goal is to make a tool more suitable for the development

of fog-based applications that are dependent on the context of the edge devices where they operate.

In DDF [48], the authors started by extending Node-RED and implementing D-NR (Distributed

Node-RED), which contains processes that can run across devices in local networks and servers in

the Cloud. The application, called flow, is built in the visual programming environment, which is

running in a development server. All the other devices running D-NR subscribe to an MQTT topic

that contains the status of the flow. When a flow is deployed, all devices running D-NR are notified

and subsequently analyse the given flow. Based on a set of constraints, they decide which nodes

they may need to deploy locally and which sub-flow (parts of a flow) must be shared with other
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devices. Each device has a set of characteristics, such as location, bandwidth, available storage

and other computation resources. The developer can insert constraints into the flow, by specifying

which device a sub-flow must be deployed in, or the computational resources needed. Besides, each

device must be inserted manually into the system by a technician.

Figure 3.5: Coordination between nodes in D-NR[46].

Subsequent work to the previously mentioned tool focused on support for the Smart Cities

domain. In a 2018 publication [46], the problems addressed were the deployment of multiple

instances of devices running the same sub-flow, as well as the support for more complex deployment

constraints of the application flow. With this, the developer can specify requirements for each node

on device identification, computing resources needed (CPU and memory) and physical location.

In addition to these improvements, the coordination between nodes in the fog was tackled by

introducing a coordinator node. This node is responsible for synchronising the context of the

device with the one given by the centralised coordinator. In Figure 3.5 it is possible to see the

four possible states of a coordinator node: (1) NORMAL, where the node passes the data to its

output, (2) DROP, in which the node does not pass the data to other node and instead drops it,

(3) FETCH_FORWARD, where the node gets the input from an external instance of its supposed

input and (4) RECEIVE_REDIRECT in which the node sends the data to an external instance of its

output node.

In more recent work [47], support for CPSCN (Cyber-Physical Social Computing and Net-

working) was implemented, making it possible to facilitate the development of large scale CPSCN

applications. Additionally, to make this possible, the contextual data and application data were

separated, so that the application data is only used for computation activities and the contextual

data is used to coordinate the communication between those activities.
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3.2.2 FogFlow & uFlow

Another approach was made in the publication by Szydlo et al. [89], where they focused on

the transformation and decomposition of data flow. Parts of the flow can be translated into the

executable Lua scripts. Their contribution includes the concepts of data flow transformation, a

new run-time environment called uFlow that can be executed on a variety of resource-constrained

embedded devices and the integration with the Node-RED platform.

Figure 3.6: Partition and assignment of parts of the flow[89].

The solution consisted of the transformation of a given data flow, where the developer chooses

the computing operations that will be run on the devices. These operations are implemented

in the form of embedded software, using the developed framework uFlow, which allows parts

of the flow to be run on heterogeneous devices. All this is integrated with Node-RED. The

communication between the devices is made only through the Cloud, with no support for peer-to-

device communication. The results were promising, with a decrease in the number of measurements

made by the sensors, meaning that the data is being processed in the device and only being

communicated in certain conditions, specified by the part of the flow allocated to the device. The

authors reflect that there is room for improvement with the automation of the decomposition and

partitioning of the initial flow and the detection of bottlenecks which can move computations

accordingly, from the cloud to the fog.

Figure 3.6 represents a situation of partitioning and assignment of tasks. There are two IoT

devices and a Node-RED instance running in the Cloud. The system’s goal is to measure soil

humidity and ambient light. If a button is pressed or fertilizer is needed, an e-mail is sent to the

gardener. The partition of computation is made with the assumption that the closer a selected

process is to the source of data, the higher the amount of data transmitted between computing

operations. The optimization is made towards the minimization of data crossing in the network.

After parts of the flow are assigned to specific devices, they are altered to be executed by uFlow

and Node-RED. It is possible to observe in Figure 3.6 the results of the transformation process,

where the parts of the flow surrounded by the same type of line are executed in the device having

the same line.

In a new publication [81], they built the model and engine FogFlow, which enables the design

of applications able to be decomposed into heterogeneous IoT environments. To achieve a level of

decentralization and heterogeneity, they abstract out the application definition from its architecture
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Figure 3.7: FogFlow architecture[81].

and rely on graph representation to provide an unambiguous, well-defined model of computations.

The application definition should be infrastructure-independent and contain only data processing

logic, and its execution should be possible on different sets of devices with different capabilities.

Using the graph representation, several operations are made to simplify the decomposition onto

different devices. One of these operations consists in prunning the graph, removing the branches

that do not consists in sink nodes (contains only incoming flow). The other operation consist in

decomposing the graph, which may result in two graphs with new nodes, normally sink and source

nodes that are responsible for receiving and sending messages.

Several algorithms for device assignment are mentioned [67, 50], but none were specified or

detailed. It is assumed that the same assignment algorithm from the previous publication [89] is

being used. Figure 3.7 represents the FogFlow architecture, which is composed by three modules:

(1) the FogFlow API, which enables the creation of the application definition, (2) the Graph Module,

responsible for processing and transforming the application definition into a data flow graph and

finally the (3) Execution Model, which translates the graph and generates executables ready to be

run on the assigned devices.

To evaluate the FogFlow solution, a scenario was built were a sensor measures the vibrations of

an assembly line, which is transmitted through MQTT to a device, where it is processed, gathered

to calculate an average which is then written into a database. The same scenario was implemented

in a centralized system, where every measurement is processed in an instance present in the cloud,

and in the developed decentralized system, FogFlow. The decentralized solution resulted in less

data sent to the cloud, meaning that the processing was made in the devices.

3.2.3 FogFlow

There is another tool with the same name as Section 3.2.2 (p. 31) FogFlow but created by Cheng

et al. [87]. In the first publication related to this tool [25], the contributions made were the

implementation of a standards-based programming model for Fog Computing and scalable context

management. The first contribution consists in extending the dataflow programming model with

hints to facilitate the development of fog applications. The scalable context management introduces

a distributed approach, which allows overcoming the limits in a centralised context, achieving

much better performance in terms of throughput, response time and scalability. The FogFlow

framework focuses in a Smart City Platform use case, separated in three areas: (1) Service
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Management, typically hosted in the Cloud, (2) Data Processing, present in cloud and edge devices

and (3) Context Management, which is separated in a device discovery unit hosted in the Cloud and

IoT brokers scattered in Edge and Cloud.

Figure 3.8: FogFlow high level model[24].

In more recent work [24], FogFlow was expanded to allow edge devices to make decisions

based on local context, without the input of a central instance, as well as the optimization of

flow deployments. However, no validation or evaluation was made to these new features. The

architecture can be seen in Figure 3.8, where dynamic data representing the IoT system flows that

are orchestrated between sensors (Producers) and actuators (Consumers). The application is first

designed using the FogFlow Task Designer, a hybrid text and visual programming environment,

which results in an abstraction called Service Template. This abstraction contains specifics about

the resources needed for each part of the system. Once the Service Template is submitted, the

framework will determine how to instantiate it using the context data available. Each task is

associated with an operator (a Docker image), and its assignment is based on (1) how many

resources are available on each edge node, (2) the location of data sources, and (3) the prediction

of workload. Edge nodes are autonomous since they can make their own decisions based on their

local context, without relying on the central Cloud.

3.2.4 DDFlow

DDFlow [70], first mentioned in Section 3.1.2 (p. 18), presents another distributed approach

by extending Node-RED with a system run-time that supports dynamic scaling and adaption of

application deployments. The coordinator of the distributed system maintains the state and assigns

tasks to available devices while minimizing end-to-end latency. Dataflow notions of node and wire

are expanded, with a node in DDFlow representing an instantiation of a task that is deployed in

a device, receiving inputs and generating outputs. Nodes can be constrained in their assignment

by optional parameters (Device and Region), inserted by the developer. A wire connects two or
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more nodes and can have three types: Stream (one-to-one), Broadcast (one-to-many) and Unite

(many-to-one).

Figure 3.9: DDFlow architecture [70].

In a DDFlow system, each device has a set of capabilities and a list of services that correspond

to an implementation of a Node (cf. Figure 3.9). The devices communicate this information through

either their Device Manager or a proxy if it is a constrained device. The coordinator is a web server

responsible for managing the DDFlow applications and is composed of three parts, which can be

seen in Figure 3.9: (1) a visual programming environment were DDFlow application are built,

(2) a Deployment Manager that communicates with the Device Managers of the devices and (3) a

Placement Solver, responsible for decomposing and assigning tasks to the available devices. When

an application is deployed, a network topology graph and a task graph are constructed based on the

real-time information retrieved from the devices. The coordinator proceeds with mapping tasks to

devices by minimizing the task graph’s end-to-end latency of the longest path. Dynamic adaptation

is supported by monitoring the system and adapting to changes. If changes in the network are

detected, such as the failure or disconnection of a device, adjustments in the assignment of tasks

are made. In addition to this, the coordinator can be replicated onto many devices to improve the

reliability and fault-tolerance of the system.

In the evaluation made by the author, a simulated vigilance scenario was implemented, which

included video capture and processing. Device and network failures were injected to test the

system’s ability to recover. The experiment was successful, showcasing the recovery of a DDFlow

system against the non-recovery of a centralized system.

3.2.5 Analysis

The mentioned tools were characterized based on their support for the following features and

characteristics:

1. Leveraged devices. A decentralised architecture takes advantage of the computational power

of the devices in the network, assigning them tasks. However, some tools can have limitations
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on the type of devices, making constraints or only focusing on the devices of the Fog tier and

not Edge.

2. Capabilities’ communication. The devices need to communicate to the orchestrator their

capabilities so that it can make an informed decision regarding the decomposition and

assignment of tasks.

3. Open-source. The license of software or tool is essential in terms of its accessibility and

reproducibility. Open-source allows access to the code, making it possible for its analysis,

improvement, and reuse.

4. Computation decomposition. To implement a decentralised architecture, it is important to

decompose the computation of the system into independent and logical tasks that can be

assigned to devices. This is made using algorithms, which can be specified or mentioned.

5. Run-time adaptation. A system needs to adapt to run-time changes, such as non-availability

of devices or even network failure. The system becomes aware of these events and can take

action to circumvent the problems and keep functioning.

Tool Leverage devices Capabilities communication Open-source Computation decomposition Run-time adaptation

DDF [48, 14, 46, 47] Limited1 • • Limited2 •
FogFlow & uFlow [89, 81] • Limited3 • Limited3

FogFlow [87, 25, 24] • - • Limited2 •
DDFlow [70] Limited4 • Limited2 •

Table 3.4: Small circles (•) mean yes, hyphens (-) means no information available, empty means
no and asterisk (*) means more than one.

1 Assumes that all devices run Node-RED, which limits the type of devices.
2 Do not specify the algorithm used.
3 Communication between devices is made through the Cloud.
4 Assumes that all devices have a list of specific services they can provide.

From the analysis and the characteristics of Table 3.4, we can conclude that the current research

in decentralized architectures in visual programming tools applied to IoT is varied. All the tools

analyzed took advantage of the computational resources of the devices in the network, although in

different ways. DFF [48] assumes that all devices run Node-RED, which limits the type of devices

that can be leveraged since it needs to have at least an x86 or ARM Linux-based operating system.

FogFlow & uFlow [81, 89] is the only tool that specifies how it truly leverages constrained devices,

with the transformation of sub-flows into Lua code, with DDFlow [70] assuming that all devices

are running the uFlow run-time environment and have a list of specific services they can provide,

that should match the node assigned to them.

Regarding the method used to decompose and assign computations to the available devices,

DDFlow describes the process with the use of the longest path algorithm focused on reducing

end-to-end latency between devices. FogFlow and uFlow [81, 89] mention the decomposition

mechanism used for the partition of a given data-flow graph as well as the the assignment algorithm

used, which focuses on minimizing the amount of communications made between devices. Both

DDF [48] and FogFlow [25, 24] do not specify the algorithm used but are the only tools with their

source code accessible and with an open-source license. All the tools claim to have support for
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run-time adaptation to changes in the system, such as device failures, with only DDFlow [70]

providing evaluation for this feature.

3.2.6 Conclusion

There are a few solutions available that attempt to provide a decentralized architecture in visual

programming tools applied to the Internet-of-Things paradigm. However, some of these tools solve

specific problems or make assumptions regarding the scale of the system and the constraints of the

devices. We can highlight the following research challenges that remain to be addressed by the

research community:

1. Leveraging idle computation power available: all the analyzed tools take advantage of

the computation resources of the devices. However, some of them place limitations on how

constrained the device can be, with one solution having an x86 or ARM Linux-based device

as the minimum possible.

2. Communication of computational capabilities: some of the current tools require the

developer to manually introduce the resources of each device in the network, which is

not a scalable solution. Having devices independently provide information about their

computational capabilities is vital for the successful automatic distribution of computation

across the devices.

3. Code generation of sub-flows: to truly leverage constrained devices, it is important to

convert sub-flows or "tasks" into executable code. Only one tool implements this, with the

support for the execution of Lua scripts.

4. Providing self-adaption of the system: when a device fails or becomes unavailable, the

system needs to realize and adapt automatically. The majority of current solutions claim to

implement this feature, with only one having evaluated its functionality.

3.3 Summary

Section 3.1 (p. 15) presents a Systematic Literature Review of visual programming tools applied

to the Internet-of-Things. Each tool derived from the research is summarized and characterized

to understand the state of the art regarding this topic of interest. The results of this process allow

us to conclude that the majority of the tools have a wide range of use cases, employ a centralized

architecture within the Cloud tier, do not provide a license, are web-based and provide a visual

interface that uses both text and visual elements. There is a lot of similarity between them, with

some of them extending the same pre-existing tool. The Systematic Literature Review concludes

with a reflection on the possibility of future research on solutions that are (1) open-source, (2) have

a decentralized architecture, and (3) operate in the Fog and/or Edge tiers.

Section 3.2 (p. 29) describes visual programming tools for building IoT systems that employ a

decentralized architecture, pointing out their advantages but also their shortcomings. This research

resulted in four tools that implement several features, with only one of them offering an almost
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complete solution to identified challenges. However, as with most of the tools, no source code is

available to consult, making it impossible to confirm their implementation.
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This chapter describes the problem tackled by this dissertation, as well as the features it proposes to

develop and the hypothesis it aims to validate. Section 4.1 addresses several limitations present

in the current state of the art that remain to be addressed. Section 4.2 (p. 40) details a set of

propositions for the prototype and methodology that will be implemented. Section 4.3 (p. 40)

defines the scope of the project and Section 4.4 (p. 41) contains the hypothesis and attributes that

will be used as validation. The experimental methodology is outlined in Section 4.5 (p. 41). Finally,

this chapter is summarized in Section 4.6 (p. 41) with an overview of the topics mentioned before.

4.1 Current Issues

Chapter 3 (p. 15) contains several solutions that attempt to provide a decentralized architecture in

visual programming tools applied to the Internet-of-Things paradigm. However, these tools solve

specific problems or make assumptions regarding the scale of the system and the constraints of the

devices. Section 3.2.6 (p. 36) contained several limitations in the current solutions which remain to

be addressed, namely:

1. Leveraging idle computation power available: Fog Computing introduces a decentralized

solution, one that can be applied to Node-RED by distributing the computational tasks across

the edge devices. A decentralized systems not only takes advantage of the constrained devices

present in Fog and Edge tiers, but also allow for more resiliency of the system to failures by

removing the centralized instance’s single point of failure. Although there is still a centralized
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element that orchestrates the decentralization, it is not essential once an assignment is made

and all devices are functioning.

2. Communication of computational capabilities: the decomposition and assignment of tasks

to devices requires information about the capabilities of the device to make an informed and

optimized choice. Therefore, it is necessary for each device to communicate its capabilities

to the orchestrator.

3. Code generation of sub-flows: most devices found in Edge tiers are not capable of running

any Linux-based or more complex systems. Therefore, it is necessary to take advantage of

their capabilities with a basic method of computation, a script. Most constrained devices are

capable of executing firmware communication via HTTP and MQTT as well as the execution

of scripts. Thus the generation of scripts from nodes is the best way to fully utilize each

device’s resources.

4. Provide self-adaption of the system: devices can fail or recover, as well as the connection

between them or even the network. It is important for the system to detect these changes and

adapt to them at run-time, orchestrating itself to always keep functioning.

4.2 Desiderata

Our works proposes a methodology, as well as a prototype that addresses the above limitations.

Such tool would fullfil the following desiderata:

D1: Communicate computational capabilities of connected devices, so that this information

can be sent to an orchestrator that, based in this data, will decompose the total computation

workload.

D2: Automatic decomposition and partition of computation, so that the total computational

requested can be distributed through all the devices in the network, using information about

the computational capabilities and availability of the devices in the network.

D3: Convert computational tasks into runnable code, so that they can be executed in edge and

fog devices, taking into consideration their specific constraints.

D4: Provide self-adaptation of the system, so that it can adapt to the non-availability of re-

sources or even appearances of new devices.

4.3 Scope

The focus of this dissertation is the development of a methodology and prototype that allows

for a decentralized orchestration of an IoT system. Despite security being a critical feature, it is

considered a secondary goal, and there are several works that already present insights on how to

address such issues [75, 59, 96, 33, 36]. The scope of the project is a home automation system,

where its devices are running the developed firmware, based on MicroPython firmware. No

modification will be made to the visual editor of Node-RED.
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4.4 Main Hypothesis

This dissertation is built around the following hypothesis:

“Given an IoT system with several heterogeneous devices connected, capable of

running custom code, a decentralized architecture is more resilient, efficient and

scalable than a centralized one.”

The attributes presented in the hypothesis will be measure against a system using the current

development branch of Node-RED. These attributes consist of:

• Resilience means the system’s capability to adapt to failures and changes. It will be measured

by injecting failures and measuring the recovery patterns.

• Efficiency how fast the system can execute the logic of the system and communicate between

nodes. The efficiency will be measured by the latency taken to react to certain events.

• Elasticity specifies how a system can grow and shrink. This attribute will be tested by

increasingly adding or removing devices in different scenarios and assessing the overall

system’s behavior.

4.5 Experimental Methodology

In the interest of validating whether or not the solution implemented achieves the desiderata and

solves the current issues, we present test scenarios and controlled experiments that use both virtual

and physical devices. Each of these scenarios will measure one or more requirements proposed in

Section 4.2. The attributes mentioned in Section 4.4 will then be evaluated against the implemented

solution, in order to assess our main hypothesis.

4.6 Summary

Section 4.1 (p. 39) starts by exposing the issues and lack of features not fully implemented in the

current tools presented in Chapter 3 (p. 15). Section 4.2 (p. 40) defines a desiderata that aims to

fix the issues presented in Section 4.1 (p. 39). The hypothesis of this dissertation is detailed in

Section 4.4, as well as an experimental methodology to prove it, in Section 4.5.



42 Problem Statement



Chapter 5

Solution

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.1 Devices Setup for Decentralization Support . . . . . . . . . . . . . . . 45
5.2.2 Decentralized Node-RED Computation . . . . . . . . . . . . . . . . . 46

5.2.2.1 Node-RED Node-to-Node Communication . . . . . . . . . . 46
5.2.2.2 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.2.3 Custom Nodes . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.2.4 Device Registry . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.2.5 Computation Orchestration . . . . . . . . . . . . . . . . . . 50
5.2.2.6 Known Limitations . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

This chapter describes how the problem presented in Chapter 4 (p. 39) was solved, stating the

implemented solution and the reasons for the choices taken. Section 5.1 provides an overview

of the developed solution, which is detailed in Section 5.2. Section 5.2.1 (p. 45) explains the

firmware created for the devices that allow them to be part of the computational work-force of

the system. Section 5.2.2 (p. 46) describes the changes and expansions made to Node-RED to

automatic decentralization of computation.

5.1 Overview

In our solution, we use Node-RED for both (1) defining programs (as flows) and (2) orchestrate the

decentralization and send tasks to other devices in the network, acting as an orchestration controller.

The devices in the network make themselves known by announcing their address and capabilities

to a registry node [76] running in Node-RED. Consequently, Node-RED assigns nodes to devices

taking into account their capabilities and communicates each node’s assignment via HTTP. Due to

the devices’ limitations, they cannot run an instance of Node-RED, so Node-RED needs to translate

the nodes code in JavaScript to artifacts that can be interpreted by these devices.
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Node-RED was modified to meet the distributed computation communication demands by

replacing the built-in communication by an MQTT-based one, since the default event-based

communication does not support communication with external entities. Two main components were

introduced to the Node-RED Palette: (1) the Registry node which maintains a list of available devices

and their capabilities and, (2) the Orchestrator node which partitions and assigns computation tasks

to the available devices. Support was added to Node-RED to generate MicroPython code from

custom nodes (i.e., model-to-code transformation).

Additionally, a MicroPython-based firmware was developed that can receive and run arbitrary

Python code scripts generated by Node-RED, and communicate with other devices or Node-RED

itself via MQTT.

An high-level overview of the system can be seen in Figure 5.1. Each module will be analyzed

in detail in the following sections.

Node-RED	

Orchestrator	Node

Registry	Node

specificationFlow
(nodes)

device	up

IP	and	capabilities

announce assign ping	/	echo

Device	

HTTP	ServerAnnouncer Script

Figure 5.1: Solution’s overview, presenting three devices as orchestration targets.

5.2 Implementation Details

The implemented solution consists of two co-dependent modules that are necessary for the func-

tionality of the system. The first module consists of the solution found to take advantage of external
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ESP8266 ESP32

MCU Single-core 32bit Dual-Core 32bit
Frequency 80 MHz 160 MHz
SRAM 160kBytes 512kBytes
Flash SPI, 4MBytes SPI, 4MBytes
802.11 b/g/n WiFi Yes Yes
Bluetooth No Yes
Programming Lang. Lua, Python and C

Table 5.1: Comparison between the Espressif Systems ESP32 and ESP8266 systems on chip.

devices with limited capabilities, explained in Section 5.2.1. The second module changes the

Node-RED run-time to allow its decentralization, as detailed in Section 5.2.2 (p. 46).

5.2.1 Devices Setup for Decentralization Support

We consider constrained devices that are capable of running custom code. Amongst the available

hardware solutions, taking into consideration both costs and features, we picked two IoT develop-

ment devices based on the Espressif Systems ESP32 and ESP8266 systems on chip (SoC) [39, 38].

An overview of these devices hardware capabilities is given in Table 5.1.

The first challenge is to find a way to take advantage of the constrained devices by making

them run arbitrary scripts of code and communicate with other devices. Both Lua and MicroPython

firmware were explored as a possible solution, with C being excluded do its higher complexity. The

Lua firmware ended up not being used since MicroPython resulted in less errors and simple coding

experience. Further, MicroPython already packs a small-footprint HTTP server and packages are

available to implement asynchronous operations — i.e., uasyncio — and MQTT publisher-

subscriber (viz., pub-sub) communication — i.e., MicroPython-mqtt.

As the devices must be able to receive arbitrary Python scripts (sent by Node-RED) and run

them, the HTTP server was used to receive the Python payloads, which are then saved to the device

SPI Flash and can later be executed. The same HTTP server was used to implement an endpoint

that returns the state of the device, as well as an announcing mechanism (cf. Section 5.2.2.4, p. 50).

These features were built as an integral part of the firmware that runs on the devices. An overview

of the components of the firmware can be seen in Figure 5.2.

Firmware

Node-RED/ping

/executeServer

script.py

Announcer

Figure 5.2: Firmware component diagram.
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The firmware also includes a FAIL-SAFE mechanism, safeguarding against Out-of-Memory and

other errors and that may occur during the lifespan of the device (SRAM usage). This mechanism

resets all running tasks and recovers the HTTP server and communication channels. This is an

important feature, since devices have limited memory and may receive scripts bigger than their

memory capacity, resulting in errors.

However, this solution is not without some limitations, namely: (1) the developed firmware only

supports MQTT QoS levels 0 and 1 due to MicroPython-mqtt limitations, and (2) ESP8266’s

severe memory limitations prohibit the use of the FAIL-SAFE mechanism if the given script is too

big, with the current implementation. Since the firmware is programmed in MicroPython, some

of these limitations could be solved if it was originally built with native code, which would offer

better performance and less memory usage.

5.2.2 Decentralized Node-RED Computation

Node-RED is a centralized tool by design, which takes advantage of events to allow communication

between nodes in a flow. To implement a decentralized architecture, some changes were made

to the Node-RED runtime. These changes consisted mainly in (1) implementing a new way of

communication between nodes using MQTT topics, (2) add model-to-code generation features (i.e.,

JavaScript to MicroPython) and (3) implementation of an orchestrator and device registry node.

These are described in the following sections.

5.2.2.1 Node-RED Node-to-Node Communication

Node-RED nodes communicate using events — node.js EventEmitter. The communication is

one-way only (forward message passing), with the node sending data to the nodes it is connected to

by output. These output wires are used to access the nodes the message must be sent to, and their

receive() method is called. This method triggers the event emit() which will the caught by a

specific method of each node, implementing its own logic.

This implementation is local and JavaScript specific, making it unpractical to be used in a

decentralized architecture where nodes will be executed outside of Node-RED. It was necessary to

implement a way of communicating between nodes external to Node-RED that could be supported

by constrained devices. The solution chosen was MQTT, which fits as a good solution by its

low-footprint and high-popularity amongst IoT solutions [88].

Thus, the Node-RED Node class was modified to use MQTT pub-sub communication instead

of the in-place communication. Each node publish messages to an unique and addressable topic

generated at the flow start, to which the next node in the flow subscribes to. This happens for every

node with the exception of (a) producer nodes that only publish messages, and (b) consumers that

only subscribe to topics.

Since the modifications were made at the base class level (from which every node derives from),

all the existent nodes and sub-flows become mostly compatible with this modification without

further changes in their code. However, as it will be described next, if we want a node to be

executable in external devices, they need to be translated into code supported by the devices.



5.2 Implementation Details 47

5.2.2.2 Code Generation

In our solution, to orchestrate Node-RED nodes computation amongst devices, there is the need

to generate MicroPython-compatible code from the existent JavaScript nodes (i.e., model-to-

code transformation). Additionally, it is necessary to support multiple nodes in one script (i.e.,

condensate); thus, a generalized strategy was defined that could fit any type of node.

This was accomplished by adding specific code generation methods to each orchestrabable

node, which provide (1) their functionality, and (2) input/output capabilities. Since every flow

communication is now MQTT-based, the only input and output a node can have is through its topics.

An exception to this is in nodes that are producers, meaning that they generate input and do not

receive it.

The code generation happens after the Orchestrator node defines an assignment between nodes

and devices. This generation creates device-specific Python scripts that follow the result of the

task assignment procedure (each script might contain several nodes). Wrapping code that connects

functionality is added, which is responsible for subscribing to all the input topics of all the nodes,

stopping the script’s processes and forwarding the MQTT messages to the respective node’s code.

An example of a Node-RED flow and its respective python script can be seen in Figure 5.3 and

Listing 5.1.

Figure 5.3: Simple Node-RED flow.

1 capabilities = []

2 client_id = None

3 nodes_id = ["3d70bdef542242","40d7b1d7aca938","fd3cf13026958"]

4 input_topics = ["input","topic1_node","topic0_node"]

5 output_topics = ["topic0_node","topic1_node"]

6

7 # Output node

8 def on_input_3d70bdef542242(topic, msg, retained):

9 # Redirects message to the output topic

10 ...

11

12 # Input node

13 def on_input_40d7b1d7aca938(topic, msg, retained):

14 # Redirects input message to its output

15 ...

16

17 # If node

18 def if_rule_fd3cf13026958_0(a, b = 10):

19 a = int(a)
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20 return a >= b

21 def if_function_fd3cf13026958(a):

22 res = if_rule_fd3cf13026958_0(a)

23 return ’%s’ % res

24

25 def get_property_value_fd3cf13026958(msg):

26 properties = property_fd3cf13026958.split(".")

27 payload = ujson.loads(msg)

28

29 for property in properties:

30 try:

31 payload = ujson.loads(payload)

32 if payload[property]:

33 payload = payload[property]

34 else:

35 break

36 except:

37 break

38 return payload

39

40 def on_input_fd3cf13026958(topic, msg, retained):

41 msg = get_property_value_fd3cf13026958(msg)

42 res = if_function_fd3cf13026958(msg)

43 res = dict(

44 payload=res,

45 device_id=client_id

46 )

47 loop = asyncio.get_event_loop()

48 loop.create_task(

49 on_output(

50 ujson.dumps(res),

51 output_topics_fd3cf13026958

52 )

53 )

54 return

55

56 # Wrapping code

57 def on_input(topic, msg, retained):

58 topic = topic.decode()

59 if topic in input_topics_3d70bdef542242:

60 on_input_3d70bdef542242(topic, msg, retained)

61 elif topic in input_topics_40d7b1d7aca938:

62 on_input_40d7b1d7aca938(topic, msg, retained)

63 elif topic in input_topics_fd3cf13026958:

64 on_input_fd3cf13026958(topic, msg, retained)

65

66 async def conn_han(client):

67 for input_topic in input_topics:

68 await client.subscribe(input_topic, 1)

69

70 async def on_output(msg, output):

71 for output_topic in output:
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72 await mqtt_client.publish(output_topic, msg, qos = 1)

73

74 def stop():

75 for id in nodes_id:

76 func_name = "stop_" + id

77 if func_name in globals():

78 getattr(sys.modules[__name__], func_name)()

79

80 async def exec(mqtt_c, capabilities_array, c_id):

81 global mqtt_client

82 global capabilities

83 global client_id

84 mqtt_client = mqtt_c

85 capabilities = capabilities_array

86 client_id = c_id

87 for id in nodes_id:

88 func_name = "exec_" + id

89 if func_name in globals():

90 getattr(sys.modules[__name__], func_name)()

91 return

Listing 5.1: Example of code generated from the flow presented in Figure 5.3.

However, there are limitations to this solution that were not solved. If two consecutive nodes

are assigned to the same device, the communication between them is still dependent on MQTT.

This is not an ideal solution since one node could call the other through code, passing its output as

arguments.

5.2.2.3 Custom Nodes

As previously mentioned, all the existent nodes are compatible with the modified Node-RED.

Nonetheless, with the developed solution, for a node to be executed outside the Node-RED instance,

it must be modified to comply with the code generation needs. As a proof-of-concept, the following

nodes were modified or created to be orchestrabable:

IF node which receives an input and verifies if it complies with all the given rules, returning true

or false;

AND node which receives a given number of inputs and verifies if all of them are true or false,

returning the corresponding boolean;

TEMP-HUM node that read the temperature and humidity from a DHT sensor present in a specific

pin;

FAIL node that raises a MemoryError exception;

NOP node that simply redirects the received message in its input to its output;

MQTT IN and MQTT OUT nodes that subscribe and publish MQTT topics, respectively.
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Additionally, each of these nodes has two available properties: Predicates and Priorities. Similar

to the Kubernetes logic of assigning containers to machines (cf. (cf. Section 2.3, p. 13)) [19], the

predicates dictate constraints that cannot be violated, and priorities are requests that are advisable

and recommended but can be violated if impossible to comply.

We believe those nodes to be enough to provide basic functionality that would allow us to

validate our proof-of-concept.

5.2.2.4 Device Registry

IoT systems are typically built on top of heterogeneous parts, with different capabilities and

resources, and their network can be highly-dynamic (devices appearing and disappearing according

to factors such as battery levels, hardware/software failures and communication interference). To

maintain the list of network available devices along with their capabilities, there is a need for a

Device Registry [76], which does not exists in the default Node-RED.

In our solution, when a device becomes available, it sends information about itself to an MQTT

topic. This information contains the device’s IP address, their capabilities and their status — if

the device has failed before. In its turn, Node-RED contains a Registry node that listens to the

announcements MQTT topics and saves the devices information. If this node is connected to an

Orchestrator node, each new device is communicated, triggering an update to the orchestration if

the information provided is not outdated.

When a device has an OUT-OF-MEMORY error, it triggers a FAIL-SAFE, where it reboots the

HTTP server, stops running any script and restarts all communications. After this action, the device

announces itself again but with a flag that indicates that it has failed. This way, the Orchestrator

node knows that a device is active but not running any code. It automatically concludes that the

failure was due to the assignment of a number of nodes bigger than the device’s memory capacity,

causing an OUT-OF-MEMORY error. In that case, it dynamically adapts and assigns fewer nodes to

the device, reducing the chances of causing another error.

5.2.2.5 Computation Orchestration

Our solution must be capable of distributing computation amongst available resources, thus, given

a set of tasks, it must assign them to available devices, ensuring that they will be performed.

The requirements to achieve this are two-fold: (1) a node should act as coordinator, which when

provided with an available devices list, along with their respective capabilities (cf. Section 5.2.2.4),

should decide which device should execute specific computation nodes — Orchestrator node —

and, (2) the orchestrabable nodes should provide both Predicates and Priorities that must be meet to

assure their correct execution (cf. Section 5.2.2.3, p. 49).

The assigning algorithm uses the devices capabilities and each node’s Predicates and Priorities

to assign nodes to devices. With a greedy approach, the algorithm filters the devices that comply

with each node’s predicates and assigns the one with a higher value of a heuristic, cf. Algorithm 1.

This heuristic takes into account the number of priorities the device can provide, which is the most

valued heuristic with 0.5 factor, as well as the number of already assigned nodes the device has,

with a 0.4 factor. Lastly, with a factor of 0.1, the specialization of a device is measured, meaning
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Algorithm 1: Greedy algorithm for node assignment.
Input :deviceList, node, α = 0.5, β = 0.4, γ = 0.1
Output :bestDevice

1 onInput
2 electible←{d ∈ deviceList |hasMem∧ isReady∧ isCapable}
3 where
4 hasMem← #d.nodes < #d.lastError.nodes
5 isReady← d.status = OK
6 isCapable← node.predicates⊆ d.capabilities

7 return argmax
d∈electible

fitness(d) = α ·overlap+β ·vacancy+ γ · specificity

8 where
9 overlap← #(d.capabilities ∩ node.priorities)

#node.priorities

10 vacancy← (#d.nodes+1)−1

11 specificity← #(d.capabilities ∩ node.predicates)
#d.capabilities

that a device with priorities not requested by the node would be better if left for a future node that

might request them. The goal is to assign each node to the best possible device, spreading the tasks

through all the available devices. An example of a possible assignment can be seen in Figure 5.4,

where the assignment matches the nodes’ priorities with the devices’ tags while spreading the nodes

over the available devices.

Device	1

«dht» «bedroom»

Node	6
Node	10

«dht»

Node	1 Node	4

Node	8 Node	11
«dht»

Node	2 Node	5

«dht» «kitchen» Node	9

Device	2

«dht» «kitchen»

Node	3
«garden»

Node	7

Node	12

Device	2

«outside» «garden»

Figure 5.4: Node assignment example.

After assigning all nodes to a specific devices, a code script is generated for each of them

(cf. Section 5.2.2.2, p. 47). Due to the constrained memory of the devices, the number of nodes

assigned to a one may exceed their resources. In that case, the device will FAIL-SAFE and return

an error to the assignment request. The orchestrator will receive this information and repeat the

process, assigning fewer nodes to the ones that returned an OUT-OF-MEMORY error. If a device

does not return any response, the orchestrator will assume that it is unavailable and not assign any

node to it.

The Orchestrator node can be triggered — proceeding to a system (re)orchestration — by the

following events: (1) start of the system, when there is already a defined flow in the configuration,

the assignment start after a period of 3 seconds, to give time for the devices to be registered by the

registry node; (2) deployment of the entire flow using the Node-RED editor or API; (3) appearance
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of a new device detected by the Registry node; (4) failure or recovery of a device, which, working as

a complement to the Registry node, is detected using PING/ECHO pattern [80] which periodically

pings the devices in the system to assert their operational status. A visual representation of these

events can be seen in Figure 5.5.

Registry Orchestrator Device/Firmware

execute	script

Node-RED

assignment

start

devices

announce

error

success

deploy	all	flows

ping

alive

no	response

announce

loop

loop

loop

Figure 5.5: Sequence of events for orchestration.

5.2.2.6 Known Limitations

There are, however, some limitations in the assignment process, mostly due to the algorithm used.

There are cases when the orchestration can fail since it can not comply with the constraints imposed

by nodes. As an example, given a scenario where the number of devices is too small for the number

of nodes, the devices may be kept at their resources limits, i.e., memory. If there is a node which

constraints can only be compiled by one device, but that one device already has the maximum

number of nodes it can handle, the assignment is not possible. Possible solutions are explored in

Section 7.2 (p. 76).

In addition to this, the assignment algorithm does not take into account the connections between

nodes. As mentioned before, sequential nodes in the same device communicate via MQTT topics

instead of calling themselves through code. However, if that were not the case, it would be

advantageous if sequential nodes were assigned to the same device. This would allow better

performance, less communication load and less dependency on an external MQTT client.
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5.3 Summary

The developed solution covers all the desired requirements established in Section 4.2 (p. 40). It

identifies available devices in the network and decentralizes the given computation through them. It

translates each computation task into something comprehensible for the devices. Additionally, our

approach maintains a record of the state of the system, adapting to any change in the availability

and constraints of the devices.

However, some limitations are not trivial and need to be addressed. Some of them were already

identified in previous sections: (a) the number of nodes that support MicroPython code generation

is small, (b) there is a chance of duplicate MQTT messages that are not being handled, (c) the

(re)orchestration using the editor or API is only possible by deploying the entire instance, and

not specific flows or nodes, (d) ESP8266’s cannot FAIL-SAFE if the given script is too big, due

to severe memory limitations, (e) node assignment does not favour the assignment of sequential

nodes, which would improve efficiency if (f) the script generation did not force all communications

between nodes to be through MQTT, instead of allowing a node to call other through code, passing

its output as parameters.

Despite the limitations, the developed solution solves the issues identified in Section 4.1 (p. 39)

and provides a decentralized option to a previously centralized approach. In the next section we

will proceed with its evaluation and expose the resulting conclusions.
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This section evaluates how the solution developed provides evidence towards the validity of hour hy-

pothesis presented in Section 4.4 (p. 41) and fulfills the requirements presented in Section 4.2 (p. 40).

Section 6.1 proposes scenarios Section 6.2 (p. 57) proposes the experiments that will be used to

evaluate the developed solution. Section 6.3 (p. 59) discusses the results of the experiments and

rreaches conclusions regarding their success. Section 6.4 (p. 72) evaluates the veracity of the main

with the evaluation data. Finally, Section 6.5 (p. 73) reflects on the lessons learned during the

evaluation process.

6.1 Scenarios

To validate to which extent we were able to reach the goals as mentioned earlier (cf. Section 1.2, p. 2),

we proceed to evaluate our architecture and proof-of-concept in both virtual — using Docker with

a Unix-compatible version of MicroPython — and physical setups — using both ESP8266 and

ESP32 connected in the same Wi-Fi network.

The experiments were performed in a computer with an i5-6600K at 3.5GHz processor, with

16Gb of RAM and running Linux Manjaro kernel version 5.6.16. The base Node-RED was version

1.0.6, Mosquitto MQTT broker at version 1.6.10 and MicroPython firmware at version 1.12.

We outline the following two experimental scenarios as a foundation for our experiments:

ES1 A room has three sensors that give temperature and humidity readings every minute. There is

a virtual sensor that compares the results (of both temperature and humidity) and triggers

55
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depending on configured thresholds. An AC unit must be provided with the comparison

result to define both (a) if it switches on/off, and (b) its operating mode: cool, heat, and

dehumidify, all mutually exclusive. The Minimal Working System (MWS) consists in (a) one

temperature sensor, (b) one humidity sensor, (c) one node capable of making the decision,

and (d) working communication channels amongst them.

ES2 A system contains 20 devices that are responsible for propagating an injected message

amongst themselves to their final output. In the end, the injected message must reach the

specified MQTT topic.

Figure 6.1: Node-RED implementation of scenario 1

ES1, which resembles a real-world scenario, aims to test the features of the developed solution

with a moderately simple Node-RED flow (cf. Figure 6.1), taking advantage of the nodes developed

for MicroPython code generation support. As a complement, ES2 allows the comparison of the

developed solution to the already existing ones by implementing the same scenario in different

environments. For each one of the experimental scenarios (i.e., ES1 and ES2) we defined a set of

experimental tasks.
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6.2 Experiments

6.2.1 ES1 experiments

For ES1 two Sanity Checks were performed, one over virtual devices — Sanity Check 1 (ES1-SC1)

— and other with physical devices — Sanity Check 2 (ES1-SC2). A set of readings and message

forwarding tasks were performed with no compensation or any other fault-tolerance strategies. Each

sensor device only provided environmental readings to the system. Orchestration is centralized. We

expect all roundtrips to take less than the smallest part that can be resolved (measurement capability,

which we estimate to be < 1 second).

We further defined a set of (re-)orchestration experiments for ES1, where the system must

allocate computation tasks among the available resources (i.e., devices), namely:

ES1-A MWS is achieved via multiple possible configurations by selective (provoked) device

failure (fail-stop) using only virtual devices (i.e., Docker);

ES1-B MWS is achieved via multiple possible configurations by selective (provoked) device

failure (fail-stop) using physical devices;

ES1-C Inconsistent device behaviour, e.g., appear and disappear in shorter intervals lower than

the time needed for orchestrating convergence (OCT), that leads to activity impacting the

MWS. An orchestrating converge consists in an assignment of nodes to devices that result in

a working system;

ES1-D With 4 devices, each one with different processing capabilities. During orchestration, some

devices will develop an out-of-memory error because they cannot process all the processing

tasks assigned to them, specifically the size of the given script. The orchestrator should

decide to send fewer tasks to these devices. The system is expected to converge to a working

solution. This scenario will be implemented with a modified device script. When devices

receive a script, it will generate a memory error if the length of the script passes a certain

threshold. This crudely simulates the memory constraints of devices in various conditions.

ES1-E With 4 devices, some of them have a memory leak from an unknown cause. After random

time Random(t0,t1), these problematic devices stop working with an out-of-memory

error. The orchestrator assumes that the devices cannot handle the number of processing

tasks assigned to them, so in the re-orchestration, it will assign fewer tasks. Since these

devices will always break, the orchestrator should eventually disconsider these devices in the

assignment of nodes. This scenario will be implemented with a modified device script that

will trigger an out-of-memory error after a random period, started by the execution of the

given tasks.

ES1-F With 4 devices, there is a device that is sensitive to a particular node, which causes the

device to give out an out-of-memory error. The orchestrator will potentially assign this node

to the specific device. When the device gives out the out-of-memory error, the orchestrator

will eventually converge to a solution where the node is not assigned to that particular device,
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and the system will converge. These out-of-memory errors will be simulated with the use of a

failure node that forces a MemoryException in the device.

ES1-G With 50 devices, each second, the device has a probability of failing. This failure can go

from 0 to 10 seconds, randomly chosen. The orchestrator must deal with the random failure

of the devices and re-orchestrate the system. This experiment is considered a stress test,

causing repeated failures and forcing constant re-orchestration.

With this set of experiments we should verify that the following constraints are meet:

1. Restrictions (predicates) are enforced. Check that possible configurations lead to solutions

that enforce defined predicates;

2. Priorities are honored. Check that all specified priorities were taken into account, and only

violated if necessary;

(a) Priority is given to the maximum level of decentralization — nodes spread through all

the available devices — but some centralization can occur.

6.2.2 ES2 experiments

Regarding ES2, a total of 20 devices were connected in a line topology. A message is sent to the

starting device, which will propagate it to its output. All the devices implement this propagation

logic, which should result in the initial message reaching the end of the line. The propagation time

is measured, starting when the message is sent and ending when the message reaches the last node.

This scenario was implemented with different experimental configurations, namely:

ES2-A : Non-modified version of Node-RED, using the default node-to-node communication

channel (EventEmitter), with all the nodes sharing the same runtime;

ES2-B : Modified version of Node-RED that uses MQTT as the node-to-node communication

channel, with all the nodes sharing the same runtime;

ES2-C : MQTT-based modified Node-RED, where each node of the flow is assigned to a different

virtual device (i.e., a MicroPython-running Docker instance). The Docker instances and

MQTT broker run in the same host machine;

ES2-D : MQTT-based modified Node-RED, where each node of the flow is assigned to a different

virtual device. The Docker instances share one host, but the MQTT broker is in a different

one. All parts are connected to the same Wi-Fi network;

ES2-E : Each physical device runs a simple script that performs the desired behaviour, on top of a

non-modified MicroPython firmware image, communicating with which other over MQTT.

Node-RED is not used, and there is no orchestration being performed;

ES2-F : MQTT-based modified Node-RED, along with the modified MicroPython firmware

running on physical devices. Each node of the flow is assigned to a different device. Each

device is connected to the same Wi-Fi network and communicate between them using MQTT.
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6.3 Discussion

The scenarios and respective experimental tasks were performed, and several metrics of the system

were measured. The following sections present and discuss our experimental results.

6.3.1 ES1: Sanity Checks

As mentioned previously (cf. Section 6.1, p. 55), the first scenario consists of a system that controls

an A/C. This system takes into account readings of 3 temperature and humidity sensors to define

if the room’s temperature is too hot, cold of humid and sends commands to the A/C with the

respective actions.

These experiments allow us to observe that the devices can satisfy the nodes, meaning that the

system works as intended once the assignment is complete. Once this check passes, we will not

verify it again in the remaining experiments.

6.3.1.1 ES1-SC1

This experiment was used observe the overall functionality of the approach in a controlled way

(the use of virtual devices reduce the proneness to hardware-provoked failures), and the resulting

assignment of nodes can be observed in Figure 6.2 (p. 60), where the Orchestrator node allocated

nine nodes to each device. Figure 6.3 demonstrates in which devices each node was assigned to.

Devices

1 2 3 4

Figure 6.3: ES1-SC1 node assignment.
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Figure 6.2: ES1-SC1 measurements.

The usage of RAM was significant, varying from 60Kb to 200Kb (cf. Figure 6.2). The flash

size only decreases to 150000 bytes when the device receives a script for executing — matching

the size of the payload received by the devices.

As the orchestrator defines the nodes assignment, each script is built and sent to the appropriate

devices. A confirmation of this delivery is necessary for the system to conclude the assignment

phase and start monitoring the state of the system. The time it takes to deliver the script can

be observed in Figure 6.4 (p. 61). The usage of virtual devices running in the same host as the

Node-RED instance allows for shorter times, which are measured in milliseconds.
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Figure 6.4: ES1-SC1 script delivery time.

Once the devices start executing its assigned script, each allocated node will start to commu-

nicate with each other. All the messages of all communicating topics were captured to check

if the system worked as expected. This allowed us to verify that all nodes are receiving and

producing the expected output messages. The total number of communications can be consulted in

Figure 6.2 (p. 60). As it can be observed, the number of messages produced by Device 4 is bigger

than any other. This is due to the allocation of two temperature-humidity nodes in this device,

which publish three messages each. This number of messages published is bigger than any other

node. Device 3 contains the other temperature-humidity node (cf. Figure 6.3, p. 59).

To verify if the script delivery time is directly related with the payload size, this experiment

was repeated 10 times and the mentioned metric was measured. By analyzing Figure 6.5, we can

observe that the delivery times between devices is very similar, with an average of 0.303±0.165s.

Therefore, there is no relation between payload size and script delivery time.
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Figure 6.5: ES1-SC1 script delivery times.

Our sanity check performs as expected in a virtual-only setup by (1) spreading the computation

amongst available resources and (2) maintaining the system within expected behavior. Any errors

that might occur henceforth might be due to hardware considerations.
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6.3.1.2 ES1-SC2

The previous experiment was repeated using physical devices, more specifically four ESP32.

Similar to the virtual devices, the assignment of nodes to devices spread the number of nodes

equally, with each device running 9 nodes (cf. Figure 6.6).
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Figure 6.6: ES1-SC2 measurements.

The usage of RAM in physical devices is smaller than the one used by virtual devices, which

can be explained with the possible optimization differences in the Docker-compatible and ESP-

compatible MicroPython firmware and libraries, as well as the increased frequency of the garbage

collector calls.

The free flash space of the physical devices is smaller than the virtual ones, as expected. Fig. 6.6

shows that the device with the biggest payload, Device 1, ends up having less free flash space. The

overall size of the payloads is very similar to the ones in the ES1-SC1.

The script delivery time for physical devices is longer than their virtual counterpart, with an

average of 6.776±0.476s (cf. Figure 6.7, p. 63). Since the devices are not running in the same

machine, the Wi-Fi stack and the devices’ hardware characteristics have a non-negligible impact in

the communication speed. The uptime is similar to the previous experiment since there were no

hardware failures.
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Figure 6.7: ES1-SC2 script delivery timestamp.

6.3.2 ES1: Experimental Tasks

These experiments focus in validating and evaluating the tool’s capacity to adapt to devices’ failures.

Since the previous experiments (cf. Section 6.3.1, p. 59) already verified that the devices executes

the tasks that are given to them, this verification will not be repeated in this section’s experiments.

6.3.2.1 ES1-A

This experiment evaluates if the system is able to re-orchestrate when a device either fails or

(re-)appears (i.e., new or recovered). During this experiment, devices were turned off one by one

until only one was left running. It is expected that the system detects when a device has become

unavailable and re-orchestrates, assigning nodes to the available devices. In the end, only one

device should be running, and all the nodes should be assigned to it.

Figure 6.8 (p. 64) shows that the uptime of the devices stops increasing one by one, identifying

the moment the device fails. Once a failure happens, the system re-orchestrates, assigning the

nodes of the device to the other available devices, increasing their number (cf. Figure 6.8, p. 64).

The increase in the number of nodes assigned to the available devices can also be observed in the

payload size. When all devices fail except one, the one remaining receives the payload, which is

higher than any other previously received.

The information regarding the number of nodes is not updated to zero once the device fails,

since it is no longer active to send the updated metric. The system identifies the failure of devices

and takes actions to rectify it by repeating the assignment process, taking into account the available

devices.

This allow us to verify that the system identifies the failure of devices and takes actions to

rectify it by repeating the assignment process, taking into account the available devices.

6.3.2.2 ES1-B

Based on ES1-A (cf. Section 6.3.2.1), this experiment replaces the virtual devices by physical ones.

The payloads and number of nodes assigned through the experiment are very similar to the

experiment ES1-A (cf. Figure 6.9, p. 65). However, it is noticeable that Device 2 (the last remaining

active device), fails when receiving the final-step payload — which contains the code for all the

nodes of the system, since no other device is available.

The device constrained memory cannot handle the payload size, so it FAIL-SAFEs, informing

the system that there was an Out-of-Memory error, which results in Orchestrator node assigning
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Figure 6.8: ES1-A measurements.

fewer nodes to the device. However, the is no more available devices to assign the remaining nodes,

resulting in an non-functional orchestration.

6.3.2.3 ES1-C

Similar to ES1-A and ES1-B, this experiment focuses on testing the system’s ability to adapt when

devices fail and then recover. In Figure 6.10 (p. 66), Device 3 and Device 4 fail early, and the

system recovers, allocating the nodes assigned to them to other devices. Device 4 recovers around

the 100s, fails again and then recovers. The system did not catch this change since it was swift, and

the system only re-orchestrates the second time Device 4 recovers. During this experiment, Device

3 and Device 4 continue to fail and recover, and the system always re-configures itself.

This re-orchestration ability when a device recovers can be taxing to the functionality of the

system. If a device is continuously failing and recovering, the system will always try to adapt itself,

halting its functionality to orchestrate.
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Figure 6.9: ES1-B measurements

6.3.2.4 ES1-D

The memory constraints of IoT devices can negatively impact the functioning of the system, by

raising memory errors when writing the received script into the device SPI flash. This experiment

verifies how the system recovers and adapt to the device’s memory constraints.

Figure 6.11 (p. 67) shows the constrained memory of the Device 2 and Device 4. When the first

assignment is made, at approx. 50 seconds, both these devices FAIL-SAFE due to Out-of-Memory

errors. The number of nodes present on these devices are the ones assigned after they communicate

to the orchestrator their limitations.

To assess if the system saves information about the limitations of the devices, one of them was

turned off and later turned on (cf. Figure 6.11, p. 67). As it can be observed, Device 2 uptime stops

increasing around the time of the event and its nodes are distributed by the other devices, except for

Device 4, which is memory constrained. After the recovery of Device 2, the system re-orchestrates

and the same number of nodes is assigned to the devices. However, Device 4 failed when Device 2
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Figure 6.10: ES1-C measurements.

recovered, which implies that the system repeated the process assignment process, ignoring the

previously known information about memory constraints. This is a limitation of the system since it

would be beneficial to save memory constraints of devices when they fail and recover, preventing

the repetition of the orchestration iteration.

6.3.2.5 ES1-E

In addition to the handling of memory limitations, it is expected that the system can handle a

damaged device which has a memory leak issue. Device 2 was modified to always generate an

Out-of-Memory error after a random period. The system should be able to exclude this device

during the assignment process.

Figure 6.12 (p. 68) shows that Device 2 is consistently failing after the first assignment of nodes,

at approx. 75 seconds. The number of nodes assigned decreases, until no node is assigned and

the device is excluded from consideration. This is an iterative process, in which the system will

decrease the number of nodes it assigns to a device if the device communicates an Out-of-Memory

to the orchestrator. Eventually, the minimum number of nodes the device can handle is zero,
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Figure 6.11: ES1-D measurements.

excluding the device from the assignment process.

6.3.2.6 ES1-F

To further assess the resilience of the system to Out-of-Memory errors, a node was deliberately

injected that causes such error in specific devices. It is expected that the system re-orchestrate and

converge to a solution where the specific nodes are assigned to devices not affected by them. In

turn, the devices affected by these nodes should have fewer nodes assigned. The system and devices

do not know that a specific node is creating the Out-of-Memory errors and interpret the error as a

device problem.
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Figure 6.12: ES1-E measurements.

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 50 100 150 200 250 300 350 400 450

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Uptime (s)

Number of nodes allocated per device

15 36 56 77 97 102 15 36 46 20 41 51 5 25 46 67 82 103 123 144 164 180

15 36 56 77 97 102 25 41 51 15 36 46 5 25 46 67 87 103 123 144 164 180

15 36 56 77 92 20 41 51 15 36 51 5 25 41 61 82 103 123 144 164 180

15 31 53 14 34 40 21 31 2 23 38 1 9 15 35 56 76 97 112 133 148

10 10 10 13 10 10 10 10 10 13 10 10 10 10 10 10 10 10

9 9 9 12 9 9 9 9 9 12 9 9 9 9 9 9 9 9

9 9 12 9 9 9 9 9 12 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 33 10 9 9 9 9 9 9 9 9

Figure 6.13: ES1-F measurements.

Since the first orchestration could be correct by sheer chance, meaning that these faulty nodes

would be assigned to devices not affected by them, we forced the system to re-orchestrate. The

devices were all turned off and on in different order, repeating three times. Figure 6.13 shows

these on/off events at approx. 125, 200 and 275 second timestamps. It is important to note that the

devices affected by the faulty nodes are Device 2 and Device 4.

The event we aim to test occurs at approx. 300 seconds. As it can be seen (cf. Figure 6.13),

Device 4 is assigned 10 nodes. The uptime of Device 4 resets in this small time period — the

next uptime is less than 20 seconds — meaning that an Out-of-Memory occurred and the device

performed a FAIL-SAFE. The system updates, allocating the 10 nodes previously assigned to Device

4 through all the available devices. Since Figure 6.13 shows the data in intervals of 20 seconds, the
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assignment in Device 4 happens before the assignment present in the other devices.

When the system receives information that Device 4 is available again, it already knows that

it has a limitation, so it only assigns 9 nodes to it. It can be seen that missing node is assigned to

Device 1. Since Device 4 does not FAIL-SAFE, the node assigned to Device 1 must have been the

faulty one.

6.3.2.7 ES1-G

To assess our system’s limits, we proceed to inject constant failures in the available devices. Every

second, each device has a 5% probability of becoming unavailable from 0 to 10 seconds. During

this period, the device is unresponsive to the orchestrator requests and, when recovered, announces

itself.
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Figure 6.14: Nodes assignment distribution

Figure 6.14 shows that the system is kept continuously re-orchestrating, and once the majority

of devices failed, the system becomes unstable. It is important to note that, similar to previous
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experiments, once a device fails, the number of nodes does not update to zero. We then conclude

that devices with the same number of nodes throughout the duration of the experiment failed early

on and kept failing, not accepting another assignment by the orchestrator.
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Figure 6.15: Number of devices active and inactive

At approx. 100 seconds, it can be noted in Figure 6.15 a period where all devices were available.

However, the node assignment in Figure 6.14 (p. 69) does not converge during that time period.

The reason for this behaviour is that the system will re-orchestrate when a device becomes available.

Since each device announces itself individually, each announcement triggers a new orchestration.

This process takes time and results in several failed orchestrations due to outdated data on the

device’s operating status.

The outdated data issue has been identified as a current limitation of the system, making it

vulnerable to a possible Denial-of-Service (DoS) attacks in the form of an excess of status activity

from the devices. This constant orchestration is also taxing for the devices, causing an overload of

received assignments that will never make the system function as a whole.

6.3.3 ES2: Experimental Tasks

To benchmark our approach we proceed to experiment with a flow that consists on passing a

message through several devices, recording the elapsed time for the message to pass through all the

devices.

The ES2 implementation in Node-RED can be seen in Figure 6.16 (p. 71). The NOP (in the

image with the name nothing) nodes execution consists of only redirecting their input to their
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Figure 6.16: Node-RED implementation of scenario 2

output. A message containing only the current timestamp is inserted into the system by triggering

the Inject node, and the same message is expected to appear in the Node-RED Debug console

(using the Debug node).

Label Min Q1 Q2 Avg Q3 Max

ES2-A: Node-RED original 3 8 10 10 13 15
ES2-B: Node-RED + MQTT 134 353 431 489 711 883
ES2-C: Node-RED modified + Dockers (same host) 1217 1260 1318 1400 1574 1665
ES2-D: Node-RED modified + Dockers (different host) 1445 2332 2536 2392 2708 3059
ES2-E: Physical + MQTT 3616 4031 4142 4133 4372 4452
ES2-F: Node-RED modified + MQTT + Physical + Firmware 4168 4357 4569 4751 5088 5940

Table 6.1: Scenario 2 results

This experiment was run with different configurations (ES2-A to ES2-F) to assert the impact

of each modification/module, as described in Section 6.2 (p. 57). Each experiment was replicated

ten times, and the resulting measurements are shown in Table 6.1.

Figure 6.17 (p. 72) demonstrates that the developed solution introduces overhead in communi-

cating between nodes. However, given the other experiments, it is possible to conclude that this

lack of efficiency is caused not by the created firmware, but because of the stack of communication

the message travels through, as well as the nature of MicroPython.

When the decentralization is applied inside Node-RED (cf. ES2-B), without running any

MicroPython, it is possible to see that the introduction of the MQTT communication (Mosquitto

broker) running in the same host causes some latency. The introduction of Dockers running the

firmware in the same host as the Node-RED instance and MQTT causes additional latency (cf.

ES2-C), making it possible to conclude that the MicroPython-based developed firmware also delays

the communication. By repeating the same experiment but with the broker running in another

machine (same network) (cf. ES2-D), it is noticeable that the times are more spread out and

the overall latency of the system increases. As the Node-RED and the broker run in different

machines connected over Wi-Fi, we conclude that this is the leading cause for the additional delay

in communications.

The experiment was repeated in physical devices: (1) by running a simple code in the Mi-

croPython flashed devices and injection of messages directly in the broker (cf. ES2-E), and (2)

by using our approach as a whole, with the modified Node-RED and firmware in the devices (cf.
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Figure 6.17: ES2 results.

ES2-F). The communication and MicroPython overhead in the last experiment made (cf. ES2-F,

our approach), is 4000 milliseconds, which will be attributed to variable x. The overhead of using

the created MicroPython firmware, variable y, is the total time minus the x variable, which is 750

milliseconds. The results allow us to conclude that the use of physical devices produce higher times

(as expected), but that the developed firmware has little impact in them.

We can conclude that our proof-of-concept is slower than the original Node-RED, but the

latency introduced are due to communication overheads and latency of the MicroPython firmware.

Some overhead was introduced by the developed firmware, but it is not significant. Although the

communication changes are necessary for the decentralization of the system, the MicroPython

firmware latency could be reduced with the use of another firmware, for example C-based.

6.4 Hypothesis Evaluation

This evaluation process aimed to prove the hypothesis presented in Section 4.4. Given the results of

the experiments with our proof-of-concept, we conclude that the challenges that we focused on were

tackled, more specifically the decentralization of computation, with the handling of the device’s

memory constraints and failures, and dynamic adaptation of the system (self-reconfiguration). The

attributes mentioned in Section 4.4 (p. 41) were evaluated, resulting in the following conclusions:

• Resilience: The developed solution is moderately robust, handling device failures and

memory constraints dynamically at run-time. However, there are some limitations to this

robustness. As demonstrated in Section 6.3.2.7, the system reaches a maximum point of

adaptability when several devices fail and recover continually. Possible solutions to this

problem are mentioned in Section 7.2 (p. 76).
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• Efficiency: The developed solution is slower than the original Node-RED system. However,

the increased latency is due to the change in the communication channel, which introduces

some extra latency (as expected). Despite this, the developed modules, such as the or-

chestrator and the device’s firmware introduce little latency to the latency of the whole

system.

• Elasticity: The solution handles a different number of devices, as it was demonstrated in the

experiments. It also handles the number of devices changes throughout the lifespan of the

system, adapting the orchestration to the number of devices available.

In summary, the developed solution is more scalable than a centralized one, dealing with a

dynamic number of devices while taking advantage of their computational capabilities. It is also

robust enough to handle the failures and constraints of these devices. The developed solution

introduces some overheads, but its major factor of latency is due to factors external to the developed

firmware, which are required to achieve a decentralized solution.

6.5 Lessons Learned

There were several changes made to the developed solution during the evaluation process. These

changes were necessary to allow the capture of data that was later used to generate charts and

reach conclusions. The lessons learned during this process consisted in figuring out how to build a

framework that supported sending and capture of data, its aggregation and visualization and which

metrics to capture, which ended up being the majority of the ones we identified.

Each device was modified to allow them to send metrics to MQTT topics, which in turn were

captured by a bridge that populated an InfluxDB database. This database supplied a Grafana

dashboard, where the data from the evaluation was exported from. In addition to this, both the

devices and Node-RED sent data to a Logstash, which supplied a Kibana instance using Elastic

Search. These logs were sometimes useful to understand the events happening in the devices and

orchestrator in more complex experiments.

The setup necessary for this process required modifying the developed solution. It was an

iterative process in which the number of metrics captured increased each time an experiment was

made.

6.6 Conclusions

This Chapter presents the results from the evaluation process of the developed solution. Sec-

tion 6.1 (p. 55) starts by defining the scenarios and Section 6.2 (p. 57) details the experiments

that were used to test the tool and its features. Section 6.3 (p. 59) analyzes the results from the

experiments and reaches several conclusions about the developed solutions: (a) it detects device

failures and memory constraints and automatically adapts itself in order to keep functioning, (b) it

is slower than the original Node-RED but the overheads introduced are caused by communication

and MicroPython latency, and (c) it adapts itself to different number of devices, which may vary

during the lifespan of the system.
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However, during Section 6.3 (p. 59) several limitations to the solution were found, such as

(a) its inability to handle the constant failure and recovery of devices, creating a constant state

of adaptation that does not allow the system to converge on an orchestration and (b) the lack

of persistence in device’s memory constraints information when they fail, causing orchestration

iterations to be repeated when the device becomes available again.

Given the previous analysis, Section 6.4 (p. 72) reflects on the presence of the attributes defined

in Section 4.4 (p. 41) in the developed solution. Finally, Section 6.5 (p. 73) reflects on the lessons

learned during the evaluation process.
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This chapter presents an overview of this dissertation. Section 7.1 describes the difficulties faced

during the development of the solution. Section 7.2 lists avenues that were not explored during the

development phase and improvements to the final solution. Lastly, Section 7.4 contains an overview

of the developed work.

7.1 Difficulties

During the development of the solution, there were several challenges to overcome to build the

solution that better fitted the proposed requirements. Some of these difficulties were mentioned in

previous sections, some were solved and others will be mentioned in Section 7.2 (p. 76).

The first difficulty was the modification of communication between Node-RED nodes. Since

they originally used events, a solution exclusive to Javascript, and a centralized environment,

changes were made to implement a decentralized alternative. One of the most challenging parts

of this feature was the implementation of this communication for sub-flows. The way Node-RED

implements this entity made it difficult to translate to the new way of communication. This was

implemented but was seldom used in the constructed scenarios.

There were several difficulties when it comes to the devices’ firmware. Early on in the

development phase, it was noted the memory limitations of ESP8266 chips, which led to the

construction of the FAIL-SAFE mechanism, after exploring several others. However, it was noted

that if an assigned script passed a certain threshold, the device could not recover. This led to the

exploration of several alternatives until the change in hardware from ESP8266 to ESP32. Besides

this difficulty, there were some problems regarding the differences between MicroPython Unix and
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ESP ports. This led to several changes in the developed firmware to allow compatibility in both

environments.

Finally, the libraries used in the MicroPython firmware have some limitations, which were men-

tioned before in Section 5.2.1 (p. 45). These limitations consist of the MQTT client’s nonexistence

of support for QoS.

7.2 Future Work

The solution developed during the course of this dissertation solved the more pressing issues

identified in Section 4.1 (p. 39). However, the implementation contains limitations and introduces

new problems, which can be expanded upon and solved in future work.

As mentioned previously in Section 6.3 (p. 59) experiments, the orchestrator is sensible to any

change in the status of the devices. This characteristic leads the orchestrator to perform several

orchestrations that are costly to the system. For example, one failed PING request should not

lead to a complete (re-)orchestration of the system, since the device non-response may not mean

total unavailability. Instead, there should be retries, where the system made sure that the device

was indeed unavailable. This mechanism should be configurable by the user or based on existing

algorithms used in distributed systems.

Currently, every time the orchestrator starts the assignment process, the system stops working

until the process is finished. One optimization that would greatly increase the system’s availability

would be to implement a way of (re)orchestrating without forcing the system to stop. For example,

instead of sending a script that contains all the nodes’ code, send snippets for each node and each

device would be responsible for adding it to its execution script. Another solution would be the

improvement of the assignment algorithm in order to minimize the number of changes compared to

the previous assignment. However, this is not a trivial problem and more exploration would have to

be made.

The node assignment method used in the developed solution uses a greedy algorithm to assess

the best device for each node. As mentioned in Section 5.2.2.5 (p. 50), this has limitations that can

lead to impossible assignments. The assignment process could be greatly improved with the use of

better algorithms, for example by using SAT solving algorithms. This improvement can lead to

several different solutions, each with their advantages.

Lastly, to validate the current solution, only a small portion of nodes were developed that

support MicroPython code generation. Besides the increase in the number of nodes that support this,

it would be interesting if the system was expanded to support different types of devices’ firmware.

For example, supporting code generation for C and Lua.

We can conclude that the developed tool has space for improvement, not only in the expansion

to new firmware and environments but also in its optimization and enrichment.

7.3 Contributions

During this dissertation, several contributions were made, such as:
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Systematic Literature Review of VPLs applied to IoT: An analysis was made to the state of

the art regarding existing visual programming tools applied to the Internet-of-Things domain.

This analysis resulted in a paper that was already submitted to the 2020 Concurrency and

Computation: Practice and Experience Journal.

The developed prototype: Our solution includes changes to Node-RED to support decentral-

ization, as well as a MicroPython firmware that allows Node-RED to use these devices as

computational resources.

Paper: The discoveries made during this dissertation were synthesized in a paper, which will be

submitted to the EAI MobiQuitous 2020 Conference until the end of July.

7.4 Conclusions

As the number of devices connected to the internet increases, it is important to leverage their

capabilities and modify the way systems are built to take advantage of these resources. It is also

important to allow end-users with no programming experience to build Internet-of-Things (IoT)

systems, with the use of visual programming tools. These tools make the building process easier,

reducing the need for knowledge of programming concepts.

Despite the existence of a considering number of visual programming tools applied to IoT, the

majority of these tools are centralized. This centralization hinders the resiliency of the system, as

the unit responsible for the execution of most or all of the computation is a single point of failure.

If this unit or the network fails, the system stops being functional. In addition to this, there are

several computational resources in the devices that are not being utilized by the system.

During the analysis of the state of the art, some issues and missing features were identified,

which this dissertation aims to correct. The tools found that possess a decentralized architecture

have limiting characteristics such as assumptions about what is a constrained device regarding

computational capabilities, lack of open source licenses, and simplification of the approach taken

to the decomposition and assignment of tasks.

The developed solution solves these issues by expanding an already popular visual programming

tool, Node-RED, with a decentralized approach that focuses on leveraging all the devices, even

ones that only support the execution of simple blocks of code. Node-RED was modified to allow

communication between nodes, even in different devices, as well as support for node’s code

generation and orchestration of computations. On the devices’ side, firmware was developed that

allows it to receive scripts of code for later execution as well as communicate its status.

Several mechanisms were built to deal with the devices’ instability. The developed solution

manages the state of the devices, triggering a new orchestration if any device becomes unavailable

or if a new device announces itself. Besides this, the system handles possible memory constraints

of the system, assigning fewer nodes to devices limited by memory capacity.

This dissertation contributes with a decentralized IoT system that is robust, elastic, and overall

efficient.
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Appendix A

Scenario 2 Results

Start End Delta

1591876328759 1591876328770 11
1591876329440 1591876329448 8
1591876329991 1591876329994 3
1591876330539 1591876330554 15
1591876331106 1591876331120 14
1591876331658 1591876331667 9
1591876332192 1591876332200 8
1591876332710 1591876332721 11
1591876333222 1591876333237 15
1591876333779 1591876333787 8

Table A.1: Node-RED original results

Start End Delta

1591877265187 1591877265346 159
1591877266172 1591877267055 883
1591877267564 1591877267698 134
1591877268318 1591877268955 637
1591877269424 1591877269783 359
1591877270361 1591877271117 756
1591877271635 1591877272012 377
1591877272630 1591877273132 502
1591877273645 1591877273996 351
1591877274541 1591877275277 736

Table A.2: Node-RED + MQTT results
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Start End Delta

1591877987030 1591877988695 1665
1591877989911 1591877991177 1266
1591877992272 1591877993595 1323
1591877994286 1591877995817 1531
1591877996305 1591877997618 1313
1591877998049 1591877999307 1258
1591877999734 1591878001322 1588
1591878001638 1591878002855 1217
1591878003397 1591878004643 1246
1591878005113 1591878006703 1590

Table A.3: Node-RED modified + Dockers (same host) results

Start End Delta

1591908868087 1591908870410 2323
1591908871443 1591908873803 2360
1591908874380 1591908877085 2705
1591908877629 1591908880338 2709
1591908880878 1591908883937 3059
1591908884472 1591908887147 2675
1591908887651 1591908889096 1445
1591908889803 1591908892200 2397
1591908892693 1591908894158 1465
1591908894846 1591908897623 2777

Table A.4: Node-RED modified + Dockers (different host) results

Start End Delta

1591904836329 1591904840130 3801
1591904844918 1591904849155 4237
1591904850127 1591904854579 4452
1591904855324 1591904859754 4430
1591904860483 1591904864559 4076
1591904865164 1591904869180 4016
1591904869770 1591904873905 4135
1591904874557 1591904878706 4149
1591904879318 1591904882934 3616
1591904888813 1591904893230 4417

Table A.5: Physical + MQTT results
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Start End Delta

1591878582050 1591878587990 5940
1591878589026 1591878593492 4466
1591878594105 1591878598640 4535
1591878599238 1591878603841 4603
1591878604570 1591878608765 4195
1591878609340 1591878614220 4880
1591878615030 1591878620187 5157
1591878620870 1591878625038 4168
1591878625718 1591878630967 5249
1591878631560 1591878635880 4320

Table A.6: Node-RED modified + MQTT + Physical + Firmware



82 Scenario 2 Results



References

[1] ISO/IEC JTC 1. Internet of things (iot) - preliminary report. ISO,Tech. Rep., 2014.

[2] Mohammad Aazam, Imran Khan, Aymen Abdullah Alsaffar, and Eui-Nam Huh. Cloud of
things: Integrating internet of things and cloud computing and the issues involved. In Pro-
ceedings of 2014 11th International Bhurban Conference on Applied Sciences & Technology
(IBCAST) Islamabad, Pakistan, 14th-18th January, 2014, pages 414–419. IEEE, 2014.

[3] Yuvraj Agarwal and Anind K Dey. Toward building a safe, secure, and easy-to-use internet of
things infrastructure. IEEE Computer, 49(4):88–91, 2016.

[4] Pierre A. Akiki, Arosha K. Bandara, and Yijun Yu. Visual simple transformations: Empow-
ering end-users to wire internet of things objects. ACM Transactions on Computer-Human
Interaction, 24(2):10:1—-10:43, apr 2017.

[5] S. A. Al-Qaseemi, H. A. Almulhim, M. F. Almulhim, and S. R. Chaudhry. Iot architecture
challenges and issues: Lack of standardization. In 2016 Future Technologies Conference
(FTC), pages 731–738, Dec 2016.

[6] Tanweer Alam. A reliable communication framework and its use in internet of things
(iot). International Journal of Scientific Research in Computer Science, Engineering and
Information Technology, 3, 05 2018.

[7] Fahed Alkhabbas, Romina Spalazzese, and Paul Davidsson. Iot-based systems of systems.
Proceedings of the 2nd edition of Swedish Workshop on the Engineering of Systems of Systems
(SWESOS 2016), 2016.

[8] arsaboo. Home assistant configuration, 2020. Last access 2020. [Online].

[9] Home Assistant. Home assistant, 2020. Last access 2020. [Online].

[10] AT&T. AT&T Flow Designer. Available: https://flow.att.com, 2020. Last access
2020. [Online].

[11] Nayeon Bak, Byeong Mo Chang, and Kwanghoon Choi. Smart Block: A Visual Programming
Environment for SmartThings. In Proceedings - International Computer Software and
Applications Conference, volume 2, pages 32–37, 2018.

[12] Andreu Belsa, David Sarabia-Jacome, Carlos E. Palau, and Manuel Esteve. Flow-based
programming interoperability solution for IoT platform applications. In Proceedings - 2018
IEEE International Conference on Cloud Engineering, IC2E 2018, pages 304–309, 2018.

[13] Adnan Rachmat Anom Besari, Iwan Kurnianto Wobowo, Sritrusta Sukaridhoto, Ricky Seti-
awan, and Muh Rifqi Rizqullah. Preliminary design of mobile visual programming apps for
Internet of Things applications based on Raspberry Pi 3 platform. In Proceedings - Interna-
tional Electronics Symposium on Knowledge Creation and Intelligent Computing, IES-KCIC
2017, volume 2017-Janua, pages 50–54, 2017.

83

https://flow.att.com


84 REFERENCES

[14] Michael Blackstock and Rodger Lea. Toward a distributed data flow platform for the Web
of Things (Distributed Node-RED). In ACM International Conference Proceeding Series,
volume 08-October, pages 34–39, 2014.

[15] Michael Blackstock and Rodger Lea. FRED: A hosted data flow platform for the IoT. In
Proceedings of the 1st International Workshop on Mashups of Things and APIs, MOTA 2016,
2016.

[16] Blender. Blender manual - editors - compositing - introduction, 2020. Last access 2020.
[Online].

[17] Marat Boshernitsan and Michael S. Downes. Visual programming languages: a survey.
Technical Report UCB/CSD-04-1368, EECS Department, University of California, Berkeley,
Dec 2004.

[18] M. M. Burnett, M. J. Baker, C. Bohus, P. Carlson, S. Yang, and P. Van Zee. Scaling up visual
programming languages. Computer, 28(3):45–54, March 1995.

[19] Brendan Burns and Craig Tracey. Managing Kubernetes: operating Kubernetes clusters in
the real world. O’Reilly Media, 2018.

[20] Rajkumar Buyya and Amir Vahid Dastjerdi. Internet of Things: Principles and Paradigms.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2016.

[21] Zenodys B.V. Zenodys. Available: https://www.zenodys.com/, 2020. Last access
2020. [Online].

[22] S K Chang. Handbook of Software Engineering and Knowledge Engineering. World Scientific
Publishing Company, 2002.

[23] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang. A vision of iot: Applications, challenges, and
opportunities with china perspective. IEEE Internet of Things Journal, 1(4):349–359, Aug
2014.

[24] B. Cheng, E. Kovacs, A. Kitazawa, K. Terasawa, T. Hada, and M. Takeuchi. Fogflow:
Orchestrating iot services over cloud and edges. NEC Technical Journal, 13:48–53, 11 2018.

[25] Bin Cheng, Gurkan Solmaz, Flavio Cirillo, Ernö Kovacs, Kazuyuki Terasawa, and Atsushi
Kitazawa. Fogflow: Easy programming of iot services over cloud and edges for smart cities.
IEEE Internet of Things Journal, PP:1–1, 08 2017.

[26] Cisco. Cisco global cloud index: Forecast and methodology,2015–2020. Technical report,
Cisco, 2016.

[27] Gennaro De Luca, Zhongtao Li, Sami Mian, and Yinong Chen. Visual programming language
environment for different IoT and robotics platforms in computer science education. CAAI
Transactions on Intelligence Technology, 3(2):119–130, 2018.

[28] Giuseppe Desolda, Alessio Malizia, and Tommaso Turchi. A tangible-programming technol-
ogy supporting end-user development of smart-environments. In Proceedings of the Workshop
on Advanced Visual Interfaces AVI, AVI ’18, pages 59:1—-59:3, New York, NY, USA, 2018.
ACM.

[29] DGLogik. DGLux5. Available: http://dglogik.com/products/
dglux-for-dsa, 2020. Last access 2020. [Online].

https://www.zenodys.com/
http://dglogik.com/products/dglux-for-dsa
http://dglogik.com/products/dglux-for-dsa


REFERENCES 85

[30] João Pedro Dias, Hugo Sereno Ferreira, and Tiago Boldt Sousa. Testing and deployment
patterns for the internet-of-things. In Proceedings of the 24th European Conference on
Pattern Languages of Programs, EuroPLop ’19, New York, NY, USA, 2019. Association for
Computing Machinery.

[31] João Pedro Dias, F. Couto, A. C. R. Paiva, and Hugo Sereno Ferreira. A brief overview
of existing tools for testing the internet-of-things. In 2018 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW), pages 104–109, April
2018.

[32] João Pedro Dias, João Pascoal Faria, and Hugo Sereno Ferreira. A reactive and model-based
approach for developing internet-of-things systems. In 2018 11th International Conference
on the Quality of Information and Communications Technology (QUATIC), pages 276–281,
Sep. 2018.

[33] João Pedro Dias, José Pedro Pinto, and José Magalhães Cruz. A Hands-on Approach on
Botnets for Behavior Exploration. In Proceedings of the 2nd International Conference on
Internet of Things, Big Data and Security, pages 463–469. SCITEPRESS - Science and
Technology Publications, 2017.

[34] João Pedro Dias, André Lago, and Hugo Sereno Ferreira. Conversational interface for
managing non-trivial internet-of-things systems. In Proceedings of the 20th International
Conference on Computational Science, pages 27–36. Springer, 2020. To Appear.

[35] João Pedro Dias, Bruno Lima, João Pascoal Faria, André Restivo, and Hugo Sereno Ferreira.
Visual self-healing modelling for reliable internet-of-things systems. In Proceedings of the
20th International Conference on Computational Science, pages 27–36. Springer, 2020. To
Appear.

[36] João Pedro Dias, Ângelo Martins, and Hugo Sereno Ferreira. A blockchain-based approach
for access control in ehealth scenarios. Journal of Information Assurance and Security,
13:125–136, 2018.

[37] Barrett Ens, Fraser Anderson, Tovi Grossman, Michelle Annett, Pourang Irani, and George
Fitzmaurice. Ivy: Exploring spatially situated visual programming for authoring and un-
derstanding intelligent environments. In Proceedings - Graphics Interface, pages 156–163,
2017.

[38] Espressif Systems. Esp8266 technical reference manual. Technical report, Espressif Systems,
Shanghai, China, 2019.

[39] Espressif Systems. Esp32 technical reference manual. Technical report, Espressif Systems,
Shanghai, China, 2020.

[40] Teo Eterovic, Enio Kaljic, Dzenana Donko, Adnan Salihbegovic, and Samir Ribic. An
Internet of Things visual domain specific modeling language based on UML. In 2015 25th
International Conference on Information, Communication and Automation Technologies,
ICAT 2015 - Proceedings, 2015.

[41] Seongbae Eun, Jinman Jung, Young Sun Yun, Sun Sup So, Junyoung Heo, and Hong Min.
An end user development platform based on dataflow approach for IoT devices. Journal of
Intelligent and Fuzzy Systems, 35(6):6125–6131, 2018.

[42] Mahmoud S. Fayed, Muhammad Al-Qurishi, Atif Alamri, and Ahmad A. Al-Daraiseh. PWCT:
Visual language for IoT and cloud computing applications and systems. In ACM International
Conference Proceeding Series, 2017.



86 REFERENCES

[43] Mahmoud Samir Fayed. Programming Without Coding Technology. Available: http:
//doublesvsoop.sourceforge.net/, 2020. Last access 2020. [Online].

[44] OpenJS Foundation. Node-RED. Available: https://nodered.org/, 2020. Last access
2020. [Online].

[45] Giuseppe Ghiani, Marco Manca, Fabio Paterno, and Carmen Santoro. Personalization of
context-dependent applications through trigger-action rules. ACM Transactions on Computer-
Human Interaction, 24(2):14:1—-14:33, apr 2017.

[46] N. K. Giang, R. Lea, M. Blackstock, and V. C. M. Leung. Fog at the edge: Experiences
building an edge computing platform. In 2018 IEEE International Conference on Edge
Computing (EDGE), pages 9–16, July 2018.

[47] N. K. Giang, R. Lea, and V. C. M. Leung. Exogenous coordination for building fog-based
cyber physical social computing and networking systems. IEEE Access, 6:31740–31749,
2018.

[48] Nam Ky Giang, Michael Blackstock, Rodger Lea, and Victor C.M. Leung. Developing
IoT applications in the Fog: A Distributed Dataflow approach. In Proceedings - 2015 5th
International Conference on the Internet of Things, IoT 2015, pages 155–162, 2015.

[49] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami. Internet
of things (iot): A vision, architectural elements, and future directions. Future Generation
Computer Systems, 29, 07 2012.

[50] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar Buyya. ifogsim: A
toolkit for modeling and simulation of resource management techniques in the internet of
things, edge and fog computing environments. Software: Practice and Experience, 47(9):1275–
1296, 2017.

[51] Device Hive. Device hive, 2020. Last access 2020. [Online].

[52] Jan Humble, Andy Crabtree, Terry Hemmings, Karl-Petter Åkesson, Boriana Koleva, Tom
Rodden, and Pär Hansson. “playing with the bits” user-configuration of ubiquitous domestic
environments. In Anind K. Dey, Albrecht Schmidt, and Joseph F. McCarthy, editors, UbiComp
2003: Ubiquitous Computing, pages 256–263, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

[53] Michaela Iorga, Larry Feldman, Robert Barton, Michael J Martin, Nedim S Goren, and Charif
Mahmoudi. Fog computing conceptual model. Technical Report 500-325, National Institute
of Standards and Technology, March 2018.

[54] jasperbrooks79. Greatly improving readability of visual scripting in godot 3.2, 2020. Last
access 2020. [Online].

[55] Nikos Kefalakis, John Soldatos, Achilleas Anagnostopoulos, and Panagiotis Dimitropoulos.
A visual paradigm for iot solutions development. In Ivana Podnar Žarko, Krešimir Pripužić,
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