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Abstract: In this paper we analyze the performance of QUIC as a transport alternative for Internet of
Things (IoT) services based on the Message Queuing Telemetry Protocol (MQTT). QUIC is a novel
protocol promoted by Google, and was originally conceived to tackle the limitations of the traditional
Transmission Control Protocol (TCP), specifically aiming at the reduction of the latency caused by
connection establishment. QUIC use in IoT environments is not widespread, and it is therefore
interesting to characterize its performance when in over such scenarios. We used an emulation-
based platform, where we integrated QUIC and MQTT (using GO-based implementations) and
compared their combined performance with the that exhibited by the traditional TCP/TLS approach.
We used Linux containers as end devices, and the ns-3 simulator to emulate different network
technologies, such as WiFi, cellular, and satellite, and varying conditions. The results evince that
QUIC is indeed an appropriate protocol to guarantee robust, secure, and low latency communications
over IoT scenarios.

Keywords: QUIC; Message Queuing Telemetry Transport (MQTT); Industrial Internet of Things
(IIoT); Industry 4.0; wireless networks; emulated environment; performance analysis

1. Introduction

The term Industry 4.0 was originally proposed by the German government in 2011 [1].
It entails a radical transformation, which would greatly impact the way traditional compa-
nies and industries operate. In this sense, the underlying “industrial revolution” is based
on four main principles: enhanced inter-connectivity, data transparency, decentralized and
automated decision processes, and technical assistance.

One cornerstone of this transformation is the so-called Internet of Things (IoT), which
enables the connection of industrial elements that are able to collect and process, in real-
time, a large amount of data. This would bring, among other functionalities, the capabilities
of monitoring systems, exchanging the gathered (and processed) data, and ascertaining the
environment [1]. The development of Industry 4.0 services imposes stringent requirements:
low latency communications, high reliability and availability, energy efficiency, and security
and privacy [2].

Two of the most important requirements for IoTare energy efficiency and low latency.
Sensor nodes mostly run on batteries, and in many cases, their replacement might be rather
complex or even not possible. Hence, it is of paramount importance to ensure long-life
sensor operation, yet their costs should be kept reasonable, since it is expected that massive
deployments will be needed to cover large or complex systems. On the other hand, if the
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information gathered by these devices is used for critical decisions (as was mentioned
earlier), latency stands out as one of the key performance indicators. The goal is to enable
control procedures in (almost) real-time situations.

The Message Queuing Telemetry Transport (MQTT) protocol [3,4] is one of the most
widespread solutions for traditional IoT applications. It has several features—a small code
footprint, easy integration, and good performance—that makes it an appropriate solution
for these scenarios. MQTT was built on top of the TCP [5] protocol, which offers a reliable
end-to-end communication service. On the other hand, it is well known that TCP cannot
be adapted at the pace at which technologies are evolving [6], and it indeed has several
limitations, including those caused by the ossification of internet protocols. For instance,
the performance of TCP over packet erasure networks has been proven to be severely
hindered, with a strong increase of the end-to-end delay [7]. Furthermore, TCP does not
appropriately cope with the strict delay requirement of some applications [8].

Hence, several solutions have been proposed to tackle the aforementioned limitations.
Some of them correspond to TCP modifications and extensions, such as SCTP [9], Real-
Time TCP [10], and Network Coded TCP [11]. Other proposals foster a more clean-slate
approach, such as QUIC [12], a novel transport protocol running on top of UDP, whose
main design principles are: (1) to reduce connection establishment and transport delays;
and (2) to improve security standards, with default end-to-end encryption in HTTP-based
applications [13].

In this paper, starting from the proposal of a three-tier fog/cloud architecture that
leverages better performance for IoT-based services, we study the performance of the
integration of Message Queuing Telemetry Transport (MQTT) with QUIC. We carry out an
in-depth analysis, based on a novel methodology, which entails real protocol implementa-
tions and Linux containers, and emulation techniques within the ns-3 network simulator.
We compare the behavior of this combination with that exhibited by the traditional TCP-
based solution.

The main contributions of this paper are:

• Integration of a fully operational Message Queuing Telemetry Transport (MQTT)
implementation with a QUIC GO implementation.

• All the code that was used to obtain the results presented herewith has been made
available in a public git repository.

• Design and implementation of a methodology to assess the performance of the pro-
posed scheme, using Linux containers and llemulation techniques in ns-3.

• Performance analysis of MQTT when used on top of QUIC over various network
technologies. using an extensive measurement campaign, and an in-depth comparison
with a more traditional approach based on TCP.

• We used peer-to-peer links to emulate different technologies and conditions, and we
also assessed the behavior of the proposed schemes considering a scenario where
multiple nodes shared the same access.

• We characterized the gain that can be obtained with some of the features included in
the QUIC operation, such as 0-RTT.

The rest of the paper is structured as follows: Section 2 discusses related state-of-
the-art protocols and points out the main contributions of this work. Section 3 describes
the architecture that we are considering, including the things, fog, and cloud, over which
we propose using QUIC as a transport protocol. Section 4 sketches the integration of
the Message Queuing Telemetry Transport (MQTT) and QUIC protocol in GO language.
Section 5 depicts the different configurations that were used to carry out the experiments.
Section 6 discusses the results that were obtained after a thorough measurement campaign,
comparing the performance of the proposed scheme with a more traditional solution.
Finally, Section 7 concludes the paper, highlighting the aspects that we will tackle in our
future work.



Sensors 2021, 21, 5737 3 of 17

2. Background

QUIC is a transport protocol originally developed by Google Inc. [13], which has
been recently standardized by IETF [12]. QUIC RFC documents have been published after
the experiments described in this work were concluded. Hereinafter, when we refer to
QUIC, we will be specifically talking about the draft version 27, since it corresponds to
the particular implementation we used. Besides addressing some of the most relevant
TCP limitations for Industrial Internet of Things (IIoT) (for instance, more precise packet
acknowledgment and retransmission), it also brings some additional benefits, which might
become rather relevant for the targeted scenarios, since it would yield lower latencies,
despite offering a reliable and secure service. On the other hand, Message Queuing
Telemetry Transport (MQTT) stands out as one of the most popular application protocols to
tackle the requirements of Industrial Internet of Things (IIoT) networks and services. This
section introduces both MQTT and QUIC protocols, to better understand the motivation of
their combination and its impact in the IIoT realm.

2.1. MQTT

Message Queuing Telemetry Transport (MQTT) [3] is a lightweight application proto-
col which follows the traditional publish-subscribe model. It has become a very popular
solution within a rather broad range of industries to connect low-power devices, since it
benefits from a small code footprint and does not require large bandwidths. IBM launched
version 3.1.1 in 2014, which was afterwards standardized by International Organization
for Standardization (ISO) and Organization for the Advancement of Structured Informa-
tion Standards (OASIS). Although more recent versions have been also standardized (for
instance version 5.0 [4]), the one fostered by IBM is still the most widely used.

MQTT defines three different roles: subscriber, publisher, and broker. Publishers are
small sensors, which gather information and publish it into a common register (broker),
which keeps information belonging to specific topics. The subscribers access the data
provided by the publishers. To do so, they subscribe to a number of topics, and they then
receive all messages sent by any publisher on those particular topics.

Both publishers and subscribers take the client role in the underlying network topol-
ogy. On the other hand, the key entity of MQTT is the broker server, which manages the
subscriptions and the consequent information delivery to the interested nodes. Hence,
all messages published in the network are first sent to the broker, which takes care of
forwarding the information to the corresponding subscribers (according to their prelim-
inary registrations). Although clients only interact with a single broker in the current
Message Queuing Telemetry Transport (MQTT) specification, the network may contain
several brokers, which would actually exchange data among themselves, based on their
subscribers’ topics.

One of the main advantages of MQTT is that it isolates the operation of data producers
(publishers) and consumers (subscribers). This strongly facilitates the implementation of
such functionalities in low computational devices, which can interact by exploiting the
publish–subscribe scheme. In this sense, since publishers send new content whenever it
becomes available, there exists a temporal decoupling between a node’s interest and the
publication of such information.

2.2. QUIC

QUIC addresses two of the main challenges of today’s web traffic: (1) latency reduction,
for a better user experience; and (2) securing the communications (end-to-end payload
and header encryption [14,15]), as the Internet is clearly shifting towards more secure web
traffic [13]. Figure 1 depicts the QUIC protocol stack, comparing it with the traditional
TCP/TLS approach, when used to transport HTTP traffic.
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Figure 1. Traditional architecture of the transport layer TCP/TLS vs. the QUIC protocol stack.

QUIC established a secure connection in 1 Round Trip Time (RTT) with Transport
Layer Security (TLS) protocol version 1.3. This was achieved by combining QUIC and
TLS handshakes. TLS 1.3 connection establishment could be further reduced to 0 RTT
if the endpoints previously established a communication [16], a functionality that QUIC
also integrates [15]. Hence, data can be sent before a new handshake is repeated in 0-RTT
packets. On the other hand, legacy TCP 3-way handshake allows an endpoint to send data
only after 1 RTT [5]. Furthermore, TCP alone does not encrypt its payload, and additional
protocols, such as TLS, are required to establish a secure connection. Although TLS 1.3
adoption is continuously increasing, TLS version 1.2 is still widely used [17], and its
connection establishment takes no less than 2 RTT [18]. Thus, the resulting secured TCP
connection establishment takes either 3 RTT with TLS 1.2, or between 2 and 1 RTT with
TLS 1.3. Figure 2 compares TCP + TLS 1.3 with QUIC connection establishment.

Client Server
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(a) TCP/TLS1.3
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(b) QUIC

Figure 2. Establishment of TCP (a) and QUIC (b) with version 1.3 TLS.

The information within a QUIC connection is organized in streams, enabling QUIC to
prevent delays caused by head-of-line blocking. When a packet is lost, only streams having
data in such packets are blocked while waiting for a retransmission, but other streams can
continue [14]. QUIC is also able to reduce the overall latency thanks to its loss detection
algorithms, including “Early Retransmits” and tail loss probes [19].

The main difference among TCP loss detection mechanisms is that QUIC does not
retransmit lost packets with the same packet numbers. QUIC uses acknowledgment-based
detection with a probe timeout to ensure acknowledgments are received. QUIC loss
recovery mechanisms are applied in the following scenarios [19]:

• If the packet is not acknowledged and it was sent before an acknowledged packet and
one of the following conditions is met:

- Either it was sent with an expiring packet time of 9/8 · RTT;
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- Or its packet number is three times smaller than the last acknowledged packet.

• If the probe timeout is reached, from the moment the packet was sent, and a subse-
quent packet is not acknowledged.

QUIC encrypts its payload and protects its headers not only to ensure communication
security [14], but also to prevent protocol ossification [13]. At the time of writing, TCP is not
straightforward to update, due to the vast deployment of middleboxes, which have been
implemented to optimize TCP traffic [6]. Until these middleboxes are updated, they discard
all new TCP segments. On the other hand, QUIC packets are seen as UDP payloads, and so
their formats, regardless of the version, are invisible to such intermediate entities, ensuring
safe interactions with them. QUIC is intended to be deployed in user-space, meaning
different applications (e.g., various browsers) at the same node could actually benefit from
the QUIC features they need—for instance, managing computational resources or setting
logging levels as required. Despite this initial user-space implementation objective, QUIC
could be embedded into the kernel too, with the goal of boosting its performance [20].

Although the updating process would be easier with QUIC, not all devices could
simultaneously change to a newer version, leading to the coexistence of multiple QUIC
versions. Correct operation is ensured with a version negotiation mechanism, which
allows the endpoints to agree on the version they will use, before the QUIC connection is
established. This feature not only simplifies protocol updates, but also allows customizing
QUIC with extra features. The endpoints might even share these features as plugins [21].

2.3. QUIC and the IoT Paradigm

Even when QUIC was still under development, some researchers had already inte-
grated it in Internet of Things (IoT) protocol stacks [22,23]. However, we have identified
that there do not exist many works evaluating QUIC in IoT scenarios.

Liri et al. considered QUIC as an IoT protocol, comparing it with IoT specific alter-
native solutions such as CoAP and MQTT [24]. They proved that QUIC, before it was
completely specified, was outperformed by CoAP [25]. However, its behavior is compa-
rable to MQTT in lossy and disruptive environments. The authors suggested that a more
streamlined version of QUIC could be a potential request–response IoT protocol alternative
to CoAP.

Kumar and Dezfouli evaluated Google QUIC’s performance in IoT scenarios [26].
They defined a testbed with Raspberry Pi 3B devices where MQTT over QUIC and TCP
performance was assessed. Their evaluation focused on connection establishment packet
overheads, latency over lossy links, usage of computational resources in the presence of
connection impairments, and performance drops due to connectivity breakdowns. They
concluded that QUIC outperforms TCP in multiple aspects. They also identified possible
improvements that should be included for its use in IoT scenarios.

Lars Eggert studied the feasibility of implementing QUIC in constrained IoT de-
vices [27]. He used more limited devices than those used by Kumar and Dezfouli [26]:
Particle Argon and ESP32-DevKitC V4. Since the main objective was to enable the operation
of QUIC in low-capable devices, some of the original QUIC features, likely to be impractical
for IoT, were changed, or even removed, to reduce the required memory usage. Eggert
concluded that QUIC is indeed a practical alternative to be considered for IoT edge devices.

As the QUIC standardization process has recently concluded with the publication of
the corresponding RFC [12], we foresee a renewed interest from various fields. As a follow
up in our initial evaluation, which is reported in [28], Saif and Matrawy further assessed
QUIC feasibility for IoT scenarios, combining it with HTTP/3 [29]. They also understand
that delay should be considered as the key performance indicator. In opposition to what
we consider herewith, they did not include in their evaluation different technologies, nor
packet erasures over the wireless accesses.

Finally, it is worth highlighting that this paper amply broadens the analysis discussed
in [28], where we preliminary assessed QUIC performance over IoT scenarios. We consider
more complex setups, based on the fog/cloud architecture that we sketch in Section 3,
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where devices use Message Queuing Telemetry Transport (MQTT) on top of both QUIC
and TCP to establish the corresponding communications. We study the overall delay,
comparing the performance of both transport protocols over error-free and packet-erasure
channels with various Frame Error Rate (FER) values, considering WiFi, cellular, and satel-
lite technologies. We also evaluate the performance exhibited by QUIC and TCP over
shared channels. We have also included an additional QUIC feature (0RTT) and studied its
benefits, by using an appropriate traffic pattern.

3. QUIC-Based IIoT Architecture

In our evaluation we consider a three-tier architecture to deploy IIoT services, which
includes the following levels [30]:

• Things. These are the entities that perform measurements to monitor the environment
(sensors) or take actions (actuators) to adapt the system’s behavior and its operation.
They normally use wireless links to connect with the rest of the architecture.

• Fog. The traditional cloud approach (where the information gathered by the things
is sent to a node that is deployed in centralized servers) has two major limitations.
First, it could incur long delays when reaching nodes from the things layer. Secondly,
if a fully centralized approach is used, the system might suffer from scalability issues,
which might hinder its usefulness. A potential solution would be the distribution
of the computational burden among various nodes, bringing them closer to the
things. Hence, the use of edge computing, where the servers are next to access
elements (base stations, access routers, etc.), is currently receiving interest from the
scientific community.

• Cloud. In IIoT, it might be of great relevance to react as quickly as possible to changes
or events. The use of artificial intelligence and machine learning enables the system
to make automated decisions, reducing the response time that would be required by
traditional human operators. The virtualization and software-defined networks (SDN)
paradigms allow the deployment of intelligent agents that leverage this approach in
cloud nodes.

The rapid proliferation of IoT in different areas, particularly in so-called Industry 4.0,
is not matched by the pace at which the actual solutions evolve. Message-based protocols,
such as MQTT and COAP, which usually rely on traditional client/server architectures,
are probably not the most appropriate choice for systems with multiple fog and cloud
servers. In particular, some previous papers have analyzed how the three-tier architecture
might bring important benefits in terms of operation cost (for distributed storage services),
and/or performance, by considering the time required to promote certain decisions [31,32].

However, the applicability of this architecture might be hindered by the already
strong adoption of message-based protocols (MQTT and COAP). In this sense, many of
the potential benefits of the proposed three-tier architecture imply the use of rather novel
techniques: multi-path communications, coding techniques, and other features. Traditional
communications, usually TCP, do not support such functionalities.

For instance, multi-path communications can provide interesting benefits to the IIoT
realm, since they allow the establishment of different paths to exchange information
between the two communication edges, or to naturally send the information to a set of
nodes (fog/cloud) that would afterwards cooperate.

In IIoT, when things are connected to more than one access element, the use of multi-
path could yield better performance and/or reliability, by simultaneously exploiting the
various available paths [33]. Furthermore, in fog/cloud scenarios, it would be interesting
to promote distributed storage or decision systems, and communications might have mul-
tiple sources (downlink) or destinations (uplink). Another potential benefit of multi-path
communications in IIoT scenarios would be a more appropriate means of congestion man-
agement (both in terms of computational resources at edge/cloud nodes or communication
resources at various links).
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We argue that, in order to promote the aforementioned architecture, the use of TCP
might not be an appropriate choice, and we thus propose to use QUIC since it does
not only bring latency improvements, as we evaluate herewith, but it also allows easier
deployment of its customized versions, thanks to its middlebox independence. One of the
most comprehensive studies in extending QUIC with extra features was [21]. In spite of
these clear benefits, there are not many works that have actually analyzed the feasibility of
using traditional message-based protocols (such as MQTT) over QUIC, which shall be a
first step to enable the use of this transport protocol in IIoT scenarios.

4. Implementation

In order to carry out the analysis of QUIC as a transport protocol for IoT, we used
a QUIC implementation in GO language, quic-go (https://github.com/lucas-clemente/
quic-go (accessed on 10 April 2020), version 0.15.1.), which follows the IETF QUIC draft
version 27. At the time of writing, quic-go implements and facilitates the use of the newly
released RFC 9000 [12].

The MQTT client and the server broker are based on open-source Eclipse Paho
(https://github.com/eclipse/paho.mqtt.golang (accessed on 10 April 2020), version v1.2.0.)
and VolantMQ (https://github.com/VolantMQ/volantmq (accessed on 10 April 2020), ver-
sion v0.4.0-rc6.), respectively. Both of them are implemented in GO and support MQTT 3.1
and 3.1.1. Eclipse Paho builds a library that enables applications to connect to VolantMQ
broker using TCP, TLS or WebSocket. Both projects are based on GO 14.0 version, and they
are open-source, which allowed us to tweak them to use QUIC, which was also developed
with the same GO version. Figure 3 illustrates the changes that were made over the legacy
implementations of both net.go and quic_udp.go.

In the client case, all the functionalities at the transport layer, i.e., opening and closing
connections, or sending and receiving packets, are managed from the net.go interface. Based
on this interface, the integration of the QUIC socket involves minor changes in the original
code supporting TCP, TCP+TLS, QUIC, and WebSocket connections. In order to enable the
use of QUIC connections, the net.go interface calls, from quic-go, the client.go interface. Due
to the 0-RTT operation, we use the DialAddrEarly function to keep “early” data before the
handshake completes. This MQTT client, which can be used over the QUIC open-source
implementation, has been made available, and can be accessed at a public git repository
(https://github.com/pgOrtiz90/paho.mqtt.golang (accessed on 10 April 2020)).

MQTT client
TCP

TCP/TLS

QUIC (net.go)

WebSocket

stream := OpenStreamSync()

session := DialAddrEarly()

ListenUDP()

quic-go (client.go)

stream := AcceptStream()

listener := ListenAddrEarly()

ListenUDP()

quic-go (server.go) TCP/TLS

QUIC (quic_udp.go)

MQTT Broker

Figure 3. Implementation scheme of QUIC socket in MQTT.

The broker implementation is also open source, and publicly available in a git reposi-
tory (https://github.com/fatimafp95/volantmq_2 (accessed on 10 April 2020)). The trans-
port level functionalities are implemented using transport/conn.go interface. The incompati-
bilities and restrictions between the connection interfaces offered by TCP and QUIC, this
MQTT server only supports QUIC connections. We integrated the quic_udp.go interface,
which calls the listener from the server.go interface of quic-go. The listener function is
ListenAddrEarly, to enable 0-RTT on the server broker side. This function enables a client
that has previously connected to the broker to use the information stored in the cache of

https://github.com/lucas-clemente/quic-go
https://github.com/lucas-clemente/quic-go
https://github.com/eclipse/paho.mqtt.golang
https://github.com/VolantMQ/volantmq
https://github.com/pgOrtiz90/paho.mqtt.golang
https://github.com/fatimafp95/volantmq_2
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that session. Therefore, re-establishing the connection does not require re-negotiating all
parameters, so the data exchange happens before the handshakes actually completes.

Figure 3 depicts how the complete communication is created. The broker is listening
on the QUIC socket through the ListenAddrEarly() function. The client establishes a new
QUIC connection to the server, with the 0-RTT operation, through DialAddrEarly(). After the
session is created, the client opens a stream by means of OpenStreamSync(), and the broker
accepts it with the AcceptStream() function.

5. Environment Setup

Experiments were performed using the discrete-event network simulator for internet
systems ns-3 (https://www.nsnam.org/ (accessed on 10 April 2020), version 3.24). It
provides the possibility to use virtualization techniques to connect traffic from real appli-
cations by running LXC Linux containers (LXC version 3.0.3, Ubuntu 14.04 images) over
a simulated network. We have deployed an emulated platform, based on the scenario
depicted in Figure 4, which hereinafter will be referred to as Scenario A. It entails three
Linux containers, which are connected through ns-3. Each network emulates various
wireless technologies, considering two parameters: bandwidth and delay. End containers
run the client applications, publisher and subscriber, while the middle container runs the
broker server.

Linux containers are considered ghost nodes by the ns-3 instance. A CSMA network
connects the three of them to simulated routers, with rather high capacity, to enforce the
bottleneck to be at the point-to-point link (P2P). These routers are connected over two
links, which emulate different technologies. These are configured using the parameters
depicted on Table 1. Bandwidth, delay, and loss rate are modified according to various
configurations, mimicking different networks and conditions. Even though there exists
evidence that cellular networks keep buffer sizes larger than the bandwidth-delay product
(BDP) of the path, which might lead to bufferbloat effects [34], we set all buffers to be
one BDP.

Linux Container

Publisher

Linux Container

Broker

Linux Container

Subscriber

ns-3 Simulated Network

CSMA
1 Gbps

p2p: {bw, rtt} CSMA
1 Gbps

p2p: {bw, rtt}CSMA: 1 Gbps

Figure 4. Scenario A. Three Linux containers running different MQTT roles. From left to right:
publisher client, broker server, and subscriber client. The broker is connected to each client over a
P2P link, which emulates different wireless access technologies.

Table 1. Network parameter ranges for different wireless technologies.

NetType1 NetType2 NetType3

WiFi Cellular Satellite

Capacity [Mbps] 20 10 1.5
RTT [ms] 25 100 600
Loss Rate [%] [0, 1, 2, 3, 5, 10]

In a second scenario, we changed the connection between the publisher and the broker,
and we used WiFi to connect Linux containers. This feature allowed us to analyze the
performance of the combination of MQTT and QUIC over a shared channel. In this case,
the connection between broker and subscriber emulates an end-to-end connection over a
high bandwidth network. In order to facilitate the execution of systematic and repetitive

https://www.nsnam.org/
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experiments, mimicking the conditions that were used for the previous scenario, we have
modified the error model originally implemented in ns-3, allowing us to precisely control
the frame error rate, regardless of the interference model. Furthermore, we have run
experiments modifying the maximum number of retransmissions, which are defined in
IEEE 802.11 MAC protocol [35] to assess the potential impact of this parameter on the
application layer. By disabling this functionality, we can, for instance, ensure that network
reliability mostly depends on the transport protocol.

We define Scenario B based on an ad-hoc wireless network that connects various
Linux containers, acting as MQTT publishers, to the broker server over a shared WiFi
network. As mentioned earlier, the broker and the subscriber are connected over a P2P link,
whose characteristics are fixed to emulate a high bandwidth end-to-end network. Figure 5
illustrates this setup.

Linux Container

Broker

Linux Container

Subscriber

ns-3 Simulated Network

CSMA
1 Gbps

CSMA
1 Gbps

p2p: {bw, rtt}

Linux Container
Publisher 1

Linux Container
Publisher N

WiFi

Figure 5. Scenario B. Various publishers connect to the broker over a shared WiFi network.

6. Results

In this section, we discuss the performance of MQTT over QUIC, comparing it with
the performance exhibited by a more traditional approach which uses TCP and TLS. We
discuss results obtained during an intensive experiment campaign carried out over the
scenarios that were described in Section 5. We go beyond the analysis that we carried out
in [28]: (i) we consider a shared channel and multiple publishers, (ii) we assess the benefits
of additional QUIC features, such as the 0-RTT option, and (iii) we also evaluate the impact
of modifying the characteristics of the connection between the broker and the subscriber.
Section 6.1 focuses on the results obtained in Scenario A (Figure 4), whereas Section 6.2
discusses the ones obtained in Scenario B (Figure 5). In addition, we used two different
traffic patterns, which are depicted in Figure 6. In the first one we measured the overall
time required to send a number of publish messages between publisher and subscriber,
whereas the second pattern allowed us to assess the benefits of the 0-RTT feature of QUIC,
by measuring the time elapsed between the publisher opening a connection to sending a
publish message, and the subscriber getting it.

In order to fairly compare the performance of QUIC and TCP, we use their absolute
completion times, according to the two parameters defined in Figure 6. We also use the
completion ratio ξ metric, which is defined as follows:

ξ =
TQUIC

TTCP
(1)

where TTCP and TQUIC are the TCP and QUIC completion times, respectively. These refer
to ∆ (Figure 6a). This ratio directly compares QUIC and TCP completion times. Values of
ξ lower than 1 yield that QUIC outperforms TCP, since the required time to transmit all
packets would be shorter. Furthermore, as we divide by the average completion time of
TCP, the variability of the corresponding results reflects that seen with the QUIC protocol.
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Figure 6. Traffic patterns used during the experiments.

6.1. Scenario A: Single Publisher

We first show the scenario depicted in Figure 4, wherein we used traffic pattern
A (cf. Figure 6a) to asses the performance of QUIC and TCP. Both MQTT clients used
one single MQTT connection, which was not closed throughout the experiment, to send
100 short messages from publisher to the broker, which forwarded them to the subscriber.
We forced the MQTT service to follow stop&wait behavior, so the ith packet was only
sent after ensuring the subscriber got the previous one. We measured the time required
to correctly receive the 100 messages (∆ in Figure 6a). Furthermore, to ensure statistically
tight results, we repeated this experiment, for each network configuration, 50 times.

Figure 7 depicts the whisker plots of the completion times, and the completion ratios
for each technology. Each whisker shows the median (0.5-percentile), as a horizontal
line within the boxes, and the 0.25 and 0.75 percentiles (lower and upper box limits,
respectively). Last, the upper and lower whiskers correspond to the 1.5 IQR. The results
yield that QUIC had far better performance than TCP, especially over networks with low
RTTs (WiFi) and with high loss rates. When there was not any loss in the underlying
networks (loss rate 0%), we can see that the performance of QUIC was slightly worse
than that exhibited by TCP. This is because QUIC was designed to outperform TCP when
the conditions of the network are not ideal. For that purpose, QUIC promotes a more
complex and advanced flow management scheme, which requires adding some extra
overhead. Hence, when the conditions are ideal, the overall delay is higher. Additionally,
we can see that when the RTT was higher, the gain that QUIC created was less noticeable,
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especially for satellite links. In any case, the results evince that QUIC clearly outperforms
the traditional approach, not only in terms of the average delay, but also by exhibiting
far less variability, which is also a relevant advantage, since large jitters could hinder the
behavior of real-time services.
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Figure 7. MQTT over QUIC and TCP completion times for traffic pattern A.

One of the main characteristics promoted by QUIC is the lightweight connection estab-
lishment. In order to analyze this improvement compared with the traditional TCP/TLS
scheme, we used traffic pattern B, as depicted in Figure 6b.

In each experiment, the publisher established an initial connection and then the connec-
tion was restablished whenever a message was published. Each experiment was repeated
50 times. We measured the time since the second connection was initially established on
the publisher side until the corresponding message was received by the subscriber (∆†;
cf. Figure 6b). This configuration was used to assess how QUIC is able to strongly reduce
latency when resuming a connection. Figure 8 shows the results for 0-RTT tests using the
setup depicted in Figure 4. The networks were configured with the parameters shown on
Table 1. We can see how the QUIC 0-RTT mechanism strongly reduced connection latency
compared to TCP/TLS, in all configurations. Furthermore, QUIC exhibited more stable
performance (with much less variability) than the traditional scheme.
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Figure 8. 0-RTT approach with three nodes: publisher; broker; subscriber. The left box plot depicts completion times for the
emulated technologies. The other box plots provide enlarged views of the first one.

One of the reasons to introduce a fog layer between the end-devices (things in our
case) and the cloud is the large distance between the latter two, which directly hinders the
latency. The performance improvement achieved with QUIC is not expected to change
significantly if the conditions of the fog/edge to cloud connection change. We verified
this by repeating the completion time evaluation but changing the characteristics of the
link connecting the broker, which is representing fog layer, and the subscriber, the cloud.
In this experiment, the p2p link emulated a 10 Gbps connection with RTT values of 1,
and 100 milliseconds (ms), to reflect a broad range of conditions. The results are depicted
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in Figure 9. QUIC still offered a noticeable reduction of latency, and led to a rather more
stable performance, which was observed in lower result variability.
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Figure 9. The publisher–broker network was fixed with the parameters of Table 1 and the broker–subscriber link with
BW = 10 Gbps and RTT = 100 ms.

6.2. Scenario B: Multiple Publishers on Shared Access Link

The following results are based on Scenario B, in which we used both traffic patterns.
We considered several MQTT clients connected to the broker over a shared WiFi network.
This setup mimicked a wireless sensor network in a three-tier (fog/cloud) architecture
(as the one sketched in Section 3), where many edge-devices generated data to be processed
at the fog layer, and if necessary, to be sent to the cloud (subscriber role) through a wired
link with low RTT (25 ms) and high bandwidth.

As was previously introduced in Section 5, IEEE 802.11 standard (WiFi) specifies
a maximum number of retransmission attempts for any frame that is lost [35]. On the
other hand, there could be IoT use cases where publishers would be connected through
non WiFi wireless shared access medium, without any retransmission at all. In order to
asses QUIC and TCP performance in such scenarios, and to decouple the results from
the MAC layer operation, we used different maximum retry values (0, 1, 2 and 3) in the
WiFi network, when studying the delay for traffic pattern A. The experiment was executed
50 times for each configuration (error rate and retransmission value). Each run entailed
the transmission of 100 MQTT packets from the publisher to the subscriber. Figure 10
illustrates the resulting download completion ratio, showing how QUIC could reduce the
latency over wireless shared access media. We can also see that this gain is less relevant
when the number of retransmissions is larger. We can thus infer that, when this feature is
enabled, it would be enough to cope with such eventual losses (especially if the loss rate is
low), and the gain of QUIC is thus less relevant. In this sense, we can see the same behavior
that was discussed earlier for Figure 7. When the loss perceived by the transport layer
was 0%, the performance of TCP was slightly better than that shown for QUIC (ξ > 1).
When the link loss rate increased, and/or fewer MAC retries were used, the transport layer
suffered losses, and QUIC thus yielded a lower delay than TCP.

As mentioned earlier, Scenario B was proposed to emulate the case in which various
edge-devices generate data, which is sent to the broker over a shared WiFi network.
It is foreseen that the more publishers compete for a medium, the longer the overall
communication delay will be. We evaluated QUIC and TCP performance with 3, 5, and 8
publishers, transmitting traffic pattern A, and we further assumed the subscriber was
subscribed to the information provided by just one publisher. Figure 11 illustrates the
completion times corresponding to the whole transmission of the information that the
subscriber was expecting. We measured the ∆ parameter that was introduced in Figure 6a.
As can be seen, QUIC clearly outperformed TCP/TLS in all cases, showing, in addition,
more stable behavior, exhibiting less variability.

It can also be seen that there was no clear among between the results obtained with
different numbers of publishers. We argue that a greater difference would be observed
with a larger number of things competing for the shared link. A stronger impact would
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actually be seen with higher traffic load, i.e., longer and/or more frequent messages, since
they would induce more competition on the WiFi link and likely lead to a bigger difference
in the results depicted in Figure 11.
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Figure 10. Completion ratios with the numbers of WiFi retransmissions.
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Figure 11. The performance of MQTT over QUIC and TCP/TLS in a shared channel with traffic pattern A.

Finally, to validate the 0-RTT approach of QUIC, we ran the experiment for traffic
pattern B, with eight publishers. This experiment was executed 50 times for each loss
rate specified in Table 1, thereby ensuring statistically tight results. The results shown in
Figure 12 evince that QUIC is able to reduce latency when a client resumes its connection
with the server. It addition, when the channel conditions worsened, we can see that QUIC
was able to yield much more predictable behaviors.
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Figure 12. 0-RTT approach on a WiFi network with 8 publishers.

7. Conclusions

In this paper we have proposed QUIC as an alternative to the traditional TCP/TLS
transport means to support latency-critical industrial applications over MQTT.

We have developed a GO-based implementation of MQTT over QUIC, and we have
carried out an extensive analysis of its performance in emulated IIoT environments. By ex-
ploiting the ns-3 network simulator, we configured different network technologies, charac-
terized by different bandwidth and delay tuples. In addition, ns-3 allowed us to emulate a
more realistic environment, where various MQTT clients published messages (i.e., things)
over a shared WiFi network to a broker (fog), which consequently relayed the information
to a subscriber (cloud), over a P2P network that mimicked the connectivity between fog
and the cloud. Thanks to the simulator and its ability to connect Linux containers, we
thoroughly assessed the performance of using QUIC as a transport protocol for MQTT
traffic, and we compared it with the traditional MQTT/TLS/TCP stack.

Despite the implementations’ restrictions, we developed two complementary scenarios
to analyze the behavior of MQTT with both QUIC and TCP. Since the envisaged services
have stringent requirements in terms of latency, our evaluation focused on the delay. In this
sense, we saw that QUIC clearly outperforms TCP, especially for connections with low
RTT and high packet erasure rates. On the other hand, we have also ascertained the
benefits of the 0-RTT scheme that QUIC promotes. The results show a clear reduction of
latency upon connection establishment. QUIC also yields a more predictable behavior,
with much less variability in the results. Finally, we have evaluated QUIC on shared
channels, by having multiple things (Linux containers) sending publish messages to the
broker over a shared WiFi network. The results evince that QUIC yields a good behavior
over shared environments.

All the code that was used to carry out the experiments described in the paper has
been made available as public git repositories.

In our future work, we will exploit the methodology we have proposed in this paper
to further broaden the evaluation of QUIC as a transport protocol for IIoT environments.
We will integrate some of the additional features that are, at the time of writing, under de-
velopment, such as multi-path. Another QUIC characteristic that was not integrated in
the implementation we used is piggybacking, and this might yield some performance im-
provements, so it might be of interest to assess its behavior. We will also study the impacts
of having different traffic patterns and various congestion control algorithms. The platform
that was developed in this work would facilitate the evaluation of all these features.
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RTT Round Trip Time
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