109 research outputs found

    Bimanual robot skills: MP encoding, dimensionality reduction and reinforcement learning

    Get PDF
    Aplicat embargament des de la data de defensa fins 1/7/2018Premio a la mejor Tesis Doctoral sobre Robótica, Edición 2017, atorgat pel Comité Español de Automática.Finalista del 2018 George Girault PhD Award, from EuRoboticsIn our culture, robots have been in novels and cinema for a long time, but it has been specially in the last two decades when the improvements in hardware - better computational power and components - and advances in Artificial Intelligence (AI), have allowed robots to start sharing spaces with humans. Such situations require, aside from ethical considerations, robots to be able to move with both compliance and precision, and learn at different levels, such as perception, planning, and motion, being the latter the focus of this work. The first issue addressed in this thesis is inverse kinematics for redundant robot manipulators, i.e: positioning the robot joints so as to reach a certain end-effector pose. We opt for iterative solutions based on the inversion of the kinematic Jacobian of a robot, and propose to filter and limit the gains in the spectral domain, while also unifying such approach with a continuous, multipriority scheme. Such inverse kinematics method is then used to derive manipulability in the whole workspace of an antropomorphic arm, and the coordination of two arms is subsequently optimized by finding their best relative positioning. Having solved the kinematic issues, a robot learning within a human environment needs to move compliantly, with limited amount of force, in order not to harm any humans or cause any damage, while being as precise as possible. Therefore, we developed two dynamic models for the same redundant arm we had analysed kinematically: The first based on local models with Gaussian projections, and the second characterizing the most problematic term of the dynamics, namely friction. Such models allowed us to implement feed-forward controllers, where we can actively change the weights in the compliance-precision tradeoff. Moreover, we used such models to predict external forces acting on the robot, without the use of force sensors. Afterwards, we noticed that bimanual robots must coordinate their components (or limbs) and be able to adapt to new situations with ease. Over the last decade, a number of successful applications for learning robot motion tasks have been published. However, due to the complexity of a complete system including all the required elements, most of these applications involve only simple robots with a large number of high-end technology sensors, or consist of very simple and controlled tasks. Using our previous framework for kinematics and control, we relied on two types of movement primitives to encapsulate robot motion. Such movement primitives are very suitable for using reinforcement learning. In particular, we used direct policy search, which uses the motion parametrization as the policy itself. In order to improve the learning speed in real robot applications, we generalized a policy search algorithm to give some importance to samples yielding a bad result, and we paid special attention to the dimensionality of the motion parametrization. We reduced such dimensionality with linear methods, using the rewards obtained through motion repetition and execution. We tested such framework in a bimanual task performed by two antropomorphic arms, such as the folding of garments, showing how a reduced dimensionality can provide qualitative information about robot couplings and help to speed up the learning of tasks when robot motion executions are costly.A la nostra cultura, els robots han estat presents en novel·les i cinema des de fa dècades, però ha sigut especialment en les últimes dues quan les millores en hardware (millors capacitats de còmput) i els avenços en intel·ligència artificial han permès que els robots comencin a compartir espais amb els humans. Aquestes situacions requereixen, a banda de consideracions ètiques, que els robots siguin capaços de moure's tant amb suavitat com amb precisió, i d'aprendre a diferents nivells, com són la percepció, planificació i moviment, essent l'última el centre d'atenció d'aquest treball. El primer problema adreçat en aquesta tesi és la cinemàtica inversa, i.e.: posicionar les articulacions del robot de manera que l'efector final estigui en una certa posició i orientació. Hem estudiat el camp de les solucions iteratives, basades en la inversió del Jacobià cinemàtic d'un robot, i proposem un filtre que limita els guanys en el seu domini espectral, mentre també unifiquem tal mètode dins un esquema multi-prioritat i continu. Aquest mètode per a la cinemàtica inversa és usat a l'hora d'encapsular tota la informació sobre l'espai de treball d'un braç antropomòrfic, i les capacitats de coordinació entre dos braços són optimitzades, tot trobant la seva millor posició relativa en l'espai. Havent resolt les dificultats cinemàtiques, un robot que aprèn en un entorn humà necessita moure's amb suavitat exercint unes forces limitades per tal de no causar danys, mentre es mou amb la màxima precisió possible. Per tant, hem desenvolupat dos models dinàmics per al mateix braç robòtic redundant que havíem analitzat des del punt de vista cinemàtic: El primer basat en models locals amb projeccions de Gaussianes i el segon, caracteritzant el terme més problemàtic i difícil de representar de la dinàmica, la fricció. Aquests models ens van permetre utilitzar controladors coneguts com "feed-forward", on podem canviar activament els guanys buscant l'equilibri precisió-suavitat que més convingui. A més, hem usat aquests models per a inferir les forces externes actuant en el robot, sense la necessitat de sensors de força. Més endavant, ens hem adonat que els robots bimanuals han de coordinar els seus components (braços) i ser capaços d'adaptar-se a noves situacions amb facilitat. Al llarg de l'última dècada, diverses aplicacions per aprendre tasques motores robòtiques amb èxit han estat publicades. No obstant, degut a la complexitat d'un sistema complet que inclogui tots els elements necessaris, la majoria d'aquestes aplicacions consisteixen en robots més aviat simples amb costosos sensors d'última generació, o a resoldre tasques senzilles en un entorn molt controlat. Utilitzant el nostre treball en cinemàtica i control, ens hem basat en dos tipus de primitives de moviment per caracteritzar la motricitat robòtica. Aquestes primitives de moviment són molt adequades per usar aprenentatge per reforç. En particular, hem usat la búsqueda directa de la política, un camp de l'aprenentatge per reforç que usa la parametrització del moviment com la pròpia política. Per tal de millorar la velocitat d'aprenentatge en aplicacions amb robots reals, hem generalitzat un algoritme de búsqueda directa de política per a donar importància a les mostres amb mal resultat, i hem donat especial atenció a la reducció de dimensionalitat en la parametrització dels moviments. Hem reduït la dimensionalitat amb mètodes lineals, utilitzant les recompenses obtingudes EN executar els moviments. Aquests mètodes han estat provats en tasques bimanuals com són plegar roba, usant dos braços antropomòrfics. Els resultats mostren com la reducció de dimensionalitat pot aportar informació qualitativa d'una tasca, i al mateix temps ajuda a aprendre-la més ràpid quan les execucions amb robots reals són costoses.Award-winningPostprint (published version

    Bimanual robot skills: MP encoding, dimensionality reduction and reinforcement learning

    Get PDF
    In our culture, robots have been in novels and cinema for a long time, but it has been specially in the last two decades when the improvements in hardware - better computational power and components - and advances in Artificial Intelligence (AI), have allowed robots to start sharing spaces with humans. Such situations require, aside from ethical considerations, robots to be able to move with both compliance and precision, and learn at different levels, such as perception, planning, and motion, being the latter the focus of this work. The first issue addressed in this thesis is inverse kinematics for redundant robot manipulators, i.e: positioning the robot joints so as to reach a certain end-effector pose. We opt for iterative solutions based on the inversion of the kinematic Jacobian of a robot, and propose to filter and limit the gains in the spectral domain, while also unifying such approach with a continuous, multipriority scheme. Such inverse kinematics method is then used to derive manipulability in the whole workspace of an antropomorphic arm, and the coordination of two arms is subsequently optimized by finding their best relative positioning. Having solved the kinematic issues, a robot learning within a human environment needs to move compliantly, with limited amount of force, in order not to harm any humans or cause any damage, while being as precise as possible. Therefore, we developed two dynamic models for the same redundant arm we had analysed kinematically: The first based on local models with Gaussian projections, and the second characterizing the most problematic term of the dynamics, namely friction. Such models allowed us to implement feed-forward controllers, where we can actively change the weights in the compliance-precision tradeoff. Moreover, we used such models to predict external forces acting on the robot, without the use of force sensors. Afterwards, we noticed that bimanual robots must coordinate their components (or limbs) and be able to adapt to new situations with ease. Over the last decade, a number of successful applications for learning robot motion tasks have been published. However, due to the complexity of a complete system including all the required elements, most of these applications involve only simple robots with a large number of high-end technology sensors, or consist of very simple and controlled tasks. Using our previous framework for kinematics and control, we relied on two types of movement primitives to encapsulate robot motion. Such movement primitives are very suitable for using reinforcement learning. In particular, we used direct policy search, which uses the motion parametrization as the policy itself. In order to improve the learning speed in real robot applications, we generalized a policy search algorithm to give some importance to samples yielding a bad result, and we paid special attention to the dimensionality of the motion parametrization. We reduced such dimensionality with linear methods, using the rewards obtained through motion repetition and execution. We tested such framework in a bimanual task performed by two antropomorphic arms, such as the folding of garments, showing how a reduced dimensionality can provide qualitative information about robot couplings and help to speed up the learning of tasks when robot motion executions are costly.A la nostra cultura, els robots han estat presents en novel·les i cinema des de fa dècades, però ha sigut especialment en les últimes dues quan les millores en hardware (millors capacitats de còmput) i els avenços en intel·ligència artificial han permès que els robots comencin a compartir espais amb els humans. Aquestes situacions requereixen, a banda de consideracions ètiques, que els robots siguin capaços de moure's tant amb suavitat com amb precisió, i d'aprendre a diferents nivells, com són la percepció, planificació i moviment, essent l'última el centre d'atenció d'aquest treball. El primer problema adreçat en aquesta tesi és la cinemàtica inversa, i.e.: posicionar les articulacions del robot de manera que l'efector final estigui en una certa posició i orientació. Hem estudiat el camp de les solucions iteratives, basades en la inversió del Jacobià cinemàtic d'un robot, i proposem un filtre que limita els guanys en el seu domini espectral, mentre també unifiquem tal mètode dins un esquema multi-prioritat i continu. Aquest mètode per a la cinemàtica inversa és usat a l'hora d'encapsular tota la informació sobre l'espai de treball d'un braç antropomòrfic, i les capacitats de coordinació entre dos braços són optimitzades, tot trobant la seva millor posició relativa en l'espai. Havent resolt les dificultats cinemàtiques, un robot que aprèn en un entorn humà necessita moure's amb suavitat exercint unes forces limitades per tal de no causar danys, mentre es mou amb la màxima precisió possible. Per tant, hem desenvolupat dos models dinàmics per al mateix braç robòtic redundant que havíem analitzat des del punt de vista cinemàtic: El primer basat en models locals amb projeccions de Gaussianes i el segon, caracteritzant el terme més problemàtic i difícil de representar de la dinàmica, la fricció. Aquests models ens van permetre utilitzar controladors coneguts com "feed-forward", on podem canviar activament els guanys buscant l'equilibri precisió-suavitat que més convingui. A més, hem usat aquests models per a inferir les forces externes actuant en el robot, sense la necessitat de sensors de força. Més endavant, ens hem adonat que els robots bimanuals han de coordinar els seus components (braços) i ser capaços d'adaptar-se a noves situacions amb facilitat. Al llarg de l'última dècada, diverses aplicacions per aprendre tasques motores robòtiques amb èxit han estat publicades. No obstant, degut a la complexitat d'un sistema complet que inclogui tots els elements necessaris, la majoria d'aquestes aplicacions consisteixen en robots més aviat simples amb costosos sensors d'última generació, o a resoldre tasques senzilles en un entorn molt controlat. Utilitzant el nostre treball en cinemàtica i control, ens hem basat en dos tipus de primitives de moviment per caracteritzar la motricitat robòtica. Aquestes primitives de moviment són molt adequades per usar aprenentatge per reforç. En particular, hem usat la búsqueda directa de la política, un camp de l'aprenentatge per reforç que usa la parametrització del moviment com la pròpia política. Per tal de millorar la velocitat d'aprenentatge en aplicacions amb robots reals, hem generalitzat un algoritme de búsqueda directa de política per a donar importància a les mostres amb mal resultat, i hem donat especial atenció a la reducció de dimensionalitat en la parametrització dels moviments. Hem reduït la dimensionalitat amb mètodes lineals, utilitzant les recompenses obtingudes EN executar els moviments. Aquests mètodes han estat provats en tasques bimanuals com són plegar roba, usant dos braços antropomòrfics. Els resultats mostren com la reducció de dimensionalitat pot aportar informació qualitativa d'una tasca, i al mateix temps ajuda a aprendre-la més ràpid quan les execucions amb robots reals són costoses

    Applications of fractional calculus in electrical and computer engineering

    Get PDF
    Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades, due to the progress in the area of chaos that revealed subtle relationships with the FC concepts. In the field of dynamical systems theory some work has been carried out but the proposed models and algorithms are still in a preliminary stage of establishment. Having these ideas in mind, the paper discusses a FC perspective in the study of the dynamics and control of several systems. This article illustrates several applications of fractional calculus in science and engineering. It has been recognized the advantageous use of this mathematical tool in the modeling and control of many dynamical systems. In this perspective, this paper investigates the use of FC in the fields of controller tuning, electrical systems, digital circuit synthesis, evolutionary computing, redundant robots, legged robots, robotic manipulators, nonlinear friction and financial modeling.N/

    Model learning for trajectory tracking of robot manipulators

    Get PDF
    Abstract Model based controllers have drastically improved robot performance, increasing task accuracy while reducing control effort. Nevertheless, all this was realized with a very strong assumption: the exact knowledge of the physical properties of both the robot and the environment that surrounds it. This assertion is often misleading: in fact modern robots are modeled in a very approximate way and, more important, the environment is almost never static and completely known. Also for systems very simple, such as robot manipulators, these assumptions are still too strong and must be relaxed. Many methods were developed which, exploiting previous experiences, are able to refine the nominal model: from classic identification techniques to more modern machine learning based approaches. Indeed, the topic of this thesis is the investigation of these data driven techniques in the context of robot control for trajectory tracking. In the first two chapters, preliminary knowledge is provided on both model based controllers, used in robotics to assure precise trajectory tracking, and model learning techniques. In the following three chapters, are presented the novelties introduced by the author in this context with respect to the state of the art: three works with the same premise (an inaccurate system modeling), an identical goal (accurate trajectory tracking control) but with small differences according to the specific platform of application (fully actuated, underactuated, redundant robots). In all the considered architectures, an online learning scheme has been introduced to correct the nominal feedback linearization control law. Indeed, the method has been primarily introduced in the literature to cope with fully actuated systems, showing its efficacy in the accurate tracking of joint space trajectories also with an inaccurate dynamic model. The main novelty of the technique was the use of only kinematics information, instead of torque measurements (in general very noisy), to online retrieve and compensate the dynamic mismatches. After that the method has been extended to underactuated robots. This new architecture was composed by an online learning correction of the controller, acting on the actuated part of the system (the nominal partial feedback linearization), and an offline planning phase, required to realize a dynamically feasible trajectory also for the zero dynamics of the system. The scheme was iterative: after each trial, according to the collected information, both the phases were improved and then repeated until the task achievement. Also in this case the method showed its capability, both in numerical simulations and on real experiments on a robotics platform. Eventually the method has been applied to redundant systems: differently from before, in this context the task consisted in the accurate tracking of a Cartesian end effector trajectory. In principle very similar to the fully actuated case, the presence of redundancy slowed down drastically the learning machinery convergence, worsening the performance. In order to cope with this, a redundancy resolution was proposed that, exploiting an approximation of the learning algorithm (Gaussian process regression), allowed to locally maximize the information and so select the most convenient self motion for the system; moreover, all of this was realized with just the resolution of a quadratic programming problem. Also in this case the method showed its performance, realizing an accurate online tracking while reducing both the control effort and the joints velocity, obtaining so a natural behaviour. The thesis concludes with summary considerations on the proposed approach and with possible future directions of research

    Modeling and Control of Flexible Link Manipulators

    Get PDF
    Autonomous maritime navigation and offshore operations have gained wide attention with the aim of reducing operational costs and increasing reliability and safety. Offshore operations, such as wind farm inspection, sea farm cleaning, and ship mooring, could be carried out autonomously or semi-autonomously by mounting one or more long-reach robots on the ship/vessel. In addition to offshore applications, long-reach manipulators can be used in many other engineering applications such as construction automation, aerospace industry, and space research. Some applications require the design of long and slender mechanical structures, which possess some degrees of flexibility and deflections because of the material used and the length of the links. The link elasticity causes deflection leading to problems in precise position control of the end-effector. So, it is necessary to compensate for the deflection of the long-reach arm to fully utilize the long-reach lightweight flexible manipulators. This thesis aims at presenting a unified understanding of modeling, control, and application of long-reach flexible manipulators. State-of-the-art dynamic modeling techniques and control schemes of the flexible link manipulators (FLMs) are discussed along with their merits, limitations, and challenges. The kinematics and dynamics of a planar multi-link flexible manipulator are presented. The effects of robot configuration and payload on the mode shapes and eigenfrequencies of the flexible links are discussed. A method to estimate and compensate for the static deflection of the multi-link flexible manipulators under gravity is proposed and experimentally validated. The redundant degree of freedom of the planar multi-link flexible manipulator is exploited to minimize vibrations. The application of a long-reach arm in autonomous mooring operation based on sensor fusion using camera and light detection and ranging (LiDAR) data is proposed.publishedVersio

    Selected topics in robotics for space exploration

    Get PDF
    Papers and abstracts included represent both formal presentations and experimental demonstrations at the Workshop on Selected Topics in Robotics for Space Exploration which took place at NASA Langley Research Center, 17-18 March 1993. The workshop was cosponsored by the Guidance, Navigation, and Control Technical Committee of the NASA Langley Research Center and the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) at RPI, Troy, NY. Participation was from industry, government, and other universities with close ties to either Langley Research Center or to CIRSSE. The presentations were very broad in scope with attention given to space assembly, space exploration, flexible structure control, and telerobotics

    Perception-motivated parallel algorithms for haptics

    Get PDF
    Negli ultimi anni l\u2019utilizzo di dispositivi aptici, atti cio\ue8 a riprodurre l\u2019interazione fisica con l\u2019ambiente remoto o virtuale, si sta diffondendo in vari ambiti della robotica e dell\u2019informatica, dai videogiochi alla chirurgia robotizzata eseguita in teleoperazione, dai cellulari alla riabilitazione. In questo lavoro di tesi abbiamo voluto considerare nuovi punti di vista sull\u2019argomento, allo scopo di comprendere meglio come riportare l\u2019essere umano, che \ue8 l\u2019unico fruitore del ritorno di forza, tattile e di telepresenza, al centro della ricerca sui dispositivi aptici. Allo scopo ci siamo focalizzati su due aspetti: una manipolazione del segnale di forza mutuata dalla percezione umana e l\u2019utilizzo di architetture multicore per l\u2019implementazione di algoritmi aptici e robotici. Con l\u2019aiuto di un setup sperimentale creato ad hoc e attraverso l\u2019utilizzo di un joystick con ritorno di forza a 6 gradi di libert\ue0, abbiamo progettato degli esperimenti psicofisici atti all\u2019identificazione di soglie differenziali di forze/coppie nel sistema mano-braccio. Sulla base dei risultati ottenuti abbiamo determinato una serie di funzioni di scalatura del segnale di forza, una per ogni grado di libert\ue0, che permettono di aumentare l\u2019abilit\ue0 umana nel discriminare stimoli differenti. L\u2019utilizzo di tali funzioni, ad esempio in teleoperazione, richiede la possibilit\ue0 di variare il segnale di feedback e il controllo del dispositivo sia in relazione al lavoro da svolgere, sia alle peculiari capacit\ue0 dell\u2019utilizzatore. La gestione del dispositivo deve quindi essere in grado di soddisfare due obbiettivi tendenzialmente in contrasto, e cio\ue8 il raggiungimento di alte prestazioni in termini di velocit\ue0, stabilit\ue0 e precisione, abbinato alla flessibilit\ue0 tipica del software. Una soluzione consiste nell\u2019affidare il controllo del dispositivo ai nuovi sistemi multicore che si stanno sempre pi\uf9 prepotentemente affacciando sul panorama informatico. Per far ci\uf2 una serie di algoritmi consolidati deve essere portata su sistemi paralleli. In questo lavoro abbiamo dimostrato che \ue8 possibile convertire facilmente vecchi algoritmi gi\ue0 implementati in hardware, e quindi intrinsecamente paralleli. Un punto da definire rimane per\uf2 quanto costa portare degli algoritmi solitamente descritti in VLSI e schemi in un linguaggio di programmazione ad alto livello. Focalizzando la nostra attenzione su un problema specifico, la pseudoinversione di matrici che \ue8 presente in molti algoritmi di dinamica e cinematica, abbiamo mostrato che un\u2019attenta progettazione e decomposizione del problema permette una mappatura diretta sulle unit\ue0 di calcolo disponibili. In aggiunta, l\u2019uso di parallelismo a livello di dati su macchine SIMD permette di ottenere buone prestazioni utilizzando semplici operazioni vettoriali come addizioni e shift. Dato che di solito tali istruzioni fanno parte delle implementazioni hardware la migrazione del codice risulta agevole. Abbiamo testato il nostro approccio su una Sony PlayStation 3 equipaggiata con un processore IBM Cell Broadband Engine.In the last years the use of haptic feedback has been used in several applications, from mobile phones to rehabilitation, from video games to robotic aided surgery. The haptic devices, that are the interfaces that create the stimulation and reproduce the physical interaction with virtual or remote environments, have been studied, analyzed and developed in many ways. Every innovation in the mechanics, electronics and technical design of the device it is valuable, however it is important to maintain the focus of the haptic interaction on the human being, who is the only user of force feedback. In this thesis we worked on two main topics that are relevant to this aim: a perception based force signal manipulation and the use of modern multicore architectures for the implementation of the haptic controller. With the help of a specific experimental setup and using a 6 dof haptic device we designed a psychophysical experiment aimed at identifying of the force/torque differential thresholds applied to the hand-arm system. On the basis of the results obtained we determined a set of task dependent scaling functions, one for each degree of freedom of the three-dimensional space, that can be used to enhance the human abilities in discriminating different stimuli. The perception based manipulation of the force feedback requires a fast, stable and configurable controller of the haptic interface. Thus a solution is to use new available multicore architectures for the implementation of the controller, but many consolidated algorithms have to be ported to these parallel systems. Focusing on specific problem, i.e. the matrix pseudoinversion, that is part of the robotics dynamic and kinematic computation, we showed that it is possible to migrate code that was already implemented in hardware, and in particular old algorithms that were inherently parallel and thus not competitive on sequential processors. The main question that still lies open is how much effort is required in order to write these algorithms, usually described in VLSI or schematics, in a modern programming language. We show that a careful task decomposition and design permit a mapping of the code on the available cores. In addition, the use of data parallelism on SIMD machines can give good performance when simple vector instructions such as add and shift operations are used. Since these instructions are present also in hardware implementations the migration can be easily performed. We tested our approach on a Sony PlayStation 3 game console equipped with IBM Cell Broadband Engine processor

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics

    Visual guidance of unmanned aerial manipulators

    Get PDF
    The ability to fly has greatly expanded the possibilities for robots to perform surveillance, inspection or map generation tasks. Yet it was only in recent years that research in aerial robotics was mature enough to allow active interactions with the environment. The robots responsible for these interactions are called aerial manipulators and usually combine a multirotor platform and one or more robotic arms. The main objective of this thesis is to formalize the concept of aerial manipulator and present guidance methods, using visual information, to provide them with autonomous functionalities. A key competence to control an aerial manipulator is the ability to localize it in the environment. Traditionally, this localization has required external infrastructure of sensors (e.g., GPS or IR cameras), restricting the real applications. Furthermore, localization methods with on-board sensors, exported from other robotics fields such as simultaneous localization and mapping (SLAM), require large computational units becoming a handicap in vehicles where size, load, and power consumption are important restrictions. In this regard, this thesis proposes a method to estimate the state of the vehicle (i.e., position, orientation, velocity and acceleration) by means of on-board, low-cost, light-weight and high-rate sensors. With the physical complexity of these robots, it is required to use advanced control techniques during navigation. Thanks to their redundancy on degrees-of-freedom, they offer the possibility to accomplish not only with mobility requirements but with other tasks simultaneously and hierarchically, prioritizing them depending on their impact to the overall mission success. In this work we present such control laws and define a number of these tasks to drive the vehicle using visual information, guarantee the robot integrity during flight, and improve the platform stability or increase arm operability. The main contributions of this research work are threefold: (1) Present a localization technique to allow autonomous navigation, this method is specifically designed for aerial platforms with size, load and computational burden restrictions. (2) Obtain control commands to drive the vehicle using visual information (visual servo). (3) Integrate the visual servo commands into a hierarchical control law by exploiting the redundancy of the robot to accomplish secondary tasks during flight. These tasks are specific for aerial manipulators and they are also provided. All the techniques presented in this document have been validated throughout extensive experimentation with real robotic platforms.La capacitat de volar ha incrementat molt les possibilitats dels robots per a realitzar tasques de vigilància, inspecció o generació de mapes. Tot i això, no és fins fa pocs anys que la recerca en robòtica aèria ha estat prou madura com per començar a permetre interaccions amb l’entorn d’una manera activa. Els robots per a fer-ho s’anomenen manipuladors aeris i habitualment combinen una plataforma multirotor i un braç robòtic. L’objectiu d’aquesta tesi és formalitzar el concepte de manipulador aeri i presentar mètodes de guiatge, utilitzant informació visual, per dotar d’autonomia aquest tipus de vehicles. Una competència clau per controlar un manipulador aeri és la capacitat de localitzar-se en l’entorn. Tradicionalment aquesta localització ha requerit d’infraestructura sensorial externa (GPS, càmeres IR, etc.), limitant així les aplicacions reals. Pel contrari, sistemes de localització exportats d’altres camps de la robòtica basats en sensors a bord, com per exemple mètodes de localització i mapejat simultànis (SLAM), requereixen de gran capacitat de còmput, característica que penalitza molt en vehicles on la mida, pes i consum elèctric son grans restriccions. En aquest sentit, aquesta tesi proposa un mètode d’estimació d’estat del robot (posició, velocitat, orientació i acceleració) a partir de sensors instal·lats a bord, de baix cost, baix consum computacional i que proporcionen mesures a alta freqüència. Degut a la complexitat física d’aquests robots, és necessari l’ús de tècniques de control avançades. Gràcies a la seva redundància de graus de llibertat, aquests robots ens ofereixen la possibilitat de complir amb els requeriments de mobilitat i, simultàniament, realitzar tasques de manera jeràrquica, ordenant-les segons l’impacte en l’acompliment de la missió. En aquest treball es presenten aquestes lleis de control, juntament amb la descripció de tasques per tal de guiar visualment el vehicle, garantir la integritat del robot durant el vol, millorar de l’estabilitat del vehicle o augmentar la manipulabilitat del braç. Aquesta tesi es centra en tres aspectes fonamentals: (1) Presentar una tècnica de localització per dotar d’autonomia el robot. Aquest mètode està especialment dissenyat per a plataformes amb restriccions de capacitat computacional, mida i pes. (2) Obtenir les comandes de control necessàries per guiar el vehicle a partir d’informació visual. (3) Integrar aquestes accions dins una estructura de control jeràrquica utilitzant la redundància del robot per complir altres tasques durant el vol. Aquestes tasques son específiques per a manipuladors aeris i també es defineixen en aquest document. Totes les tècniques presentades en aquesta tesi han estat avaluades de manera experimental amb plataformes robòtiques real

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications
    • …
    corecore