
Stefano Galvan

Perception-motivated parallel
algorithms for haptics

Ph.D. Thesis

June 29, 2010

Università degli Studi di Verona

Dipartimento di Informatica

Advisor:
prof. Paolo Fiorini

Series N◦: TD-03-10

Università di Verona
Dipartimento di Informatica
Strada le Grazie 15, 37134 Verona
Italy

Summary

In the last years the use of haptic feedback has been used in several applications,
from mobile phones to rehabilitation, from video games to robotic aided surgery.
The haptic devices, that are the interfaces that create the stimulation and re-
produce the physical interaction with virtual or remote environments, have been
studied, analyzed and developed in many ways. Every innovation in the mechanics,
electronics and technical design of the device it is valuable, however it is important
to maintain the focus of the haptic interaction on the human being, who is the
only user of force feedback. In this thesis we worked on two main topics that are
relevant to this aim: a perception based force signal manipulation and the use of
modern multicore architectures for the implementation of the haptic controller.

With the help of a specific experimental setup and using a 6 dof haptic device
we designed a psychophysical experiment aimed at identifying of the force/torque
differential thresholds applied to the hand-arm system. On the basis of the results
obtained we determined a set of task dependent scaling functions, one for each
degree of freedom of the three-dimensional space, that can be used to enhance the
human abilities in discriminating different stimuli.

The perception based manipulation of the force feedback requires a fast, sta-
ble and configurable controller of the haptic interface. Thus a solution is to use
new available multicore architectures for the implementation of the controller, but
many consolidated algorithms have to be ported to these parallel systems. Fo-
cusing on specific problem, i.e. the matrix pseudoinversion, that is part of the
robotics dynamic and kinematic computation, we showed that it is possible to
migrate code that was already implemented in hardware, and in particular old
algorithms that were inherently parallel and thus not competitive on sequential
processors. The main question that still lies open is how much effort is required
in order to write these algorithms, usually described in VLSI or schematics, in a
modern programming language. We show that a careful task decomposition and
design permit a mapping of the code on the available cores. In addition, the use of
data parallelism on SIMD machines can give good performance when simple vector
instructions such as add and shift operations are used. Since these instructions are
present also in hardware implementations the migration can be easily performed.
We tested our approach on a Sony PlayStation 3 game console equipped with IBM
Cell Broadband Engine processor.

Acknowledgments

“My journey to the haptic side of the force is almost complete”

The long and winding road of my PhD is at the end. I am completely satisfied with
the results obtained, in particular because it has been hard to cross this finishing
line. As for many other aspects of my life it took time. There has been a moment
in which I realized that I had to slow down, to refocus, probably to wait a little
bit. And to change things. However now it is done, and I am serene.

During this journey I crossed the paths of wonderful people, I have walked side
by side with many persons, and luckily I am still travelling with some of them. I
would like to thank them all.

In particular I wish to thank the internal commission and the external reviewers
for their encouragement, their support and their valuable comments and opinion.
And of course for the questions they asked during my defence ;). A warm thank goes
to my advisor, Paolo, that never stopped telling me that “we can work it out”. It
is all thanks to him if some years ago I started considering robotics not only a cool
topic for anime and sci-fi plots, but also an amazing field of studies, an incredible
research opportunity, and a challenging bet. In the last months I learned from him
the art of pushing the finishing line a little further, while adding some obstacles,
to eventually increase the reward and, as a consequence, the gratification. Despite
distances and conflicting schedules he gave me suggestions about all I’ve got to do
for the PhD.

I spent good time in the Altair lab, with great people. We stayed until late while
searchin’ solutions such as fixing a hole in the teleoperation system or discovering
the magic of electrical interference, and, of course, fightin’ on multiplatform, free
first-person simulations. Two of us started the PhD adventure in different mo-
ments, and I admit that I feel lucky to have shared it with the deadliest scallawag
that ever swung a sword. Ezerb, look behind you, a three-headed monkey! And of
course I faced all the good and the bad moments of the PhD with a little help from
my friends. Actually with a big help from them. Boys and girls... you are really a
treasure. Hope we will continue having good time together. A special thought is
for Damiano and Sonia.

A big thank goes to my family: my mom, my great sister, my brother-in-law
and my nephew. They never stopped trusting in me, supporting me, counseling

iv

me and mainly bearing me, eight days a week. Wherever I may go you are always
my reference point.

The biggest thank, and I have to shout it loud, goes to a very special girl: my
beloved Francesca. She was not only the perfect proof-reader, but she was able to
anticipate every little thing that I needed before I actually ask it. She really stands
by me. And she always makes me laugh :).

That’s all folks. Ob-La-Di, Ob-La-Da... life goes on, bra!

P.S.
I’ve got a feeling: I suppose that a lot of people expected some Star Wars citations.
Actually I used the word force 235 times in this thesis: I think that is enough.
Anyway it may seem that there is something strange in this Section. Yes it is.
During my working, and writing and luckily relaxing hours, in these months I had
a fantastic soundtrack: the songs of the Beatles. My passion for the Fab Four dates
back to a nice evening with Francesca. However I decided to pay homage to them
by hiding 21 song titles in these acknowledgments. The exercise to find them all
is left to the willing reader. Hint: use wikipedia if you really need help!

Contents

1 Introduction . 1
1.1 Haptic devices . 2
1.2 Objectives . 3

2 Perception Experiments . 5
2.1 Prior work . 5
2.2 Experimental Setup . 7

2.2.1 Haptic Device . 7
2.2.2 FPGA . 8
2.2.3 Subject reference frame . 8
2.2.4 Calibration . 9
2.2.5 Experimental Phases . 10
2.2.6 Stimuli Presentation . 10
2.2.7 Statistical Analysis . 11
2.2.8 Participants . 11

2.3 Exploratory test . 12
2.3.1 Design and stimuli . 12
2.3.2 Results . 12

2.4 Experiment . 13
2.4.1 Design and Methods . 13
2.4.2 Results . 14

2.5 Discussion . 16
2.6 Scaling function . 18
2.7 Conclusions . 22

3 Impact on haptics: requirements, issues and solutions 23
3.1 Multicore architectures . 24

3.1.1 Architectural features and processors . 26
3.1.2 Programming approach . 29
3.1.3 Rediscovering old parallel algorithms . 31

3.2 Previous work on robotics . 32
3.3 Conclusions . 34

4 Strategies and approaches to multicore architectures 35
4.1 Ill-conditioned linear systems: the inverse problem 35

4.1.1 Linear least square . 37
4.1.2 Pseudoinverse . 38

4.2 Applications . 38
4.2.1 Image processing . 38
4.2.2 Robotics: the Jacobian matrix . 40

4.3 Finding the pseudoinverse of a matrix . 44
4.4 Decell algorithm . 46

4.4.1 Residue Number System . 47
4.5 Parallel hardware architectures . 50

4.5.1 FPGA . 51
4.5.2 GPU or GPGPU . 52
4.5.3 IBM CBEA. 52

4.6 Conclusions . 55

5 A case study: Matrix pseudo-inversion . 57
5.1 Programming model . 57

5.1.1 Analysis of the algorithm . 60
5.1.2 The programming language . 62

5.2 Sony PlayStation 3 . 64
5.2.1 Cell processing model . 65

5.3 Learning from the past . 74
5.4 Conclusions . 79

6 Experimental results . 81
6.1 General results and discussion . 87
6.2 Conclusions . 98

7 Conclusions . 99
7.1 Future work . 101

References . 103

1

Introduction

In this thesis, we show how to obtain better performance from haptic interfaces
in teleoperation. In the last years much research was carried out in order to de-
sign, build and develop effective haptic devices for teleoperation systems. We also
address this problem but from a task oriented point of view. In fact we first show
how to exploit human force discrimination capabilities by a proper force signal
manipulation based on pshychophysical evidences, to achieve personalized perfor-
mance. Then, we propose to employ modern multicore parallel architectures for
the implementation of the haptic controller to permit more complex operations
while fulfilling teleoperation constraints. We show that the migration of code to
parallel systems can be smooth and result in good performance when the orig-
inal algorithm is inherently parallel. When a specific solution has been already
implemented in hardware in the past, it is worth looking to the design of the code
because it surely has a suitable programming model.

Teleoperation is defined as the remote manipulation of one or more devices
by a human operator. In this context we assume that the controlled devices are
robots. To ensure a better understanding of the remote environment and precise
control of the robot, some feedback to the operator is needed. Visual and acoustic
clues are widely used but it has been shown that operator performance is improved
by providing her/him force feedback [27]. Force feedback improves the ability to
perform complex tasks, and reduces the exertion of large forces that usually lead
to operator fatigue and remote environment damage. This is an important issue
in tasks such as robotic aided surgery when the interaction with the environment
implies contact with the patient. When force feedback is present, the operator is
said to be kinesthetically coupled to the slave and the teleoperated system is said
to have bilateral control.
When we talk of bilateral teleoperation the distinctive part, with respect to au-
tomation, is the utilization of one or more haptic devices as masters, that is the
instrument used by the operator in order to “perceive” the remote or simulated
environment. A haptic tool is a more or less complex pointing interface equipped
with actuators: they are responsible to provide the sensation of contact, weight
and force to the human being.

2 1 Introduction

1.1 Haptic devices

Haptic interfaces were developed to simulate the action of touching remote objects
or to interact with virtual objects endowed with suitable dynamics (i.e. hardness
and elasticity) to provide realistic sensations. The force feedback provided by a
haptic device is usually defined as the sensation of weight or resistance felt by a
human operator [19].
This technology has been used not only for teleoperation but also in other fields,
such as virtual reality systems and computer simulation, with applications to di-
verse areas such as surgery, video games, exploration and molecule design.

The way humans sense forces is not yet completely understood. Different stud-
ies about human perception are addressing this point and special devices are
needed to test, track and analyze different strategies and force profiles. Teleopera-
tion needs fast response and stable control to be effective, whereas adjusting control
parameters and generating forces at high speed is necessary for both perception
studies and complete tele-presence experience. Addressing this points means to
create a fast and robust haptic device easily configurable by the user. Since the
goal is to combine hardware capabilities with software flexibility in order to exploit
perception abilities, the needs for a new generation of human-centric configurable
devices and controllers arise.

There are several good haptic devices available on the market. Phantom [100],
Delta and Omega [35], Freedom6s [113] are widespread and often used for research
purposes. Phantom is maybe the most famous one as it was the first desktop
haptic device available at low cost. Usually these products come with an easy to
use programming API and an ongoing effort is spent to make them compatible
with a number of different operating systems. However the programmer and the
user do not have the freedom to change the basic behavior of the device. There are
also highly specialized haptic devices used in crucial task such as robotic assisted
surgery, nuclear facility management, dangerous environment manipulation. In
spite of the fact that they are extremely complex and optimized, they share the
same basic principles of the “domestic” devices and they follow the very same
workflow during the design, engineering and production development.

At the end of the process there is the development of drivers to use the device
with the more common operating systems. Even for the highly specialized devices
such as the Intuitive Surgical robot Da Vinci [50], the core of the application is
driven by an operating system that needs a software handling of the device and
often, when not always, a sets of programming API and software tools to handle
kinematics and dynamics of the device, and to modify the parameters of the bi-
lateral teleoperation loop. This organization is natural because it reflects the state
of the practice of computer science that pushed towards powerful general purpose
processors, delegating many tasks to software. In our opinion however, this seems
somewhat limited since it does not reflect current changes in hardware architec-
tures and specific software solutions.

1.2 Objectives 3

In [45] Hayward and MacLean present an overview of the state of the art about
haptic interfaces. They start with a description of the most common types of hap-
tic displays, then they focus on specific components such as sensors, actuators and
kinematic structures and they highlight rules for force feedback device character-
ization. Moreover, they explore control, stability, end modelling issues expressing
considerations about hardware and software requirements. In particular they stress
the importance of real-time software and loop synchronization pointing the atten-
tion, for instance, to the development of interesting middleware for haptics [85]
or robotics and teleoperation in general. Although this is for sure a possible solu-
tion, and we worked in this area with the development of a real-time distributed
framework for robotics [38], we think that its main application is about the inter-
connection of distributed devices in a teleoperation task. In fact, haptic displays
require a more specific approach in terms of hardware/software integration. In [45]
they analyze the topic in a classical engineering way, and in [67] the same authors
continue their analysis form a different point of view, describing some basic concept
of haptic interaction design together with several interesting applications based on
this technology. In their comprehensive revision, the authors show the technology
behind the physical devices but they also point out the importance of the design
of an usable and effective interaction between the utility and thus the meaning of
the haptic feedback and the hardware that provide it. They take into account also
the psychophysical aspects of the haptic interaction, mainly with respect to the
design phase of the device development. Although this approach is sound, in our
opinion it is also crucial to add another step at the end of the developing process,
that is the development of a suitable implementation of a perception driven, or
perception-aware, controller.

There are several studies about human perception and robotics and haptics,
but they are usually confined to specialized niches such as trauma rehabilitation,
impairing disease analysis and perception evaluation [69]. Perception studies are
also used in bio-mimetic robotics to better understand the physiology of the human
interaction with the environment and to apply the results to robot design. This
step is normally not considered as a necessary prerequisite for the design of a haptic
device. Moreover it is very unusual to provide hardware/software support for force
feedback adjustments based on psychometric functions, human perceptual skills
exploitation and task oriented optimizations.

1.2 Objectives

We think that a haptic device should take into consideration the results of studies
about human perception, and thus be more compatible with humans or ecological
or human-centric. On the other hand, recent trends regarding the use of multicore
processors, with dedicated hardware, could break the boundaries between the de-
terminism, speed and reliability of ASICs and flexibility and easiness to customize
of software implementation. With “customization” we mean the ability to vary
the behaviour of the force interaction and thus the tele-experience of the operator
using perceptual illusions while maintaining the fast and reliable real-time loops
required for teleoperation stability.

4 1 Introduction

With these issues in mind we propose a tighter integration between psy-
chophysics and robotics and we suggest that this multi-modal approach should
be supported by suitable hardware control architecture and parallel algorithmic
programming, otherwise the theoretical advantages could be overwhelmed by the
lack of integration between the device and its software.

This twofold approach to haptic interaction is getting more evident in the very
last researches and this is the vision in which this work of thesis takes place. We
demonstrate our idea using a configurable, high performance joystick with force
feedback to carry out psychophysical experiments in order to gain new insight
about human perception of forces. From this early results we propose enhance-
ment to force reflection strategies. As a consequence, we propose the use of mul-
ticore architecture as fast, reliable, configurable controller for haptic applications.
This requires the migration of part of the controlling software to parallel systems.
In order to make this adaptation easy and to permit the achievement of good
performance we analyze how to convert, when available, existing hardware imple-
mentation to parallel software. We show the feasibility of the approach by choosing
a particularly crucial operation used in robotics, and to port the algorithm to a
MIMD/SIMD architecture. We present an actual implementation on the IBM Cell
Broadband Engine with performance results.

This thesis is organized as follows. In Chapter 2 we report on experiments
about haptic perception aimed at measuring the force/torque differential thresh-
olds applied to the hand-arm system. Then we present a force scaling for bilateral
teleoperated system. We focus our attention on human perception capabilities and,
on the base of previous psychophysical experiments, we exploit the human ability
to perceive forces and torques differently along different directions. In Chapter 3 we
explain what are the requirements that permits to obtain effective improvements
in a real teleoperation systems making the haptic device reliably customizable and
using the results of perception experiments. We present an overview of available
multicore architectures and we survey programming models able to exploit these
architectures. In particular, we highlight that for these systems we used to look
for solution developed for ASICs and VLSI to develop good parallel algorithms. In
Chapter 4 we identify the requirements for such an approach through the investi-
gation of the multicore implementation of the solution to the inverse problem for
ill-conditioned linear systems. By addressing this issue we solve a common problem
in haptics: the Jacobian pseudoinversion. This is the topic of Chapter 5, where we
show that the migration of code from hardware to parallel architectures is possible.
We develop a design based on a good programming model and an implementation
that mimics the solutions adopted in hardware achieving good performance with-
out dealing with complex optimizations. We discuss the implementation for the
IBM Cell Broadband Engine. The last Chapter highlights conclusions and future
applications.

2

Perception Experiments

In this Chapter we describe our work on a perception-centric approach to force
feedback manipulation. In order to make the remote experience realistic as well as
to increase the abilities of the human operator during bilateral teleoperation, it is
necessary to understand how forces are perceived and decoded by the human.

However since force feedback manipulation, and thus any enhancing strategy,
depends on a specific teleoperation task, we develop a general methodology focus-
ing on Minimally Invasive Robotic Surgery (MIRS).

In this application area there are highly variable forces. For example, in fine
manipulation very low forces are involved. Furthermore, in minimally invasive in-
terventions these forces are difficult to perceive. By means of robotic instruments
we can overcome this limitation and provide a perception enhancement that would
lead to a better surgical performance. Therefore, we investigate haptic perception
of forces in order to quantify how well an user detects changes in force magni-
tude.The results of this work are presented in [117].

2.1 Prior work

The human haptic perception couples the user to any environment, either local,
remote or virtual. Thus, a basic understanding of the biomechanical, sensorimotor,
and cognitive abilities of haptic perception is a critical factor for the proper hard-
ware and software specification of haptic devices. Moreover, the understanding of
the limitations of human perception would also help in designing the interfaces
and their associated applications [43].

Several techniques are especially relevant to the quantitative measurements of
the human factors that affect the design of force-reflecting haptic interfaces. One
of the most common measures is related to the Just-Noticeable-Difference (JND),
which is the minimal difference in intensity between two stimuli (I vs. I +∆I) that
leads to a change in the perceptual experience. The JND is an increasing function
of the base input level, generally defined as a percentage value by

JND% =
(I + ∆I)− I

I
× 100 (2.1)

6 2 Perception Experiments

A number of works accounts for the human JND% in force perception. In
experiments of hand and arm lifting of objects with masses between 1000 and
7000 g, [91] found a decreasing JND% from 16% to 11%. When users made judg-
ments with their hands at rest, [16], they obtained a mean value of 13%. Further
experiments were carried out with virtual objects, i.e. providing forces to the user
by using different haptic devices: [52] reported a JND% of 15% for the human
perception of forces applied to the hand-arm system. In [48], values from 6% to
50% during the human control of a pneumatically driven robotic arm by means of
a haptic interface were obtained. In [121], while dealing with finger capabilities in
terms of force perception, the authors report a JND% value of 16% for normal and
tangential forces. The value for pinching between finger and thumb was found to
be ranging between 5% and 10% of the reference force [84]. In [2] it was found that
JND% was relatively constant over a range of different base force values between
2.5 and 10 N. In [84], the authors concluded that the force JND is essentially
independent of reference force and displacement.

In two prime reviews [105, 107], these results are presented as a key in hu-
man force perception for the design of haptic devices. However, these reviews do
not adequately stress the fact that the results are focused on finger capabilities.
In addition, the experimental methodology often did not explicitly consider the
elementary force perception. In fact, the perception of force vector angles was an-
alyzed in the space as a whole and not with respect to the contribution of each
Degree of Freedom (DoF) generating the target force [8]. The problem of enhanc-
ing the capability of the user to discriminate variations of the compliance of the
remote environment is presented in [28], where a 4-channel control architecture
is considered and the controllers are optimized to make the user more sensible to
the variation of stiffness falling into a desired, tunable, range. It consider linear
teleoperation systems and a linear (ideal spring) model of the remote environment.

Our aim is to identify whether force intensities and orientation are associated
with different values of JND%. This finding could let us discover a force thresh-
old felt by the human operator and distinguish the most sensitive directions for
the arm. We could then identify one or more suitable scaling functions for force-
feedback in haptic environments.

The purpose of the experiments described in this Section is to explore the
differences in ability of a person to discriminate a wide range of force intensities
applied along the axes of a reference frame positioned at the hand-grip. In par-
ticular, we investigate the capability of the arm to independently discriminate a
force along the translational axis (x, y, and z) and the capability of the wrist to
discriminate torques along each rotational axis (roll, pitch, and yaw).

The following Section illustrates the haptic device and its calibration. Also,
it discusses the experimental phases of this work: the exploratory test and the
experiment based on a psychophysical adaptive method.

2.2 Experimental Setup 7

Fig. 2.1. The experimental setup with the NASA-JPL Force Reflecting Hand Controller
haptic device. The arrows show the application of forces and torques to the hand of
the subject. Arrows with the same color (line style) represent force and torque applied
along the same axis of the subject reference frame placed at the hand-grip, under static
conditions. Blue (continuous) arrows are respectively force and torque generated by the
action of joints β2 and β4 on the Z-axis. Green (dashed) arrows are respectively force
and torque generated by the action of joints R3 and β5 on the Y-axis; Red arrows are
respectively force and torque generated by the action of joints β1 and β6 on the X-axis.

2.2 Experimental Setup

2.2.1 Haptic Device

In our experiments we used a Force Reflecting Hand Controller (FRHC) which
meets our experimental requirements thanks to its particular structure. The FRHC
was designed and developed at NASA’s Jet Propulsion Laboratory [10]. It has
been refurbished recently, in particular with the addition of a custom designed
controller implemented mostly on a NI PCI-7831R FPGA board (National Instru-
ments, Austin, TX), that drives the device motors [37].

This device has 6 Degrees-of-Freedom (DoFs) consisting of one translational
and five rotational joints (see Fig. 2.1). It rotates and slides around a fixed support
attached to the floor through two rotational (β1, β2) and one translational (R3)
joints. Its hand-grip has three intersecting axes (β4, β5, β6). With this structure,
an operator can work with full dexterity in a cubic workspace of 30× 30× 30 cm3.
Motion transmission is done by cables with pulleys of large curvature that reduce
friction and increase the back-drivability. An idler mechanism translates on the
direction opposite to R3 to keep the manipulator always balanced, performing a
mechanical gravity compensation. The power unit is placed on the floor to avoid
unbalancing the structure. The hand-grip of the device is positioned so that it can
be comfortably reached by the subject’s dominant hand.

8 2 Perception Experiments

2.2.2 FPGA

In [37] we presented an innovative hardware/software structure used to control
the FRHC in a teleoperation task. To increase speed and reliability, parts of the
kinematic calculation were embedded into the joystick controller. We used a one
million gates National Instruments NI PCI7831R FPGA, based on a Xilinx Vir-
tex II chip. The FPGA was initially used for handling sensors and actuators. We
implemented quadrature decoders in order to obtain position information from in-
cremental optical encoders, and we used analog outputs to give voltages to PWM
generators for driving the joystick motors. In addition, we added a parallel com-
munication interface to transfer data to/from a PC. We used a GNU/Linux PC
with RTAI extension in order to give real-time capabilities to the overall system.
Then we moved to the FPGA the algorithmic part that is usually handled in soft-
ware. In particular we coded the forward kinematic of the FRHC and the force
feedback computation. We designed the implementation in a modular way, to easy
change between different kinds of control. In this way we obtained a fast and sta-
ble controller that, unlike industrial axis-board, includes both low and high level
functionalities on the same hardware.

2.2.3 Subject reference frame

Since the kinematic structure of the FRHC permits a mapping between each DoF
of the joystick and the reference frame placed at the hand-grip, in the following
sections we refer to joints as the directions on which a stimulus is applied. When
a subject uses the FRHC, her/his hand can be considered at the center of the
reference frame. Results obtained using the hand reference frame can be related
to other sensorial reference frames [95], and to several kinematic models of the
hand-arm system [9].

The hand-grip gimbal ensures that the torques provided to the hand by the
three upper DoFs (β4, β5, β6, corresponding to extension/flexion, abduction/ad-
duction and pronation/supination, respectively) are torques about the main axes
of the hand reference frame. The same consideration holds for the lower joints
with an assumption: while the prismatic joint R3 moves in a linear way along the
hand reference frame y axis, the lower joints β1 and β2 are rotational and their
movement is not along the hand reference frame axes; in our setup this is not an
issue since the design of the experiment asks the subject to maintain the position
of the hand as firm as possible. Under this assumption (i.e. small movements) the
forces exerted by the first two joints can be considered tangential to the rotational
movement of the FRHC and thus aligned with the main axes.

The results of the experiment are then representative of every force stimuli
presented at the hand of the subject and not related to the kinematic structure
of the involved haptic device. When using a different joystick the kinematic and
Jacobian transformations must be used to correctly express the forces exerted at
the hand-grip in joint space.

2.2 Experimental Setup 9

−10 −5 0 5 10

−
10

−
5

0
5

10

Joint 3

Reference Signal (N)

M
ea

su
re

d
F

or
ce

 (
N

)

●

●

●

●
●

●
●

●

●

●

(a) (b)

Fig. 2.2. (a) Prototypical data from the calibration phase: force measured by the F/T
sensor over the expected force delivered by the motor in the calibration procedure of
joint R3. The 10 points refer to the reference forces identified for the experimental phase
among the physical stimulus domain. (b) Calibration setup: the FRHC attached to the
calibration cage. The hand-grip is replaced with an iron plate. The ATI F/T sensor
connects the plate and the rigid cage.

2.2.4 Calibration

Before the experimental session, we calibrated each joint in order to associate
the reference voltage given to the motor, and hence the nominal force/torque at
the hand-grip, to the resulting measured force/torque. We wanted to obtain a
function, in specific terms a curve, that fits the power provided by the motor with
the stimuli at the hand, see Fig 2.2(a). The effective force is influenced by motors,
links flexibility, friction, inertia, measurement errors and control errors; therefore
a calibration is needed to overcome these disturbing effects and to accurately
quantify the amount of force that will be provided during the experimental trials.
We were especially concerned with the lower intensity stimuli since we wanted to
identify the threshold with high precision and the variations involved were small.

We designed and built an iron “cage” large enough to contain the FRHC.
Thanks to the structure and the thickness of the linkages we used, the cage was
not deformable. We firmly attached the joystick inside the cage and replaced its
hand-grip with an iron plate of the same weight in order to maintain the device
right balanced. The plate was not deformable when loaded with forces in the
rendering range of our haptic device. An ATI Mini 45 (ATI-Industrial Automation,
Apex, NC) 6 DoFs force/torque sensor was mounted between the plate and a
configurable rigid support of the cage, see Fig. 2.2(b). This sensor had higher
resolution, precision and accuracy than humans. We were able to lock on up to
five joints thus constraining the degrees of mobility of the FRHC.

We provided voltages to each motor and we collected the resulting forces at
the hand-grip. We tried several voltages spread along the whole range of forces
that the joystick could exert. For each value we used a high number of sensor

10 2 Perception Experiments

readings and we repeated the trial several times in different sequences, both linear
and random. We considered the two directions of a motor independently thus
obtaining two fitting curves. This was made in order to avoid asymmetries due to
the cable driven actuation.

The joystick was static in the sense that it could not move when forces were
applied. This is a correct assumption for the experimental setup since the consid-
erations explained in Sec. 2.2.3 hold and the force signal is always instantaneous.
The data collected were clean everywhere along the joystick force rendering range
apart from in the values close to 0 N. This was due to the high values of friction
and inertia with respect to the forces rendered. However, taking advantage of the
results of the calibration phase, we did not consider for the experiments any force
value close to 0 N, see Fig. 2.5. This strategy should ensure a precise and not cor-
rupted threshold estimation. Calibration confirmed that the FRHC applied forces
up to 9.9 N and torques up to 0.6 Nm.

2.2.5 Experimental Phases

The aim of the experimental design was to measure the capability of the human
hand in terms of force perception. Well-known psychophysics methods were in-
volved in order to measure the JND%. In Section 2.3 we used the Constant Stimuli
procedure [39]: this very time-consuming procedure enables the accurate estima-
tion of perceptual threshold, with only a minimal a-priori knowledge of stimuli
dimensions. Only few subjects were involved in this first experiment: our aim was
to identify plausible starting values for a more efficient adaptive psychophysics
procedure [41] used in Section 2.4 with more subjects. The peculiarity of this pro-
cedure was to minimize the number of trials and consequently the duration of the
session, while maintaining the same measurement properties. In order to identify
reliable thresholds values, the first experiment was necessary due to the relevance
that the initial starting value of the stimulus has on any adaptive procedure [65].

Here following, we describe the general set-up for the experiments. Experiment-
specific details are presented along with the corresponding data.

2.2.6 Stimuli Presentation

For each joint, 10 reference forces or torques si were identified among the physical
stimulus domain. The forces ranged from 0.4 to 9 N and the torques from 0.02 to
0.5 Nm. The selection is based on a logarithmic distribution of nominal set points
to the hardware, with the aim of focusing especially on low force/torque because
of denser samples at low values. In this way we can optimally use the capabilities
of our hardware set up, and maintain a spread of data across the range of our
devices consistent with the experiment goals. Forces were not accommodated with
any ramp in order to let the participants perceive a unique well defined value.

Participants were instructed to firmly hold the hand-grip and to keep the hand
movement as small as possible. The force and torque stimuli were applied to the
subject’s reference frame, lightly moving the hand in the direction of the applied
force.

2.2 Experimental Setup 11

We used an n-Alternative Forced-Choice (nAFC) paradigm. Participants were
given a choice of n alternatives, and they had to select the one containing the most
intense stimulus. They knew that exactly one alternative contained the stronger
stimulus I + ∆I (also called the comparison stimulus) and that the rest had the
lower stimulus I (also called the standard or reference stimulus). The comparison
stimuli were chosen according to the different psychophysics procedures discussed
as follows.

During each trial, n stimuli were presented to the participants in sequence: n−1
times the reference stimulus and once the comparison stimulus. In each trial, the
comparison stimulus was presented randomly in one of the n sequential positions,
with an a-priori probability of α = 1/n. There were n admissible responses: “1”,
“2”, and so on. After stimuli presentation, participants were asked to judge which
was the strongest one. Subject were instructed to respond “1” when they felt
that the first stimulus was the strongest one, “2” for the second, and so on. Due
to the nAFC-inherent guessing, we were expecting that participants gave n−1

correct responses; thus, the threshold was the force value with a number of correct
responses equal to (n + 1)/(2n).

Each stimulus was applied for 1,200 ms; the interval between different stimuli
was 300 ms. No feedback was given during the experiment. The participants had
to take a break among runs about every 7 minutes and whenever needed.

2.2.7 Statistical Analysis

The JND%s were obtained by calculating the respective percentage of “stronger
than” responses and then fitting the psychometric curves to each data-set, obtain-
ing the parameters of the assumed psychophysics function. That is, the cumula-
tive responses to stimuli presentation were used to estimate the function which
describes the probability that participants judged the stimulus as exceeding the
standard stimulus. The resulting S-shaped curve formed the so called “psychome-
tric function”. It was conveniently defined by a logistic function and, given the
parameter set Θ = {α, m, k}, its basic form was given by

Φ(Θ|x) = α + (1− α)
1

1 + e−k(x−m)
(2.2)

where α is the a-priori probability, m is the threshold that is the point where
the second derivative (curvature) is zero, and k is the slope of the psychometric
function.

A statistical analysis was conducted separately for each subject and for ag-
gregate data. Each analysis of variance (ANOVA) included a factor for individual
subjects so that differences between subjects were not counted as a random vari-
ation; this made each analysis more sensitive to the parameter of the stimulus
which is varied.

2.2.8 Participants

A total of 11 males and 6 females were examined (mean age of 26 years, age range
from 19 to 36 years), almost all of them with no previous knowledge of the ex-
periments. Five participants applied for the constant stimuli procedure, discussed

12 2 Perception Experiments

in Sec. 2.3, thirteen for the adaptive one, discussed in Sec. 2.4. One was tested in
both experimental procedures.

Participants were recruited among the staff of the Altair laboratory of the Uni-
versity of Verona (Italy) by word of mouth and did not receive any compensation
for their participation. All the participants were right-handed, had a normal sense
of touch and used their dominant hand to perform the task.

2.3 Exploratory test

2.3.1 Design and stimuli

In the exploratory test we used the Constant Stimuli psychophysics procedure in
a 3AFC paradigm [39]. This very time-consuming procedure had a fundamental
advantage: it enabled accurate estimation of the psychometric function, its param-
eters and, consequently, the JND%, with only a minimal a-priori knowledge of the
stimuli dimensions.

Based on a pilot test, 5 force increments were conveniently defined at a linear
distance in the range +4% and +26%, where the lowest was a stimulus that could
almost never be detected as the strongest, while the highest was a stimulus that
was almost always detected as the strongest. For each of the 6 joints, the experi-
mental block of trials consisted of 500 trials (10 stimuli × 5 force increments × 10
repetitions), randomly presented. Experimental sessions typically lasted more than
75 minutes. The presentation order of the experimental block was also randomized.

2.3.2 Results

In order to identify the psychometric function and its parameters, with the method
described by [122], we fitted the logistic function defined in Eq. (2.2) using a ML-
estimator and the minimization function optim provided within the R environment
[112]. In order to assess the reliability of the estimates, we used two goodness-of-fit
tests suitable for analyzing binomial data: the Deviance test and the Pearson χ2

test. Estimates that did not fit the data with p < 0.05 were rejected from the
analysis.

Thresholds and slopes were estimated with the same methodology for each
joint, stimulus and subject. Results are reported in Table 2.1. These estimated
thresholds and slopes were necessary to compute reliable starting parameters for
the adaptive procedure used in the following experiment.

For each joint, 10 (stimulus references) × 5 (subjects) ANOVAs were per-
formed, having the estimated thresholds and slopes as dependent variables and
the subjects as the error term. Only for the joint β2 the JND% did not signif-
icantly change among the stimuli (F9,22 = 1.42, p-value = 0.24), like drawing
a linear function; for the other joints significant differences were observed (β1:
F9,23 = 7.03, R3: F9,28 = 3.20, β4: F9,27 = 3.40, β5: F9,28 = 8.76, β6: F9,30 = 4.16,
p-value < 0.001), and the curve describing the JND% could be expressed by a bell
curve.

2.4 Experiment 13

Joints Reference Stimuli
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

β1 Reference [N] -5.99 -3.28 -1.80 -0.87 -0.54 0.50 0.83 1.79 3.26 5.98
JND% 15.38 17.84 27.62 33.60 42.85 74.56 49.48 24.40 20.79 15.64
Slope 1.94 4.30 5.92 5.46 12.96 5.56 5.99 6.77 4.02 4.33

β2 Ref. [N] -7.21 -3.87 -2.06 -0.80 -0.51 0.41 1.07 2.29 4.07 7.35
JND% 13.49 18.19 31.38 46.33 26.95 34.57 26.16 29.09 15.52 12.56
Slope 1.92 3.12 5.23 7.00 14.32 9.55 7.41 5.56 5.17 1.98

R3 Ref. [N] -8.77 -4.71 -2.52 -1.01 -0.60 0.62 1.01 2.30 4.42 8.33
JND% 34.00 17.14 12.52 60.86 48.61 51.34 50.96 20.93 10.98 9.97
Slope 1.02 2.61 4.07 11.34 7.67 13.33 3.28 5.52 4.14 1.38

β4 Ref. [Nm ×10−2] -32.93 -16.87 -8.17 -4.50 -2.78 2.59 4.78 10.25 18.22 32.94
JND% 12.22 19.78 34.07 38.73 36.30 29.90 38.98 20.82 18.81 15.66
Slope 0.37 0.85 1.09 2.92 4.75 8.62 1.97 2.63 1.11 0.75

β5 Ref. [Nm ×10−2] -21.24 -12.02 -9.40 -6.50 -3.60 1.95 6.87 11.37 15.43 29.72
JND% 13.95 12.32 15.82 22.12 39.03 82.78 31.77 25.92 14.41 30.96
Slope 0.75 2.04 2.40 5.66 10.02 9.46 5.34 1.43 1.33 0.36

β6 Ref. [Nm ×10−2] -41.22 -20.86 -15.07 -8.67 -3.50 4.84 11.86 18.86 25.20 47.48
JND% 26.72 36.70 37.64 48.73 65.59 59.24 60.10 32.64 23.75 16.61
Slope 0.33 0.50 3.69 5.67 8.68 7.68 4.30 2.14 1.65 0.92

Table 2.1. Mean values of the threshold and slope distributions estimated in the ex-
ploratory test for the 10 reference forces si for each joint. These parameters were used
as starting values for the adaptive procedure.

2.4 Experiment

2.4.1 Design and Methods

With the aim of collecting more experimental data, the Green’s 2AFC Maximum-
Likelihood adaptive procedure of measurement has been introduced in [41,42]; this
procedure promised highly efficient trial placement and threshold estimation, min-
imizing the number of trials and thus the session duration. The Green’s procedure
is similar to the QUEST one but it does not carry so many prior assumptions [65].

The fundamental difference with respect to the procedure previously used was
that the comparison values, which were presented to the participant, critically
depended on his/her response. That is, while the reference force was constant
during a trial, the comparison stimulus changed according to the participant’s
answer.

The final estimate of threshold was extracted from the most likely psychometric
function after a number of trials. To improve the accuracy of these estimates, some
catch trials were added. In these trials, chosen at random, the signal was presented
at the lowest possible level given the range of assumed psychometric functions [42].

In the example shown in Fig. 2.3, the threshold level appeared to stabilize after
about 20 trials. In order to obtain a more reliable estimation, the criterion for the
termination of a run was set to 45 trials. With this procedure, the experimental
sessions, articulated in 10 magnitude levels, lasted no more than 30 minutes per
joint.

14 2 Perception Experiments

Fig. 2.3. Prototypical track following the Green’s Maximum-Likelihood Adaptive proce-
dure. Red filled points refer to positive responses; blue circles to negative ones. Red line
refers to the estimated threshold; blue dashed line to the reference force. The estimated
threshold appears to stabilize after a certain number of trials.

A critical situation arose when the stimulus level computed for the next trial
was outside the range of the haptic device capabilities (i.e., the procedure com-
puted a force value to be generated, but this value was outside the joint capabili-
ties). In this situation this procedure would have converged to a value equal to the
maximum force which could be generated by the motor and the session had to be
discarded.

2.4.2 Results

Data were analyzed in order to estimate the perceptual threshold for the reference
stimuli. Results are reported in Table 2.2. As expected, the adaptive procedure
did not converge for some extreme stimuli, missing to estimate 6% of the force
thresholds and 19% of the torque ones. The large number of missing data in torques
is mainly due to the mechanical short range in torque rendering. Several points
proposed by the tracking algorithm were outside the mechanical capabilities.

For each joint, a between-subjects ANOVA (factor: reference stimuli, error
term: subjects) was conducted to determine if there were significant differences
among the perceptual thresholds due to the different reference values with respect
for the different subjects’ thresholds. Thanks to the used procedure, which allowed
more accurate estimations, and to the greater number of participants, we were
expecting significant differences among the reference stimuli. Significant differences
(p-value < 0.001) in the JND% along the stimulus continuum were observed for
all the translational (β1: F9,97 = 5.42, β2: F9,101 = 8.27, R3: F9,103 = 24.56) and
rotational axes (β4: F9,74 = 6.39, β5: F8,85 = 19.27, β6: F9,91 = 28.46).

2.4 Experiment 15

Joints Reference Stimuli
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

β1 Reference [N] -5.99 -3.28 -1.80 -0.87 -0.54 0.50 0.83 1.79 3.26 5.98
JND% 15.3 16.3 18.0 18.1 25.7 31.6 22.7 15.7 17.0 9.6

β2 Ref. [N] -7.21 -3.87 -2.06 -0.80 -0.51 0.41 1.07 2.29 4.07 7.35
JND% 11.62 12.56 19.29 36.93 25.33 29.58 32.66 24.87 13.25 12.16

R3 Ref. [N] -8.77 -4.71 -2.52 -1.01 -0.60 0.62 1.01 2.30 4.42 8.33
JND% 15.73 16.95 19.92 56.47 57.06 48.57 32.47 20.31 12.96 11.25

β4 Ref. [Nm×10−2] -32.93 -16.87 -8.17 -4.50 -2.78 2.59 4.78 10.25 18.22 32.94
JND% 12.65 23.25 45.06 35.88 41.99 63.02 56.46 31.48 23.85 13.79

β5 Ref. [Nm×10−2] -21.24 -12.02 -9.40 -6.50 -3.60 1.95 6.87 11.37 15.43 29.72
JND% 11.13 16.20 18.56 17.56 66.73 >100 46.14 31.61 28.19 /

β6 Ref. [Nm ×10−2] -41.22 -20.86 -15.07 -8.67 -3.50 4.84 11.86 18.86 25.20 47.48
JND% 12.11 19.30 21.16 24.02 > 100 46.04 30.86 27.48 20.49 12.21

Table 2.2. Median value of the JND% distribution, estimated with the ML-Adaptive
procedure, for the 10 reference forces si for each joint.

In Fig. 2.4 the force JND% was plotted versus the reference force for all the
joints. We observed a non linear relationship between the reference stimuli and the
JND%. Considering the lower reference stimuli, the force stimulus and the JND%
appeared to be inversely associated: the lower the force or torque applied, the
higher the perceived JND% value. The perceptual thresholds for intense stimuli
were higher than in the foregoing experiments: our findings provide some evidence
that the perceptual threshold for intense forces or torques can be treated as linear,
with an average value of about 15% of the reference force. A very high JND% was
observable only for the lower intensity stimuli, in particular for joints β5 and β6:
the perceptual thresholds were always greater than 45% and often over 100%.

Descriptive analysis suggested the presence of asymmetries in force and torque
perception. We hypothesized that along each translational or rotational joint, given
a positive or negative force/torque, asymmetric thresholds can be perceived both
for low and high intensities. For each joint, we have analyzed the data from the
opposite directions both conjointly and separately; as shown in figure 2.5, we have
fitted the two exponential functions

F1(x) = a + b1 · ec1·x (2.3)

and
F2(x) = a + b2 · e−c2·x2

. (2.4)

where a refers to the asymptotical perceptual threshold, b and c are scaling factors.
We have considered these functions for their different distribution close to zero:
while F1 grows exponentially, F2 resembles the bell curve. It is not possible to
know a-priori which distribution better accounts for perceptual data from stimuli
of weak intensity; thus we were probing for an asymptotic behavior with F1 or for
the presence of a maximum threshold with F2.

We have conducted this last analysis in order to look for a function which
was the best accounting for data, to verify the plausibility of symmetries in the
perceived thresholds and to search for the value of the estimated constant a defined

16 2 Perception Experiments

−6 −4 −2 0 2 4 6

0
20

40
60

Joint 1

Reference Force (N)

JN
D

 %

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

0
20

40
60

Joint 2

Reference Force (N)

JN
D

 %

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

0
20

40
60

Joint 3

Reference Force (N)

JN
D

 %

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

0
20

40
60

Joint 4

Reference Torque (Nm)

JN
D

 %

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

−0.2 −0.1 0.0 0.1 0.2

0
20

40
60

Joint 5

Reference Torque (Nm)

JN
D

 %

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−0.4 −0.2 0.0 0.2 0.4

0
20

40
60

Joint 6

Reference Torque (Nm)

JN
D

 %

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

Fig. 2.4. JND% versus reference force and torque. Each point is the participants’ thresh-
old. The blue line maps the median values; the dashed grey lines map the first and third
quartile.

in the functions, which asymptotically could approach the perceptual thresholds. In
order to compare the goodness of these functions, we used one statistical test (the
Pearson χ2) and several information criteria: the R2, AIC and BIC indexes [20].

Table 2.3 reports the functions which match data better and the values of the
constant a, defined in both Eqn. (2.3) and (2.4). For the joints R3, β5 and β6, the
function which better accounts for data is F1 when fitted with different parame-
ters for the two directions; i.e., distinct parameters for the positive and negative
direction better explain data variability than unique parameters for the two di-
rections. Considering the remaining joints, data variability is better accounted by
F2, especially when fitted with the same parameters for the two directions.

2.5 Discussion

The goal of this preliminary phase was to understand what is the force range best
perceived by a human arm and wrist. We obtained a mean threshold of 15% of the
reference force for strong intensities (about forces > 3.0 N or torques > 0.20 Nm),
using either of the psychophysical procedures.

We expected to find a similar asymptotic value for force perception: literature
[68, 92] reports the JND% as constant for medium values, while it increases for

2.5 Discussion 17

−5 0 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Joint 3

Stimuli (N)

JN
D

%

●

●

●
●
●

●●
●

●

●

●
●

●
●●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●
●

●●
●

●
●

●

●

●
●

Fig. 2.5. Force JND% versus reference force for joint R3. Each point is the partecipant’
individual threshold. The green line maps the median values; for both the symmetric
and asymmetric conditions, the blue curves (dot-dashed and long-dashed) refer to the
exponential-type function F1 while the red ones (dashed and two-dashed) to the bell-type
function F2.

Joints Model Pearson χ2 R2 Asymptotic JND%

β1 F2 Sym. χ2
(94) = 5.36 R2 = 0.995 a = 10.90

β2 F2 Sym. χ2
(98) = 7.89 R2 = 0.997 a = 11.96

R3 F1 Asym. χ2
(97) = 7.92 R2 = 0.997 a1 = 13.44 a2 = 13.62

β4 F2 Sym. χ2
(71) = 15.18 R2 = 0.992 a = 13.49

β5 F1 Asym. χ2
(78) = 32.56 R2 = 0.983 a1 = 17.09 a2 = 25.60

β6 F1 Asym. χ2
(83) = 11.44 R2 = 0.992 a1 = 18.99 a2 = 17.46

Table 2.3. Best accounting function from the adaptive procedure, the values of Pearson
χ2 and R2, and the value of the parameter a, asymptotically approaching the perceptual
threshold. The a parameter is unique whether the function is symmetric; otherwise a1

refers to stimulus s1 and a2 to s10.

18 2 Perception Experiments

low intensities. For example, using the Controlateral-Limb Matching method, [53]
found that low forces were overestimated by an average of 44% whereas larger
ones were slightly underestimated (by 9%). Our results were slightly higher in
comparison to the literature about the finger force perception [84], but closer to
the ones reported in recent works, even not aimed at primarily analyzing the hand-
arm force perceptual thresholds [15,52,78]. [15], while investigating the effect of the
visual feedback distortion, reported a mean force JND% for young subjects equal
to 19% for reference forces greater than 1.5 N. [78] found that the thresholds for
detecting changes in steady state steering-wheel force were determined at about
15% for force intensities greater than 5 N and that the JND% was inversely related
to the reference force. However, these last works did not specifically considered the
perceptual thresholds for low intensities.

Our findings led us to better understand the capabilities of the force percep-
tual system for low intensities (about forces < 1.0 N and torques < 0.10 Nm).
Thanks to the calibration process, the fitted parametric functions seemed to ac-
count for the experimental data allowing prediction of the perceptual error. The
force perception differed from joint to joint within the range of one joint and also
along the movement directions of each joint. These were unexpected results which
justify a deeper psychophysical work on force perception with the aim to better
understand how the haptic perceptual system differentiate directions. To the best
of our knowledge, only few recent works presented similar findings in haptics. For
example, [93] reported differences in force discrimination along different directions:
a JND% of about 40%, 20% and 30% along x, y, and z respectively.

It is likely that a subject has systematically perceptive distortions [33] and/or
privileged directions [114] in the ability to compare forces, especially in near
peripersonal space [54]. There exists accumulating evidence, both psychophysi-
cal and neurophysiological, that what is haptically parallel is decided in a frame
of reference intermediate to an allocentric and an egocentric one. Based upon
such demonstrations, it is also hypothesized that the haptic space may be non-
Euclidian [79].

2.6 Scaling function

In the previous Sections , we carried out a perception experiment aimed exploring
differences in ability of a person to discriminate a wide range of force intensities
applied to a hand-grip along the axis of a reference frame positioned at the hand.
In particular, differences in terms of force perception relatively to the stimulus
intensity and among directions and orientations were observed and identified. This
finding could let distinguish the most sensitive directions for the arm, allowing to
determine a suitable scaling matrix for force-feedback in haptic environments. In
the following we describe how it is possible to use this variable scaling matrix to
improve performance in bilateral teleoperation. This is a new approach to force
augmentation in teleoperation, since the acquainted concept of scaling in this field
concerns mainly constant or linear amplification, such as the one proposed in [28].
Furthermore, the use of ad hoc scaling functions for each axis direction is also a
novelty and its motivation comes from the human perception capabilities.

2.6 Scaling function 19

In Fig. 2.6 a graphical representation of our scaling idea is presented. The
yellow area depicted is the one affected by the correct application of Eq. (2.5).
The optimal case is to have a horizontal threshold (the green line of the figure)
meaning that the JND%, not the force stimuli, is constant along the force domain.
Our idea is to introduce the resulting function from the perception curve to scale
the force signal, obtaining a constant perception curve which especially allows to
better feel differences among low intensities. For example in surgical teleoperation,
i.e. minimally invasive robotic surgery (MIRS) scenario, low intensity signals are
very common but not well perceived by surgeons, therefore by improving the force
perception we may augment the operation performance and reduce the possibility
of tissue damages [120].

From the results of our experiments on the force and torque values vs. reference
frame axis direction at the handle of the haptic device (see Fig. 2.4 and Table 2.2),
we scale the force signal in a selective way, i.e. by using a specific scaling function
per axis’ direction, obtaining a scaling matrix that manipulates the forces at the
master side.
We defined our perception-based force feedback scaling function on the basis of

Fig. 2.6. Force threshold vs. reference force for one prototypical direction. The yellow
surface represents a hypothetical manipulation of the force signal considering as scale
factor an exponential functions, in order to reach a constant threshold along the stimuli
continuum (green line).

20 2 Perception Experiments

Equations (2.3) and (2.4) as follows:

α(F) =
{

1 + ekpos(−F+cpos) if F > 0
1 + ekneg(F+cneg) if F < 0

(2.5)

where F is the unscaled force (or torque) signal along a specific direction, k is a
parameter referred to the human sensorial threshold, and c is a parameter referred
to the accuracy of the calibration of the experimental setup and it is dependent
to the human capability for a specific configuration. Tuning the parameters in the
right way (i.e. parameters customized from the findings of the previous experiment)
leads to a different scaling function for each directions.

This amplification of the force signal, with a non constant scaling, should
erase the JND% degradation. The behavior of our scaling function is, quite obvi-
ously, amplifying the differences at lower forces without scaling the high intensity
forces, that are already well discriminated by human beings, while maintaining
the uniqueness of the force values.

The approach to the parametrization of the proposed scaling function is
twofold: it is possible to use average values derived form the perception experiment
knowing that the resulting scaling is well suited for everybody, or it is possible to
use the thresholds obtained from the experiment by a specific subject in order to
have a “personal” scaling. The drawback of the second strategy is that an entire
experiment have to be performed in order to identify c and k. We are currently
working on a simple and shorter system calibration procedure for an ad-hoc use
of the model presented.

A side effect of our method can be an alteration of the distance among stimuli
even if it does not compromise the order relation.

Since our goal is to make the telepresence experience more significant for the
human, it is necessary to evaluate the goodness of the scaling with respect of the
user perception. In order to verify this aspect we arranged a new psychophysics
experiment and we tested the design with few subjects. We used the same setup of
[118], while adding the scaling function. We omit the details since in the near future
we will give more statistical relevance to the data we are collecting involving more
subjects. However the underlying idea is that, if our assumption holds, the subjects
should be able to discriminate small differences in the forces even at low intensities.
As shown in Fig. 2.7 for the positive side of one direction, the application of
Eq. (2.5) modifies the JND trend and results in a perceptual threshold that is
constant along the whole force range, and it is characterized by lower standard
deviation, similar to the green reference of Fig. 2.5. A constant and lower JND
means higher ability to discriminate small variation of the forces. One possible
shortcoming deriving from our variable force scaling approach is a “flattening” of
the force intensity along the whole range. In a specific preliminary experiment we
find evidences that our functions are an order-preserving scaling about intensities,
and this early result make us confident about the applicability of different force
scaling functions.

We would like to remark that this type of force signal manipulation is correct
if the absolute value of the forces is not significant while it is important that the
subject discriminates low intensity stimuli. Therefore the choice to use the force

2.6 Scaling function 21

Fig. 2.7. Force JND versus reference force; data are referred to one prototypical direction
(movement close-far). The black line refers to the experiment with non scaled forces,
while the blue dashed line refers to the perceptual thresholds applying the force scaling
function. A linear fit is depicted for both approaches in order to show the overall trend.

dependant scaling have to be compatible with the task that has to be performed in
teleoperation. In Minimally Invasive Robotic Surgery, for instance, and in general
in all macro/micro manipulation tasks, it is more important to let the operator
perceive or discriminate between stimuli than render a “perfect” force. At the end
we are proposing a different concept of transparency. In our perception-centric ap-
proach we consider “transparent” what is better perceivable, even if it is different
from what it is registered at slave side.

Unfortunately, it is not granted that using a variable scaling factor in the
interconnection between master and slave sides leaves the overall telemanipulation
system stable.

In [13] a demonstration of the stability of the scaled teleoperation system in
the case of negligible communication delay using Port-Hamiltonian system and the
theory of passivity was presented.

Passivity theory has been widely used for the control of bilateral telemanip-
ulators since it allows to guarantee a stable behavior of the system both in case
of free motion and of contact with any, possibly unknown, environment thanks
to impedance control techniques [46]. Port-Hamiltonian systems can be used for
the design of passivity based bilateral teleoperators. They are passive systems and

22 2 Perception Experiments

they allow to model all physical systems and, furthermore, to represent very clearly
the energetic structures and the power flows [99].

Our variable scaling can be used to improve performance in passivity based
bilateral teleoperation. To this aim, it is necessary to join master and slave sides by
a properly scaled interconnection. Nevertheless, a variable scaling is not a passivity
preserving operation and, therefore, in principle it should not be used in passivity
based bilateral teleoperation systems.

The problem of constant scaling of the velocities and of the forces exchanged
between master and slave sides in passivity based teleoperators has been already
solved in [98]. Nevertheless, the fact that the scaling factors are non constant
makes the problem significantly harder and the results obtained in [98] not di-
rectly applicable. In [13] the authors, exploiting the port-Hamiltonian formalism,
demonstrated how under reasonable assumptions it is possible to embed the vari-
able scaling into a port-Hamiltonian teleoperation system while preserving a stable
behavior of the system.

2.7 Conclusions

In this Chapter we focused on the role of human perception in haptics and tele-
operation. We designed a setup for the execution of perception experiments by
using a non commercial high performance haptic device. The NASA/JPL Force
Reflecting Hand Controller was used to provide force stimuli in the Cartesian space
to several subjects and collect results. The joystick was equipped with a FPGA
board for the low level handling of the device and precise force generation. An
important effort was spent to make the reflected force/torque signal correct and a
complete calibration of the device was required. Then we collaborated, under the
supervision of a psychologist, to the definition of a protocol that has been used
to carry out experiments aimed at investigating the force threshold perceivable
on the human hard-arm system when a haptic device acts as intermediary in the
information transfer. The main goal was to study the low intensity force signals
vs the human perception. The experimental results permitted the identification of
force thresholds and the observation of asymmetries in the JND% plots. On this
basis we determined a set of scaling functions, one for each degree of freedom of
the three-dimensional space, that can be use to enhance the human abilities in
discriminating different stimuli. The variable force scaling operates especially on
low intensities forces and permits a stable behaviour while increasing performance.

3

Impact on haptics: requirements, issues and
solutions

The scaling functions we found, described in the previous Chapter, or any other
perception-based enhancement must bu used in the teleoperation control loop.

During bilateral teleoperation Cartesian positions and orientations are sent
from the master device to the remote arm using a communication channel. The
information about the interaction with the environment collected by the slave
sensors are sent back to the master. Since master and slave may have different
kinematic structures, specific coordinate conversions are used to transform joint
positions and force feedback data from one reference frame to the other. In addi-
tion, information about the dynamics structure and configuration of the system
can be used.

In order to make the overall architecture stable, these computations have to be
performed at high speed and in a predictable manner. As described extensively in
the technical literature, a 1 KHz computation speed should be achieved. In certain
teleoperation tasks, especially with high approach velocities and stiff environments,
high update rates and low delays are key requirements for stability and thus for
realistic haptic perception [58]. Thus summarizing, at least once per millisecond
the controller has to:

• read the encoders in order to obtain the current position of each joint of the
haptic device;

• perform a forward kinematic transformation that calculates the Cartesian po-
sition of the hand-grip from the position of the joints. This information is sent
to the slave device;

• receive the force feedback information from the slave. This is expressed in
Cartesian space;

• modify the force signal in a perceptual “useful” way, for instance using our
scaling functions;

• apply the transformation that maps modified force and torque data to the
corresponding torques applied by the haptic device motors;

• implement a control strategy.

When the feedback is rendered on the haptic device it already has to contain
the force signal manipulation. Moreover the control loop could use dynamics in-
formation, even considering the human arm, in order to track the force reference

24 3 Impact on haptics: requirements, issues and solutions

with minimal error. The outcome is that any modification has to easily fit into the
whole transformation process and elaboration chain and to be easily replaced. In
fact, when talking about perception-based enhancement, the human-centric force
signal manipulation is dependent on the human operator and on the task itself.
While a mean and generic set of functions can be found one and for all through a
specific psychophysic experiment, this set is related to the task analyzed, and even
if good, it should be “fine-tuned” to the particular abilities of the operator. This
great variability cannot be resolved just thinking at it as the setting of a number
of parameters, maybe from a calibration-like procedure, since we forecast that the
alternatives in force signal manipulation can be widely different. The underlying
consideration, and the reason for the approach we present in the following Sec-
tions, is that a new block in the control loop of the haptic device controller has
to be added without negatively affect the overall performance while maintaining
stability.

The control loops for robotic devices usually require a rate higher than 1 KHz.
For stability issues it is crucial to have real-time, or in other words strong de-
terministic behaviour and good speed, in order to meet control deadlines. Thus
it is important to guarantee that the complete computation is fulfilled in 1 ms.
In addition the control architecture has to permit an easy and fast variation and
reconfiguration. In the aim of selecting a target platform for the implementation
of the controller of a haptic device, the main point is to choose a hardware config-
uration that permits to obtain good performance in terms of speed, determinism
and reliability and to grant the possibility of easy re-implementation.

Since we would like to exploit also hardware capabilities in order to achieve
our goal, it is important to look at current trend in the development of CPUs,
embedded systems and control systems. In particular recent literature seems to
indicate that the new road about the development and use of processing systems
leads to multicore architectures [71].

In the following we present an overview on multicore architectures and pro-
gramming models able to exploit these architectures.

3.1 Multicore architectures

Computer science and programming cover many specialized fields in which the
ability to perform high performance computation is crucial. From this continu-
ously growing need, the demand for more powerful processing units arises. While
manufacturing technology keeps improving, reducing the size of single gates, phys-
ical limits of semiconductor-based microelectronics have become a major design
concern. Some effects of these physical limitations can cause significant heat dissi-
pation and data synchronization problems. In the last few years moving the focus
from increasing processors speed to introducing new form of parallelism has be-
come the dominant mechanism for scaling processor performance. In particular
the inclusion of multiple cores on a single chip has become the dominant trend.

Parallel computer architecture are not a novelty, but the widespread utilization
due to cost affordability is new. However one of the most effective and used classifi-
cation of computer architectures based upon the number of concurrent instructions

3.1 Multicore architectures 25

(or controls) and data streams available is the old Flynn’s taxonomy [34]. Flynn
describes four different types of categories:

Single Instruction, Single Data stream (SISD): a sequential computer which ex-
ploits no parallelism in either the instruction or data streams. Examples of
SISD architecture are the traditional uniprocessor machines like a PC or old
mainframes.

Single Instruction, Multiple Data streams (SIMD): a computer which exploits mul-
tiple data streams against a single instruction stream to perform operations
which may be naturally parallelized. For example, an array processor or GPU.

Multiple Instruction, Single Data stream (MISD): multiple instructions operate on
a single data stream. Uncommon architecture which is generally used for fault
tolerance. Heterogeneous systems operate on the same data stream and must
agree on the result.

Multiple Instruction, Multiple Data streams (MIMD): multiple autonomous pro-
cessors simultaneously executing different instructions on different data. Dis-
tributed systems are generally recognized to be MIMD architectures; either
exploiting a single shared memory space or a distributed memory space.

The taxonomy can be further enriched with the following categories:

Single Program, Multiple Data (SPMD): multiple autonomous processors, with a
one’s own thread of control each, simultaneously executing the same program
at independent points on different data. Also referred to as ‘Single Process,
multiple data’ [26]. SPMD is the most common style of parallel programming.
An SPMD processor includes explicit support for coordinating threads.

Multiple Program Multiple Data (MPMD): multiple autonomous processors si-
multaneously operating at least two independent programs. Typically such
systems pick one node to run one program that delivers data to all the other
nodes which all run a second program. Those other nodes then return their
results directly to the coordinator.

During the years other minor differentiations have been proposed.

The Flynn’s taxonomy considers a processor as a single unit of computation,
but nowadays other concepts are used.

A core is a processing element with an independent control flow. Cores can vary in
computational power and can also present various types of internal parallelism.

A functional unit or execution unit is a part of a CPU that performs the oper-
ations and calculations called for by the computer program. It may have its
own internal control sequence unit, some registers, and other internal units
such as a FPU, or some smaller, more specific components. It is commonplace
for modern CPUs to have multiple parallel execution units, referred to as scalar
or super-scalar design.

It is not always correct to compare the amount of internal parallelism available
on a specific architecture by just counting the number of cores, since usually a
core might have hundreds of functional units. For instance a Cell BE has 9 cores

26 3 Impact on haptics: requirements, issues and solutions

with 4 functional units per core and a Graphical Processing Unit can have up to
320 functional units. In addition a lead role in the ability of the processor to carry
out several computations in parallel is given by the hierarchical structure of the
cores, the interconnection among them and the memory organization and access.

Nowadays it is possible to find a broad range of parallel hardware architectures
on the market, and they usually belong to one of the categories presented above.
However, when several design solutions are applied to the same processor in or-
der to maximize parallelism, it can be difficult to identify only one choice. Thus
providing a simple classification is hard.

In recent multicore architecture it is common to find a combination of the
above characteristics. For instance in a heterogeneous processor a coordinating
core can provide multithreaded capabilities while the other cores could permit
SIMD parallelism.

3.1.1 Architectural features and processors

In this Section, we will survey at a high level some specific parallel processor
architectures. We focus on the various forms of parallelism exploited by these ar-
chitectures. The processors are described with respect to their physical structure
and, when possible, their category in the Flynn’s taxonomy is given.

Simultaneous multithreading (for instance Intel’s HyperThreading) was an
early attempt to have a pseudo-multicore system. A processor capable of simulta-
neous multithreading has only one execution unit, but when that execution unit
is idling (such as during a cache miss), it uses that execution unit to process a sec-
ond thread. This type of processors is inexpensive and easy to obtain since fewer
resources need to be replicated but it is hard to achieve as much of a speedup as
using different cores. It is a MIMD processor.

A vector processor is a CPU or computer system that can execute the same
instruction on large sets of data. “Vector processors have high-level operations that
work on linear arrays of numbers or vectors. They are closely related to Flynn’s
SIMD classification. Cray computers became famous for their vector-processing
computers in the 1970s and 1980s. Modern processor instruction sets do include
some vector processing instructions, such as with AltiVec and Streaming SIMD
Extensions (SSE).

A multicore processor implements multiprocessing in a single physical pack-
age. It replicates a single core design, duplicating it several times on a single chip.
Each core can run a completely separate thread of control, so this is an MIMD
processor. It can be described as an integrated circuit to which two or more cores
have been attached. The cores are typically integrated onto a single integrated cir-
cuit die (known as a chip multiprocessor or CMP), or they may be integrated onto
multiple dies in a single chip package. These processors differ from superscalar
processors, which can issue multiple instructions per cycle from one instruction
stream (thread); by contrast, a multicore processor can issue multiple instructions
per cycle from multiple instruction streams. There are a number of different mul-
ticore design, and they are different in how they manage memory and intercore

3.1 Multicore architectures 27

communication. Cores in a multicore device may be coupled together tightly or
loosely. For example, cores may or may not share caches, and they may implement
message passing or shared memory intercore communication methods. Common
network topologies to interconnect cores include: bus, ring, 2-dimensional mesh,
and crossbar. All cores are identical in homogeneous multicore systems and they
have different designs in heterogeneous multicore systems. Just as with single-
processor systems, cores in multicore systems may implement architectures such
as super-scalar, vector processor, SIMD, or multithreading.

Traditional central processing units (CPUs) have recently begun adding mul-
tiple cores and typically they adhere to the homogeneous paradigm.

The IBM Cell Broadband Engine is a heterogeneous multicore chip composed
by one general purpose core and eight other smaller cores specialized for numeri-
cally intensive workloads. These smaller cores also have explicitly managed local
memory and SIMD parallelism, and can communicate directly with each other via
message passing over an on-chip ring network.

General-purpose computing on graphics processing units (GPGPU)
is a fairly recent trend in computer engineering research. GPUs are co-processors
that have been heavily optimized for computer graphics processing. Computer
graphics processing is a field dominated by data parallel operations, particularly
linear algebra matrix operations.

In the early days, GPGPU programs used the normal graphics APIs for exe-
cuting programs, such as the OpenGL Shading Language (GLSL). This approach
was hard form a programming point of view since all the computations have to be
transformed into shading operation on texture. However, recently several new pro-
gramming languages and platforms have been built to do general purpose compu-
tation on GPUs with both Nvidia and AMD releasing programming environments
with CUDA [25] and CTM [5] respectively. Other GPU programming languages
are BrookGPU, PeakStream, and RapidMind. GPU architectures are designed to
support a massive number of threads running simultaneously but are able to sus-
pend threads to hide the latency of certain operations, such as memory reads.
In addition, SIMD computation is often exploited over a set of spatially coherent
tiles, and on most GPUs, SIMD Within A Registe (SWAR) or Very long instruc-
tion word (VLIW) parallelism is also available. Since the threads (or kernels) are
the same program in different moment of execution this is an example of SPMD
architecture.

Within parallel computing, there are specialized parallel devices that are not
recognizable as processors, since they have a completely different structure and
functionality. However it is important to mention them since they represent an
important niche of applications in which performance is the main goal.

A Field-Programmable Gate Array (FPGA) is, in essence, a computer chip
that can rewire itself for a given task. It can be used standalone, usually for DSP
and for controlling devices, or as reconfigurable computing, i.e. as a co-processor
to a general-purpose computer. In this case usually it is part of a System on Chip

28 3 Impact on haptics: requirements, issues and solutions

(SoC), where a CPU, an FPGA are put side by side on the same board and share
connections with main memory and peripherals.

FPGAs can be programmed with hardware description languages such as
VHDL or Verilog. However, programming in these languages can be tedious. Sev-
eral vendors have created new languages that attempt to emulate the syntax
and/or semantics of high level programming language, with which most program-
mers are familiar. One example is given by SystemC, that is based on C++.
Sometimes the term “stream processing” is used to refer to pipeline parallelism,
where the output of one task is sent directly to another in a producer/consumer
model. It can use multiple computational units without explicitly managing allo-
cation, synchronization, or communication among those units. FPGA accelerators
often make extensive use of this form of parallelism related to SIMD.

Several application-specific integrated circuit (ASIC) approaches have been
developed for dealing with parallel applications. These were the almost unique so-
lutions having full parallelism before the existence of multiprocessor and multicore
systems. Because of his specificity for a given application, an ASIC can be opti-
mized and tends to outperform a general-purpose computer. However, ASICs are
created by an expensive lithography process. High initial cost, and the tendency
to be overtaken by Moore’s-law-driven general-purpose computing, has rendered
ASICs unfeasible for most parallel computing applications. However, some have
been built. For instance there are machines which use custom ASICs for molecu-
lar dynamics simulation. They often represent the term of comparison during the
evaluation of algorithms and techniques implemented in FPGA or general purpose
processors.

Furthermore the general trend in processor development has been from mul-
ticore to manycore; A manycore processor is one in which the number of cores is
large enough that traditional multi-processor techniques are no longer efficient.
This threshold is somewhere in the range of several tens of cores, and likely
requires a network on chip. In addition, multicore chips mixed with simultane-
ous multithreading, memory-on-chip, and special-purpose “heterogeneous” cores
promise further performance and efficiency gains, especially in processing multi-
media, recognition and networking applications.

The most important example of multicore processors seen above are definitely
GPUs and the Cell BE (and in very specific case FPGAs) because these are the
consumer processors that currently support the most explicit parallelism. In addi-
tion the potentiality of these specialized processors is due to the large availability
and the relatively inexpensiveness. CPUs, however, are clearly evolving in the
same direction [81]: towards massive parallelism and “many-core” architectures.
Since these architecture share same form of data stream, or at least some of them
are equivalent to others it is possible to apply similar programming solution or
approaches to all of them.

3.1 Multicore architectures 29

3.1.2 Programming approach

In order to really obtain important benefits by the adoption of a multicore system
it is necessary to change the programming habits in order to identify and exploit
the parallelism, when present, in the algorithm to be coded.

In the last decades, most programmers have been using a serial model of com-
putation to design and implement programs, because of the SISD nature of general
purpose CPUs. However, digital hardware is naturally parallel. In order to obtain
increased performance, compiler and processor designers have struggled to auto-
matically exploit implicit instruction-level parallelism (ILP) in serial code. For
example, instructions can be rescheduled, either by the compiler or by the hard-
ware, in order to best exploit pipeline parallelism in functional units or multiple
instruction issue in superscalar processors.

However, experience has shown that most serial programs have limited im-
plicit parallelism.Automatic extraction of parallelism without explicit assistance
from the programmer, particularly in hardware but also in software, has reached
the point of diminishing returns. Therefore, there is renewed interest in explicitly
parallel programming models, languages, runtimes, and platforms.

We can identify mainly two types of parallelism:

Task parallelism that is based on the idea of decomposing a program into sep-
arate tasks and running these tasks at the same time on different processing
elements. It is easy to see a relationship between task parallelism and MIMD
computation. For instance, in a multicore system, task parallelism is achieved
when each core executes a different process with the same or different code. In
the general case, communication among processes permits the workflow data
passage.

Data parallelism that is based on the idea that operations on collections of
data, such as arrays, can themselves be performed in parallel. Usually this type
of parallelism is exploited by SIMD and SPMD architecture. In a multicore
system, data parallelism is achieved when each core performs the same task
on different pieces of distributed data. In some situations, a single execution
thread controls operations on all pieces of data. In others, different threads
control the operation, but they execute the same code.

Task parallelism emphasizes the distributed (parallelized) nature of the pro-
cessing, as opposed to the data (data parallelism). An algorithm can present both
of them, and usually the program is built around these characteristics.

In order to get the best performance out of multicore processors, an explicit
mechanism allowing the programmer to directly express a parallel computation is
desirable. It is useful to design such mechanisms around programming models [102].

A programming model is an abstract model of computation that is used by the
programmer to reason about how a program executes. A programming model
is an abstraction and may not explicitly expose every parallelism mechanism
available in the target processor.

A processing model is similar but describes how a physical machine actually
performs computation. Or rather, the processing model is the programming

30 3 Impact on haptics: requirements, issues and solutions

model exposed by the processor vendor and used in its instruction set archi-
tecture. The processing model is usually hardware or vendor specific and is
designed to obtain the maximum in terms of performance.

The programming language has the role to efficiently translate an algorithm
expressed relatively to the programming model used by the programmer into the
processing model used by the target hardware.

In the ideal situation, the programming model expresses the most important
aspects of the processing model and the programming language implementation
simply automates the mapping of the desired computation onto the target hard-
ware, relieving the programmer from the more tedious aspects of the procedure.

Programming and processing models are important because these models are
what a programmer uses to reason about how a computation actually takes place
on a physical computer. Programmers use a programming model to reason about
how a computer operates and to design efficient algorithms. If a programming
model is an accurate reflection of how a computer actually performs a computa-
tion in hardware, and if the primary features of the model as understood by the
programmer reflect the most important architectural characteristics of the com-
puter, then it will be possible for a programmer to design efficient algorithms for
the computer. If the programming model does not allow manipulation of some
important features of the processing model of the target hardware, or does not
provide enough control over the final implementation on the real machine, then
the programmer will be unable to optimize the code for the best performance.

The most important aspects of the processing model are those that have the
most impact on performance. A programming language implementation should
unburden the programmer from dealing with trivial questions, allowing the pro-
grammer to focus on making major policy decisions and on designing an efficient
(and correct) algorithm. With a parallel programming model, the programmer
is encouraged to think in parallel and give the system a large amount of latent
parallelism to work with.

Unfortunately, the programming models of mainstream programming lan-
guages were developed a long time ago when computers were relatively simple
and mainly SISD. In fact they lack native and easy to use support for exposing
efficiently the computation parallelism. In addition to parallelism, there is also
the issue of memory access. Poor use of the memory system can degrade the per-
formance of a program by several orders of magnitude thus a good programming
model should also allow the clear expression of memory locality and data move-
ment. Again the memory organization and access have to be explicitly expressed
by the programmer also when a native software development kit is available for a
specific architecture. Thus the ability to handle it in an abstract way and have the
programming language and the compiler perform the mapping is not yet possible.

In [71] a detailed survey of current programming models, language and platform
is provided. The main conclusion is that many subjects and vendors are working
on programming languages more oriented to multicore systems, and there are some
valuable results. However it is still a very inhomogeneous field, and there are no
available solutions able to target all the different architectures and to provide that
transparency from hardware that is required. Thus it seems that the quality, in

3.1 Multicore architectures 31

terms of performance and simplicity, of a parallel implementation is mostly left to
the programmer’s skill.

3.1.3 Rediscovering old parallel algorithms

Computer science and programming are relatively new disciplines, while algo-
rithms have existed in mathematics, algebra and calculus from centuries. In the
continuous challenge of discovering solutions for an increasing number of applica-
tion fields it is common practice to reuse existing algorithms and to apply them
to new areas. In [111], dated 1984, the author presents a research overview, point-
ing out advantages, shortcomings and possible applications, of Residue Number
System (RSN) due to the progress in technology of those days when VLSI was
a promising and emerging technique. A RSN represents a large integer using a
set of smaller integers, so that computation may be performed more efficiently.
The description of the theoretical core of RSN (the Chinese remainder theorem)
dates back to the 4th century AD in the Master Suns Arithmetic Manual written
by Tsu Suan-Ching. The topic was reprised and analyzed in [108], mainly from
a mathematical point of view, but unfortunately the technology of the 60’s was
insufficient to support the unique demands of the RNS. Nowadays RNS is widely
used, especially in FPGA computing, in many cryptographic, fault tolerant, DSP
systems and it is still an important research topic [24,60,74,82,115].

Referring to the definitions above, the translation from a “programming
model”, i.e. an abstract solution, into an existent “processing model” is not always
practical. In addition, the evolution in the hardware capabilities of the process-
ing units can encourage the adoption of a new algorithm in spite of another one
that worked well until then. This does not mean that the algorithm is no more
interesting or that in other scenarios cannot be used again but, in those specific
conditions, it is not attractive. It is also quite common to try to apply any new
solutions to a wider area of problems. For instance, when genetic algorithms and
neural networks proved their goodness they were employed in many applications
in several fields while traditional approaches were discarded.

Sometimes the old solution is not really put aside, but its use is continued in a
specific niche of employment. A good example is the CORDIC algorithm. CORDIC
(COordinate Rotation DIgital Computer) is a simple and efficient algorithm to
calculate hyperbolic and trigonometric functions. It is commonly used when no
hardware multiplier is available (e.g., simple microcontrollers and FPGAs) as the
only operations it requires are addition, subtraction, bitshift and table lookup.
The modern CORDIC algorithm was first described in [119] and it was developed
to replace the analog resolver in the B-58 bomber’s navigation computer. These
days, CORDIC algorithm is used extensively for various applications, especially
in the FPGA domain. Xilinx, one of the most famous manufacturer of FPGA
chipsets provides CORDIC IP cores that can be customized and easily used on
their boards.

A different consideration holds for algorithms that are state of the art in their
domain, such as algorithms for ray-tracing in 3D rendering, but that are still con-
sidered batch solutions due to computational issues. When the algorithm has some
parallelism, from the task or data point of view, then a parallel implementation
can move the computation towards interactivity.

32 3 Impact on haptics: requirements, issues and solutions

As stated above it is not uncommon that “old” algorithms remain useful in
a specific domain or become useful again due to changes in processor technology.
After an era dominated by SISD solutions caused by the intrinsically sequential
nature of CPUs available on the mass market, in the new age of multithread and
multicore systems it is worth looking for ASIC and VLSI solutions since they were
inherently parallels.

The main question remains how much effort is required in order to write these
algorithms, usually described in VLSI or schematics, in a modern programming
language. In other terms it is necessary to extract the programming model from
them and find a fast and easy way to translate it in the processing model of the
target hardware. Of course any help that a modern programming language can
give is important but, as stated above, no automatic translator nowadays can do
all the work by themselves. Thus a methodology, or some guidelines, can help the
programmer to obtain the expected results.

3.2 Previous work on robotics

In literature there are many works demonstrating the advantages of the use of mul-
ticore systems for complex application that require high performance and massive
computations. There are several application areas in which this new parallel ar-
chitecture can be applied with success, such as collision detection and responsive
action computation, modeling and control of soft articulated characters, physically-
based simulation of fluids and solids, crowd and multiagent simulation, interactive
ray tracing, sound synthesis and propagation and scientific computations.

There are still many open challenges regarding hardware, programming, soft-
ware and applications. The increasing interest of the scientific community in the
potential of multicore systems is visible in the continuous proposal for work-
shops [96], special issues of journals [66], articles and thesis works.

Initially there has been a huge effort from the major enterprises involved in the
hardware development. There are several technical reports from NVIDIA, ATI and
IBM that show implementations of matrix multiplication, fast Fourier transform,
imaging filters, ray tracing and so on.

Nowadays there are countless scientific applications that range from video de-
coding [6], DNA analysis [125], ray tracing cite [12, 89], image filtering [7], cryp-
tography [44,109], implemented on GPU, Cell and FPGA architecture.

Besides these consolidated results, it is important to understand if teleopera-
tion, and hence robotics and haptics, can also benefit from the development of all
these new hardware technologies.

It is easy to imagine that the main utilization of GPU-based solutions is
in robotic applications that require accurate graphical and physical simulations.
There is a strong interest in robotic aided surgery; usually it consists of a teleoper-
ation setup where the surgeon uses a haptic device to give command to the robot
that interacts with the patient. In this scenario, it is useful to have the possibility
to use the haptic device with a virtual simulation instead than the real robot/pa-
tient for both training and pre-operative planning. In this case the simulation of

3.2 Previous work on robotics 33

the human organs, fluids and surgical instruments and their physical interaction
have to be rendered with the same constraints of real teleoperation. In [3,29,126]
GPUs are used to make this kind of simulation possible and realistic.

Unfortunately this seems to be the main contribution of multicore systems
to teleoperation. Until now the standard approach is to have the software han-
dling communications, human interfaces, planning and supervision, and dedicated
hardware for the real-time control of the devices.

In the last years several interesting software architectures for robotics were
proposed. Smartsoft [94], Orca [17], Miro [57], Player [116] and CLARAty [77] are
well known frameworks that rely on the concept of modular design and component-
based software engineering. The main idea is to decompose a robotic system in
modules while providing communication and synchronization systems as well as
high level control strategies and algorithms. Almost all these frameworks are de-
signed for mobile and cooperative robots, consequently with little focus on real-
time constraints such as the ability to meet deadlines, to maintain specific control
rates and to provide security and recovery functionalities.

The inherently heterogeneous nature of the teleoperation task requires to main-
tain a good level of abstraction in defining modules and, at the same time, to im-
plement reliable low level controls. In addition, some real-time capability is needed
to maintain transparency and stability while data are sent over the communication
channel, dealing with unpredictable time delays and low bandwidth. This ambiva-
lence in the solution approach excludes the utilization of control software archi-
tecture used in automation processes. Orocos [18], MCA2 [36] and Penelope [38]
have good real-time capabilities while maintaining the modular and heterogeneous
approach.

Since they are aimed at distributed systems they can be managed to work
with multicore processors, splitting the execution among cores instead that among
hosts. There are real-time versions or extensions of the Linux kernel that provide
SMP/multicore support and thus the robotic software frameworks that rely on
them can be used on parallel architectures. This is the case, for instance, of Orocos,
Penelope and Orchestra [97] that use RTAI (Real-Time Application Interface).
However they do not provide explicit mechanisms to handle data parallelism and
to easily exploit SIMD architectures. YARP [73], that is a more recent architecture,
is an almost unique example of robotics framework that permit to program and
use GPGPU, through NVIDIA CUDA programming language, moving the most
computational intense part of the controller on the graphic board.

Regarding the control of manipulators and haptic devices the main solution
is still the utilization of industrial controller, axis board and ad-hoc electronics.
From a software point of view highly optimized procedure based on the specific
configuration of the robot are preferred to generic but computationally more in-
tense approaches. Of course the drawbacks are that any change in the controller
strategy requires complex code rewriting and that the solution is not reusable on
different hardware.

An attempt to use FPGA for controlling a haptic device is presented in [37]
combining the speed of the hardware with the ability to reconfigure it. In [88] the
authors develop an embedded real-time controller for cable robot.

34 3 Impact on haptics: requirements, issues and solutions

Beside the industrial controller and the embedded systems in literature there
are examples of robotic arms controlled by PC using real-time operating systems,
from the proprietary and expensive VxWorks to open source real-time Linux.
In [83] is presented the classic evolution from the industrial controller to the Linux
based solution for a PUMA 560 arm, one of the most used in universities.

While it is difficult to find robotic applications more aimed at multicore ar-
chitectures than to distributed systems, it is however possible to find parallel
solutions studied years ago for custom parallel ASIC and VLSI implementations.
For instance in [63,64] a comprehensive evaluation of algorithms for robotic arms
forward and inverse dynamics computation is presented. In particular the authors
identify the strategies that are more suitable to a parallel execution. In [23] a sim-
ilar approach for the manipulator pseudo-inverse Jacobian computation is shown.
This is an important topic since the Jacobian is one of the most important quan-
tities in the analysis and control of robot motion, and its inversion is a crucial
aspect in many controllers and applications. It can be interesting to implement
these solutions on recent multicore architecture.

3.3 Conclusions

With all these consideration in mind, we want to check whether our field of in-
terest, bilateral teleoperation, can take advantage from the current trend in the
development of multicore systems. In order to do that, we decide to understand if
there exist some algorithms, inherently parallel, that can exploit a multicore archi-
tecture and have good performance while solving a general problem with specific
requirements that can also have an important impact on haptics, teleoperation
and robotics. As a proof of feasibility we want to deal with the implementation on
a multicore architecture. In the coding phase we will not care about specific details
such as memory management. We leave it to smart multicore aware programming
language. However we want to show that a careful choice of data organization,
an appropriate task decomposition and a coding that mimics the ASIC imple-
mentation could give good results. The underlying idea is that since automatic
parallelization is not yet achievable and programming language multicore aware
are still in development, the programmer can improve the performance carefully
choosing his/her programming style. When the algorithm has its origin in ASIC, an
implementation that exploits low level instructions (or better shift-and-add) can
easily outperform a high level approach, without dealing with machine dependent
optimizations and fine tunings.

In the next Chapters we will focus on a generic application, that can be critical
in robotics and teleoperation due to the requirements and constraints that we
already presented: the matrix pseudo-inversion. In order to show the feasibility
of our idea we will eventually describe the implementation on a heterogeneous
multicore system: the IBM Cell Broadband Engine.

4

Strategies and approaches to multicore
architectures

In the previous Chapters we presented our findings about human perception based
functions that can be used in teleoperation to enhance the immersive experience.
Since they have to be part of the control loop of the haptic device used in the
teleoperation setup, we highlighted requirements and issues, aiming toward a mul-
ticore solution. In particular we stated that in order to obtain inherently parallel
procedures it can be useful to look for solution developed for ASICs and VLSI.
We found specific algorithms regarding parallel forward and inverse dynamics of
manipulator. In order to show our approach that reuse this algorithms in modern
multicore architecture we can focus, specifically, on their implementation. However
they are almost completely related to robotic manipulation. We would like to show
that the approach is valid for any type of porting. Thus we focus on a more generic
problem, that is important for robotic as well for other fields. In addition, many
existing solutions rely on very basic operations that can represent bottlenecks in
a robotic or haptic system: matrix multiplication and inversion. There are several
works about matrix multiplication on multicore systems, since this is an inter-
esting topics and the solution can potentially fully exploit the parallel hardware
capabilities. The matrix inversion is a more complex problem that has a number of
possible alternative solutions, but it becomes particularly relevant when real-time
requirements are added. In the following we present an overview of the algebraic
problem represented by matrix inversion in one of its more complex form: the
pseudoinversion.

4.1 Ill-conditioned linear systems: the inverse problem

A linear system of equations is a set of linear equations involving the same set of
variables, also called unknowns. A solution to a linear system is an assignment of
numbers to the variables such that all the equations are simultaneously satisfied.

A linear system is called inconsistent if it does not have a solution. There are
three typical cases, based on the number of equations of the system, n, and the
number of unknowns, k:

1. If k < n, then the system is (in general) overdetermined and there is no
solution.

36 4 Strategies and approaches to multicore architectures

2. If k = n and the system is consistent, then it has a unique solution in the n
variables.

3. If k > n, then the system is underdetermined and there are infinite solutions.

Linear systems can be represented in matrix form as the matrix equation Ax =
b, where A is the matrix of coefficients, x is the column vector of variables, and
b is the column vector of solutions. When the system is consistent and k = n the
unique solution is given by x = A(−1)b, where A(−1) is the inverse of matrix A.
If the system is either overdetermined or underdetermined then n 6= k, thus the
matrix A is not square and hence not invertible. This is congruent with the cases
presented, since the system has no solution or infinite solutions. However in real
cases this condition can happen and it is necessary to develop mechanism to deal
with it.

In order to justify the last sentence let us present a particular class of problems.
Using a physical theory for predicting the results of observations corresponds

to solving the forward modelling problem. The forward problem has a unique
solution, because of the causality principle [110]. This methodology is used in
particular for simulation purposes.

In an inverse problem, the values of some model parameter must be obtained
from the observed data. The transformation from data to model parameters is the
result of the interaction of a physical system, e.g. the Earth, the atmosphere,
gravity etc. An inverse problem is to find m such that (at least approximately)
d = G(m) where G is an operator describing the explicit relationship between data
d and model parameters m, and it is a representation of the physical system. The
operator G is called observation function.

There are some issues related with this type of problems. Inverse problems are
typically ill posed. In fact, inverse problems most often do not fulfill Hadamard’s
postulates of well-posedness: they might not have a solution in the strict sense,
solutions might not be unique and/or might not depend continuously on the data.
Hence their mathematical analysis is subtle, but they have many applications in
engineering, physics and other fields.

In addition, while inverse problems are often formulated in infinite dimensional
spaces, limitations to a finite number of measurements, and the practical consid-
eration of recovering only a finite number of unknown parameters, may lead to
problems being recast in discrete form. In this case the inverse problem will typ-
ically be ill-conditioned. The condition number associated with a problem is a
measure of that problem’s amenability to digital computation. A problem with
a high condition number is said to be ill-conditioned. In an ill-conditioned prob-
lem the exact solution is extremely sensitive to small perturbations in the data;
this makes iterating the solution to a small residual a tricky operation. Numerical
round-off in the system can also present some challenges when it comes to solving
a model having an ill-conditioned matrix.

It is easy to understand that any algorithmic solution to the inverse problem
has to carefully address all these issues. We are interested in particular to the case
in which the relationship is linear (or linearizable) and the equation that relates
the data to the parameters reduces to d = Am, where A is a matrix. From a
mathematical point of view one of the most common approaches to the inverse

4.1 Ill-conditioned linear systems: the inverse problem 37

problem when a set of possibly noisy observations of the physical system is given,
this leading to an overdetermined system, is the linear least square method.

4.1.1 Linear least square

Linear least squares is the problem of approximately solving an overdetermined
system of linear equations, where the best approximation is defined as that which
minimizes the sum of squared differences between the data values and their cor-
responding modeled values [123]. The approach is called linear least squares since
the solution depends linearly on the data. Linear least squares is a computational
approach for fitting a mathematical or statistical model to data. It can be applied
when the idealized value provided by the model for each data point is expressed
linearly in terms of unknown parameters of the model. The resulting fitted model
can be used to summarize the data, to predict unobserved values from the same
system, and to understand the internal mechanisms of the system.

Given a system of linear equations

Ax = b.

in general we cannot always expect to find a vector x which will solve the system;
even if there exists such a solution vector, then it may not be unique. We can
however always ask for a vector x that brings Ax “as close as possible” to b, i.e. a
vector that minimizes the Euclidean norm

‖Ax− b‖2.

If there are several such vectors x, we could ask for the one among them with
the smallest Euclidean norm. Thus formulated, the problem has a unique solution,
given by the pseudoinverse:

x = A+b.

This description suggests the following geometric construction of the pseudoinverse
of an m× n matrix A. To find A+b for given b in <m, first project b orthogonally
onto the range of A, finding a point p(b) in the range. Then form A−1(p(b)), i.e.
find those vectors in <n that A sends to p(b). This will be an affine subspace of
<n parallel to the kernel of A. The element of this subspace that has the smallest
length (i.e. is closest to the origin) is the answer A+b we are looking for. It can be
found by taking an arbitrary member of A−1(p(b)) and projecting it orthogonally
onto the orthogonal complement of the kernel of A [124].

Using the pseudoinverse and a matrix norm, one can define a condition number
for any matrix:

cond(A) = ‖A‖‖A+‖.

A large condition number implies that the problem of finding least-squares solu-
tions to the corresponding system of linear equations is ill-conditioned in the sense
that small errors in the entries of A can lead to huge errors in the entries of the
solution.

The pseudoinverse is one way to solve linear least squares problems.

38 4 Strategies and approaches to multicore architectures

4.1.2 Pseudoinverse

In mathematics, and in particular linear algebra, the pseudoinverse A+ of an m×n
matrix A is a generalization of the inverse matrix. The most commonly encountered
pseudoinverse is the Moore-Penrose matrix inverse [75,86], which is a special case
of a general type of pseudoinverse known as a matrix 1-inverse.

A common use of the pseudoinverse is to compute a “best fit” (least squares)
solution to a system of linear equations that lacks a unique solution. The pseu-
doinverse is defined and unique for all matrices whose entries are real or complex
numbers.

Definition

The pseudoinverse A+ of an m-by-n matrix A (whose entries can be real or complex
numbers) is defined as the unique n-by-m matrix satisfying all of the following four
criteria:

1. AA+A = A (AA+ need not be the general identity matrix, but it maps all
column vectors of A to themselves);

2. A+AA+ = A+ (A+ is a weak inverse for the multiplicative semigroup);
3. (AA+)∗ = AA+ (AA+ is Hermitian); and
4. (A+A)∗ = A+A (A+A is also Hermitian).

where M∗ = is the Hermitian transpose (conjugate transpose) of M . For matrices
of real numbers the relation M∗ = MT holds.

4.2 Applications

We stated that the inverse problem is used in many different applications, spe-
cially when a model for a physical system is needed, and the use of the matrix
pseudoinverse can be applied when the relationship between data and parameters
is linear. The pseudoinverse in fact provides a least squares solution to a system
of linear equations. The pseudoinverse, however, is used in many other fields. In
general its utilization spans from signal processing to pattern recognition, from
geophysics to astronomy, from image processing to robotics. It is in these last two
research areas that the pseudoinverse keeps maintaining a strong importance and
in the following we present a couple of specific examples.

4.2.1 Image processing

There are several example of the use of matrix pseudoinversion in the field of
image processing. For instance it is used in image restoration and face recognition.
However the most interesting and challenging utilization is in the field of image
reconstruction, in particular in medical imaging. Medical imaging is the technique
and process used to create images of the human body (or parts and function
thereof) for clinical purposes or medical science. The possible applications span

4.2 Applications 39

from medical procedures seeking to reveal, diagnose or examine disease to the
study of normal anatomy and physiology. Since medicine and surgery are possible
target for perception based teleoperation, and computer aided surgery is one of
our main motivation for this study, we briefly present an example of the use of
linear least square, thus matrix pseudoinversion, in Diffusion Tensor Imaging.

The Diffusion Tensor Model

Diffusion MRI is a magnetic resonance imaging (MRI) method that produces in
vivo images of biological tissues weighted with the local microstructural character-
istics of water diffusion. Since 1965 it has been recognized that the diffusion prop-
erties of water in structured samples measured with NMR are more adequately
described by a tensor than a scalar value. However, it was not until 1992 that
Basser and colleagues showed how such a tensor can be estimated from a series of
diffusion weighted signals using linear regression (See example in Figure 4.1). A
key component in the estimation of the tensor is the calculation of the coupling
between the signal attenuation and the elements of the diffusion tensor for a given
gradient amplitude, duration, and separation. As the tensor is symmetric, there
are only six unknown elements to determine. These are estimated from a series
of diffusion-weighted images acquired with gradients applied in non-collinear and
non-coplanar directions. The idea that to find n unknown variables in linear al-
gebra, at least n simultaneous equations should be solved is a concept familiar
to all, and the same applies when estimating the diffusion tensor from MR data.
Thus, the minimum number of diffusion-encoding images required for estimating
the elements of the tensor is six.

Fig. 4.1. Detail of the NMR image of the brain: on the left the structure as appear in
the medical scan, on the right the representation of the tensors with ellipsoids, whose
orientation reflects the neural fibers directions [51]

If X is a vector of the signal intensities, B is a matrix with the number of rows
equal to the number of measurements of the signal, and six columns, and D is a

40 4 Strategies and approaches to multicore architectures

vector containing the elements of the diffusion tensor then we can summarize the
relationship between the set of observed signals and the elements of the diffusion
tensor via the expression: X = BD. The simplest estimation approach is simply to
solve the equation by taking the inverse of B, i.e. D = B(−1)X. This approach is
fine if we have exactly six measurements such that the matrix B is square. However,
the number of data we fit to the model is exactly the same as the number of fit
parameters, so we will fit the data “exactly”, and that includes the perturbations
due to noise. It is usual, therefore, to acquire more than the bare minimum number
of measurements in order to improve the signal to noise ratio. However this results
in the matrix B no longer being square. In particular the matrix is rectangular
with more equations n, than unknowns k. Thus we are in the first case of the list
we presented above: if k < n, then the system is overdetermined and there is no
solution. More precisely, there is no “exact” solution. In fact we do not expect that
an exact solution exists, since the multiple measurements have the aim to lower
the bad contribution due to noise. What we need is an approximation that best fit
data collected. In this case, the tensor is found by computing the pseudo-inverse
of the matrix B, i.e., D = (BT B)(−1)BT X. This ordinary least squares approach,
is extremely rapid and allows for vectorization of the estimation and is therefore
prevalent in many popular software packages.

4.2.2 Robotics: the Jacobian matrix

The Jacobian matrix is the matrix of all first-order partial derivatives of a vector-
valued function. Its importance lies in the fact that it represents the best linear
approximation to a differentiable function near a given point.

∂y1
∂x1

· · · ∂y1
∂xn

...
. . .

...
∂yn

∂x1
· · · ∂yn

∂xn


The Jacobian is one of the most important quantities in the analysis and control

of robot motion. It arises in virtually every aspect of robotic manipulation: in the
planning and execution of smooth trajectories, in the determination of singular
configurations, in the execution of coordinated anthropomorphic motion, in the
derivation of the dynamic equations of motion [104].

Moreover, interaction of the manipulator with the environment produces forces
and moments at the end effector or tool. These, in turn, produce torques at the
joints of the robot. The manipulator Jacobian has an important role in the quanti-
tative relationship between the end effector forces and joint torques. This relation-
ship is important for the development of path planning methods, the derivation of
the dynamic equations and in the design of force control algorithms.

In robotics the Jacobian is a 6 × n matrix, with n the number of joints. For
a six joints manipulator, such as an antropomorfic arm, the Jacobian is a square
matrix. Configurations for which rank J(q) is less than its maximum value are
called singularities or singular configurations.

• Singularities represent configurations from which certain directions of motion
may be unattainable.

4.2 Applications 41

• At singularities, bounded end-effector velocities may correspond to unbounded
joint velocities.

• At singularities, bounded joint torques may correspond to unbounded end-
effector forces and torques.

• Singularities often correspond to point on the boundary of the manipulator
workspace, that is, to points of maximum or minimum reach of the manipulator.

• Singularities correspond to points in the manipulator workspace that may be
unreachable under small perturbations of the link parameters, such as length,
offset, etc.

When the Jacobian is not full rank it is not invertible. Thus determining the
rank of the Jacobian is crucial for the control of the robot. Unfortunately the rank
cannot be always determined exactly because it can be easily altered by an arbi-
trary small perturbation. Using the terminology presented above the Jacobian is
ill-conditioned. This happens in particular when the Jacobian is not full column
or row rank, but also a full rank matrix can be affected by this problem.

There is another situation in which the inverse of the Jacobian is not defined,
even if the robot is not in a singular configuration: when the manipulator has not
six joints. In particular in the case of redundant robots the matrix is rectangular,
and this happens independently from the current configuration of the robot.

Summarizing the robotic Jacobian matrix is:

• usually ill-conditioned
• not invertible at singular configuration (depending on the task) or in the case

of redundant robots.

These conditions can be problematic in the presence of an inverse problem.

Kinematics

The kinematic description of a robotic manipulator is the relationship that relates
velocity, position and orientation of the end effector to the joint variables of the
robot. The relationship that determines the joint variables given the end effector
information is called forward kinematics, the viceversa is known as inverse kine-
matics.

The Jacobian relationship
ξ = Jq̇ (4.1)

specifies the end-effector velocity that will result when the joints move with velocity
q̇. The inverse velocity problem is the problem of finding the joint velocities q̇
that produce the desired end-effector velocity. When the Jacobian is square and
nonsingular, this problem can be solved by simply inverting the Jacobian matrix
to give

q̇ = J−1ξ

For manipulators that do not have exactly six joints, the Jacobian cannot be
inverted. In this case there will be a solution to Equation 4.1 if and only if ξ lies in

42 4 Strategies and approaches to multicore architectures

the range space of the Jacobian. This can be determined by the following simple
rank test. A vector ξ belongs to the range of J if and only if

rankJ(q) = rank[J(q)|ξ]

in other words, Equation 4.1 may be solved for q̇ ∈ Rn provided that the rank
of the augmented matrix [J(q)|ξ] is the same as the rank of the Jacobian J(q).

For the case when n > 6 we can solve for q̇ using the right pseudoinverse of J .
To construct this pseudoinverse, we use the fact that when J ∈ Rm×n, in m < n

and rank J = m, then (JJT)−1 exists. In this case (JJT) ∈ Rm×n, and has rank
m. Using this result, we can regroup terms to obtain

I = (JJT)(JJT)
−1

= J [JT (JJT)
−1

]
= JJ+

Here, J+ = JT (JJT)−1 is called a right pseudoinverse of J , since JJ+ = I.
A solution to Equation 4.1 is given by

q̇ = J+ξ + (I − J+J)b (4.2)

in which b ∈ Rn is an arbitrary vector.
Equation 4.2 indicates that the resultant joint velocities can be decomposed

into a combination of the least squares solution of minimum norm, plus a homo-
geneous solution created by the action of a projection operator (I − J+J)b, which
describes the redundancy of the manipulator system. If the Jacobian is a square
and nonsingular matrix then the projector operator is equal to the null operator
and Equation 4.2 reduces to

q̇ = J−1ξ

where J−1 is the 6× 6 inverse Jacobian matrix.
In general, for m < n, (I − J+J) 6= 0, and all vectors of the form (I − J+J)b

lie in the null space of J . This means that, if q̇′ is a joint velocity vector such that
q̇′ = (I − J+J)b, then when the joints move with velocity q̇′, the end effector will
remain fixed since Jq̇′ = 0. Thus, if q̇ is a solution to Equation 4.1, then so is q̇+ q̇′

with q̇′ = (I − J+J)b, for any value of b. If the goal is to minimize the resulting
joint velocities, we chose b = 0 [104].

Dynamics

The dynamic model of a manipulator is the set of relationships that relates the
motion of the robot to the actuation torques of the joints and, possibly, to the forces
acting on the end effector. The dynamic equations can be used for simulating
the motion of the manipulator or for controlling the real robot. The forward
dynamics determines accelerations, velocities and positions of the joints when the
joints torques and the forces exerted to the end effector are given. The inverse
dynamics determines the joint torques that are needed in order to obtain a specific
motion, in terms of position, velocities and accelerations, of the robot, given the

4.2 Applications 43

forces exerted to the end effector. Since we just want to provide another possible
utilization of the pseudoinverse of the Jacobian matrix, a precise definition and
explanation of the manipulator dynamics is out of the scope of this discussion.

For our purpose it is interesting to note that the dynamic equations can be
expressed with respect to joint space or Cartesian space. The latter is used in
particular when multiple robots have to be controlled. For instance, this can be
the case when the operator uses an haptic device with each hand and this is a
common setup in robotic aided surgery.

The dynamic model of a manipulator expressed in Cartesian space is:

BA(x)ẍ + CA(x, ẋ + gA(x) = γA − hA (4.3)

with

BA = J−T
A BJ−1

A

CAẋ = J−T
A Cq̇ −BAJ̇Aq̇

gA = J−T
A g

where JA is the Jacobian, B is the mass matrix of the manipulator, C is a vector
of centrifugal and Coriolis terms, g is a vector of gravity terms, h is the vector of
the interaction forces between the end effector and the environment, and γA is the
contribution to the end effector’s forces due to joint torques. J−1

A and J−T
A are the

inverse and the inverse transpose of the Jacobian respectively.
In [22] an example of the application of this approach to control is presented.

In the paper the authors use two robots, one with the original industrial controller,
the second with a connection between the controller and the PC, in order to afford
the computation requested by this formulation.

However, since BA exists only if the matrix JA is full rank and hence invertible,
Equation 4.3 can be applied only to non redundant manipulators that are not in
singularity. The modifications to Equation 4.3 needed in order to consider also
these cases lead, after several simplifications omitted for shortness to the following
equation:

τ = JT
A

+
γA + (I − JT

A

+
J

T

A)τa (4.4)

where JT
A

+ is the right pseudoinverse of J
T

A.
Equation 4.4 indicates that the resultant torques can be decomposed into a

combination of the least squares solution of minimum norm, plus a homogeneous
solution created by the action of a projection operator, which describes the re-
dundancy of the manipulator system. The choice of the value of τA defines the
strategy for the handling of the internal motion of the joints, due to redundancy.
It is easy to notice that this is the very same approach we found in Equation 4.2
for the kinematic problem.

These two examples illustrate that one of the most important quantities in
robotics, the Jacobian matrix, requires efficient and deterministic pseudoinverse
computation to be effective. Moreover the needs for the matrix pseudoinverse is
particularly important in those cases, such as at singular configurations and for a
good management of the redundancy, that are crucial in a teleoperated task.

44 4 Strategies and approaches to multicore architectures

4.3 Finding the pseudoinverse of a matrix

We have seen that the matrix pseudoinversion is an important instrument in the
solution of the inverse problem and that its application is valuable in several fields,
and in particular in robotics.

From its formalization, in the 50s many scientific articles about mathematical
properties, relationships and special forms of the Moore-Penrose pseudoinverse
have been proposed. At the same time there has been a specific research aimed
at the algorithmic and computational approach to matrix pseudoinversion. Many
efforts were spent in finding solutions for the specific application, exploiting the
characteristics of the given matrix, but when considering more general approaches
the most used method are:

1. The QR method
2. Iterative methods
3. Updating the pseudoinverse
4. The Singular Value Decompostion method

The first two solutions are more sensitive to ill-conditioning, thus let us con-
sider the last two choices.

Updating the pseudoinverse

For the cases where A has full row or column rank, and the inverse of the correlation
matrix (AA∗ for A with full row rank or A∗A for full column rank) is already
known, the pseudoinverse for matrices related to A can be computed by applying
the Sherman-Morrison-Woodbury formula to update the inverse of the correlation
matrix, which may need less work. In particular, if the related matrix differs from
the original one by only a changed, added or deleted row or column, incremental
algorithms exist that exploit the relationship. Similarly, it is possible to update
the Cholesky factor when a row or column is added, without creating the inverse
of the correlation matrix explicitly. However, updating the pseudoinverse in the
general rank-deficient case is much more complicated.

Singular Value Decomposition

A computationally simpler and more accurate way to get the pseudoinverse is by
using the Singular Value Decomposition (SVD). SVD is a factorization of a rect-
angular real or complex matrix.

Suppose A is an m-by-n matrix whose entries come from the field K, which is
either the field of real numbers or complex numbers. Then there exists a factor-
ization of the form

A = UΣV ∗,

where:
U is an m-by-m unitary matrix over K

4.3 Finding the pseudoinverse of a matrix 45

Σ is m-by-n diagonal matrix with non negative numbers on the diagonal
V ∗ denotes the conjugate transpose of V , an n-by-n unitary matrix over K.

The SVD is typically computed by a two-step procedure: a bidiagonal reduc-
tion is computed first and than the resulting matrix is decomposed into SVD by
applying an iterative method. The stop condition of the iterative procedure is usu-
ally the satisfaction of a certain precision. In many cases the precision required is
the machine epsilon. Many variations and computation improvements have been
proposed, resulting in very optimized software libraries and specific algorithmic
procedures. In particular, implementations based on Givens and Jacobi rotations
are used in order to make the process more parallel, and thus exploiting new
architectures and improving performance.

The pseudoinverse of the matrix A with singular value decomposition M =
UΣV ∗ is

A+ = V Σ+U∗,

For a diagonal matrix such as Σ, we get the pseudoinverse by first transposing
the matrix, and then taking the reciprocal of each non-zero element on the diago-
nal, and leaving the zeros in place. In numerical computation, only elements larger
than some small tolerance are taken to be nonzero, and the others are replaced by
zeros. Usually the tolerance is taken to be t = ε max(m,n) max(Σ), where ε is the
machine epsilon. In presence of ill-conditioned matrix the tolerance can have bad
influence on the correctness of the result.

From a performance point of view, the cost of computing the pseudinverse is
largely dominated by the calculation of the SVD decomposition, when an optimized
implementation of matrix-matrix multiplication such as LAPACK is used.

The above procedure shows why taking the pseudoinverse is not a continuous
operation: if the original matrix A has a singular value 0 (a diagonal entry of the
matrix Σ above), then modifying A slightly may turn this zero into a tiny positive
number, thereby affecting the pseudoinverse dramatically as we now have to take
the reciprocal of a tiny number. Special care has to be taken when the matrix is
ill-conditioned.

A combination of this method and the precedent one, applied to the robotic
field, has been proposed in [14].

Thanks to the application in other fields, such as statistics and regularization
methods, and to the availability of good software libraries, the SVD is certainly
the most known and used method for matrix pseudoinversion. Among its esteems
there is in particular the fast execution time. The SVD approach has, however,
some drawbacks and one in particular is crucial when dealing with robotic appli-
cations: SVD factorization is based mainly on iterative methods, and there is no
guarantee that the procedure terminates in a given period. Of course the conver-
gence speed depends on the present values of the matrix, and although on average
the computation results fast with most of the configurations, slow convergence or
divergence are also possible. This is an important issue in real-time systems where
determinism and ability of meet deadlines is crucial, and teleoperation, haptics
and robotics rely on these requirements.

46 4 Strategies and approaches to multicore architectures

4.4 Decell algorithm

The most used algorithms for the matrix pseudoinverse computation can present
convergence issues and, in general, are difficult to parallelize. An alternative so-
lution is to look for some less known algorithm, as we suggested in Section 3.1.3.
Among others [11], in our research we found an interesting approach that dates
back to the 60s: the Decell algorithm.

The work of Decell starts with the definition of the following theorem:

Theorem 4.1. Let A be any n-by-m complex matrix and let

f(λ) = (−1)n(a0λ
n + a1λ

n−1 + · · ·+ akλn−k + · · ·+ an−1λ + an)

with a0 = 1 be the characteristic polynomial of AA∗. If k 6= 0 is the largest integer
such that ak 6= 0, then the generalized inverse of A is given by

A† = −a−1
k A∗[(AA∗)k−1 + a1(AA∗)k−2 + · · ·+ ak−1I].

If k = 0 is the largest integer such that ak 6= 0, then A† = 0.

The proof uses the Cayley-Hamilton theorem [30,31].
On the base of the mathematical result, Decell developed an algorithm for

the generation of the pseudoinverse A+, given a p × n matrix A with n ≥ p: the
algorithm consists in computing a sequence of matrices A0, A1, . . . , Ak as follows:

A0 = Z, −1 = q0, B0 = I;
A1 = AA∗, traceA1 = q1, B1 = A1 − q1I;

A2 = AA∗B1,
traceA2

2
= q2, B2 = A2 − q2I;

...
...

... (4.5)

Ak−1 = AA∗Bk−2,
traceAk−1

k − 1
= qk−1, Bk−1 = Ak−1 − qk−1I;

Ak = AA∗Bk−1,
traceAk

k
= qk, Bk = Ak − qkI.

where 1 ≤ i ≤ k, I is a p × p identity matrix and k is the rank of A and the ∗

operation is the transposition for matrices of real numbers. Decell points out that
qi = −ai in Theorem 4.1.

Hence the pseudoinverse is given by

A+ = −a−1
k A∗Bk−1 (4.6)

Since the rank of A can be not known a priori, the iteration is continued until
the matrix product A1Bi, where A1 = AA∗, becomes a zero matrix for some
i, i = 1, 2, . . . , k. The termination of the iteration will determine k as well. In any

4.4 Decell algorithm 47

case it is proven that the procedure requires exactly (K + 1) iterations. This is
a perfect approach to our problem. Let us consider in fact the Jacobian matrix
of a redundant manipulator or a haptic device. The rank of the matrix is the
minimum between 6 and the number of joints, at non singular configurations.
During the motion of the robot, when a singularity is encountered the rank is
lowered under the previous value. Thus, given a kinematic structure the time spent
in the computation of the pseudoinverse of the Jacobian is at most the time spent
in min(6, dof) iterations, plus the computation of Equation4.6, that can be carried
out in fixed time. If the real-time deadline for the controller is correctly chosen or,
the other way round given a specific controller rate, if the implementation is able
to fulfill the computation of the “worst case” correctly, the algorithm is reliable.

The main drawback of this approach is that in order to determine the rank
of the matrix, and hence in order to stop the iteration, the product A1Bi has
to be exactly zero. Unfortunately in presence of roundoff errors some elements
of the products may be small but not equal to zero. The algorithm may suffer
from numerical instability and this combines badly with the ill-conditioning of the
Jacobian matrix.

In order to use the Decell algorithm while performing the computation of the
exact solution of the pseudinversion, the application of some error free techniques
is needed. In signal processes and filter design, the residue number system (RNS)
is the most popular solution to the numerical instability problem [103].

4.4.1 Residue Number System

A residue number system (RNS) is used to represent a large integer using a set of
smaller integers, so that the computation may be performed more efficiently. RNS
have applications in the field of digital computer arithmetic. By decomposing a
large integer into a set of smaller integers, a large calculation can be performed as a
series of smaller calculations that can be performed independently and in parallel.
This makes RNS particularly popular in hardware implementations. Moreover,
since in each small computation the arithmetic range is reduced, the calculation
has an higher numerical stability.

Definition 4.2. Given any integer x and any modulus m, if r ≡ x mod m and
0 ≤ r < m, then we write r = |x|m and say r is a residue of x modulo m [23].

This defines a single-modulus residue arithmetic that involves only non-
negative integers. The definition of signed integers is possible through the Sym-
metric Residues Modulo m.

Definition 4.3. Given any integer x and any modulus m, if r ≡ x(mod m) and

−1
2
m ≤ r ≤ 1

2
m

then we write r = /x/m and say r is a symmetric residue of x modulo m.

In order to perform all the computation needed by our algorithm it is necessary
to define the multiplicative inverse as follows [108]:

48 4 Strategies and approaches to multicore architectures

Definition 4.4. Assume x, y, and m > 1 are integers, and if 0 < y < m and
|xy|m = |yx|m = 1, then we write y = x−1(m) and say y is a multiplicative
inverse of x modulo m.

The uniqueness of the multiplicative inverse is granted if m is a prime number.
It is also possible to perform integer division to a limited extent [56].
These last properties are also suitable for symmetric residue representation.

A given integer number can be expressed with respect to several different mod-
uli at once, leading to the definition of the concept of multiple-modulus arithmetic:

Definition 4.5. Let m1,m2, . . . ,mL be the base for a residue number system,
where gcd(mi,mj) = 1 for i 6= j, and M = m1m2 . . .mL =

∏L
i=1 mi.

The unique L-tuple residue arithmetic representation of x is given by x ∼
{|x|m1

, |x|m2
, . . . , |x|mL

} where ri = |x|mi.
The representation also holds true for the symmetric residue system.

Arithmetic representation can be decomposed linearly into an equivalent one
containing many components, each with a relatively small arithmetic range [61,
108].
This decomposition leads to a number of parallel and independent pseudoinverse
computations, each of them applying the residue arithmetic which allows the use
of short registers and simple arithmetic operations. Furthermore, since the de-
composition is linear, the final pseudoinverse results for each parallel computation
can be linearly recombined back together, yielding the desired pseudoinverse re-
sult (see Figure 4.2). To achieve this objective the multiple-modulus symmetric
residue arithmetic defined above can be used. The use of RSN for the correct com-
putation of matrix pseudoinverse was analyzed in [90, 106]. One important issue
regarding the multiple-modulus representation of the numbers is due to the correct
choice of the range M = m1m2 . . .mL and the selection of the bases or moduli mi,
1 ≤ i ≤ L, which are critical to the success of the method. These problems have
been extensively studied and there are rules, based on the arithmetic range of the
integer to be represented in moduli, that can be used [106].

The recombination phase can be implemented using different algorithms but
mainly the Chinese Reminder Theorem and the Mixed Radix Recomposition pro-
cedure.

Summarizing, the advantages in the use of the residue number system are the
ability to perform an error free computation even in presence of a numerical unsta-
ble algorithm, and the possibility to use simpler operation and, from a hardware
point of view, short registers.

The main drawback of this approach is the requirements for a RNS arithmetic.
Usually the libraries of mathematic functions available on modern PC do not
provide native support for operations in moduli. In order to implement the Decell
algorithm exploiting RSN and arithmetic decomposition the missed arithmetic
has to be implemented from scratch. However it is worth noticing that RNS is
used in several applications, from signal processing to cryptography although, for
computation reasons, it was used mainly in hardware. With the introduction of

4.4 Decell algorithm 49

Fig. 4.2. Parallel Decell schema

new architecture capable of impressive performance, it is predictable that new
software libraries will be available soon.

This implicit requirements of the RSN implementation made the Decell al-
gorithm less attractive for traditional architecture, except for ASIC realizations.
In fact in SISD processors the computation of the pseudoinversion represented
in each base had to be performed sequentially and the advantage of short regis-
ter operation had not a great impact in general purpose uniprocessor machines.
In alternative, the utilization of high precision floating point operations was not
a complete guarantee of error free computation and did not provide fast perfor-
mance anyway. Considering all these problems it was natural to opt for a more
efficient method, such as SVD, for determining the pseudoinverse matrix in those
application in which determinism and real-time were not an issue. Meanwhile very
optimized and suboptimal solutions where considered for robotic control and ap-
plications. With new multicore architectures and vector processors an efficient
implementation of Decell algorithm is possible anew, and the use of short vec-

50 4 Strategies and approaches to multicore architectures

tor operation permits to use SIMD register to exploit the parallelism due to the
presence of many matrix multiplications.

In [23] the authors presented an implementation in VLSI of the Decell algorithm
in the residue number system. Our idea is that it is possible to implement the same
algorithm in a modern multicore processor carefully designing the implementation
and exploiting both task and data parallelism available. In order to obtain good
performance without very specific target oriented fine tuning, we suggest to mimic
the implementation in VLSI of the operations needed using the intrinsic functions
of the programming language that are generic enough to be available for other
platforms too.

4.5 Parallel hardware architectures

In the last Section we identified an algorithm that is useful for our robotic appli-
cation and that seems to be suitable for parallel implementation. Now, in order to
implement it we need to choose a hardware architecture. We would like to stress
that we are not taking this decision on the base of the algorithm we want to im-
plement. In fact, as stated previously, it is important to separate the programming
model from the processing model, and think of the abstract organization of the
program apart form the target machine. For this reason in the next Chapter we
will analyze the parallelism present in the algorithm in order to understand how
to exploit it. What we are describing here is the choice of an architecture that, in
our opinion, can be useful in general for robotic applications.

In Chapter 3 we presented a classification of parallel architectures and we
provided some examples of actual hardware realization. In particular we identified
three platform that are the state of the practice of multicore systems and that
represent a further step into the diffusion of parallel architecture thanks to their
large availability and relative low price:

• Field Programmable Gate Array (FPGA)
• GPU (or GPGPU)
• Cell Broadband Engine

(a) FPGA (b) GPU (c) CBE

Fig. 4.3. Multicore architectures

4.5 Parallel hardware architectures 51

These architectures share some parallelization strategies while thy are very
different under other aspect.

4.5.1 FPGA

A field-programmable gate array (FPGA) is an integrated circuit designed to be
configured after manufacturing. The FPGA configuration is generally specified us-
ing a hardware description language (HDL), similar to that used for an application-
specific integrated circuit (ASIC). FPGAs can be used to implement any logical
function that an ASIC could perform. FPGAs contain programmable logic com-
ponents called “logic blocks”, and a hierarchy of reconfigurable interconnects that
allow the blocks to be wired together, somewhat like a one-chip programmable
breadboard. Logic blocks can be configured to perform complex combinational
functions, or merely simple logic gates like AND and XOR. In most FPGAs, the
logic blocks also include memory elements, which may be simple flip-flops or more
complete blocks of memory.

In Chapter 2.2.1 we explained that we used an innovative hardware/software
structure to control an actuated 6 dof joystick. An FPGA was used to handle both
low level tasks and algorithmic part that included forward kinematics and force
feedback computations. Although we obtained very good results in terms of per-
formance, we encountered some problems during the development of the system.
The most critical issue was about the resources available on the board. Our recon-
figurable board was based on a Virtex II FPGA with one million gates. That was
a considerable number of logic components, however there were a limited num-
ber of specific blocks. For instance the 18 bit multipliers were only forty, thus it
was difficult to fully exploit the parallelism present in the algorithm. The FPGA
required a specific graphical programming language, LabVIEW, that clearly repre-
sents parallelism and data flow, without low-level hardware description languages
or board-level design. It allows non skilled programmer to easily configure the
FPGA but, on the other side, it hides many structures and prevent a low level
access to the hardware. It permits to import VHDL code and IP cores but with
limitations. One main problem was that LabVIEW for FPGA was not available
under GNU/Linux platform. This not only prevent the development of the code
on GNU/Linux machines but also limited the interaction with them, since all the
communication among the FPGA and the host via PCI was controlled runtime by
LabVIEW. Since our setup was based on RTAI and GNU/Linux it was necessary
to use digital I/O ports in order to provide the board with parallel interface, at
the cost of an high usage of logic blocks. As a result it was not possible to run
the code for the forward kinematic and the code for the force feedback to once. In
addition we needed to optimize a lot the algorithm making it customized for the
specific haptic hardware.

Considering this past experience we think that FPGAs, that are growing in
terms of resources, can give better results when combined with microcontrollers,
memory and I/O modules on System on Chip board (SoC). There are not many
SoC products available on the market at affordable price, thus it is still hard to find
a good solution. In addition the programming languages used to program FPGA
are still quite far from standard high level languages even if some interesting project

52 4 Strategies and approaches to multicore architectures

such as SystemC exists. In general it is difficult to compare FPGAs programming
to general software development for PCs, thus the implementation of FPGA code
still requires specific skills.

4.5.2 GPU or GPGPU

General-purpose computing on graphics processing units (GPGPU, also referred
to as GPGP) is the technique of using a GPU, typically specialized in computer
graphics elaboration, to perform computations for applications traditionally han-
dled by the CPU. It is made possible by the addition of programmable stages
and higher precision arithmetic to the rendering pipelines, which allows software
developers to use stream processing on non-graphics data.

This type of parallel processor is used in several application fields and in par-
ticular in physical simulations and interactive photorealistic rendering. The wide
availability of the boards, that nowadays are present in many home computers,
their low cost and the push to development given by the entertainment industry, in
particular for videogames, have largely contributed to the success of this multicore
architecture. The results obtained in the early implementations have pushed to-
wards the use of this board for many scientific applications, with stunning results
in terms of speed.

In addition, several high-performance libraries have been implemented for
GPGPU programming. The CUDA system from NVIDIA, for instance, is a high-
level language based on an extension of C in which certain functions are identified
using a special syntax as stream functions. Application of these functions to arrays
then invokes parallel computations on an NVIDIA GPU. CUDA is based on an
SPMD stream processing model but includes extensions that allow the specifica-
tion of thread blocks that in practice will execute together on a single processor
element using SIMD masking.

The main robotic applications are related to simulation, since the GPGPU
can generate good physics simulations that combine well with the more classical
three-dimensional graphics part, providing a complete virtual experience.

The main drawback of the use of GPGPU is due to the memory and cache
management. For instance, in GPUs caches are supported, but there are separate
read and write caches, and no guarantees are made that data written will be avail-
able immediately in a read from the same location unless specific steps are taken
to flush the data from the write cache and invalidate the read cache. Generally, on
a GPU, it is best to separate the computation into discrete passes and separate
input and output memory locations for each pass. The need for synchronization
and guards leads to a not really predictable execution timing. This is almos un-
noticeable in 3D applications, due to the relatively low refresh rate, but can be a
problem when real-time constraints and 1 KHz control loop are required.

However GPGPUs are one of the most promising parallel hardware architecture
on the market.

4.5.3 IBM CBEA

The Cell Broadband Engine (CBE) processor is the first implementation of a
new multiprocessor family conforming to the Cell Broadband Engine Architec-

4.5 Parallel hardware architectures 53

ture (CBEA). The CBEA is a new architecture that extends the 64-bit PowerPC
ArchitectureTM. The CBEA and the CBE processor are the result of a collabo-
ration between Sony, Toshiba, and IBM known as STI, formally begun in early
2001. Cell combines a general-purpose Power Architecture core with streamlined
coprocessing elements which greatly accelerates multimedia and vector processing
applications, as well as many other forms of dedicated computation.

The first implementation, the CBE processor, is a single-chip multiprocessor
with nine processor elements operating on a shared, coherent memory, as shown in
a high-level block diagram in Figure 4.4. In this respect, the CBE processor extends
current trends in PC and server processors. The most distinguishing feature of
the CBE processor is that, although all processor elements share memory, their
function is specialized into two types:

• the Power Processor Element (PPE)
• the Synergistic Processor Element (SPE)

The CBE processor has one PPE and eight SPEs.
This configuration permits to classify the Cell processor as a heterogeneous

multicore machine.

Fig. 4.4. Diagram of the Cell Broadband Engine Processor. It shows the connection
topology of the cores and the location of different types of memory

The first type of processor element, the PPE, contains a 64-bit PowerPC Ar-
chitecture core. It complies with the 64-bit PowerPC Architecture and can run
32-bit and 64-bit operating systems and applications. The second type of pro-
cessor element, the SPE, is optimized for running computation-intensive SIMD
applications; it is not optimized for running an operating system. The SPEs are
independent processor elements, each running their own individual application pro-
grams or threads. Each SPE has full access to coherent shared memory, including
the memory-mapped I/O space. There is a mutual dependence between the PPE

54 4 Strategies and approaches to multicore architectures

and the SPEs. The SPEs depend on the PPE to run the operating system, and,
in many cases, the top-level thread control for an application. The PPE depends
on the SPEs to provide the bulk of the application performance.

The SPEs are designed to be programmed in high-level languages, such as
(but certainly not limited to) C/C++. They support a rich instruction set that
includes extensive SIMD functionality. However, like conventional processors with
SIMD extensions, use of SIMD data types is preferred, not mandatory. For pro-
gramming convenience, the PPE also supports the standard PowerPC Architecture
instructions and the vector/SIMD multimedia extensions.

To an application programmer, the CBE processor looks like a 9-way coherent
multiprocessor. The PPE is more adept than the SPEs at control-intensive tasks
and quicker at task switching. The SPEs are more adept at compute-intensive
tasks and slower than the PPE at task switching. However, either processor el-
ement is capable of both types of functions. This specialization is a significant
factor accounting for the order-of-magnitude improvement in peak computational
performance and chip-area-and-power efficiency that the CBE processor achieves
over conventional PC processors.

The more significant difference between the SPE and PPE lies in how they
access memory. The PPE accesses main storage (the effective-address space) with
load and store instructions that move data between main storage and a private
register file, the contents of which may be cached. The SPEs, in contrast, ac-
cess main storage with direct memory access (DMA) commands that move data
and instructions between main storage and a private local memory, called a local
store or local storage (LS) that has no associated cache. This 3-level organiza-
tion of storage (register file, LS, main storage), with asynchronous DMA transfers
between LS and main storage, is a radical break from conventional architecture
and programming models, because it explicitly parallelizes computation with the
transfers of data and instructions that feed computation and store the results of
computation in main storage. In addition, since in SPE computation there are no
cache misses, automatic memory paging and task preemption, if the programmer
carefully handles LS the program execution is very predictable and hence “almost”
real-time.

The element interconnect bus (EIB) is the communication path for commands
and data between all processor elements on the CBE processor and the on-chip
controllers for memory and I/O. The EIB supports full memory-coherent and
symmetric multiprocessor (SMP) operations. Thus, a CBE processor is designed
to be grouped with other CBE processors to produce a cluster.

By distinguishing and separately optimizing control-plane and data-plane pro-
cessor elements, the CBE processor mitigates the problems posed by power, mem-
ory, and frequency limitations. The net result is a multiprocessor that, at the
power budget of a conventional PC processor, can provide approximately ten-
fold the peak performance of a conventional processor. Of course, actual appli-
cation performance varies. Some applications may benefit little from the SPEs,
whereas others show a performance increase well in excess of ten-fold. In general,
compute-intensive applications that use 32-bit or smaller data formats (such as
single-precision floating-point and integer) are excellent candidates for the CBE
processor.

4.6 Conclusions 55

It is common to run a main program on the PPE that allocates threads to
the SPEs. In such an application, the main thread is said to spawn one or more
CBE tasks. A CBE task has one or more main threads associated with it, along
with some number of SPE threads. An SPE thread is a thread that is spawned
to run on an available SPE. The software threads are unrelated to the hardware
multithreading capability of the PPE.

A main thread can interact directly with an SPE thread through the SPE’s
LS. It can interact indirectly through the main-storage space. A thread can poll
or sleep, waiting for SPE threads. The operating system defines the mechanism
and policy for selecting an available SPE. It must prioritize among all the CBE
applications in the system, and it must schedule SPE execution independently from
regular main threads. The operating system is also responsible for runtime loading,
passing parameters to SPE programs, notification of SPE events and errors, and
debugger support.

CBE combines MIMD and SIMD capabilities and thus permits to exploit task
and data parallelism. As stated before the SPEs computation is very fast and
reliable. In addition the Cell can be used as a very powerful co-processors, since it
can be added as an expansion board to standard PC. Thus a combination of a CPU
for the operating system, a Cell processor for the most computationally intense
algorithms and GPU for simulations and graphics are a possible scenario of the
future generation of robotic and haptic controllers. In this sense, and considering
its heterogeneous nature, the Cell processor represents a good testbench for parallel
algorithms. In another application area, the videogame console Sony Playstation
3 presents partially this configuration since it is equipped with a Cell processor
and a NVIDIA GPU.

4.6 Conclusions

In this Chapter we presented an interesting algorithm for the matrix pseudoin-
version that uses arithmetic decomposition and residue number system represen-
tation. The Decell algorithm can be used to exactly calculate the pseudoinverse
of the Jacobian matrix while giving an upper bound limit to the execution time
of the computation. This is useful in many robotic applications form kinematics
to dynamics and control. Moreover we identified in the Cell Broadband Engine
processor an appealing parallel architecture that in the future can be used to pro-
vide advanced computation capabilities for instance to the controllers of haptic
and robotic devices. In the following we will present our approach that permits to
implement an inherently parallel algorithm such as the RNS Decell on a multicore
processor such as the Cell, using an high level language and intrinsic functions,
obtaining good performance by mimicking the VLSI implementation of operations.

5

A case study: Matrix pseudo-inversion

In this Chapter we describe how we implemented the Decell algorithm on the Cell
Broadband Engine. The original Decell is based mainly on matrix multiplications,
subtractions and trace computations. In order to reduce numerical instability it is
possible to use symmetric residue number system representation. When the bases
to be used have been chosen the problem is divided into sub-problems by applying
each modulo to the original matrix. This is the arithmetic decomposition. For each
modulo the procedure described in 4.4 is applied. At the end the resulting matrices
are recombined together producing the required result.

Given this description of the problem, the first step is to think to the program-
ming model of the algorithm.

5.1 Programming model

As we stated in Chapter 3 the programming model is an abstract model of compu-
tation that is used by the programmer to reason about a program execution. Each
algorithm is characterized by three parts: input, output and the process itself.

Input

The input is the matrix A that has to be pseudoinverted. We assume that A is
a p × n matrix of integer values with p ≤ n otherwise, using the relation A+ =[(

AT
)+]T , we can compute

(
AT
)+. It has to be noticed that we consider also the

case p = n in which, if the matrix is non singular, the inverse is defined but we
apply the Decell algorithm anyway.

The use of residue arithmetic presumes that each element aij of the matrix A
is an integer. Although fixed word-length computers store only rational numbers,
they can be converted to integers by an appropriate scaling [23]. For example, in
the radix u system, aij can be evaluated by

aij =
s∑

k=−s

α
(k)
ij ui = u−s

(
2s∑

k=0

αk−s
ij uk

)
= u−saij

58 5 A case study: Matrix pseudo-inversion

where

aij =
2s∑

k=0

α
(k−s)
ij uk

is the normalized integer and u−s is the constant scaling factor. Thus, we can
obtain the normalized matrix A = usA. Since

A+ = (u−sA)+ =
1

u−s
A

+
= usA

+

one may apply the proposed residue arithmetic Decell algorithm to obtain the
pseudoinverse A

+
from which the desired pseudoinverse A+ may be obtained by

multiplying the scaling factor us. The need of conversion is not a big issue. In our
previous FPGA implementation we faced the same problem, since we were forced
to use 16-bits values. We realized that the primary input is given by sensors and
raw sensor data are usually integer. Whatever computational strategy is chosen
these values have to be transformed to a different representation, thus we are just
moving this conversion at a later time. Moreover, all the trigonometric functions
used to populate a forward kinematic matrix as well as a manipulator Jacobian
can be performed in integer arithmetic by using, for instance, the CORDIC algo-
rithm, and all the conversion/scaling can be computed in a fixed-point notation
that is perfectly representable with integers, when carefully handled. Thus we do
not consider this aspect as a limitation and, since the conversion is due anyway,
we think that the conversion time has not to be accounted when comparing the
Decell algorithm with other floating point approaches.

The other inputs of the algorithm are the bases or moduli, their number L and
the dynamic range M they provide.

Let m1,m2, . . . ,mL be the pairwise relatively prime bases (or moduli, or
radices) for the mixed-radix system. The dynamic range is given by:

M =
L∏

i=1

mi. (5.1)

A number x can be expressed in the mixed-radix form as

x = aL

L−1∏
l=1

mi + · · ·+ a3m1m2 + a2m1 + a1

where the ai are the mixed-radix digits and 0 ≤ ai ≤ mi.
The selection of the bases mi, 1 ≤ i ≤ L, is critical to the success of the method.
A possible method for selecting the range M is:

M > max
{
Xp, p(p−K + 1)Xp−1

}
(5.2)

where X = min
{
trace(AAT),||AAT ||

}
, and K = rank(A). For simplicity two

practical criteria satisfying Equation 5.2 are

5.1 Programming model 59

1.

M ≥ 2
p∏

i=1

 n∑
j=1

a2
ij

1/2

(5.3)

where aij is the (i, j) element A.
2.

M > pp2/2Xp2
(5.4)

where X is the maximal absolute value of an element in the matrix AAT .

In [106] the authors suggest that the bases mi, 1 ≤ i ≤ L, should be chosen to
be composed by large prime numbers greater than p and must satisfy Equation 5.1.

Output

The output of the algorithm is A+, the pesudoinverse of the given matrix A.
In addition Decell provides two other information at no computational cost: the
rank of A and the coefficients of the characteristic polynomial associated with the
matrix.

Process

We are not interested in describing details about the process at this point. In
general it follows the steps of the algorithm indicated in Equation 4.6. In this part
we would like to focus on some design aspects that have to be considered early
during the development because they are necessary in the analysis of the algorithm
and in particular in the parallelization. The more important facts are:

The first step is the choice of the moduli, following one of the rules indicated
before. This choice depends only on the arithmetical range of the elements
in the matrix that has to be pseudoinverted. In the case of robotic applica-
tion this means that a profiling of the value of the Jacobian can reduce the
required range to the minimum. This is important since the dynamic range
M =

∏i=L
i=1 mi depends on the number of moduli and the number of bit length

used to represent the numbers. Thus a desired range can be obtained by using
few moduli with more bit length or more moduli with smaller bit length. Since
the Jacobian reflects the structure of the manipulator this kind of tuning has
to be done just once for each robot.

The moduli and the dynamic range are stored in the main memory together with
the matrix A, in order to be easily accessed. The values of the matrix can be
organized in the memory using several data structures. For our implementa-
tion we opted for a simple array representation, i.e. all values are stored in
a monodimensional array in raw major. This approach is preferable to more
complex data organization since it permits an easy data transfer among the
processing units and does not require any particular functionality in the data
fetching, since the values are simply stored contiguously.

60 5 A case study: Matrix pseudo-inversion

The values, useful throughout the algorithms, that require some computation in
order to be calculated and are related only to the moduli choice can be com-
puted once for all and stored until needed. For instance, this is the case of
the coefficients used in the arithmetic recomposition process with both Mixed
Radix Recomposition and Chinese Reminder Theorem.

There are three different matrix operations involved in the Decell iteration: ma-
trix multiplication, trace computation and matrix diagonal subtraction and
they require symmetric RNS arithmetic.

The recombination can be carried out essentially in two ways: with the Mixed
Radix Recomposition (MRR) or with Chinese Reminder Theorem (CRT).
Both the procedures are effective and perform a weighted composition of the
moduli; the main difference relies on the fact that MRR requires only mod-
ulo mi arithmetic operations while CRT, based on the extended Euclidean
algorithm, requires modulo M operations. For these reason, the latter was the
choice in the VLSI Decell implementation in [23] since in that case CRT would
have needed a different hardware design for the residue processor. In a software
implementation, where the demand for higher precision can be met, the two
alternatives are equivalent, with CRT performing a sligthly better.

5.1.1 Analysis of the algorithm

The Decell algorithm can exploit two types of parallelism:

• Task parallelism: the problem is arithmetically decomposed in independent
sub-problems

• Data parallelism: when possible independent data can be processed at once

Task parallelism

Let us divide the algorithm presented in Equation 4.6 in four main parts:

1. Arithmetic decomposition
2. Decell iteration
3. Arithmetic recomposition
4. Evaluation of the pseudoinverse

In a multicore system, each phase can be assigned to a different core or, when
parallelism is possible, to a set of cores. The four phases have to be computed se-
quentially and parallelism is allowed only inside each part, due to data dependency.
It is however possible to have a pipelined approach to the problem by permitting
the execution of phase 1 relative to the computation at time t + 1 at once with
phase 2 at time t (see Figure 5.1). This approach maximizes the throughput of the
algorithm and permits to reduce the time the cores remains idle.

In our processing model we supposed, without losing generality, that there is
a main core that coordinates the other processing elements (PEs) and that it has
access to a main memory for data storage. It has to decompose the matrix A into

5.1 Programming model 61

Fig. 5.1. Ideal pipeline for the concurrent computation of the four parts

L residue representation of A modulo mi with 1 ≤ i ≤ L. Since the process pro-
ducing the residue representation of the matrix has to run L times, one for each
modulo, it can represent a bottleneck if performed on the main core sequentially.
In this planning phase it is better to place it in the other processing elements. In
the translation from the programming to the processing model this choice has to
be evaluated with respect to actual data representation and movement. Thus the
matrix A, or part of it, has to be moved to each processing elements along with
the modulo used in the specific residue computation, the precomputed coefficients
and the dynamic range.

The main processor has also the responsibility to transfer or activate the code
that has to be run on the other cores. At this point we can assume that the Decell
iteration on the residue representation of A are carried out in parallel.

The recomposition phase, that recombines the resulting residue matrices into a
single one, cannot start until all the PEs computations have been committed and
the results stored in one place. Two alternative designs are:

1. The main core synchronizes the PEs, waiting for all the results to be moved
back in main memory, and then perform the recomposition by itself. However
this part of the algorithm is still computational extensive, since it requires to
access and combines n×p values in L residue matrices, and relies on symmetric
RNS arithmetic since both procedures involve modulo operations.

2. One of the PEs can assume the role of recombining the values after its De-
cell iteration ended. Since all the resulting residue matrices are needed, this
solution requires that the results are moved from all the PEs to an idle process-
ing element that can perform the recombination. The additional advantage is

62 5 A case study: Matrix pseudo-inversion

that one data-move is no more required, since the PE already has the residue
matrix it computed. Unfortunately in the meantime all the PEs remain idle
since a synchronization among all of them is required before starting a new
computation of Decell. The time spent in Decell iteration is the time of the
longest computation on the PEs. Thus this alternative has to be carefully eval-
uated. However, this approach is particularly suitable if the number of PEs is
greater than L, thus meaning that some PEs are not involved in the residue
Decell iteration. In this case the pipelined approach presented in Figure 5.1
can increase the throughput.

The last phase of the Decell algorithm, that is the evaluation of the pseudoin-
verse in Equation 4.6, can be performed by the main core since the resulting values
is the final result, the computation is somewhat limited and no modulo operation
is involved.

Data parallelism

As stated earlier the Decell iteration is mainly based on matrix operations. In gen-
eral, matrix operations are computationally intense but the values have a high de-
gree of independence. In addition/subtraction operations, for instance, each value
can be added/subtracted independently from the others. Multiplication is more
complex, since a resulting value is given by the recombination of rows and columns
of the factors, however the values in different rows (or columns) are not related
and thus they can be computed at once. In literature there are many examples of
parallel implementation of matrix multiplication, in particular when the factors
have same specific structure. In general it is possible to exploit the independence
available to speedup the computation splitting the operation in concurrent opera-
tions. Another interesting aspect related to matrix operations is the possibility to
operate on large matrices by using block matrices. A block matrix or a partitioned
matrix is a partition of a matrix into rectangular smaller matrices called blocks.
A block partitioned matrix product can be formed involving operations only on
the submatrices. This property is useful when it is not possible to have the whole
matrix fit in memory, and especially in local store memory of smaller processing
units. The block can be manipulated at once, leaving space for additional task
parallelism.

The outcome from these considerations is that if the underlying architecture
provides some sort of data parallelism, such as the one given by SWAR or SIMD
capabilities, the Decell iteration can be designed in order to exploit this data
independence.

5.1.2 The programming language

There are several systems developed in order to easily program GPUs hiding their
graphics-specific nature while making their processing power available for general
purpose computations. In some cases, these systems have also been mapped to
additional targets, such as the Cell BE and multicore CPUs making these platform
an important tool that can help in translating the programming model to the
specific target [71].

5.1 Programming model 63

The RapidMind platform [70] uses an SPMD stream programming model but
generalizes it to multidimensional arrays. RapidMind uses an embedded program-
ming model so that the kernels can be specified directly in the source code of a
controlling C++ program. The RapidMind platform can target the Cell BE, both
NVIDIA and ATI GPUs, and multicore CPUs with the same programming model.
In order to express memory locality, local arrays may be declared and operated
on inside other kernels, and arrays may be tiled into subarrays. The RapidMind
array abstraction also encapsulates data strongly, allowing automatic management
of remote data stored on accelerators.

Intel [40] is developing Ct, a data-parallel programming platform that targets
x86 multicore CPUs. Ct supports the SPMD programming model and uses an
embedded C++ interface similar to the RapidMind platform. Ct also includes
an implementation of segmented collectives, which are useful for implementing
algorithms using nested parallelism.

Programming models based on distributed memory models such as MPI can be
mapped onto multicore processors such as the Cell BE that are essentially clusters
on a chip, but the limited local memory space available relative to the requirements
of existing MPI codes makes this difficult. MPI was primarily designed for large-
grain tasks. However, the MicroMPI system [80] presents some modifications to
MPI that make a mapping onto the small local memories in the Cell BE.

Although all these programming platforms are appealing and interesting we
did not use them in our implementation. There are several motivations behind our
choice and, in general, we agree that the modification of programming languages
and paradigms is necessary to change the software development precess in presence
of parallelism and multicore architectures. In addition a system that permits to
expose the most critical parts of the program in terms of performance and com-
plexity while hiding unnecessary target specific details is really important in order
to stop thinking to the machine and focusing on the program itself. However these
systems are still in development and usually they works well for their main target
but they are less effective when targeting other platform. This depends mainly on
the difficulty to map the programming model, for instance SPMD for RapidMind,
to architectures that do not adhere perfectly to it.

The main reason for our choice is that we wanted to expose some mechanisms
while drawing on the Decell VLSI implementation and this approach requires the
use of specific intrinsic functions of the target platform (available also on other
architecture with different syntax). In addition to better understand strong and
weak points of these emerging multicore systems it is better to deal with the
translation into the processing model directly.

Since in our implementation we left out some aspects that can be handled by
new platforms, that still influence performance and the goodness of results but are
not particularly relevant to the migration that we are analyzing, in the future a
combination of parallel programming systems and custom implementations could
be interesting.

In the following we will analyse the processing model and the implementation
mainly for PS3 while keeping one eye on the other multi-core architecture that

64 5 A case study: Matrix pseudo-inversion

we presented: GPUs and FPGA. It is difficult to put FPGA in the same category
as Cell and GPUs, since the difference in the organization and programming are
relevant. However , it is our idea that is possible to identify strategies and aspects
that can be used in the programmable field array with some effort in adaptation
and translation.

5.2 Sony PlayStation 3

The Cell broadband engine is available on the market in two main form: the IBM
blade accelerator (for instance the QS21) and the Sony PlayStation 3 (PS3). The
former expresses all the capabilities of the processor with a street price of more
than 5000 Euros while the latter offers a limited version of the CPU at a cost
of 400 Euros approximately, thus one order of magnitude lower. Moreover the
first version of the PS3 allows to install an operating system in addition to the
proprietary one. There are several versions of the PS3 which have minor differences
such as the presence of fewer USB ports or the lack of back compatibility with PS2
games. Unfortunately the very last version, the PS3 slim, has lost the possibility
to install the second operating system.

The first alternative operating system available was GNU/Linux and, since the
PPE is mainly a PowerPC, Yellow Dog, a distribution that was targeted to Apple
computers, released the first porting. The official IBM Cell SDK was included in
the software equipping the distribution together with a GNU GCC compiler for
PPE and SPE, permitting de facto the development of code for the Cell. Later on,
several other distributions provided full support to PS3.

The limitations of the PS3 Cell are that not all the SPEs are available, since
one of them runs the hypervisor of the system, that is a program which arbitrates
access to the low level hardware from the operating system, and another one is
simply disabled. Another difference is that it is not possible to obtain the posi-
tion of the SPEs in the EIB ring and thus the topology of the connections. Less
important for Cell development but interesting from an accessibility and openness
point of view is that the hypervisor prevents any direct access to the PS3 graphic
card, that is an NVIDIA RSX model. It is easy to speculate that this limitation is
due to a successful attempt to prevent manoeuvres aimed at videogame develop-
ment and/or violation. A bothersome side effect is that since the NVIDIA board
supports GPU computation, a completely open PS3 could have been a valuable
hybrid multicore testing system. Anyway the inexpensiveness of the console and
the possibility to install GNU/Linux and IBM SDK permits not only the develop-
ment of software but also the possibility to test the goodness of a Cell solution to
a specific problem before affording the investment of an IBM Blade. Meanwhile, a
hack to control the hypervisor under GNU/Linux has been found [47].

For these reasons the PS3 is an appealing platform for scientific research as
stated for instance in [59]. In addition the possibility to easily connect several PS3
in a cluster assures supercomputing performance with low budget outlay [32, 55]
with some limitations [21].

For our implementation we used the PS3, first version, equipped with Yellow
Dog 6.0 and IBM Cell SDK version 3.1. We programmed in C using the GNU/GCC
compiler.

5.2 Sony PlayStation 3 65

5.2.1 Cell processing model

In Section 4.5.3 we presented the structure of the Cell Broadband Engine (CBE
or simply Cell in the following) in details. We would like to call to mind here
the important elements of the architecture, that are necessary to understand our
approach. The Cell is composed by one main core, the Power Processing Element
(PPE) that is basically a PowerPC processor, and by eight Synergistic Processing
Elements (SPE). All the cores are connected, together with the memory controller
and the Input/Output chips, through the Element Interconnect Bus (EIB), a cir-
cular ring comprising four unidirectional channels which counter-rotate in pairs.
In the PS3 Cell six SPEs are available for programming.

We can draw a first parallel between what we defined earlier about the program-
ming model and the Cell processing model by identifying two types of parallelism
available in the architecture:

• Distribution of the computational load among the SPEs (Task or MIMD par-
allelism)

• Speed up of the computation using vector registers (Data or SIMD parallelism)

In our implementation we considered them separately.

MIMD parallelism

The role of main processor is naturally given to the PPE while the most intense
computation is left to the SPEs.

We can rewrite the phases of the algorithm highlighting whose cores are as-
signed to each step:

1. Arithmetic decomposition (SPEs)
2. Decell iteration (SPEs)
3. Arithmetic recomposition (PPE)
4. Evaluation of the pseudoinverse (PPE)

One of the principal functions of the PPE is to coordinate the activity of the
synergistic processors, performing a sequence of preliminary steps and waiting for
completion. In details the PPE has to fill a structure that contains reference to
the main memory area where information needed by SPEs is stored, and all the
accessory data needed by the sub-process. In our case the structure is depicted in
Figure 5.2.

The members matrix X and spe result are the addresses in main memory of
the matrix to be pseudoinverted and of the results of the SPEs computations. The
padding at the end of the structure is needed in order to maintain data quadword
aligned. This is necessary in order to obtain good performance during data trans-
fer. The PPE initializes the structure for each SPEs that has to be involved and
then creates a thread for each SPEs passing the struct as an argument and a
reference to the program to be executed. Since this is a MIMD architecture the
program can be different or, as in our case, the same for all the synergistic proces-
sors. The main memory addresses are used by a SPEs to request a DMA transfer

66 5 A case study: Matrix pseudo-inversion

typedef struct _control_block {

addr64 matrix_X;

addr64 spe_result;

int spe_num;

int size_m;

int size_n;

int mods;

unsigned char pad[90]; /* pad to 128 bytes */

} control_block;

Fig. 5.2. PPE to SPE control block structure

in order to copy data to its Local Store (LS), that has no associated cache, and
viceversa. After the initialization the PPE waits for a sync message from all the
SPEs, via mailbox messages.

Figure 5.3 is a graphical representation of the data transfer among the cores.
For the sake of simplicity the main memory is considered part of the PPE. This
is not true from an hardware point of view, since there is a separated Memory
Controller (MIC), but it is acceptable from a functional point of view since the
main memory is directly addressable only by the PPE.

After the computation of the residue matrices, the execution of the algorithm
continues in parallel during the Decell iteration phase as described in Equa-
tions 4.5. At the end of this step there is a resulting residue matrix, in row-major, in
each LS that has to be transmitted back to a specific location in main memory. The
consequence is that all the resulting matrices are stored sequentially in adjacent
locations and are easily accessible by PPE for recombination. The SPEs communi-
cates to the power processing element that they have complete their computation
through messages. When all the messages are arrived, the PPE takes care of re-
combining these matrices into a non residue unique matrix by using the Chinese
Reminder Theorem or the Mixed Radix Recomposition. Subsequently it computes
the pseudoinverse as depicted in Equation 4.6.

Fig. 5.3. Data storage and transfer among cores

5.2 Sony PlayStation 3 67

We decided to maintain the recomposition phase in the PPE and not in one of
the SPE. There are two main reasons.

1. First of all the recombination on the SPE requires intra SPEs communication
and synchronization that have to be carefully implemented, otherwise it can
represent a real bottleneck that can worse performance. In addition an effective
communication requires to know the topology of the SPEs in the EIB ring. Of
course the physical position of the SPEs does not change over the time but the
ID assignment of the synergistic processors can vary among executions. One
of the limitation of the PS3 Cell with respect to IBM board is that the PS3
does not have a function that returns the IDs order.

2. A second motivation relies on the fact that even if we worked with Cell intrinsic
functions, we wanted to maintain a general approach to multicore program-
ming. Our aim was to try to use strategies and operations that can be found
also in GPU and FPGA or, at least, that are not conflicting with the process-
ing models of these architectures. In a FPGA on a SoC the role of the PPE has
to be taken by an external CPU, since the evaluation of the pseudoinverse re-
quires non integer capabilities. In addition the modulo M operations involved
in the Chinese Reminder Theorem that we wanted to compare with MRR, can
be not feasible on FPGA.

However for a more application oriented approach, in an optimization point of
view, if the PS3 is the target architecture of choice it is worth considering the
speedup that a recombination on SPE can bring.

SIMD parallelism

Both the PPE and the SPE can exploit data parallelism using SIMD or vector
instructions. A vector instruction operates on a set of data elements at once. The
synergistic processors are described as more adept at compute-intensive tasks and
slower than the PPE at task switching, thus perfect for calculations, and one of
the reasons is their SIMD nature. However, since also the PPE and any recent pro-
cessor can perform multimedia vector operations, it may seems that the emphasis
on the SPE abilities is not completely justified. In our opinion the difference lies
in the specialization of the core itself: while a general purpose processor can use a
limited amount of SIMD operation while dealing with the operation system, the
handling of devices, and a complex multitasking environment, the SPE is com-
pletely dedicated to a single task that can be executed without preemption. All
the hardware design of the SPE is targeted to vector operation while, for instance,
the AltiVec extensions share some processing elements with the general purpose
registers. Moreover the lack of standard registers in the SPE makes the use of
SIMD operations necessary.

Each SPE has a 128-bit 128-entry register file. An SPE can operate on sixteen
8-bit integers, eight 16-bit integers, four 32-bit integers, or four single-precision
floating-point numbers in a single clock cycle, as well as a memory operation (see
Figure 5.4). The SPU programming model introduces a set of fundamental vec-
tor data types to the C language. The vector data types are all 128-bit long and

68 5 A case study: Matrix pseudo-inversion

contain from 2 to 16 elements, depending on the data type. Table 5.1 shows the
supported vector types [101].

Fig. 5.4. Register layout of data types and preferred (scalar) slot (from IBM CBE
Programming Tutorial v3.0)

Vector Data Type Content

vector unsigned char 16 8-bit unsigned chars
vector signed char 16 8-bit signed chars
vector unsigned short 8 16-bit unsigned halfwords
vector signed short 8 16-bit signed halfwords
vector unsigned int 4 32-bit unsigned words
vector signed int 4 32-bit signed words
vector unsigned long long 2 64-bit unsigned doublewords
vector signed long long 2 64-bit signed doublewords
vector float 4 32-bit single-precision floats
vector double 2 64-bit double-precision floats

Table 5.1. Vector Data Types

According to [1], the intrinsic functions are a large set of SPU C/C++ language
extensions that make the underlying SPU Instruction Set Architecture and hard-
ware features conveniently available to C programmers. These intrinsics can be
used in place of assembly-language code when writing in the C or C++ languages.

In order to exploit the data parallelism present in the matrices used for De-
cell algorithms we decided to apply vectorization, that is to use vector operations,
(also known as SIMDization) extensively. In fact since the values we worked on
are almost independent it is possible to operate on them in parallel. We identified
the intrinsic functions more useful for this purpose avoiding the operations that
were exclusive for the Cell. We opted for classical shift and add operations, masked
selections, comparison functions and, at some extend, multiplications.

The intrinsic for the addition of two vectors (d = spu add(a, b)) is a good
example of vector operations we used for the Decell algorithm. Each element of

5.2 Sony PlayStation 3 69

vector a is added to the corresponding element of vector b. If b is a scalar, the
scalar value is replicated for each element and then added to a. Overflows and
carries are not detected, and no saturation is performed. The results are returned
in the corresponding elements of vector d. This function accepts in input a vector
of unsigned shorts as well as a vector of doubles. Figure 5.5 (a) shows graphically
the operation applied to two vectors of 16-bit values.

The SPU uses 16 × 16 multipliers. The use of 16-bit values maximizes the
speed. This is the same precision usually available on FPGA. Thus this fulfill our
requirements. However the use of these multipliers has a drawback. In fact since
the multiplication of two 16-bit values can generate a number that needs a 32-bit
representation, the relative intrinsic function spu mulo can operate only on the
values of the vectors in odd positions because the results are extended using the
even slots, erasing any pre-existent value as depicted in Figure 5.5 (b). Although
we used modulo operations and thus we knew that at the end the result cannot
exceed the 16-bit representation and thus we can cast the value back to 16-bit, the
use of the fast multipliers requires this temporary extension. This limited de facto
the parallelism of our SIMD implementation to four values per vector. We will see
in the following that an alternative is possible in specific situations.

(a) SIMD addition (b) SIMD multiplication

Fig. 5.5. Vector operations

In the algorithm we focused on creating residue operations for a core matrix
block that is a 4× 4 matrix of 16-bit values. It has to be noticed that the dimen-
sion is completely due to the limitations introduced by the multipliers we described
above. In our processing model each block matrix was composed by four vectors
with four values each. The values presented in the even slot of the vectors can be
considered undefined. They were never addressed directly and they were only used
by the spu mulo multiplication intrinsic function. Using standard block matrix
multiplication (see Figure 5.6) it is possible to consider any generic m× n matrix
and the limit is theoretically due to the LS dimension. In the case that the con-

70 5 A case study: Matrix pseudo-inversion

sidered matrix is too big for it the same strategy of decomposing the problem can
be used to partition the matrix and only one or more block can be sent to SPEs
at ounce. This, of course, requires to deal with accumulation and recomposition
in the PPE. Since our “building” block had fixed size, we implicitly assumed that
the dimensions of input matrix A were multiple of the block ones. In order to be
able to permit the application of the algorithm to any matrix we had to introduce
zero padding.

Fig. 5.6. Block matrix multiplication

Data vectorization can provide excellent results because it allows data paral-
lelism but it also requires a careful design of the vector computations. This is due
to the less flexible manipulation of data that have always to be considered together
with an high latency cost for every single value access.

Let us examine, for instance, the data organization we chose for matrix mul-
tiplication, that was row-major for the first factor and column major for both
the second factor and the product (see Figure 5.8). This approach permitted to
use intrinsics for the row/column scalar product and only two matrix translation
operation per Decell iteration, one for the AAT evaluation and one for the final
realignment, at the cost of a negligible slow down due to data rearrangement at
the end of the multiplication. The last step was to sum all the elements in the
resulting vector to obtain the result depicted in Figure 5.7. This is an horizontal
operation, common in most SIMD/SPMD architecture but not available on the
SPE, thus a combination of add and shift vector operations was used. The degra-
dation of performance required from this approach was overcompensated by the
reduction of heavy matrix transposition, in particular when the rank of the matrix
is higher than 2, that is a plausible assumption.

5.2 Sony PlayStation 3 71

Fig. 5.7. Data organization for matrix multiplication

Fig. 5.8. Matrix row major and column major organization for Decell

Implementation

Initially we started the implementation of the Decell algorithm on the CBE with a
conventional, high level approach. Given the programming model and with a light

72 5 A case study: Matrix pseudo-inversion

overview of Cell intrinsic functions we begin focusing on the SPE coding, since for
our purposes the PPE can be considered and hence programmed as a standard
CPU.

Before considering the algorithm itself it was necessary to provide the SPEs
with symmetric RSN support. In particular we needed a set of functions that were
used throughout the computation and in details:

• a symmetric residue representation of a given integer number conversion func-
tion

• a residue add function
• a residue multiplication function

We designed the code for these function starting from the mathematical and al-
gebraic definitions of modulo, residue number system and so on. Thus, for instance,
to find the symmetric Residue representation of a given number we considered the
Definition 4.3 and we used the relation described in [56]:

/x/ = x−
〈 x

m

〉
∗m

where /x/ is an integer such that − [(m− 1)/2] ≤ /x/ ≤ [m/2] and the symbols
[] indicate a rounding operation. For m odd, the quantity 〈x/m〉 is the closest
integer to x/m. If m is even, the quantity 〈x/m〉 is again the closest integer x/m
except that if x is of the form n ∗m/2 where n is odd, the quantity 〈x/m〉 is the
closest integer to (x− 1/m).

Since our design already plans to exploit data parallelism, we worked on vectors
using intrinsic. The transformation of a number in its residue representation is
obviously an atomic and independent operation, thus it is easy to work on several
values at once. We used intrinsic to implement the above relation and we succeeded.
The result was a perfectly working function but the procedure used was a general
purpose sequential approach ported and replicated to SIMD.

We mainly used the same approach also for the residue add and multiplication
operation. The easiest way to perform a modulo addition is to compute the addi-
tion as usual and then apply the symmetric residue modulo conversion. Thus we
combined the use of the vector addition and multiplication intrinsics depicted in
Figure 5.5 with the above procedure. It is clear that the computation time spent
in the arithmetic operations is negligible compared with the one used by the con-
version routine. A poor performance in this procedure propagates to the complete
algorithm.

After the completion of the residue arithmetic operations, we focused on the
Decell iteration phase. The iteration can be split in four main parts:

1. initialization
2. residue matrix conversion
3. iteration step
4. exit condition check

The second point, that is not part of the Decell iteration but represents the arith-
metic decomposition in the original algorithm, is included here according to our

5.2 Sony PlayStation 3 73

programming model. In the following we are considering the synergistic element i.

The initialization is required in order to transform the values that represent
the matrix in row major that are transferred to the SPE local store area in vari-
ables of type vector. For our core block multiplication we already designed that
four vectors are needed. However, in order to deal with larger matrices composed
by several blocks the vectors are grouped in arrays. This phase begins when the
SPE thread is started and the control block structure with main memory addresses
and all the accessory values, such as the modulo mi, is fetched via DMA. The al-
gorithm uses values that depend only on the moduli of choice and are independent
from the matrix. Considering, for instance, the values used for the computation
of the qi

j = ||j−i|mi
|traceAi

j |mi
|
mi

is clear that the |j−i|mi
quantities can be pre-

computed once for all until the modulo mi remains unvaried.

The residue matrix conversion transforms the given matrix A in its residue
representation |Ai|, modulo mi. We applied the srns function to the four vectors
composing the core block. This is an intensive operation that has to be applied
for each value and it is a good example of the potential limitation that the SIMD
paradigm requires. The guidelines about SPE’s programming suggest to avoid
branching in programs. In fact there are no branch prediction mechanism on the
SPE and each mispredicted branch can seriously degrade program performance.
The typical SIMD solution is to compute both paths of the branches and then
select the correct result by using some form of selection. In the symmetric residue
system the value zero remains unvaried. Thus there is no need for elaboration
on zero values and a sparse matrix theoretically can be converted faster than a
generic one. In a SIMD architecture is better to perform the computation on all
the values. The disadvantage is that the worst case has always to be considered
in performance profiling, while the advantage is that the computation time is con-
stant.

The iteration step contains the main part of the Decell pseudoinversion algo-
rithm. This step can also be divided in three parts: the initialization, the iterative
section and the exit test. The initialization, apart from the definition of the sup-
porting structures, regards the computation of AAT and in particular the necessity
of the transpose computation. In order to exploit the SIMD mechanism of the SPE,
we decided to implement the transposition of the core block using the spu shuffle
intrinsic that permits to rearrange the elements of two vectors easily and quickly.
Of course this can apply to the core block, since the dimensions and the mean-
ing of the vector slot are known, while extra work is needed when a multi-block
matrix is considered. The other two parts are mainly composed by a sequence of
residue operations. Special attention was paid to the trace computation and to
the test |A1Bi| = 0 that ends the iteration, always applying, when possible, SIMD
operations. Loop unrolling is another guideline suggested in order to increase the
performance of the computation on the SPEs, since the exit test suffers of the
same problem of the branch misprediction. In general we used loop unrolling when
considering the vectors of the core block, since the number of vectors is known.
We used a while statement for the iteration of the Decell procedure because of

74 5 A case study: Matrix pseudo-inversion

the variability due to the current rank of the matrix.

The exit condition check verifies if all the elements of matrix A1 ∗ Bi are
zeros. Again we used a combination of comparison and selection operation in order
to perform this check in parallel.

From a preliminary test about the execution performance of our code, we no-
ticed that we were not exploiting the hardware capabilities of the platform com-
pletely; more details about these results will be presented in the next Chapter.
In our opinion the part of our implementation that needed an improvement was
the computation held by the SPEs. In the next Section we describe our approach
based on a VLSI implementation of the Decell algorithm and we show later how
it can affect performance.

5.3 Learning from the past

A VLSI implementation of the Decell algorithm was presented in [23]. In the article
there are all the schematics describing the implementation of the various phases
of the process. The author focused mainly on the Decell iteration phase, where
the multiplications, addition and trace computation take place. They used an
asynchronous, data-driven, wavefront processor array for the iteration. Although
this approach was interesting and offered good performance, it does not fit well in
the processing model of the CBE. The topology of the Cell is different from the
one proposed and, in general, the wavefront array can be assumed to be very large,
of the order of the dimensions of the matrix that has to be pseudoinverted. This
design is more suitable to FPGAs than to GPUs or Cell. However the authors also
presented the design of the residue arithmetic operations needed by the algorithm.
We decided to check if the SIMD intrinsics of the SPE were adapt in order to
easily replicate the structure of the VLSI components.

Symmetric residue conversion

We started with the symmetric residue conversion function. A possible implemen-
tation is based on the restoring division algorithm [61, 76]. It can be defined as
follows:

• Assuming that the input is an n-bit positive number, we subtract from it the
binary representation of the modulo m such that the highest order “1” bit of
the representation is aligned with the highest order input bit. In the synergistic
element this was done using the intrinsic spu sl, that is the element-wise shift
left by the number of bits that are the count of the leading zeroes of the modulo.

• The shifted version of m is then subtracted from the input, using the function
that subtract each element of one vector from the corresponding element of the
other one (spu sub).

• If the result is negative, the original input is passed on (i.e., subtract 0). If the
result is positive, the subtracted version is passed on. In either case, an n− 1
bit number will result.

5.3 Learning from the past 75

• This number is now treated as the input, m is shifted one less position to the
left, and the above process repeats until m is no longer shifted.

The remainder after the last step is the result of the conversion.
The branch described in the procedure was substituted with the computation

of the results for both branches and the selection spu sel of the right one based
on the outcome of a comparison spu cmpgt. An example of the code is presented
in Figure 5.9. The procedure length depends on the position of the leading “1” of
the number to be converted. In order to avoid conditional statements we decided
to repeat the shift/iterate step a number of times equal to the bit length of the
input. This means that we always considered the worst case, that is an input value
that uses all the bits available. If this is not the case the subtraction has to be
avoided and we used the number of leading zeroes as the selection criterion. We
then unrolled the loop and copied the shift/iterate procedure in sequence.

m = tottot; // current remainder

// Shift/iterate

shift=spu_add(shift,-1); // decrement the counter

b=spu_cmpgt(zeroes,(vector signed short)shift); // is negative?

m2=spu_sel(spu_rlmask(m2,-1),m2,b); // shift

tottot=spu_sel(spu_sub(m,m2),tottot,b); // subtract and check

// propagate the remainder if we finished the iterations

b=spu_cmpgt(zeroes,tottot); // is negative?

tottot=spu_sel(tottot,m,b); // select current or previous value

Fig. 5.9. The intrinsics used to code each shift/iterate step

If the number to be converted is negative its complement is considered as the
input for the procedure, and the result of the procedure has to be complemented.

Figure 5.10 shows the application of the algorithm to find the modulo 5 repre-
sentation of a given number.

Residue addition

We decided to apply the same strategy to the residue addition. We assume that the
input of the adder are numbers already expressed in the residue number system
and we expect that the result is represented in the same way. In [61] is explained
that a conventional n-bit binary adder may be treated as a mod 2n adder if the
carry bit is ignored. If the result of the mod 2n addition overflows, it can be reduced
to the correct answer for mod m by adding m′ mod 2n, where m′ is the additive
inverse of m mod 2n, to the result of the first addition. If the first addition does
not overflow, it may fall int the range [m, 2n − 1], in which case it can also be

76 5 A case study: Matrix pseudo-inversion

Fig. 5.10. Residue decomposer (modulo 5) floor plan

corrected by adding m′ mod 2n to the first addition. A multiplexer controlled by
the carry selects the correct output Figure 5.11.

Fig. 5.11. Implementation of residue added

The residue adder proposed, and presented also in [23] works whit a standard
residue system but it does not consider that the values can also be signed, as in
our symmetric representation. In addition the design is based considering a specific
type of binary adder and the capabilities of detect carries and overflow. Since these
operation are slightly different on our SIMD architecture, we implemented our
reside adder in a different way, always considering a decomposition of the task in
simple vector operations.

Let sk be the sum of the k-th elements of the addend vectors. Since the SRNS
representation of the addends is given, we know that after the addition there are
only three possible scenarios:

1. mi/2 < sk

5.3 Learning from the past 77

2. −(mi − 1)/2i ≤ sk ≤ mi/2
3. sk < −(mi − 1)/2

In the second case nothing has to be done, since the result is still represented
in modulo mi. In the other cases it is sufficient to respectively subtract or add
the value mi to si. With this operation the result falls back in the range [−(m−
1)/m,m/2]. As usual we computed all the alternatives and then we selected the
correct one in order to avoid branches.

Residue multiplication

The last operation we decided to recode was the residue multiplication. The main
principle is based on “log transform-residue addition-antilog transform” [61]. The
theory guarantees that there is at least one primitive element which generates all
nonzero field elements. Given a finite field GF (p), an element µ is a generator of
the field if

1, 2, . . . , (p− 1) = µ0, µ1, µ2, . . . , µp−2

i ⇔ µe where O ≤ ei < (p − l) The exponent e is the logarithm of the element
a = µe ⇒ log a = e.

The multiplication of two field elements is equivalent to the addition modulo
(p− 1) of the corresponding exponents. If a = µe1 and b = µe2 then

|a · b|p = µ|e1+e2|(p−1)

and
|e1 + e2|(p−1) = log(a · b)

Therefore, multiplications can be implemented by adding the appropriate expo-
nents as determined from a logarithm table. The procedure finds the exponents e,
from the logarithm table, adds indexes modulo (p− l), and finds antilogarithm in
table to give result. This procedure is shown in Figure 5.12. Particular attention
has to be paid when one of the factors is zero. In fact zero is not part of GF (p)
and thus there is not corresponding exponent in the table. It has to be treated
separately just forcing the result to zero.

Fig. 5.12. Residue multiplier using index addition

We applied the same technique to our implementation. The first aspect is that
we had to prepare the tables with the exponents. There is one table per modulo

78 5 A case study: Matrix pseudo-inversion

and, in order to prove the goodness of the approach, we hardcoded them in the
SPE program. However for the sake of portability the right strategy is to send
them to the SPEs along with the matrix A. There are methods for filling out the
table, given the modulo, and they are costly in terms of performance. However
the tables have to be prepared just once for the entire computation, during the
initialization of the setup, and thus no strict timing requirements are due for this
phase.

The look up table can be defined in almost every architecture since it only
requires memory space and access. FPGAs usually have memory modules that
can be used for this purpose. As usual in the SPE the limit is given by the amount
of LS free space, but the access mode had to be studied. We know that intrinsics
work on vector data types so the idea was to use an array of vectors as memory
table. The elements of the GF (p) we are considering are all the values i with
1 ≤ i ≤ (m − 1) and they can be implicitly stored in our table because they are
the indexes for our vectors. The element in the position k is thus the exponent ek

and k = µek . We had to assign a position to the element zero too, in order to have
the procedure working in the same way even in presence of such an input. The
first part of the procedure consisted in determining the position of a given element,
and hence its exponent. The simplest implementation is to have a loop covering
the entire length of the array of vectors.Unfortunately this approach requires loop
and branch in order to work and we know that these statements are performance
killers in the SPE, and in general in SIMD architectures.

To overcome this limitation we unrolled the loop and used comparison and
selection intrinsics in order to match the target in the array of vectors. We used
the supporting vectors showed in Figure 5.13.

vector short index = {1,2,3,4,5,6,7,8};

vector short incr = {8,8,8,8,8,8,8,8};

vector short ones = {1,1,1,1,1,1,1,1};

vector short comp_result ={0,0,0,0,0,0,0,0};

vector short test;

test = spu_splats(input);

Fig. 5.13. Supporting vectors for the exponent selection

Using the intrinsic spu cmpeq, we compared all the elements of the first vector
of our table with a vector that contained the value we are looking for, replicated
(or splatted with spu splat) in all the elements. The result was a vector that
contained one “1” in the position of the match, if this occurred. Using a serie of
selections spu sel and masking operations, at the end, if a match was found the
index was in one of the words of comp result, otherwise comp result was still
all zero. The index was then extracted. The procedure has no branches and runs
in constant time, since all the code is executed regardless of where the match was

5.4 Conclusions 79

found. Since the dimension of the array depends on the modulo it is not possible
to completely get rid of the loop but is possible to use a combination of unrolled
compare and loop with intermediate checks.

For the second step required by the residue multiplier, that is the residue addi-
tion modulo (p− 1), we recycle the code used for the symmetric residue addition
with two main modifications:

1. In this case, since the addends are exponents there is no need of a symmetric
residue representation, thus we changed the code accordingly.

2. We still have to deal with an input factor equal to zero. We resolved the
problem by adding, at the end of the sum, a comparison with zero and a
selection. Putting this control at the end we created a branch free function that
runs completely even if the result of the multiplication is easily recognizable
as zero. Again we were forced to program for the worst case scenario.

The last phase of the reside multiplier algorithm is to find the element of the
finite field by using the exponent computed by the addition modulo (p− 1). This
is easier, since the exponent is the index of our array of vectors. Thus we just had
to extract the correct values.

Other functions

Given the promising results we obtained with the RNS arithmetic operations we
applied the same strategies to the other parts of the Decell iteration phase such
as, for instance, the trace computation. We do not present each implementation
here but, in general, we noticed that replacing operations with add, shift, select
and mask intrinsics when possible leads to an increase in performance.

5.4 Conclusions

In this Chapter we showed our idea about the possibility of easy code migration
from hardware to multicore systems. We started defining a problem that can be
useful for robotic and haptic applications and that, in those fields, requires some
additional constraints that are not addressed by standard solutions. In the specific
we were interested in matrix pseudoinversion carried out at constant time. Since we
planned to use one of the emerging multicore architecture available on the market
we decided to look for an algorithm that was inherently parallel, and thus easier to
be ported to our system of choice: the Cell Broadband Engine equipping the Sony
PlayStation 3 game console. We identify an algorithm, the Decell algorithm, that
was implemented in VLSI in the ’80s. We proposed and analyzed a programming
and a processing models in order to exploit both the task and data parallelism
available on the Decell procedure. Then we showed that a SIMD architecture such
as the CBE have intrinsics function available for high level programming languages
such as C/C++ that can easily mimic the VLSI implementation while operating
on set of data. In the next Chapter we will show data results about the execution
time of our code, giving special attention to the comparison among the alternative
implementations we developed.

6

Experimental results

In the previous Chapter we described the implementation of the SRNS Decell al-
gorithm on the CBE architecture. In the following we present a set of experimental
results in order to demonstrate the goodness of our approach. With the help of
specific tools and profiling instructions we analyze the time performance of our im-
plementation of the Decell algorithm, considering the weight of each phase both in
PPE and SPEs. We focus mainly on the SRNS operations and on the most crucial
aspects of the algorithm. We perform comparison among the different strategies
we described earlier and we highlight the improvement given by using the VLSI
implementation as a reference. We examine also the execution results of the over-
all procedure and we provide considerations and motivations about the data we
collected.

Early results

At the end of the implementation we wanted to have information about perfor-
mance. There are several ways to check for this aspect, in both simulation and real
system. In the second case the profiling tool may require additional libraries in or-
der to obtain run time statistics. A fast and common approach to code analysis
can be obtained using the code presented in Figure 6.1.

The method uses a counter that each SPU has, that count down at a fixed
rate (decrementer). Of course the use of this extra code changes the timing of the
overall program, but it can be used as a coarse timing reference when applied to
small chunk of code. The precision of the result is limited by the granularity of the
decrementer, however it can be considered good enough for standard implemen-
tations, in particular when it is used to compare two implementations for the CBE.

We wanted to have an idea of the time spent in the main phases of the com-
putation and a comparison with a state of the art method. For this last purpose
we considered other two Cell matrix pseudoinversion implementations based on
SVD. The first one is derived from an algorithm presented in Numerical Recipes
(NR) in C [87], while the second is made by using a function of LAPACK, with
standard parameters, the most famous library for linear algebra computation [62].

82 6 Experimental results

//Code profiling from MIT lessons

// Start counting

spu_writech(SPU_WrDec, DECR_COUNT);

spu_writech(SPU_WrEventMask, MFC_DECREMENTER_EVENT);

int startMit = spu_readch(SPU_RdDec);

// Code to be profiled...

// Stop counting, print count

int endMit = spu_readch(SPU_RdDec);

printf("Time elapsed: %d\n", startMit - endMit);

printf("Time elapsed: %4.10f\n", (startMit - endMit)/decrementer);

spu_writech(SPU_WrEventMask, 0);

spu_writech(SPU_WrEventAck, MFC_DECREMENTER_EVENT);

Fig. 6.1. Code used to profile the performance of a part of the code

Fig. 6.2. NR, LAPACK and Decell performance comparison

Figure 6.2 depicts the result of our first implementation, obtained following the
models, strategies and solutions described so far. The results regard the pseudoin-
version of a 4× 4 matrix. The first histogram shows that the NR pseudoinversion
took 90 µseconds to complete. The second one report a computation time of about

6 Experimental results 83

1400 µseconds for LAPACK. The overall time needed by our implementation, that
used a four moduli bases and thus split the computation on 4 SPEs, required
175 µseconds. LAPACK does not provide a function for the exact computation
of the pseudoinverse of a matrix, mainly due to the numerical instability of the
algorithm. However there are LAPACK functions that directly compute a system’s
least square solution. Since we used one of them in order to obtain the pseudoin-
verse it has to be noted that the function perform some extra computation with
respect to the other two approaches. In addition LAPACK is not yet completely
optimized for CBE nor is its vector implementation ScaLAPACK, and it is known
to work better with large matrices. It should seems unfair to use LAPACK with
standard parameters, and thus with high precision computation, for the compari-
son but theoretically the use of RSN and Decell leads to an error free computation
of the exact solution to pseudoinversion, thus it is correct to look for the highest
possible precision. We would also like to highlight that the LAPACK routine, with
some matrix configuration took up to 1600 µseconds to execute. However we used
this SVD performance only as references.

Let us consider each phase of our algorithm. The time spent by each SPE in
computation was about 75 µseconds, the DMA transfers required 40 µseconds and
the PPE consumed 55 µseconds in arithmetic recomposition, using the Chinese
Reminder Theorem, and 5 µseconds in the pesudoinversion evaluation.

The first consideration is that the result depicted in the histogram considers
the elaboration carried out in the PPE and in the SPE as sequential. Considering
our application as a control loop, the Decell algorithm is continuously invoked.
Thus the action of the two types of processors can be pipelined: when the PPE
ends coordinating the SPEs for the pseudoinversion of the Jacobian matrix at time
t, it can start computing the arithmetic recomposition and the evaluation of the
matrix at time t − 1. In addition, since we mainly focused on SPE implementa-
tion, the code used in the PPE was not programmed using SIMD instruction, thus
the computation on the PPE was not able to exploit data parallelism during the
arithmetical recombination. For what concerns the DMA transfer results it worth
reminding that we did not optimize the data communication at all. Thanks to the
4 way EIB ring, the PPE-SPE communication can be organized using a quadruple
buffering strategies that cut down the transmission latency. However this is really
a tuning of the algorithm on the specific system and was not our main interest.
The new generation of multicore aware programming systems such as RapidMind,
can deal and optimize memory transfers when the programmer put information
about data locality and usage in the pseudo-code. The system then chooses the
best strategies on the base of the target architecture.

Considering the performance of a SPE implementation, it is interesting to
know that each SPU has two pipelines. Into these pipelines, the SPU can issue and
complete up to two instructions per cycle, one in each of the pipelines. Whether an
instruction goes to the even or odd pipeline depends on its instruction type, which
is related to the execution unit that performs the function. A good balance of these
instructions permits the concurrent execution of two instruction at once. We stated
that we are not interested in ILP optimization and in a heavy tuning of the code in

84 6 Experimental results

order to exploit these very specific abilities but we are rather interested in finding
a good, general programming strategy for porting hardware implementation on
multicore architectures. Nevertheless it can be important to understand how the
high level approach we used so far impacted the organization of the instruction
performed by the compiler. In particular we would like to know where are the stalls
(instructions waiting for some dependencies) in the SPE instructions issuing, and
if the core remains partially idle for longtime.

IBM provides a tool for the static analysis of the assembler generated by the
compiler for the SPEs: the asmvis tool [49]. It is a graphical tool that shows how
the assembler generated instructions are issued by the two pipelines, highlighting
the stalls that are marked in red. When the pipelines work at their maximum,
always issuing a couple of instructions at once, without stalls, the trace displayed
by asmvis is composed by steep V shapes towards the center. Analyzing our code
with asmvis we noticed that the two pipelines were unbalanced and that the in-
structions had high latency, also due dependencies requirements. An example is
given in Figure 6.3. The consideration arising is that it is possible to obtain more
performance from the SPEs.

Fig. 6.3. Asmvis results for the residue system conversion function

Symmetric residue conversion

As described in the previous Chapter we used CBE intrinsics in order to improve
the performance of our implementation. We substituted the code developed using
a standard high level approach with a set of vector operations that mimic a VLSI
implementation. The first residue operation we considered was the procedure that

6 Experimental results 85

permits to compute the symmetric modulo representation of a given integer. Af-
ter the coding we used the profiling functions in order to check the difference in
terms of performance between the first implementation of the symmetric residue
converter and the last procedure borrowed form VLSI. We report the results in
Figure 6.4.

Fig. 6.4. SRNS conversion performance comparison

The computation time required in order to convert a number in its symmetric
residue representation lowered from 0.0752 µseconds to 0.0240 µseconds, with an
improvement of around 68%.

Residue addition

The second operation considered was the residue addition. After the implementa-
tion we collected data about the time required by our first implementation and this
new residue adder. The outcome is that the first procedure took 0.0877 µseconds
while the alternative version presented here took only 0.0251 µseconds with a gain
of about 71%, as depicted in Figure 6.5.

86 6 Experimental results

Fig. 6.5. Residue addition performance comparison

Residue multiplication

For our usual performance test we used a 2 vectors array, that is suitable to handle
the tables of prime moduli up to the value 11. The results are depicted in Figure 6.6.
The first histogram refers to the first implementation we did and the second one
to this last coding. The third bar is an alternative solution. We just re-apply the
initial idea of performing the multiplication as usual (with the intrinsic spu mulo)
and then apply the symmetric residue conversion algorithm in its fastest version.
Looking at the values we obtained a computational time of about 0.0877 µseconds
for the first approach, 0.0251 µseconds for the second one and approximately the
same for the third.

Looking carefully to the last implementation of the residue multiplier we de-
scribed a consideration arise. This procedure does not use any intrinsic that re-
quires type extension. We stated at the beginning that we chose a 4×4 block matrix
even if we use 16-bit precision values that fit in number of eight in the SPE regis-
ters. This limitation is mainly due to the use of spu mulo functions that give the
result with a 32-bit representation. In the “log transform-residue-addition-antilog
transform” function all the operations are carried out on 16-bit values. Thus the

6.1 General results and discussion 87

Fig. 6.6. Residue multiplication performance comparison

result we presented does not vary if we use eight 16-bit values in each vector. This
means that using this approach we can relate all the timing results we obtained
to a 4× 8 block matrix, with a subsequent doubling of the performance, without
decreasing the dynamic range. This would make our Decell implementation more
competitive.

6.1 General results and discussion

In the previous Section we showed that using the available VLSI design as a refer-
ence when implementing parallel solutions can be effective in terms of performance
without asking the programmer to deal with optimization based on ILP, instruc-
tion pipelines and so on: a correct approach can give good results. We tested the
speed improvement due to the passage from a high level approach to an hardware
mimicking one. However, since we worked always on the worst case scenario due
to SIMD organization, we want to check the overall performance of our Decell
implementation, comparing then with the early results presented in Figure 6.2. In
our test we still considered a 4× 4 block matrix.

88 6 Experimental results

The results depicted in Figure 6.7 represent the time spent in computation on
the specific phases of the Decell algorithm form PPE and each SPE. The same
considerations about the PPE code we did about the early results still hold, since
no vectorization or optimization has been done. Thus again the most computa-
tional intensive part is due to arithmetic recomposition. In the test we used the

Fig. 6.7. Overall performance of the new implementation divided in phases and cores

CRT approach that is, in this implementation already 20% faster than MRR. The
SPE computational time lowered from about 75 µseconds to about 26 µseconds.
This last value includes the time required for data (and SPE program) fetching via
DMA transfer, all the operations of vectorization and the initialization required by
the procedure, the iterations (in light blue in the diagram) and the end message to
the PPE. The time spent in the data transfer from SPE to PPE is not considered
in the SPE side, but it is part of the PPE recomposition part of the diagram, be-
cause when the DMA transfer starts the SPE is idle and can be used, in a pipeline
loop, for the processing of the next matrix. Of course if an optimization to the
communication part, exploiting the quadruple buffer abilities of the EIB, is made,
by hand or by using a multicore aware programming system, it is presumable that
the DMA transfer time is masked by the pipelined computation of SPE and PPE.
In Figure 6.8 we just focus on the real execution time in the SPE. There are

mainly three parts involved: the initialization of the SPE process once the matrix
is stored in the LS (in yellow), the execution of the Decell iteration phase (in red)
and the data rearrangement before the DMA transfer of the results (in blue); It is
worth noticing that the elaboration per se takes only 7 µseconds when the block

6.1 General results and discussion 89

Fig. 6.8. Decell iteration phase timing details

matrix is full rank, thus with four iteration and four control of A1Bi = 0. The
time consumed by the reformatting phase is negligible.

Finally, in Figure 6.9 we wanted to show a fast comparison between the imple-
mentation of SVD and Decell on a standard PC and on the CBE. The standard PC
was an Intel Pentium M processor at 1.5 GHz. The diagram shows that the Decell
sequential implementation, in SRNS, requires a huge computational time. This is
a proof that this types of inherently parallel algorithms needs a multicore archi-
tecture in order to be again useful. The presence on the market of easily accessible
parallel architecture may renew, as we suggest, old solution studied mainly for an
hardware development. A straight porting if a SVD implementation on the Cell, on
the other side, shows that it is difficult to exploit parallelism from an intrinsically
sequential program. The last consideration is that the Decell algorithm for CBE,
considering all the improvement margin we described, can be comparable to SVD
for PC.

Generic matrix pseudoinversion

We extended the pseudoinversion to generic matrices by using the block matrix
multiplication described in Section 5.2.1 and considering the 4 × 4 matrix as the
building block. Our purpose was to test if the Decell algorithm scales well with
respect to the size of the matrix considered, compared with the other available
solutions. The block matrix multiplication was implemented in the SPEs without
any specific optimization. In particular we did not exploit loop unrolling because
we used simple nested loops. Of course the core 4 × 4 matrix multiplication that

90 6 Experimental results

Fig. 6.9. SVD and Decell comparison among PC and CBE

span the entire matrix uses all the techniques described in the previous Section
and thus takes advantages from the synergistic processors architecture.

In Figure 6.10 we present the time required by the execution of the SPE code
when Decell is applied to different full rank square matrices. We are not considering
the time required by DMA data transfers. We took into account the computation
of the residue representation of the matrix, that linearly depends on the size of the
matrix that has to be pseuodinversed, (in blue) and the execution of the Decell
iteration phase (in red). The time spent in the decomposition is negligible when
compared with the iteration phase. In general we can notice that the computation
time grows exponentially with respect to the size of the matrix. This result was
predictable because of the implementation of the block matrix multiplication we
chose.

We wanted to compare this result we obtained with the time required by LA-
PACK and NR algorithms. In Figure 6.11 the values of the application on full rank
square matrices of the three algorithms is presented. The solid lines connecting the
values in the different sizes (4× 4, 8× 8, and so on) are just a visual guide rather
than a measured interpolation. In order to better understand the intersections, and
thus the algorithms better performing, Figure 6.12 depicts the same results with
a logarithmic time scale. It is easy to notice that in general the Decell algorithm
requires less computational time for matrices up to 32× 32. NR is faster than LA-
PACK for small matrices while LAPACK outperforms the other two methods for

6.1 General results and discussion 91

Fig. 6.10. Decell computation time required for the pseudoinversion of matrices of dif-
ferent sizes

a large 64×64 matrix. This was not a surprise since, as we stated above, LAPACK
is optimized for large matrices.

Pseudoinversion is necessary in particular when the matrix considered is not
invertible. Then we decided to test how the computation time required by the
pseudoinversion changes in presence of rectangular matrices. Without loss of gen-
erality, we considered matrices where m < n, with m the number of rows and n the
number of columns. This choice is general since when n < m it is still possible to
return this case by applying the relation presented in Section 5.1. For this specific
test we compare the performance of Decell and NR algorithms.

We apply both algorithms to a series of matrices by varying the number of
columns and rows. The behaviour of NR is depicted in Figure 6.13. Each coloured
plot regards matrices that have the same number of rows, while in the abscissa
there is the number of columns, and in the y-axis the computation time is depicted.
It is possible to notice that the time required in NR computation is directly pro-
portional to both the number of rows and column of the matrix that has to be
pseudoinverted.

The results presented in Figure 6.14, that is the performance evaluation of the
Decell algorithm, show that the computation time required is directly proportional
to the number of rows of the matrix that has to be pseudoinverted, but the number
of columns does not affect the overall calculation. The reason of this behaviour

92 6 Experimental results

Fig. 6.11. Trend comparison among NR, LAPACK and Decell computation time for
square generic matrices.

derives from the first operation that is performed in the Decell iteration phase (see
Equation 4.6). In fact, at the beginning of the algorithm the multiplication A1 =
AA∗ (A1 = AAT when the values of the matrix are real numbers) is performed.
Considering that A is an m× n matrix, whatever is the number of columns n the
operation produces an m×m A1 matrix. Thus, despite the number of the columns
of A, the most part of the algorithms works on a square m × m matrix, that is
A1. There is of course a performance penalization due to this first multiplication,
that is proportional to the size of the matrix A, but its contribution to the overall
computation time is not significant and it is evident just for very big matrices.

This aspect of the Decell algorithm is particularly interesting in robotics, since
the Jacobian matrix has 6× n size, with n the number of the degrees of freedom
of the manipulator. Thus, even for a high redundant robot the number of rows
in the Jacobian matrix is fixed, while the number of rows can be big. Even in
this case the computation time of the pseudoinverse is limited. This is another
property that makes the Decell algorithm particularly suitable for haptics and
robotics applications.

6.1 General results and discussion 93

Fig. 6.12. Trend comparison among NR, LAPACK and Decell computation time for
square generic matrices with time expressed in a logarithmic scale.

Further results

As utlimate test we used the asmvis tool in order to inspect the new implemen-
tation about the pipelines load and the stall existence. We observed that the red
marks on the visualization were fewer, thus indicating that the number of in-
structions waiting for some dependencies decreased significantly (see Figure 6.15).
There were almost entire functions in which stalls were absents. Usually this type
of result is obtained by a direct optimization of the assembly code, usually made by
hand. In [4], for instance, two microkernels developed in order to improve LAPACK
matrix multiplication for the CBE were optimized manually. Our approach does
not reach the same peak performance of these fine tuned applications, however it
permitted a noticeable computation speedup, with an implementation based only
on high level instructions.

In addition we noticed that the time required for SPE computation is almost
constant. That is, since the synergistic element is designed to be used on a single

94 6 Experimental results

Fig. 6.13. Performance comparison of the NR implementation of pseudoinversion of non
square matrices.

computational intense task, without preemption and interrupt, in standard con-
dition it behaves in a very deterministic fashion. This may be useful because if a
reasonable deadline is defined the computation can be considered reliable.

We stated that one of the main reason that leads us toward the choice of
the Decell algorithm is the intrinsic upper bound limit to the computation of the
matrix pseudoinverse, that is important in real-time applications. The same type
of determinism is not guaranteed by other solutions for pseudoinversion such as
the SVD decomposition.

On the base of the regularity in the code execution time of the SPEs, we veri-
fied this assumption by performing a set of tests. We collected the time required
by LAPACK and Decell for the pseudoinversion. We repeated the computation on
different matrices and different matrix sizes and we compared results. Figure 6.16
shows that when LAPACK is used the computation time required depend heavily
on the specific configuration of the matrix. In fact the yellow diamonds represent
the different runs of the algorithms on different matrices of the same size. The

6.1 General results and discussion 95

Fig. 6.14. Performance comparison of Decell pseudoinversion of non square matrices.

average time required (azure squares) is quite regular, but there are values that
moves away significantly. The very same behaviour is present for the NR algo-
rithm. It is also possible to find configurations that double the computation time,
especially when the matrix is rectangular.

The same test was performed with the Decell algorithm and the results are
depicted in Figure 6.17. There is only one type of value plotted, since the vari-
ability in the time required for the pseudoinversion of random generated matrices
is negligible. The computation is performed in a very regular fashion and, if the
architecture and the operating system support determinism in the execution of the
code, and thus it is easier to identify correct deadlines and control frequencies.

Considerations

Regarding our assumption of staying as general as possible in our approach, in
order to consider it useful also on others multicore architectures we would like to
highlight that in our hardware inspired implementation of the residue arithmetic
we used a limited set of intrinsics, mainly shift, add, comparison and selection.

96 6 Experimental results

(a) residue conversion (b) residue multiplication

Fig. 6.15. Asmvis results for the residue conversion and the multiplication functions

Fig. 6.16. LAPACK computation time for different matrices. The diamonds (yellow) are
the result colleted in several runs of the algorithm while the squares (azure) are averages.

6.1 General results and discussion 97

Fig. 6.17. Decell computation time for different matrices. The squares (azure) represent
the actual performance in several runs of the algorithm.

This type of vector instructions are usually available on every SIMD or SPMD
system, since the registers and the electronics they need is cheap and easy to be
developed. Thus it is a reasonable assumption that our implementation can be
ported, with the necessary modifications, to other architectures. Moreover some
horizontal functions, such as the sum of all the elements of a vector are not available
on the Cell but exists in other systems. It has to be noticed that the IBM SDK
is constantly update and it is possible to find proposed tentatives of horizontal
operation for the Cell in literature, for instance in [72].

The FPGA board is quite different and requires a more drastic redesign, how-
ever the basic operations are surely available. In addition we limited our data
precision to 16-bit, that is a common standard for FPGAs.

It is of course always possible to use intrinsics and hardware oriented instruc-
tions, even on conventional uniprocessor systems and, if the microcode supports
the operation used it will end up to a similar speedup. However, the two main
points we found are: first, in a system supporting the SIMD paradigm it is easier
to find these types of operation acting on data sets, since the SIMD or vector
registers are closer to the hardware than general purpose ones. Second, when a
hardware implementation that is based only on these types of operations already

98 6 Experimental results

exists, it is easier to port the code to a SIMD implementation.

It is important to make a distinction about our performance comparison and
results. The aim of our study was not to find the best algorithm for pseudoinver-
sion, nor to state that our parallel implementation is the fastest ever. Hence we
are not proposing a tout court replacement for the SVD algorithm. We wanted
to show that a specific approach for the porting of hardware implementation on
recent multicore architecture is able to give, alone, a considerable speedup, while
remaining comparable to standard, state of the art, approaches.

6.2 Conclusions

In this Chapter we presented the data we collected in order to evaluate the perfor-
mance of our hardware inspired implementation of the Decell algorithm for matrix
pseudoinversion. We analyzed the time spent in each phase of the algorithm, both
in PPE and SPEs. Then we focused on the synergistic processors, since they are
more suitable to exploit data parallelism. In particular we compared the execution
time of the different implementations described in Chapter 5. We highlighted the
improvement given by the use of CBE intrinsics that can easily mimic the VLSI
implementation, while operating on sets of data at a time. In the following we will
discuss our conclusions and possible future work.

7

Conclusions

Teleoperation indicates operation of a machine at distance. The standard setup
for teleoperation requires a slave device, used to interact with the real or virtual
remote environment, a communication link, responsible for data transfers, and a
master device. This specific mechanism is used by the operator in order to provide
commands to the slave device. In the simplest case it is just a pointing device, used
to position and move the telecontrolled tool. Since the user has to “perceive” the
remote environment as he/she is acting directly on it, a set of information has to
be collected at master side and sent back to the operator. When this set includes
force/torque data the teleoperation is said to have force feedback. The force feed-
back is known to improve the performance of the operator and is currently used
for critic applications such as medical simulators and flight simulators for pilot
training.

The master device that gives force feedback to the user is also called haptic
device. Haptic devices are robots to all intents and purposes, since they have a
kinematic structure, they are composed by sensors and actuators, and they are
controlled. At the same time they differ from robots since they are constantly in
contact with an human operator. They are the interface between the user and
the whole teleoperated system and, in addition, they have to provide a convincing
feedback. Vision is widely used in teleoperation due to the deep knowledge of
physiological and psychophysical characteristics of human visual capabilities and
due to the large availability of cameras and displays. The mechanisms of tactile
and kinesthetic perception are still fields of research and complex and configurable
devices are required in order to carry out experiments.

In this work we studied haptics with a multidisciplinary approach. We focused
on two main aspects there are the role of human perception in haptics and teleop-
eration, and the use of multicore architectures for the implementation of hardware
algorithms for dynamics.

In details:

• We designed a setup for the execution of perception experiments by using a non
commercial high performance haptic device. The NASA/JPL Force Reflecting

100 7 Conclusions

Hand Controller was used to provide force stimuli in the Cartesian space to
several subjects and collect results.

• The joystick was equipped with a FPGA board for the low level handling of the
device and precise force generation. An important effort was spent in order to
make the reflected force/torque signal correct and a complete calibration of the
device was required. Then we collaborated in the design of the experiments.

• The analysis of the results leads towards the identification of the force/torque
differential thresholds applied to the hand-arm system. On this basis we deter-
mined a set of scaling functions, one for each degree of freedom of the three-
dimensional space, that can be use to enhance the human abilities in discrim-
inating different stimuli. These variable force scaling operates especially on
low intensities forces. We foresee that this can be useful in teleoperation tasks
that require high precision and sensitivity, such as computer aided surgical
operations.

• Since any real time force signal modification has to fit in the teleoperation and
haptic device loops that have to strictly satisfy time constraints we worked in
the identification of suitable high performance hardware that can be used in
these fields. We focused on the migration of old inherently parallel algorithms
implemented in hardware to new multicore architectures.

• We implemented an algorithm for the computation of the pseudoinverse of the
Jacobian matrix, that was implemented in VLSI during the 80s successfully on
a Cell broadband engine. We studied the programming model of the algorithm
and found a match with the processing model of our target architecture. We
showed that the implementation on a recent multicore system can be achieved.
In particular we highlighted that good results in terms of performance can be
obtained by exploiting tasks and data parallelism and by using instructions
that can be easily transformed in elementary register operations, such as add,
shift, mask and selection. These instructions are usually defined and accessible
by high level languages in SIMD architecture, such as the CBE.

• We implemented and evaluated the SRSN Parallel Decell Algorithm for matrix
pseudoinversion on a Sony PlayStation 3 console, equipped with CBE and
GNU/Linux. We used intrinsic functions in order to easily access the vector
registers without dealing with assembler and low level instructions. We let to
the compiler the optimization of the code. The result was a consistent increase
in performance, with respect to a standard C/C++ approach, even if no specific
fine tuning was performed.

Haptics is becoming more accessible and diffuse, thanks to the availability of
devices and applications. However, since they are the medium used to increase
the immersion experience of the user during teleoperaration tasks, it is important
to maintain a human-centric approach to force feedback. In particular it is neces-
sary to deeply understand how the force signal are perceived and decoded by the
human being. This understanding can be used to make the remote experience re-
alistic as well as to increase the abilities of the operator. At the same time haptics
and robotics have to exploit any actual technology in order to make these goals a
reality. The use of multicore architectures and parallel programming is a solution,
and it is possible easily to port algorithms and strategies once implemented in

7.1 Future work 101

hardware by using the correct programming approach.

7.1 Future work

Since this was a multidisciplinary work, there are several possible evolutions.

From a phychophysical point of view, our setup can be used to gain new insights
about human force perception. In this thesis we focused on a specific aspect, that is
the identification of the force/torque differential thresholds. This choice was given
by a possible application for robotic surgery. However the approach we followed,
the design of the experiments and the hardware and software used for this purpose
can be easily adapted for other perception studies where the goal is the analysis of
the hand-arm system and of its kinesthetic abilities. The choice of new experiments
can be driven by the need of task specific enhanced human perception, in surgery
as well in other teleoperated environments. An interesting side effect can be the
identification of a set of guidelines that can be useful in the design of new haptic
devices.

Regarding our results, we would like to design a new experiment in order to
confirm that the proposed force scaling is good. As described in Chapter 2, we
already checked that the underlying idea works and that our scaling permits the
operator to discriminate small differences in the forces at low intensities, but we
would like to involve more subjects in order to obtain statistical relevance to the
data collected. Moreover the development of a simple and fast procedure for the
ad-hoc calibration of the scaling function in order to obtain a “personal” enhance-
ment is under development. At the same time we want to verify the stable variable
force scaling strategy in a real teleoperation task.

For what concerns the parallel implementation of algorithms there are two
main evolutions possible.

1. It would be interesting to implement the same SRNS parallel Decell algorithm
in the other multicore architectures we presented, and in particular in GPU
and in a System on Chip equipped with a new generation FPGA. A first
analysis can regard the design modifications required by each porting, in order
to exactly evaluate the portability of the approach. A second more direct and
objective evaluation can refer to the comparison of the execution time required
by the program on each architecture. The combination of our approach with
the use of a multicore aware SPMD based programming language, such as
RapidMind, can be interesting because it can further improve the performance
while reducing the code adaptation efforts.

2. In order to evaluate our approach about parallel implementation we focused on
the matrix pseudoinversion. Since the main goal is to implement all the control
and transformation algorithms that can be used in teleoperation by the haptic
interface, our proposal can be further broaden by porting entire kinematic and
dynamic algorithms from hardware to software. There are several works about
the implementation of both custom and general solutions for the dynamic

102 7 Conclusions

and kinematic computation of kinematic structures. In addition the controller
currently used in axis boards and industrial robotic systems can be used. All
these hard-coded programs can be renewed by using multicore architecture.
Eventually the implementation of a complete haptic controller with perception
based force signal manipulation can be considered.

The PS3 is an inexpensive alternative in order to check the goodness of an
implementation on the Cell Broadband Engine. However the Sony console is some-
what limited for robotic/haptic development since it lacks custom I/O support.
In order to couple the PS3 with the motors and sensors of a robotic device a com-
plex electronic modification is required. Although these drawbacks in the future
we would like to test the implementation with a real haptic device. The two alter-
natives are to use PS3 as a dedicated computing part in a distributed system, by
using one of the real time architecture for teleoperation we presented in Section 3.2,
overcoming all the limitations of an hypervisor filtered network communication,
otherwise the use of an IBM Blade server if the investment is affordable.

Considering the interest in high performance error free computation, and its
general use in field such as cryptography, a secondary topics can be the creation of
a multiplatform library for the symmetric residue arithmetic, working on different
SIMD platform. The residue operations can be implemented by using abstract
basic add, shift, mask and selection vector operations that are then transformed
in the target specific intrinsics.

References

1. Software development kit for multicore acceleration, version 3.0. Programming
Tutorial, October 2007.

2. Sonya Allin, Yoky Matsuoka, and Roberta Klatzky. Measuring just noticeable differ-
ences for haptic force feedback: Implication for rehabiliatation. In Haptic Interfaces
for Virtual Environment & Teleoperator Systems, pages 299–303. IEEE Computer
Society, 2002.

3. M. Altomonte, D. Zerbato, D. Botturi, and P. Fiorini. Simulation of deformable
environment with haptic feedback on gpu. In Intelligent Robots and Systems, 2008.
IROS 2008. IEEE/RSJ International Conference on, pages 3959–3964, Sept. 2008.

4. Wesley Alvaro, Jakub Kurzak, and Jack Dongarra. Fast and small short vector
simd matrix multiplication kernels for the synergistic processing element of the
cell processor. In ICCS ’08: Proceedings of the 8th international conference on
Computational Science, Part I, pages 935–944, Berlin, Heidelberg, 2008. Springer-
Verlag.

5. AMD. Ctm guide: Thechnical reference manual, 2006.
6. Hyunki Baik, Kue-Hwan Sihn, Yun il Kim, Sehyun Bae, Najeong Han, and Hyo Jung

Song. Analysis and parallelization of h.264 decoder on cell broadband engine archi-
tecture. In Signal Processing and Information Technology, 2007 IEEE International
Symposium on, pages 791–795, Dec. 2007.

7. Zachary K. Baker, Maya B. Gokhale, and Justin L. Tripp. Matched filter compu-
tation on fpga, cell and gpu. In FCCM ’07: Proceedings of the 15th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, pages 207–218,
Washington, DC, USA, 2007. IEEE Computer Society.

8. Federico Barbagli, Ken Salisbury, Cristy Ho, Charles Spence, and Hong Z. Tan.
Haptic discrimination of force direction and the influence of visual information.
ACM Transactions on Applied Perception, 3(2):125–135, 2006.

9. Gabriel Baud-Bovy and Paolo Viviani. Pointing to kinesthetic targets in space. The
Journal of Neuroscience, 18(4):1528–1545, 1998.

10. A. Bejczy and K. Salisbury. Kinematic coupling between operator and remote
manipulator. Advances in Computer Tecnology, 1:197–211, 1980.

11. A. Ben-Israel and T.N.E. Greville. Generalized Inverses: Theory and Applications
(2nd edition). Springer Verlag, New York, 2002.

12. C. Benthin, I. Wald, M. Scherbaum, and H. Friedrich. Ray tracing on the cell
processor. In Interactive Ray Tracing 2006, IEEE Symposium on, pages 15–23,
Sept. 2006.

13. D. Botturi, S. Galvan, M. Vicentini, and C. Secchi. Perception-centric force scaling
function for stable bilateral interaction. In ICRA’09: Proceedings of the 2009 IEEE

104 References

international conference on Robotics and Automation, pages 230–235, Piscataway,
NJ, USA, 2009. IEEE Press.

14. Tracy D. Braun, Renard Ulrey, Anthony A. Maciejewski, and Howard Jay Siegel.
Parallel approaches for singular value decomposition as applied to robotic manipu-
lator jacobians. Int. J. Parallel Program., 30(1):1–35, 2002.

15. Bambi R. Brewer, Matthew Fagan, Roberta L. Klatzky, and Yoky Matsuoka. Per-
ceptual limits for a robotic rehabilitation environment using visual feedback dis-
tortion. IEEE Transactions on Neural Systems and Rehabilitation Engineering,
13(1):1–11, 2005.

16. E. E. Brodie and Helen E. Ross. Sensorimotor mechanism in weight discrimination.
Perception & Psychophisics, 36:477–481, 1984.

17. A. Brooks, T. Kaupp, A. Makarenko, A. Orebäck, and S. Williams. Towards
component-based robotics. In IEEE/RSJ International Conference on Intelligent
Robot Systems, August 2005.

18. H. Bruyninckx. Open robot control software: The OROCOS project. In Proceed-
ing of IEEE International Conference on Robotics and Automation (ICRA), pages
2523–2528, May 2001.

19. Grigore Burdea. Force and touch feedback for Virtual Reality. John Wiley & Sons,
Inc., New York, NY, 1996.

20. K. P. Burnham and D. R. Anderson. Multimodel Inference: Understanding AIC and
BIC in Model Selection. Sociological Methods and Research, 33(2):261–304, 2004.

21. Alfredo Buttari, Jack Dongarra, and Jakub Kurzak. Limitations of the playstation
3 for high performance cluster computing. Technical report, 2007.

22. F. Caccavale, C. Natale, B. Siciliano, and L. Villani. Achieving a cooperative behav-
ior in a dual-arm robot system via a modular control structure. Journal of Robotic
Systems, 18(12):691–699, 2001.

23. P.R. Chang and C.S.G. Lee. Residue arithmetic vlsi array architecture for ma-
nipulator pseudo-inverse jacobian computation. Robotics and Automation, IEEE
Transactions on, 5(5):569–582, Oct 1989.

24. Rooju Chokshi, Krzysztof S. Berezowski, Aviral Shrivastava, and Stanislaw J. Pies-
trak. Exploiting residue number system for power-efficient digital signal process-
ing in embedded processors. In CASES ’09: Proceedings of the 2009 international
conference on Compilers, architecture, and synthesis for embedded systems, pages
19–28, New York, NY, USA, 2009. ACM.

25. NVIDIA Corporation. Cuda. http://www.developer.nvidia.com/cuda/.
26. Frederica Darema, David A. George, V. Alan Norton, and Gregory F. Pfister. A

single-program-multiple-data computational model for epex/fortran. Parallel Com-
puting, 7(1):11–24, 1988.

27. H. Das, H. Zak, W. S. Kim, A. K. Bejczy, and P. S. Schenker. Operator performance
with alternative manual control modes in teleoperation. Presence, 1(2):201–218,
Spring 1992.

28. Gudrun De Gersem. Kinaesthetic feedback and enhanced sensitivity in robotic la-
paroscopic telesurgery. PhD thesis, Katholieke Universiteit Luven, Belgium, 2005.

29. Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H. Barr. Dynamic
real-time deformations using space & time adaptive sampling. In SIGGRAPH ’01:
Proceedings of the 28th annual conference on Computer graphics and interactive
techniques, pages 31–36, New York, NY, USA, 2001. ACM.

30. H. P. Decell, Jr. An alternate form of the generalized inverse of an arbitrary complex
matrix. SIAM Rev., 7:356–358, 1965.

31. H. P. Decell, Jr. An application of the Cayley-Hamilton theorem to generalized
matrix inversion. SIAM Rev., 7:526–528, 1965.

References 105

32. EPFL Ecole Polytechnique Federale de Lausanne. Laboratory for cryptologic algo-
rithms. http://lacal.epfl.ch/page75844.html.

33. Ernest D. Fasse, Neville Hogan, Bruce A. Kay, and Ferdinando A. Mussa-Ivaldi.
Haptic interaction with virtual objects: Spatial perception and motor control. Bi-
ological Cybernetics, 82(1):69–83, 2000.

34. Michael J. Flynn. Some computer organizations and their effectiveness. IEEE
Transactions on Computers, 21(9):948–960, September 1972.

35. Force Dimension. http://www.forcedimension.com.
36. Forschungszentrum Informatik (FZI). Modular controller architecture.

mca2.sourceforge.net.
37. S. Galvan, D. Botturi, and P. Fiorini. FPGA-based controller for haptic devices.

In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Beijing, China, October 2006.

38. Stefano Galvan, Andrea Castellani, Debora Botturi, and Paolo Fiorini. Advanced
teleoperation architecture. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1680–1685, Beijing, China, October 2006. IEEE.

39. G.A. Gescheider. The classical psychophysical methods. In Psychophysics: the
fundamentals, Lawrence Erlbaum Associates, Mahwah, NY, 45-72, 1997.

40. A. Ghuloum, E. Sprangle, and J. Fang. Flexible parallel programming for tera-scale
architectures with ct. Intel White Paper, April 2007.

41. David M. Green. A maximum-likelihood method for estimating thresholds in a
yes-no task. Journal of the Acoustical Society of America, 93(4):2096–2105, 1993.

42. Xiang Gu and David M. Green. Further studies of a maximum-likelihood yes-no
procedure. Journal of the Acoustical Society of America, 96(1):93–101, 1994.

43. Kelly S. Hale and Kay M. Stanney. Deriving haptic design guidelines from hu-
man physiological, psychophysical, and neurological foundations. IEEE Computer
Graphics and Applications, 24(2):33–39, 2004.

44. Owen Harrison and John Waldron. Efficient acceleration of asymmetric cryptog-
raphy on graphics hardware. In AFRICACRYPT ’09: Proceedings of the 2nd In-
ternational Conference on Cryptology in Africa, pages 350–367, Berlin, Heidelberg,
2009. Springer-Verlag.

45. V. Hayward and K.E. Maclean. Do it yourself haptics: part i. Robotics & Automation
magazine, IEEE, 14(4):88–104, Dec. 2007.

46. N. Hogan. Impedance control: An approach to manipulation: Part I – Theory, Part
II – Implementation, Part III – Applications. ASME Journal of Dynamic Systems,
Measurment and Control, 107, 1985.

47. G Hotz. On the playstation 3. http://geohotps3.blogspot.com/.
48. Yildirim Hurmuzlu, Anton Ephanov, and Dan Stoianovici. Effect of a pneumatically

driven haptic interface on the perception capabilities of human operators. Presence,
7(3):290–307, 1998.

49. International Business Machines Corp. IBM. Asmvis, assembly visualizer for cell
broadband engine. http://www.alphaworks.ibm.com/tech/asmvis.

50. Intuitive Surgical Inc. http://www.intuitivesurgical.com.
51. Heidi Johansen-Berg and Timothy E. J. Behrens. Diffusion MRI: From Quantitative

Measurement to In-vivo Neuroanatomy. Elsevier Science & Technology, 2009.
52. L. A. Jones and I. W. Hunter. A perceptual analysis of viscosity. Experimental

Brain Research, 94(3):343–351, 1993.
53. Lynette A. Jones and I. W. Hunter. The relation of muscle force and EMG to

perceived force in human finger flexors. European Journal of Applied Physiology,
50:125–131, 1982.

54. Amanda L. Kaas and Hanneke I. van Mier. Haptic spatial matching in near periper-
sonal space. Experimental Brain Research, 170:403–413, 2006.

106 References

55. G Khanna. Playstation 3 gravity grid. http://gravity.phy.umassd.edu/ps3.html.
56. E Kinoshita, H Kosako, and Y Kojima. General division in the symmetric residue

number system. Residue number system arithmetic: modern applications in digital
signal processing, pages 104–112, 1986.

57. Gerhard K. Kraetzschmar, Hans Utz, Stefan Sablatnög, Stefan Enderle, and
Günther Palm. Miro - middleware for cooperative robotics. In RoboCup 2001:
Robot Soccer World Cup V, pages 411–416, London, UK, 2002. Springer-Verlag.

58. Daniel Kubus, Ingo Weidauer, and Friedrich M. Wahl. 1khz is not enough: how to
achieve higher update rates with a bilateral teleoperation system based on commer-
cial hardware. In IROS’09: Proceedings of the 2009 IEEE/RSJ international con-
ference on Intelligent robots and systems, pages 5107–5114, Piscataway, NJ, USA,
2009. IEEE Press.

59. Jakub Kurzak, Alfredo Buttari, Piotr Luszczek, and Jack Dongarra. The playsta-
tion 3 for high-performance scientific computing. Computing in Science and Engg.,
10(3):84–87, 2008.

60. Yeu-Pong Lai and Chin-Chen Chang. Parallel computational algorithms for gener-
alized chinese remainder theorem. Computers and Electrical Engineering, 29(8):801
– 811, 2003.

61. B.W. Lamacchia and G.R. Redinbo. Rsn digital filtering structures for wafer-scale
integration. IEEE Journal of Selected Area Commun., SAC-4(1), Jan 1986.

62. LAPACK. Linear algebra package. http://www.netlib.org/lapack/.
63. C S G Lee and P R Chang. Efficient parallel algorithm for robot inverse dynamics

computation. IEEE Trans. Syst. Man Cybern., 16(4):532–542, 1986.
64. C.S.G. Lee and P.R. Chang. Efficient parallel algorithms for robot forward dynamics

computation. Systems, Man and Cybernetics, IEEE Transactions on, 18(2):238–251,
Mar/Apr 1988.

65. Marjorie R. Leek. Adaptive procedures in psychophysical research. Perception &
Psychophisics, 63(8):1279–1292, 2001.

66. M. C. Lin and D. Manocha. Cutting-edge computing: Using new commodity archi-
tectures. Proceedings of the IEEE, 96(5):758–760, May 2008.

67. K.E. MacLean and V. Hayward. Do it yourself haptics: Part ii [tutorial]. Robotics
& Automation Magazine, IEEE, 15(1):104–119, March 2008.

68. Lawrence E. Marks and George A. Gesheider. Psychophysical scaling. In Harold E.
Pashler and Stanley S. Stevens, editors, Stevens’ Handbook of Experimental Psy-
chology, chapter 3, pages 91–138. John Wiley & Sons, Inc., 2002.

69. M. Mc Laughlin, A. Rizzo, Y. Jung, W. Peng, SC Yeh, and W. Zhu. Haptics-
enhanced virtual environments for stroke rehabilitation. In Proceedings on
IPSI2005, Cambridge, MA, 2005.

70. M. D. McCool. Data-parallel programming on the cell be and the gpu using the
rapidmind development platform. In in Proc. GSPx Multicore Applicat. Conf, Oct.-
Nov. 2006.

71. M.D. McCool. Scalable programming models for massively multicore processors.
Proceedings of the IEEE, 96(5):816–831, April 2008.

72. C.H. Meenderinck and B.H.H. Juurlink. Intra-vector simd instructions for core
specialization. In Proceedings of the IEEE International Conference on Computer
Design, October 2009.

73. G. Metta, P. Fitzpatrick, and L. Natale. Yarp: Yet another robot platform. Interna-
tional Journal of Advanced Robotics Systems, special issue on Software Development
and Integration in Robotics, 3(1), 2006.

74. Uwe Meyer-Bäse, Antonio Garćıa, and Fred Taylor. Implementation of a communi-
cations channelizer using fpgas and rns arithmetic. J. VLSI Signal Process. Syst.,
28(1/2):115–128, 2001.

References 107

75. E. H. Moore. On the reciprocal of the general algebraic matrix. Bull. Amer. Math.
Soc., 26:394–395, 1920. (Abstract).

76. Frederic J. Mowle. A Systematic Approach to Digital Logic Design. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1976.

77. I.A. Nesnas, A. Wright, M. Bajracharya, R. Simmons, T. Estlin, and Won Soo
Kim. CLARAty: An architecture for reusable robotic software. In SPIE Aerosense
Conference, Orlando, Florida, April 2003.

78. A. C. Newberry, M. J. Griffin, and M. Dowson. Driver perception of steering feel.
Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,
221(4):405–415, 2007.

79. Roger Newport, Benjamin Rabb, and Stephen R. Jackson. Noninformative vision
improves haptic spatial perception. Current Biology, 12:1661–1664, 2002.

80. M. Ohara, H. Inoue, Y. Sohda, H. Komatsu, and T. Nakatani. Mpi microtask for
programming the cell broadband enginetm processor. IBM Syst. J., 45(1):85–102,
2006.

81. Kunle Olukotun and Lance Hammond. The future of microprocessors. Queue,
3(7):26–29, 2005.

82. Amos Omondi and Benjamin Premkumar. Residue Number Systems: Theory and
Implementation. Imperial College Press, London, UK, UK, 2007.

83. G. Palli, L. Biagiotti, and C. Melchiorri. An open source distributed platform for
the control of the puma 560 manipulator. In 9th Real Time Linux Workshop, Linz,
Austria, November 2007.

84. X. D. Pang, H. Z. Tan, and N. I. Durlach. Manual discrimination of force using
active finger motion. Perception & Psychophisics, 49(6):531–540, 1991.

85. J. L. Patton and F. A. Mussa-Ivaldi. Robot-assisted adaptive training: custom
force fields for teaching movement patterns. IEEE Transactions on Biomedical
engineering, 51(4):636–646, 2004.

86. R. Penrose. A generalized inverse for matrices. Proc. Cambridge Philos. Soc.,
51:406–413, 1955.

87. William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical recipes in C (2nd ed.): the art of scientific computing. Cambridge
University Press, New York, NY, USA, 1992.

88. Proctor and William P. Shackleford. Embedded real-time linux for cable robot
control. In ASME Design Engineering Technical Conference and Computers in
Engineering Conference, pages 200–2, 2002.

89. Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray tracing
on programmable graphics hardware. In SIGGRAPH ’05: ACM SIGGRAPH 2005
Courses, page 268, New York, NY, USA, 2005. ACM.

90. T.M. Rao, K. Subramanian, and E.V. Krishnamurthy. Residue arithmetic algo-
rithms for exact computation of g-inverses of matrices. SIAM J. Numer. Anal,
13(2):155–171, April 1976.

91. D. W. Rees and N. K. Copeland. Discrimination of differences in mass of weightless
objects. WADD Tech Rep. 60-601, Wright-Patterson Air Force Base, Ohio, 1960.

92. Helen E. Ross and Eric E. Brodie. Weber fractions for weight and mass as a function
of stimulus intensity. The Quarterly Journal of Experimental Psychology Section A:
Human Experimental Psychology, 39(1):77–88, 1987.

93. Evren Samur, Fei Wang, Ulrich Spaelter, and Hannes Bleuler. Generic and sys-
tematic evaluation of haptic interfaces based on testbeds. In IEEE Intl. Conf. on
Intelligent Robots and Systems, San Diego, CA, 2007.

94. Christian Schlegel and Robert Wörz. The software framework smartsoft for imple-
menting sensorimotor systems. In Proceeding of the 1999 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1610–1616, 1999.

108 References

95. Erik J. Schlicht and Paul R. Schrater. Impact of coordinate transformation uncer-
tainty on human sensorimotor control. Journal of Neurophysiology, 97:4203–4214,
2007.

96. Bertil Schmidt and Douglas Maskell. Workshop on using emerging parallel architec-
tures for computational science. In ICCS ’09: Proceedings of the 9th International
Conference on Computational Science, pages 861–863, Berlin, Heidelberg, 2009.
Springer-Verlag.

97. Sintesi SCpA. Orchestra control engine. http://www.orchestracontrol.com.
98. C. Secchi, S. Stramigioli, and C. Fantuzzi. Power scaling in port-hamiltonian based

bilateral telemanipulation. In Proceedings of IEEE/RSJ International Conference
on Intelligent Robots and Systems, Edmonton, Canada, August 2005.

99. C. Secchi, S. Stramigioli, and C. Fantuzzi. Control of Interactive Roboti Interfaces:
a port-Hamiltonian Approach. Springer Tracts in Advanced Robotics. Springer,
2007.

100. Sensable Technology. http://www.sensable.com/.
101. CBEA JSRE Series. Spu c/c++ language extensions version 2.1, October 2005.
102. David B. Skillicorn and Domenico Talia. Models and languages for parallel compu-

tation. ACM Comput. Surv., 30(2):123–169, 1998.
103. Michael A Soderstrand, W Kenneth Jenkins, Graham A Jullien, and Fred J Taylor,

editors. Residue number system arithmetic: modern applications in digital signal
processing. IEEE Press, Piscataway, NJ, USA, 1986.

104. M.W. Spong, S Hutchinson, and M Vidyasagar. Robot Modeling and Control. John
Wiley and Sons, Inc., New York, 2005.

105. Mandayam A. Srinivasan and Cagatay Basdogan. Haptics in virtual environments:
taxonomy, research status and challenges. Computer & Graphics, 21(4):393–404,
1997.

106. W. T. Stallings and T. L. Boullion. Computation of pseudoinverse matrices using
residue arithmetic. SIAM Rev., 14:152–163, 1972.

107. Kay M. Stanney. Realizing the full potential of virtual reality: Human factors issues
that could stand in the way. In Virtual Reality Annual International Symposium,
pages 28–34, Los Alamitos, CA, 1995. IEEE Computer Society.

108. N.S. Szabo and R.I. Tanaka. Residue Arithmetic and Its Application to Computer
Technology. McGraw-Hill, New York, 1967.

109. Robert Szerwinski and Tim Güneysu. Exploiting the power of gpus for asymmetric
cryptography. In CHES ’08: Proceeding sof the 10th international workshop on
Cryptographic Hardware and Embedded Systems, pages 79–99, Berlin, Heidelberg,
2008. Springer-Verlag.

110. Albert Tarantola. Popper, Bayes and the inverse problem. Nature Physics, 2(8):492–
494, August 2006.

111. F. J. Taylor. Residue arithmetic a tutorial with examples. Computer, 17(5):50–62,
1984.

112. R Development Core Team. R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2008.

113. MPB Technologies Inc. (MPBT). http://www.mpb-technologies.ca/.
114. D. Toffin, J. McIntyre, J. Droulez, A. Kemeny, and A. Berthoz. Perception and

reproduction of force direction in the horizontal plane. Journal of Neurophysiology,
90:3040–3053, 2003.

115. Tadeusz Tomczak. Residue arithmetic in fpga matrices. Dependability of Computer
Systems, International Conference on, 0:297–305, 2006.

116. R.T. Vaughan, B. Gerkey, and A. Howard. On device abstractions for portable,
resuable robot code. In IEEE/RSJ International Conference on Intelligent Robot
Systems, Las Vegas, Nevada, USA, October 2003.

References 109

117. M. Vicentini, S. Galvan, D. Botturi, and P. Fiorini. Evaluation of force and torque
magnitude discrimination thresholds on the human hand-arm system. ACM Trans-
actions on Applied Perception, 2010. (Accepted - To be published).

118. Marco Vicentini, Maria Carla De Maggio, Debora Botturi, and Paolo Fiorini. Eval-
uation of directional force threshold through psychophysics experiments. In A. Lu-
ciani and C. Cadoz, editors, Enactive/07. Proc. of the 4th Intl. Conf. on Enactive
Interfaces, pages 297–300, Grenoble, France, 2007. Association ACROE.

119. J. Volder. Binary computation algorithms for coordinate rotation and function
generation. Convair report iar-1 148, Aeroelectrics Group, June 1956.

120. Christopher R. Wagner, Nicholas Stylopoulos, Patrick G. Jackson, and Robert D.
Howe. The benefit of force feedback in surgery: Examination of blunt dissection.
Presence, 16(3):252–262, 2007.

121. Heather E. Wheat, Lauren M. Salo, and Antony W. Goodwin. Human ability to
scale and discriminate forces typical of those occurring during grasp and manipu-
lation. The Journal of Neuroscience, 24(13):3394–3401, 2004.

122. Felix A. Wichmann and N. Jeremy Hill. The psychometric function: I. fitting,
sampling and goodness of fit. Perception & Psychophisics, 63(8):1293–1313, 2001.

123. Wikipedia. Linear least squares. http://en.wikipedia.org/wiki/Linear least squaresm.
124. Wikipedia. Moore-penrose pseudoinverse. http://en.wikipedia.org/wiki/Moore-

Penrose pseudoinverse.
125. Adrianto Wirawan, Chee Keong Kwoh, and Bertil Schmidt. Parallel dna sequence

alignment on the cell broadband engine. In PPAM, pages 1249–1256, 2007.
126. Wen Wu and Pheng Ann Heng. A hybrid condensed finite element model with

gpu acceleration for interactive 3d soft tissue cutting: Research articles. Comput.
Animat. Virtual Worlds, 15(3-4):219–227, 2004.

Curriculum Vitæ of Stefano Galvan

Department of Computer Science, University of Verona
CV-2, Strada le Grazie, 15, 37134 Verona (Italy)
(+39) 045 8027074 (voice), (+39) 045 8027068 (fax)
E-mail: stef@metropolis.sci.univr.it

Education:
• PhD in Computer Science, University of Verona, Italy (2010). Advisor:

Prof. Paolo Fiorini. Dissertation Title: Perception-motivated parallel algo-
rithms for haptics. Commission: Prof. Herman Bruyninckx, Prof. Vincent
Hayward, Prof. Luigi Palopoli, PhD Cristian Secchi.

• “Cultore della materia” in Robotics and Systems Theory, University of
Verona, Italy (2005).

• Laurea in Computer Science, University of Verona, Italy (2005). Thesis
title: Gestione integrata di dispositivi a ritorno di forza. Graded 110/110,
thesis awarded with exceptional credit. In this Thesis we develop an in-
novative hardware/software structure used to control an actuated 6 dof
joystick in a teleoperation task. To increase speed and reliability parts of
the kinematic calculation are embedded in the joystick controller. To im-
plement this idea we used an FPGA to handle both the low level tasks and
the algorithmic part of the problem.

• Diploma di Maturità Tecnica (56/60) as Ragioniere, Perito Commerciale e
Programmatore (1994).

Activities:
(2008) Research assistant at Department of Computer Science, University of

Verona (Italy) for the “Xpero - Learning by Experimentation” FP6-IST-
29427 European project: human resources coordination, documentation,
design and programming.

(2006-2008) Research assistant at Department of Computer Science, Univer-
sity of Verona (Italy) for the PRIN Cofin project in the research unit
“Modellazione e resa aptico/visiva di oggetti soffici e deformabili”;

(2005-2006) August-March Research assistant at Department of Computer
Science, University of Verona (Italy).

(2002) September-December ERASMUS international exchange period at Cen-
ter of Autonomous Systems, KTH Stockholm (Sweden);

(2001-2008) System administrator at ALTAIR Robotic Laboratory, Depart-
ment of Computer Science, University of Verona (Italy);

(2001) Developed the robotics laboratory called ALTAIR - A Laboratory for
Teleoperation and Autonomous Intelligent Robots, University of Verona
(Italy);

(1997-2001) Web designer and programmer for e-commerce websites.
Other activities:

P. Fiorini, S. Galvan, L. Giuliari, L. Pighi. It Takes a Village... to do Science
Education. Workshop at International Conference on Simulation, Mod-
elling and Programming for Autonomous Robots (SIMPAR), Venezia,
November 2008.

S. Galvan, L. Bertelli, F. Bovo, P.Fiorini. Innovative Tools for Education in
Mechatronics. Workshop at 9th International Workshop on Research and
Education in Mechatronics (REM), Bergamo, September 2008.

D. Moschini, A. Castellani, S. Galvan, D. Botturi, P. Fiorini. Advanced Tele-
operation Architecture. Workshop at IEEE International Conference on
Robotics and Automation (ICRA), Barcellona, April 2005.

(2005-2008) Scientific paper reviewer for international conferences in the fields
of robotics, control theory and programming (ICAR, ICRA, IROS, CARS)
and for international Journals (RAS and Mechatronics).

(2004-2008) Robotics courses for the TANDEM project in collaboration with
high schools at University of Verona: course organization and preparation,
gave lectures and laboratory exercises.

(2004-2007) Preparation and supervision of laboratory exercises in the follow-
ing courses: System theory, Systems and signals, Robotics, Introduction to
control systems.

Publications:
1. Marco Vicentini, Stefano Galvan, Debora Botturi, and Paolo Fiorini. Eval-

uation of force and torque magnitude discrimination thresholds on the hu-
man hand-arm system. ACM Transactions on Applied Perception, 2010.
(Accepted - To be published)

2. Debora Botturi, Stefano Galvan, Marco Vicentini, and Cristian Secchi.
Perception-centric force scaling function for stable bilateral interaction,
ICRA 2009 Conference, IEEE International Conference on Robotics and
Automation, Kobe, Japan, 12-17 May 2009

3. Davide Zerbato, Stefano Galvan, Paolo Fiorini, Calibration of mass spring
models for organ simulations, IROS 2007 Conference, IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, San Diego, USA,
October 2007

4. Lorenzo Bertelli, Francesco Bovo, Lorenzo Grespan, Stefano Galvan, Paolo
Fiorini, Eddy: an Open Hardware Robot for Education, AMIRE 2007 Con-
ference, 4th International Symposium on Autonomous Minirobots for Re-
search and Edutainment, Buenos Aires, Argentina, 2-5 October 2007

5. Andrea Castellani, Stefano Galvan, Debora Botturi, Paolo Fiorini, Ad-
vanced Teleoperation Architecture, in Software Engineering for Experi-

mental Robotics, D. Brugali Ed., Springer Tracts on Advanced Robotics
(STAR), XXII, Vol. 30, Springer Verlag Publisher 2007, ISBN: 978-3-540-
68949-2.

6. Paolo Fiorini, Stefano Galvan, Debora Botturi, Space teleoperation for
the rest of us: the quest of low cost and high reliability software, ASTRA
2006 Workshop, 9th ESA Workshop on Advanced Space Technologies for
Robotics and Automation, Noordwijk, Olanda, November 2006

7. S. Galvan, D. Botturi, P. Fiorini. FPGA-based Controller for Haptic De-
vices, IROS 2006 Conference, IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), Beijing, Cina, October 2006.

8. S. Galvan, A. Castellani, D. Botturi, P. Fiorini. Advanced Teleoperation
Architecture, IROS 2006 Conference, IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Beijing, Cina, October 2006.

9. S. Galvan, D. Botturi, A. Castellani, P. Fiorini, Innovative Robotics Teach-
ing Using Lego Sets, ICRA 2006 Conference, Special Session on Robotics
Education IEEE International Conference on Robotics and Automation,
Orlando, USA, May 2006.

10. S. Galvan, D. Botturi, P. Fiorini, Perception and Computation in Miniature
Surgical Robots, BioRob 2006 Conference, IEEE/RAS-EMBS International
Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy, 20-22
February 2006.

Sommario

Negli ultimi anni l’utilizzo di dispositivi aptici, atti cioè a riprodurre l’interazione
fisica con l’ambiente remoto o virtuale, si sta diffondendo in vari ambiti della
robotica e dell’informatica, dai videogiochi alla chirurgia robotizzata eseguita in
teleoperazione, dai cellulari alla riabilitazione. In questo lavoro di tesi abbiamo
voluto considerare nuovi punti di vista sull’argomento, allo scopo di comprendere
meglio come riportare l’essere umano, che è l’unico fruitore del ritorno di forza,
tattile e di telepresenza, al centro della ricerca sui dispositivi aptici. Allo scopo ci
siamo focalizzati su due aspetti: una manipolazione del segnale di forza mutuata
dalla percezione umana e l’utilizzo di architetture multicore per l’implementazione
di algoritmi aptici e robotici.

Con l’aiuto di un setup sperimentale creato ad hoc e attraverso l’utilizzo di
un joystick con ritorno di forza a 6 gradi di libertà, abbiamo progettato degli
esperimenti psicofisici atti all’identificazione di soglie differenziali di forze/coppie
nel sistema mano-braccio. Sulla base dei risultati ottenuti abbiamo determinato
una serie di funzioni di scalatura del segnale di forza, una per ogni grado di libertà,
che permettono di aumentare l’abilità umana nel discriminare stimoli differenti.

L’utilizzo di tali funzioni, ad esempio in teleoperazione, richiede la possibilità
di variare il segnale di feedback e il controllo del dispositivo sia in relazione al
lavoro da svolgere, sia alle peculiari capacità dell’utilizzatore. La gestione del dis-
positivo deve quindi essere in grado di soddisfare due obbiettivi tendenzialmente
in contrasto, e cioè il raggiungimento di alte prestazioni in termini di velocità,
stabilità e precisione, abbinato alla flessibilità tipica del software. Una soluzione
consiste nell’affidare il controllo del dispositivo ai nuovi sistemi multicore che si
stanno sempre più prepotentemente affacciando sul panorama informatico. Per far
ciò una serie di algoritmi consolidati deve essere portata su sistemi paralleli. In
questo lavoro abbiamo dimostrato che è possibile convertire facilmente vecchi algo-
ritmi già implementati in hardware, e quindi intrinsecamente paralleli. Un punto
da definire rimane però quanto costa portare degli algoritmi solitamente descritti
in VLSI e schemi in un linguaggio di programmazione ad alto livello. Focalizzando
la nostra attenzione su un problema specifico, la pseudoinversione di matrici che
è presente in molti algoritmi di dinamica e cinematica, abbiamo mostrato che
un’attenta progettazione e decomposizione del problema permette una mappatura
diretta sulle unità di calcolo disponibili. In aggiunta, l’uso di parallelismo a livello

di dati su macchine SIMD permette di ottenere buone prestazioni utilizzando sem-
plici operazioni vettoriali come addizioni e shift. Dato che di solito tali istruzioni
fanno parte delle implementazioni hardware la migrazione del codice risulta age-
vole. Abbiamo testato il nostro approccio su una Sony PlayStation 3 equipaggiata
con un processore IBM Cell Broadband Engine.

	Introduction
	Haptic devices
	Objectives

	Perception Experiments
	Prior work
	Experimental Setup
	Haptic Device
	FPGA
	Subject reference frame
	Calibration
	Experimental Phases
	Stimuli Presentation
	Statistical Analysis
	Participants

	Exploratory test
	Design and stimuli
	Results

	Experiment
	Design and Methods
	Results

	Discussion
	Scaling function
	Conclusions

	Impact on haptics: requirements, issues and solutions
	Multicore architectures
	Architectural features and processors
	Programming approach
	Rediscovering old parallel algorithms

	Previous work on robotics
	Conclusions

	Strategies and approaches to multicore architectures
	Ill-conditioned linear systems: the inverse problem
	Linear least square
	Pseudoinverse

	Applications
	Image processing
	Robotics: the Jacobian matrix

	Finding the pseudoinverse of a matrix
	Decell algorithm
	Residue Number System

	Parallel hardware architectures
	FPGA
	GPU or GPGPU
	IBM CBEA

	Conclusions

	A case study: Matrix pseudo-inversion
	Programming model
	Analysis of the algorithm
	The programming language

	Sony PlayStation 3
	Cell processing model

	Learning from the past
	Conclusions

	Experimental results
	General results and discussion
	Conclusions

	Conclusions
	Future work

	References

