12,335 research outputs found

    A Coding Theoretic Approach for Evaluating Accumulate Distribution on Minimum Cut Capacity of Weighted Random Graphs

    Full text link
    The multicast capacity of a directed network is closely related to the ss-tt maximum flow, which is equal to the ss-tt minimum cut capacity due to the max-flow min-cut theorem. If the topology of a network (or link capacities) is dynamically changing or have stochastic nature, it is not so trivial to predict statistical properties on the maximum flow. In this paper, we present a coding theoretic approach for evaluating the accumulate distribution of the minimum cut capacity of weighted random graphs. The main feature of our approach is to utilize the correspondence between the cut space of a graph and a binary LDGM (low-density generator-matrix) code with column weight 2. The graph ensemble treated in the paper is a weighted version of Erd\H{o}s-R\'{e}nyi random graph ensemble. The main contribution of our work is a combinatorial lower bound for the accumulate distribution of the minimum cut capacity. From some computer experiments, it is observed that the lower bound derived here reflects the actual statistical behavior of the minimum cut capacity.Comment: 5 pages, 2 figures, submitted to IEEE ISIT 201

    k-connectivity of Random Graphs and Random Geometric Graphs in Node Fault Model

    Full text link
    k-connectivity of random graphs is a fundamental property indicating reliability of multi-hop wireless sensor networks (WSN). WSNs comprising of sensor nodes with limited power resources are modeled by random graphs with unreliable nodes, which is known as the node fault model. In this paper, we investigate k-connectivity of random graphs in the node fault model by evaluating the network breakdown probability, i.e., the disconnectivity probability of random graphs after stochastic node removals. Using the notion of a strongly typical set, we obtain universal asymptotic upper and lower bounds of the network breakdown probability. The bounds are applicable both to random graphs and to random geometric graphs. We then consider three representative random graph ensembles: the Erdos-Renyi random graph as the simplest case, the random intersection graph for WSNs with random key predistribution schemes, and the random geometric graph as a model of WSNs generated by random sensor node deployment. The bounds unveil the existence of the phase transition of the network breakdown probability for those ensembles.Comment: 6 page

    Link Prediction in Complex Networks: A Survey

    Full text link
    Link prediction in complex networks has attracted increasing attention from both physical and computer science communities. The algorithms can be used to extract missing information, identify spurious interactions, evaluate network evolving mechanisms, and so on. This article summaries recent progress about link prediction algorithms, emphasizing on the contributions from physical perspectives and approaches, such as the random-walk-based methods and the maximum likelihood methods. We also introduce three typical applications: reconstruction of networks, evaluation of network evolving mechanism and classification of partially labelled networks. Finally, we introduce some applications and outline future challenges of link prediction algorithms.Comment: 44 pages, 5 figure

    Organic Design of Massively Distributed Systems: A Complex Networks Perspective

    Full text link
    The vision of Organic Computing addresses challenges that arise in the design of future information systems that are comprised of numerous, heterogeneous, resource-constrained and error-prone components or devices. Here, the notion organic particularly highlights the idea that, in order to be manageable, such systems should exhibit self-organization, self-adaptation and self-healing characteristics similar to those of biological systems. In recent years, the principles underlying many of the interesting characteristics of natural systems have been investigated from the perspective of complex systems science, particularly using the conceptual framework of statistical physics and statistical mechanics. In this article, we review some of the interesting relations between statistical physics and networked systems and discuss applications in the engineering of organic networked computing systems with predictable, quantifiable and controllable self-* properties.Comment: 17 pages, 14 figures, preprint of submission to Informatik-Spektrum published by Springe
    • …
    corecore