45,471 research outputs found

    Probabilistic Error Analysis for Inner Products

    Full text link
    Probabilistic models are proposed for bounding the forward error in the numerically computed inner product (dot product, scalar product) between of two real nn-vectors. We derive probabilistic perturbation bounds, as well as probabilistic roundoff error bounds for the sequential accumulation of the inner product. These bounds are non-asymptotic, explicit, and make minimal assumptions on perturbations and roundoffs. The perturbations are represented as independent, bounded, zero-mean random variables, and the probabilistic perturbation bound is based on Azuma's inequality. The roundoffs are also represented as bounded, zero-mean random variables. The first probabilistic bound assumes that the roundoffs are independent, while the second one does not. For the latter, we construct a Martingale that mirrors the sequential order of computations. Numerical experiments confirm that our bounds are more informative, often by several orders of magnitude, than traditional deterministic bounds -- even for small vector dimensions~nn and very stringent success probabilities. In particular the probabilistic roundoff error bounds are functions of n\sqrt{n} rather than~nn, thus giving a quantitative confirmation of Wilkinson's intuition. The paper concludes with a critical assessment of the probabilistic approach

    Probabilistic Polynomials and Hamming Nearest Neighbors

    Full text link
    We show how to compute any symmetric Boolean function on nn variables over any field (as well as the integers) with a probabilistic polynomial of degree O(nlog(1/ϵ))O(\sqrt{n \log(1/\epsilon)}) and error at most ϵ\epsilon. The degree dependence on nn and ϵ\epsilon is optimal, matching a lower bound of Razborov (1987) and Smolensky (1987) for the MAJORITY function. The proof is constructive: a low-degree polynomial can be efficiently sampled from the distribution. This polynomial construction is combined with other algebraic ideas to give the first subquadratic time algorithm for computing a (worst-case) batch of Hamming distances in superlogarithmic dimensions, exactly. To illustrate, let c(n):NNc(n) : \mathbb{N} \rightarrow \mathbb{N}. Suppose we are given a database DD of nn vectors in {0,1}c(n)logn\{0,1\}^{c(n) \log n} and a collection of nn query vectors QQ in the same dimension. For all uQu \in Q, we wish to compute a vDv \in D with minimum Hamming distance from uu. We solve this problem in n21/O(c(n)log2c(n))n^{2-1/O(c(n) \log^2 c(n))} randomized time. Hence, the problem is in "truly subquadratic" time for O(logn)O(\log n) dimensions, and in subquadratic time for d=o((log2n)/(loglogn)2)d = o((\log^2 n)/(\log \log n)^2). We apply the algorithm to computing pairs with maximum inner product, closest pair in 1\ell_1 for vectors with bounded integer entries, and pairs with maximum Jaccard coefficients.Comment: 16 pages. To appear in 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2015

    Probabilistic cloning and identification of linearly independent quantum states

    Full text link
    We construct a probabilistic quantum cloning machine by a general unitary-reduction operation. With a postselection of the measurement results, the machine yields faithful copies of the input states. It is shown that the states secretly chosen from a certain set $={Ψ1>,Ψ2>,...,Ψn>}\$=\left\{\left| \Psi_1\right> ,\left| \Psi_2\right> ,... ,\left| \Psi_n\right> \right\} can be probabilistically cloned if and only if % \left| \Psi_1\right>, Ψ2>\left| \Psi_2\right>, ...,... , and Ψn>\left| \Psi_n\right> are linearly-independent. We derive the best possible cloning efficiencies. Probabilistic cloning has close connection with the problem of identification of a set of states, which is a type of n+1n+1 outcome measurement on nn linearly independent states. The optimal efficiencies for this type of measurement are obtained.Comment: Extension of quant-ph/9705018, 12pages, latex, to appear in Phys. Rev. Let

    Randomized Local Model Order Reduction

    Get PDF
    In this paper we propose local approximation spaces for localized model order reduction procedures such as domain decomposition and multiscale methods. Those spaces are constructed from local solutions of the partial differential equation (PDE) with random boundary conditions, yield an approximation that converges provably at a nearly optimal rate, and can be generated at close to optimal computational complexity. In many localized model order reduction approaches like the generalized finite element method, static condensation procedures, and the multiscale finite element method local approximation spaces can be constructed by approximating the range of a suitably defined transfer operator that acts on the space of local solutions of the PDE. Optimal local approximation spaces that yield in general an exponentially convergent approximation are given by the left singular vectors of this transfer operator [I. Babu\v{s}ka and R. Lipton 2011, K. Smetana and A. T. Patera 2016]. However, the direct calculation of these singular vectors is computationally very expensive. In this paper, we propose an adaptive randomized algorithm based on methods from randomized linear algebra [N. Halko et al. 2011], which constructs a local reduced space approximating the range of the transfer operator and thus the optimal local approximation spaces. The adaptive algorithm relies on a probabilistic a posteriori error estimator for which we prove that it is both efficient and reliable with high probability. Several numerical experiments confirm the theoretical findings.Comment: 31 pages, 14 figures, 1 table, 1 algorith

    A study of pattern recovery in recurrent correlation associative memories

    Get PDF
    In this paper, we analyze the recurrent correlation associative memory (RCAM) model of Chiueh and Goodman. This is an associative memory in which stored binary memory patterns are recalled via an iterative update rule. The update of the individual pattern-bits is controlled by an excitation function, which takes as its arguement the inner product between the stored memory patterns and the input patterns. Our contribution is to analyze the dynamics of pattern recall when the input patterns are corrupted by noise of a relatively unrestricted class. We make three contributions. First, we show how to identify the excitation function which maximizes the separation (the Fisher discriminant) between the uncorrupted realization of the noisy input pattern and the remaining patterns residing in the memory. Moreover, we show that the excitation function which gives maximum separation is exponential when the input bit-errors follow a binomial distribution. Our second contribution is to develop an expression for the expectation value of bit-error probability on the input pattern after one iteration. We show how to identify the excitation function which minimizes the bit-error probability. However, there is no closed-form solution and the excitation function must be recovered numerically. The relationship between the excitation functions which result from the two different approaches is examined for a binomial distribution of bit-errors. The final contribution is to develop a semiempirical approach to the modeling of the dynamics of the RCAM. This provides us with a numerical means of predicting the recall error rate of the memory. It also allows us to develop an expression for the storage capacity for a given recall error rate

    Supervised Classification: Quite a Brief Overview

    Full text link
    The original problem of supervised classification considers the task of automatically assigning objects to their respective classes on the basis of numerical measurements derived from these objects. Classifiers are the tools that implement the actual functional mapping from these measurements---also called features or inputs---to the so-called class label---or output. The fields of pattern recognition and machine learning study ways of constructing such classifiers. The main idea behind supervised methods is that of learning from examples: given a number of example input-output relations, to what extent can the general mapping be learned that takes any new and unseen feature vector to its correct class? This chapter provides a basic introduction to the underlying ideas of how to come to a supervised classification problem. In addition, it provides an overview of some specific classification techniques, delves into the issues of object representation and classifier evaluation, and (very) briefly covers some variations on the basic supervised classification task that may also be of interest to the practitioner
    corecore