84 research outputs found

    Designing privacy for scalable electronic healthcare linkage

    Get PDF
    A unified electronic health record (EHR) has potentially immeasurable benefits to society, and the current healthcare industry drive to create a single EHR reflects this. However, adoption is slow due to two major factors: the disparate nature of data and storage facilities of current healthcare systems and the security ramifications of accessing and using that data and concerns about potential misuse of that data. To attempt to address these issues this paper presents the VANGUARD (Virtual ANonymisation Grid for Unified Access of Remote Data) system which supports adaptive security-oriented linkage of disparate clinical data-sets to support a variety of virtual EHRs avoiding the need for a single schematic standard and natural concerns of data owners and other stakeholders on data access and usage. VANGUARD has been designed explicit with security in mind and supports clear delineation of roles for data linkage and usage

    Contributions to the privacy provisioning for federated identity management platforms

    Get PDF
    Identity information, personal data and user’s profiles are key assets for organizations and companies by becoming the use of identity management (IdM) infrastructures a prerequisite for most companies, since IdM systems allow them to perform their business transactions by sharing information and customizing services for several purposes in more efficient and effective ways. Due to the importance of the identity management paradigm, a lot of work has been done so far resulting in a set of standards and specifications. According to them, under the umbrella of the IdM paradigm a person’s digital identity can be shared, linked and reused across different domains by allowing users simple session management, etc. In this way, users’ information is widely collected and distributed to offer new added value services and to enhance availability. Whereas these new services have a positive impact on users’ life, they also bring privacy problems. To manage users’ personal data, while protecting their privacy, IdM systems are the ideal target where to deploy privacy solutions, since they handle users’ attribute exchange. Nevertheless, current IdM models and specifications do not sufficiently address comprehensive privacy mechanisms or guidelines, which enable users to better control over the use, divulging and revocation of their online identities. These are essential aspects, specially in sensitive environments where incorrect and unsecured management of user’s data may lead to attacks, privacy breaches, identity misuse or frauds. Nowadays there are several approaches to IdM that have benefits and shortcomings, from the privacy perspective. In this thesis, the main goal is contributing to the privacy provisioning for federated identity management platforms. And for this purpose, we propose a generic architecture that extends current federation IdM systems. We have mainly focused our contributions on health care environments, given their particularly sensitive nature. The two main pillars of the proposed architecture, are the introduction of a selective privacy-enhanced user profile management model and flexibility in revocation consent by incorporating an event-based hybrid IdM approach, which enables to replace time constraints and explicit revocation by activating and deactivating authorization rights according to events. The combination of both models enables to deal with both online and offline scenarios, as well as to empower the user role, by letting her to bring together identity information from different sources. Regarding user’s consent revocation, we propose an implicit revocation consent mechanism based on events, that empowers a new concept, the sleepyhead credentials, which is issued only once and would be used any time. Moreover, we integrate this concept in IdM systems supporting a delegation protocol and we contribute with the definition of mathematical model to determine event arrivals to the IdM system and how they are managed to the corresponding entities, as well as its integration with the most widely deployed specification, i.e., Security Assertion Markup Language (SAML). In regard to user profile management, we define a privacy-awareness user profile management model to provide efficient selective information disclosure. With this contribution a service provider would be able to accesses the specific personal information without being able to inspect any other details and keeping user control of her data by controlling who can access. The structure that we consider for the user profile storage is based on extensions of Merkle trees allowing for hash combining that would minimize the need of individual verification of elements along a path. An algorithm for sorting the tree as we envision frequently accessed attributes to be closer to the root (minimizing the access’ time) is also provided. Formal validation of the above mentioned ideas has been carried out through simulations and the development of prototypes. Besides, dissemination activities were performed in projects, journals and conferences.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: María Celeste Campo Vázquez.- Secretario: María Francisca Hinarejos Campos.- Vocal: Óscar Esparza Martí

    Personal Health Train on FHIR:A Privacy Preserving Federated Approach for Analyzing FAIR Data in Healthcare

    Get PDF
    Big data and machine learning applications focus on retrieving data on a central location for analysis. However, healthcare data can be sensitive in nature and as such difficult to share and make use for secondary purposes. Healthcare vendors are restricted to share data without proper consent from the patient. There is a rising awareness among individual patients as well regarding sharing their personal information due to ethical, legal and societal problems. The current data-sharing platforms in healthcare do not sufficiently handle these issues. The rationale of the Personal Health Train (PHT) approach shifts the focus from sharing data to sharing processing/analysis applications and their respective results. A prerequisite of the PHT-infrastructure is that the data is FAIR (findable, accessible, interoperable, reusable). The aim of the paper is to describe a methodology of finding the number of patients diagnosed with hypertension and calculate cohort statistics in a privacy-preserving federated manner. The whole process completes without individual patient data leaving the source. For this, we rely on the Fast Healthcare Interoperability Resources (FHIR) standard

    An architecture for secure data management in medical research and aided diagnosis

    Get PDF
    Programa Oficial de Doutoramento en Tecnoloxías da Información e as Comunicacións. 5032V01[Resumo] O Regulamento Xeral de Proteccion de Datos (GDPR) implantouse o 25 de maio de 2018 e considerase o desenvolvemento mais importante na regulacion da privacidade de datos dos ultimos 20 anos. As multas fortes definense por violar esas regras e non e algo que os centros sanitarios poidan permitirse ignorar. O obxectivo principal desta tese e estudar e proponer unha capa segura/integracion para os curadores de datos sanitarios, onde: a conectividade entre sistemas illados (localizacions), a unificacion de rexistros nunha vision centrada no paciente e a comparticion de datos coa aprobacion do consentimento sexan as pedras angulares de a arquitectura controlar a sua identidade, os perfis de privacidade e as subvencions de acceso. Ten como obxectivo minimizar o medo a responsabilidade legal ao compartir os rexistros medicos mediante o uso da anonimizacion e facendo que os pacientes sexan responsables de protexer os seus propios rexistros medicos, pero preservando a calidade do tratamento do paciente. A nosa hipotese principal e: os conceptos Distributed Ledger e Self-Sovereign Identity son unha simbiose natural para resolver os retos do GDPR no contexto da saude? Requirense solucions para que os medicos e investigadores poidan manter os seus fluxos de traballo de colaboracion sen comprometer as regulacions. A arquitectura proposta logra eses obxectivos nun ambiente descentralizado adoptando perfis de privacidade de datos illados.[Resumen] El Reglamento General de Proteccion de Datos (GDPR) se implemento el 25 de mayo de 2018 y se considera el desarrollo mas importante en la regulacion de privacidad de datos en los ultimos 20 anos. Las fuertes multas estan definidas por violar esas reglas y no es algo que los centros de salud puedan darse el lujo de ignorar. El objetivo principal de esta tesis es estudiar y proponer una capa segura/de integración para curadores de datos de atencion medica, donde: la conectividad entre sistemas aislados (ubicaciones), la unificacion de registros en una vista centrada en el paciente y el intercambio de datos con la aprobacion del consentimiento son los pilares de la arquitectura propuesta. Esta propuesta otorga al titular de los datos un rol central, que le permite controlar su identidad, perfiles de privacidad y permisos de acceso. Su objetivo es minimizar el temor a la responsabilidad legal al compartir registros medicos utilizando el anonimato y haciendo que los pacientes sean responsables de proteger sus propios registros medicos, preservando al mismo tiempo la calidad del tratamiento del paciente. Nuestra hipotesis principal es: .son los conceptos de libro mayor distribuido e identidad autosuficiente una simbiosis natural para resolver los desafios del RGPD en el contexto de la atencion medica? Se requieren soluciones para que los medicos y los investigadores puedan mantener sus flujos de trabajo de colaboracion sin comprometer las regulaciones. La arquitectura propuesta logra esos objetivos en un entorno descentralizado mediante la adopcion de perfiles de privacidad de datos aislados.[Abstract] The General Data Protection Regulation (GDPR) was implemented on 25 May 2018 and is considered the most important development in data privacy regulation in the last 20 years. Heavy fines are defined for violating those rules and is not something that healthcare centers can afford to ignore. The main goal of this thesis is to study and propose a secure/integration layer for healthcare data curators, where: connectivity between isolated systems (locations), unification of records in a patientcentric view and data sharing with consent approval are the cornerstones of the proposed architecture. This proposal empowers the data subject with a central role, which allows to control their identity, privacy profiles and access grants. It aims to minimize the fear of legal liability when sharing medical records by using anonymisation and making patients responsible for securing their own medical records, yet preserving the patient’s quality of treatment. Our main hypothesis is: are the Distributed Ledger and Self-Sovereign Identity concepts a natural symbiosis to solve the GDPR challenges in the context of healthcare? Solutions are required so that clinicians and researchers can maintain their collaboration workflows without compromising regulations. The proposed architecture accomplishes those objectives in a decentralized environment by adopting isolated data privacy profiles

    A privacy-preserving design for sharing demand-driven patient datasets over permissioned blockchains and P2P secure transfer

    Get PDF
    Sharing patient datasets curated by health institutions is critical for the advance of monitoring, surveillance and research. However, patient data is sensitive data and it can only be released under certain conditions and with previous explicit consent. Privacy preserving data sharing provides techniques to distribute datasets minimizing the risk of identification of patients. However, the sharing of datasets is typically done without considering the needs or requests of data consumers. Blockchain technologies provide an opportunity to gather those requests and share and assemble datasets using privacy-preserving methods as data and requirements on anonymity match. The architecture and design of such a solution is described, assuming an underlying permissioned blockchain network where providers such as healthcare institutions deal with consent, patient preferences and anonymity guarantees, playing a mediator role to a network of organizations

    A Two-Level Identity Model To Support Interoperability of Identity Information in Electronic Health Record Systems.

    Get PDF
    The sharing and retrieval of health information for an electronic health record (EHR) across distributed systems involves a range of identified entities that are possible subjects of documentation (e.g., specimen, clinical analyser). Contemporary EHR specifications limit the types of entities that can be the subject of a record to health professionals and patients, thus limiting the use of two level models in healthcare information systems that contribute information to the EHR. The literature describes several information modelling approaches for EHRs, including so called “two level models”. These models differ in the amount of structure imposed on the information to be recorded, but they generally require the health documentation process for the EHR to focus exclusively on the patient as the subject of care and this definition is often a fixed one. In this thesis, the author introduces a new identity modelling approach to create a generalised reference model for sharing archetype-constrained identity information between diverse identity domains, models and services, while permitting reuse of published standard-based archetypes. The author evaluates its use for expressing the major types of existing demographic reference models in an extensible way, and show its application for standards-compliant two-level modelling alongside heterogeneous demographics models. This thesis demonstrates how the two-level modelling approach that is used for EHRs could be adapted and reapplied to provide a highly-flexible and expressive means for representing subjects of information in allied health settings that support the healthcare process, such as the laboratory domain. By relying on the two level modelling approach for representing identity, the proposed design facilitates cross-referencing and disambiguation of certain demographics standards and information models. The work also demonstrates how it can also be used to represent additional clinical identified entities such as specimen and order as subjects of clinical documentation

    Data Infrastructure for Medical Research

    Get PDF
    While we are witnessing rapid growth in data across the sciences and in many applications, this growth is particularly remarkable in the medical domain, be it because of higher resolution instruments and diagnostic tools (e.g. MRI), new sources of structured data like activity trackers, the wide-spread use of electronic health records and many others. The sheer volume of the data is not, however, the only challenge to be faced when using medical data for research. Other crucial challenges include data heterogeneity, data quality, data privacy and so on. In this article, we review solutions addressing these challenges by discussing the current state of the art in the areas of data integration, data cleaning, data privacy, scalable data access and processing in the context of medical data. The techniques and tools we present will give practitioners — computer scientists and medical researchers alike — a starting point to understand the challenges and solutions and ultimately to analyse medical data and gain better and quicker insights

    Design and Implementation of a Collaborative Clinical Practice and Research Documentation System Using SNOMED-CT and HL7-CDA in the Context of a Pediatric Neurodevelopmental Unit

    Get PDF
    This paper introduces a prototype for clinical research documentation using the structured information model HL7 CDA and clinical terminology (SNOMED CT). The proposed solution was integrated with the current electronic health record system (EHR-S) and aimed to implement interoperability and structure information, and to create a collaborative platform between clinical and research teams. The framework also aims to overcome the limitations imposed by classical documentation strategies in real-time healthcare encounters that may require fast access to complex information. The solution was developed in the pediatric hospital (HP) of the University Hospital Center of Coimbra (CHUC), a national reference for neurodevelopmental disorders, particularly for autism spectrum disorder (ASD), which is very demanding in terms of longitudinal and cross-sectional data throughput. The platform uses a three-layer approach to reduce components’ dependencies and facilitate maintenance, scalability, and security. The system was validated in a real-life context of the neurodevelopmental and autism unit (UNDA) in the HP and assessed based on the functionalities model of EHR-S (EHR-S FM) regarding their successful implementation and comparison with state-of-the-art alternative platforms. A global approach to the clinical history of neurodevelopmental disorders was worked out, providing transparent healthcare data coding and structuring while preserving information quality. Thus, the platform enabled the development of user-defined structured templates and the creation of structured documents with standardized clinical terminology that can be used in many healthcare contexts. Moreover, storing structured data associated with healthcare encounters supports a longitudinal view of the patient’s healthcare data and health status over time, which is critical in routine and pediatric research contexts. Additionally, it enables queries on population statistics that are key to supporting the definition of local and global policies, whose importance was recently emphasized by the COVID pandemic.info:eu-repo/semantics/publishedVersio
    • 

    corecore