111 research outputs found

    Effective preemptive scheduling scheme for optical burst-switched networks with cascaded wavelength conversion consideration

    Get PDF
    We introduce a new preemptive scheduling technique for next-generation optical burst switching (OBS) networks considering the impact of cascaded wavelength conversions. It has been shown that when optical bursts are transmitted all optically from source to destination, each wavelength conversion performed along the lightpath may cause certain signal-to-noise deterioration. If the distortion of the signal quality becomes significant enough, the receiver would not be able to recover the original data. Accordingly, subject to this practical impediment, we improve a recently proposed fair channel scheduling algorithm to deal with the fairness problem and aim at burst loss reduction simultaneously in OBS environments. In our scheme, the dynamic priority associated with each burst is based on a constraint threshold and the number of already conducted wavelength conversions among other factors for this burst. When contention occurs, a new arriving superior burst may preempt another scheduled one according to their priorities. Extensive simulation results have shown that the proposed scheme further improves fairness and achieves burst loss reduction as well

    Supporting differentiated quality of service in optical burst switched networks

    Get PDF
    We propose and evaluate two new schemes for providing differentiated services in optical burst switched (OBS) networks. The two new schemes are suitable for implementation in OBS networks using just-in-time (JIT) or just-enough-time (JET) scheduling protocols. The first scheme adjusts the size of the search space for a free wavelength based on the priority level of the burst. A simple equation is used to divide the search spectrum into two parts: a base part and an adjustable part. The size of the adjustable part increases as the priority of the burst becomes higher. The scheme is very easy to implement and does not demand any major software or hardware resources in optical cross-connects. The second scheme reduces the dropping probability of bursts with higher priorities through the use of different proactive discarding rates in the network access station (NAS) of the source node. Our extensive simulation tests using JIT show that both schemes are capable of providing tangible quality of service (QoS) differentiation without negatively impacting the throughput of OBS networks

    Optical Packet Switching Contention Resolution Based On A Hybrid Wavelength Conversion-Fiber Delay Line Scheme

    Get PDF
    Due to the convergence of computer communication and telecommunication technology, data traffic exceeds the telephony traffic. Thus, existing connection oriented and circuit switched network will need to be upgraded toward optical packet switched network. Optical packet switching has characteristics like high speed, data rate/data format transparency and configurable. Wavelength Division Multiplexing is the technology of combining a number of wavelengths in a single fiber. It is a tremendous trend to harness larger bandwidth for enormous delivery. WDM optical devices for multiplexing and switching in simple configuration are now available at a reasonable cost. It is a very appealing solution for development of optical packet switching. The issue of contention arises when two or more packets contend for the same output port in a switch with the same wavelength, which results to packet loss. The packet loss probability is addressed as the most inevitable and significant measurable performance parameter with QoS provisioning that is dominated by wavelength contention in optical packet switches. In electronic domain packet switched network, the contention is resolved by store and forward technique using the available electronic random access memory (RAM). Due to the immaturity of optical memory storage technology, there is no available ready-to-use optical random access memory. In order to overcome this bottleneck, several approaches have been adopted to resolve the contention problem from three domains: time, space and wavelength as stated: fiber delay line (time), deflection routing (space) and wavelength conversion (wavelength). Consequently, contention resolution in wavelength domain has attracted considerable interest among the optical communications community instead of implementing optical buffering and deflection routing that have been studied previously. This thesis proposes a bufferless, single stage, non-blocking fully connected optical packet switch for synchronous optical packet switching network, followed by a prioritized scheduling algorithm in association with hybrid contention resolution schemes. This iterative prioritized scheduling comprises of a set of preemptive selective policies for contention resolution. It is a hybrid technique that integrates wavelength conversion with feedback mechanism realized by fiber delay lines (FDL). By means of simulation, the proposed scheme has been investigated and compared with the conventional baseline scheme. A sensitive description of the satisfied packet loss probability and average packet delay as a function of main design parameters such as switch size, number of wavelengths, traffic load, degree of conversion and number of fiber delay lines have been carried out with significant improvement.Simulation results proved that the proposed scheme is an efficient approach in resolving packet contention with less complexity in execution. Relatively, number of wavelength, traffic load and degree of conversion has significant impact to packet loss ratio. The implementation of fiber delay lines results on average packet delay. Simulation results demonstrated that the switch size mildly affect the performance parameter. Respectively, packet loss ratio below 10-10 is obtained via simulation by the means of wavelength conversion without conventional buffering delay. The packet loss ratio is further reduced with the method as aforementioned with the insertion of fiber delay lines where PLR below 10-13 is achieved, which is much lower than the benchmark value. Furthermore, the obtained simulation results show that by classifying packet priority, the proposed scheduling scheme and architecture are able to offer differentiated class of service

    Improving Routing Efficiency, Fairness, Differentiated Servises And Throughput In Optical Networks

    Get PDF
    Wavelength division multiplexed (WDM) optical networks are rapidly becoming the technology of choice in next-generation Internet architectures. This dissertation addresses the important issues of improving four aspects of optical networks, namely, routing efficiency, fairness, differentiated quality of service (QoS) and throughput. A new approach for implementing efficient routing and wavelength assignment in WDM networks is proposed and evaluated. In this approach, the state of a multiple-fiber link is represented by a compact bitmap computed as the logical union of the bitmaps of the free wavelengths in the fibers of this link. A modified Dijkstra\u27s shortest path algorithm and a wavelength assignment algorithm are developed using fast logical operations on the bitmap representation. In optical burst switched (OBS) networks, the burst dropping probability increases as the number of hops in the lightpath of the burst increases. Two schemes are proposed and evaluated to alleviate this unfairness. The two schemes have simple logic, and alleviate the beat-down unfairness problem without negatively impacting the overall throughput of the system. Two similar schemes to provide differentiated services in OBS networks are introduced. A new scheme to improve the fairness of OBS networks based on burst preemption is presented. The scheme uses carefully designed constraints to avoid excessive wasted channel reservations, reduce cascaded useless preemptions, and maintain healthy throughput levels. A new scheme to improve the throughput of OBS networks based on burst preemption is presented. An analytical model is developed to compute the throughput of the network for the special case when the network has a ring topology and the preemption weight is based solely on burst size. The analytical model is quite accurate and gives results close to those obtained by simulation. Finally, a preemption-based scheme for the concurrent improvement of throughput and burst fairness in OBS networks is proposed and evaluated. The scheme uses a preemption weight consisting of two terms: the first term is a function of the size of the burst and the second term is the product of the hop count times the length of the lightpath of the burst

    Design And Analysis Of Effective Routing And Channel Scheduling For Wavelength Division Multiplexing Optical Networks

    Get PDF
    Optical networking, employing wavelength division multiplexing (WDM), is seen as the technology of the future for the Internet. This dissertation investigates several important problems affecting optical circuit switching (OCS) and optical burst switching (OBS) networks. Novel algorithms and new approaches to improve the performance of these networks through effective routing and channel scheduling are presented. Extensive simulations and analytical modeling have both been used to evaluate the effectiveness of the proposed algorithms in achieving lower blocking probability, better fairness as well as faster switching. The simulation tests were performed over a variety of optical network topologies including the ring and mesh topologies, the U.S. Long-Haul topology, the Abilene high-speed optical network used in Internet 2, the Toronto Metropolitan topology and the European Optical topology. Optical routing protocols previously published in the literature have largely ignored the noise and timing jitter accumulation caused by cascading several wavelength conversions along the lightpath of the data burst. This dissertation has identified and evaluated a new constraint, called the wavelength conversion cascading constraint. According to this constraint, the deployment of wavelength converters in future optical networks will be constrained by a bound on the number of wavelength conversions that a signal can go through when it is switched all-optically from the source to the destination. Extensive simulation results have conclusively demonstrated that the presence of this constraint causes significant performance deterioration in existing routing and wavelength assignment (RWA) algorithms. Higher blocking probability and/or worse fairness have been observed for existing RWA algorithms when the cascading constraint is not ignored. To counteract the negative side effect of the cascading constraint, two constraint-aware routing algorithms are proposed for OCS networks: the desirable greedy algorithm and the weighted adaptive algorithm. The two algorithms perform source routing using link connectivity and the global state information of each wavelength. Extensive comparative simulation results have illustrated that by limiting the negative cascading impact to the minimum extent practicable, the proposed approaches can dramatically decrease the blocking probability for a variety of optical network topologies. The dissertation has developed a suite of three fairness-improving adaptive routing algorithms in OBS networks. The adaptive routing schemes consider the transient link congestion at the moment when bursts arrive and use this information to reduce the overall burst loss probability. The proposed schemes also resolve the intrinsic unfairness defect of existing popular signaling protocols. The extensive simulation results have shown that the proposed schemes generally outperform the popular shortest path routing algorithm and the improvement could be substantial. A two-dimensional Markov chain analytical model has also been developed and used to analyze the burst loss probabilities for symmetrical ring networks. The accuracy of the model has been validated by simulation. Effective proactive routing and preemptive channel scheduling have also been proposed to address the conversion cascading constraint in OBS environments. The proactive routing adapts the fairness-improving adaptive routing mentioned earlier to the environment of cascaded wavelength conversions. On the other hand, the preemptive channel scheduling approach uses a dynamic priority for each burst based on the constraint threshold and the current number of performed wavelength conversions. Empirical results have proved that when the cascading constraint is present, both approaches would not only decrease the burst loss rates greatly, but also improve the transmission fairness among bursts with different hop counts to a large extent

    Performance issues in optical burst/packet switching

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-01524-3_8This chapter summarises the activities on optical packet switching (OPS) and optical burst switching (OBS) carried out by the COST 291 partners in the last 4 years. It consists of an introduction, five sections with contributions on five different specific topics, and a final section dedicated to the conclusions. Each section contains an introductive state-of-the-art description of the specific topic and at least one contribution on that topic. The conclusions give some points on the current situation of the OPS/OBS paradigms

    Parallel Desynchronized Block Matching: A Feasible Scheduling Algorithm for the Input-Buffered Wavelength-Routed Switch

    Get PDF
    The input-buffered wavelength-routed (IBWR) switch is a promising switching architecture for slotted optical packet switching (OPS) networks. The benefits of the IBWR fabric are a better scalability and lower hardware cost, when compared to output buffered OPS proposals. A previous work characterized the scheduling problem of this architecture as a type of matching problem in bipartite graphs. This characterization establishes an interesting relation between the IBWR scheduling and the scheduling of electronic virtual output queuing switches. In this paper, this relation is further explored, for the design of feasible IBWR scheduling algorithms, in terms of hardware implementation and execution time. As a result, the parallel desynchronized block matching (PDBM) algorithm is proposed. The evaluation results presented reveal that IBWR switch performance using the PDBM algorithm is close to the performance bound given by OPS output buffered architectures. The performance gap is especially small for dense wavelength division multiplexing (DWDM) architectures.This research has been funded by the Spanish MCyT grant TEC2004-05622-C04-02/TCM (ARPaq). Authors would like to thank also the COST 291 action and the e-Photon/ONe+ European Network of Excellence

    Equivalent random analysis of a buffered optical switch with general interarrival times

    Get PDF
    We propose an approximate analytic model of an optical switch with fibre delay lines and wavelength converters by employing Equivalent Random Theory. General arrival traffic is modelled by means of Gamma-distributed interarrival times. The analysis is formulated in terms of virtual traffic flows within the optical switch from which we derive expressions for burst blocking probability, fibre delay line occupancy and mean delay. Emphasis is on approximations that give good numerical efficiency so that the method can be useful for formulating dimensioning problems for large-scale networks. Numerical solution values from the proposed analysis method compare well with results from a discrete-event simulation of an optical burst switch

    Quality of service in optical burst switching networks

    Get PDF
    Tese dout., Engenharia Electrónica e Computação, Universidade do Algarve, 2009Fundação para e Ciência e a Tecnologi
    corecore