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ABSTRACT 

 

Wavelength division multiplexed (WDM) optical networks are rapidly becoming the technology 

of choice in next-generation Internet architectures. This dissertation addresses the important 

issues of improving four aspects of optical networks, namely, routing efficiency, fairness, 

differentiated quality of service (QoS) and throughput.  

 

A new approach for implementing efficient routing and wavelength assignment in WDM 

networks is proposed and evaluated. In this approach, the state of a multiple-fiber link is 

represented by a compact bitmap computed as the logical union of the bitmaps of the free 

wavelengths in the fibers of this link. A modified Dijkstra’s shortest path algorithm and a 

wavelength assignment algorithm are developed using fast logical operations on the bitmap 

representation.  

 

In optical burst switched (OBS) networks, the burst dropping probability increases as the number 

of hops in the lightpath of the burst increases. Two schemes are proposed and evaluated to 

alleviate this unfairness. The two schemes have simple logic, and alleviate the beat-down 

unfairness problem without negatively impacting the overall throughput of the system. Two 

similar schemes to provide differentiated services in OBS networks are introduced.  

 

A new scheme to improve the fairness of OBS networks based on burst preemption is presented. 

The scheme uses carefully designed constraints to avoid excessive wasted channel reservations, 

reduce cascaded useless preemptions, and maintain healthy throughput levels.  
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A new scheme to improve the throughput of OBS networks based on burst preemption is 

presented. An analytical model is developed to compute the throughput of the network for the 

special case when the network has a ring topology and the preemption weight is based solely on 

burst size. The analytical model is quite accurate and gives results close to those obtained by 

simulation.  

 

Finally, a preemption-based scheme for the concurrent improvement of throughput and burst 

fairness in OBS networks is proposed and evaluated. The scheme uses a preemption weight 

consisting of two terms: the first term is a function of the size of the burst and the second term is 

the product of the hop count times the length of the lightpath of the burst.   
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CHAPTER 1:  INTRODUCTION 

 

Wavelength division multiplexed (WDM) optical networks [1-13] are rapidly becoming the 

technology of choice in network infrastructure and next-generation Internet architectures. WDM 

networks have the potential to provide unprecedented bandwidth, reduce processing cost, 

achieve protocol transparency, and enable efficient failure handling. In this dissertation, we 

investigate four important issues that affect the performance as well as the fairness [14-19] of 

WDM optical networks. Below, we introduce each of these four issues, survey the related 

previous results and outline the new approaches that we proposed for each issue. 

 

1.1 Routing and channel assignment 

 

The routing and channel assignment (RWA) problem can be divided into two categories: static 

and dynamic. The objective of static RWA is to reduce the blocking probability for scenarios in 

which the connection requests are known in advance. This problem can be formulated as a 

mixed-integer linear program (ILP) [1, 20], which is NP-complete [21].  In [22], a simple greedy 

algorithm to find the maximum edge disjoint paths (an NP-hard problem) is used to improve the 

wavelength usage in the static RWA problem. The second RWA category is the dynamic RWA 

problem [4, 6, 9, 23] that aims at reducing the blocking probability when connection requests 

arrive dynamically and are not known in advance. There are two aspects of handling a 

connection request:  i) finding a route from the source to the destination and ii) assigning a 

wavelength for this connection.  Some RWA methods considered these two aspects separately [1, 

3, 5].  The layered-graph RWA approach [4, 6, 8] usually has high computational overhead. In 
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the method described in [6], for example, every wavelength in every fiber is represented by an 

edge in the layered graphs. This representation poses scalability problems when network links 

have multiple fibers and the number of wavelengths is large. Some RWA methods consider 

multi-fiber networks with arbitrary number of wavelengths [7, 24] while others have restriction 

on the number of fibers and/or wavelengths [2].  

  

In chapter 3, we propose a new dynamic RWA approach based on the logical compact 

representation of link states.  The algorithm uses efficient logical operators for computing the 

routing reward function. The proposed bitwise routing algorithm combines the benefits of least 

loaded and shortest path routing algorithms.  

 

1.2 Improving fairness in optical burst switched networks 

 

Optical burst switching (OBS) [30-34] has been proposed to provide fine bandwidth granularity 

and improve the utilization of WDM networks. Many aspects of burst switching have been 

extensively investigated including: signaling and reservation protocols [30, 32, 35, 36, 37], 

routing and scheduling [38, 39], burst assembly at the ingress nodes [40], burst technology and 

related switch architectures [41], comparison with optical flow switching [42], and contention 

resolution at the core nodes [43]. There have been also a number of investigations on the issue of 

fairness in OBS networks. The term “fairness” has been used to address different issues in 

different types of optical networks such as the capacity unfairness problem [44].  In OBS 

networks, however, the main type of unfairness arises because the dropping probabilities of 

optical bursts traveling through paths with large hop count tend to be higher than those whose 
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paths have a small number of hops.  This type of unfairness is well known in electronic packet 

switched networks and is often referred to as the “beat down” problem. This problem has been 

studied in several papers as a secondary consideration in the evaluation of RWA and other 

optical algorithms [29, 45, 46, 48, 63]. In [48], an OBS reservation scheme is proposed for OBS 

networks operating under the wavelength continuity constraint (i.e., no converters). The scheme 

uses the backward reservation paradigm in which a probe control message propagates from the 

source to destination then a reservation message travels back from the destination to the source 

before the data burst can be transmitted. The simulation results reported in [48] uses a three-node 

tandem network (i.e., maximum of two hops) and a total of three connections (two 1-hop and one 

2-hop). The results show that fairness for the 2-hop connection has improved at the expense of a 

slight increase in the overall mean blocking probability of the three connections. The authors in 

[45] proposed a deflection routing algorithm and showed that the blocking probabilities of bursts 

with various hop count at high load levels are almost the same as the case of no deflection, i.e., 

this deflection routing does not aggravate the unfairness problem for bursts with large hop count.   

 

In Chapter 3, we investigate the unfairness encountered by bursts traveling through long 

lightpaths and we propose and evaluate the performance of two schemes for alleviating this type 

of unfairness. The first scheme, Balanced JIT, uses a simple equation to adjust the size of the 

search space for a free wavelength based on the number of hops traveled by the burst. The BJIT 

scheme has a single parameter and is implemented in each OXC. The second scheme, PRED, 

uses proactive discarding to reduce the probability of dropping bursts with large hop count at the 

expense of an increase in the dropping probability of bursts with small hop count.  

 



 4 
 
 

 

In Chapter 5, we propose a preemption-based scheme for improving fairness. The preemptive 

weight of a burst at a node is the product of the current hop count of this burst and the length of 

its lightpath. The control packets of bursts with higher preemptive weight are allowed to preempt 

the channel resources reserved earlier for bursts with lower preemptive weight. The scheme uses 

carefully designed constraints to avoid excessive wasted channel reservations and reduce 

cascaded useless preemptions. 

 

1.3 Quality of service differentiation in optical burst switched networks 

 

In real life applications with differentiated QoS requirements, data bursts should have different 

priority classes. The growing interest in introducing QoS differentiation in Internet services is 

motivated by the need to improve the quality of support for IP voice and video services, and in 

general, by the desire to provide clients with a range of service-quality levels at different prices. 

In [58], differentiated Quality of Service has been incorporated into Just-Enough-Time (JET) 

scheduling [30] by assigning different offset times to different classes. In [75], QoS is supported 

by adjusting the offset time and the lower and upper bounds on blocking probability for two 

burst classes are analyzed. Burst assembly at the ingress nodes [40] is another method to improve 

QoS in JET. In this method, the window size and weight of a class determines the number of 

packets in the window.   In [59], the QoS differentiation in JET is investigated by analyzing the 

loss probabilities of two classes of bursts. As was done in [58], the authors in [59] also focus on 

changing the offset time to support differentiated QoS. In [60, 69], a burst segmentation method 

is proposed to address the differentiated QoS problem. Bursts with higher priority can preempt 

the overlapping segments of lower priority bursts and the preempted segments are dropped or are 
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deflected to alternate routes. In [61], a proportional model is proposed to enhance the offset-

based QoS differentiation method proposed in [58]. In the proportional model, the differentiation 

of a particular QoS metric can be quantitatively adjusted to be proportional to the factors that a 

network service provider sets. The lower priority burst is intentionally dropped when the 

proportional differential model is violated. In [74], the authors combine a service differentiation 

model based on proportional resource allocation with a partially preemptive burst scheduler. The 

scheme improves the utilization while providing QoS with controllable service differentiation. In 

[62], the authors propose a differentiation scheme for JET that does not assign extra time to a 

higher priority class as in [58]. Rather it uses a priority queuing technique to schedule a higher 

priority burst earlier than a lower priority burst. Another proportional differentiation model is 

used in [68]. In this model, the burst control packets are queued in increasing order of the burst 

preferred scheduling time (defined as a burst arriving time minus its differential time). Each 

OXC chooses its own differential time function according to its resource availability and QoS 

requirement.  In [63], some undesired characteristics of the offset-time management mechanism 

for JET are identified. The authors found that the burst drop probability differentiation attained 

for a given offset-time value strongly depends on the distribution of the burst durations and that 

controlling the differentiation is difficult. In [64], assured Horizon is introduced for a coarse-

grained bandwidth reservation ri for every forwarding equivalent class (FEC) between ingress 

and egress. The burst assembler marks bursts as compliant and non-compliant bursts, depending 

on whether the burst is conforming to ri. The non-compliant bursts are dropped when congestion 

occurs. In [70], a generalized Latest Available Unused Channel with Void Filling (LAUC-VF) 

algorithm is proposed. The LAUC-VF algorithm aims at providing good performance by 

essentially choosing the wavelength with the smallest possible available window, leaving larger 
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windows for control packets that arrive later.  LAUC-VF is basically another scheduling scheme 

for OBS networks and is used in [70] to support differentiated services with limited buffers. In 

[65], an algorithm is proposed to decide about the value of the burst offset-time in JET based on 

the burst priority class.  In [67], preemptive multiclass wavelength reservation is used to provide 

differentiated services for the JET protocol. The preemption scheme provides QoS differentiation 

but complicates the control logic in OXC’s. In [78], the authors propose QoS-guaranteed 

wavelength allocation schemes for WDM networks. In their schemes, the wavelengths are 

classified into different sets based on the QoS requirement and higher priority requests can be 

allocated more wavelengths. In each set, there are two rules to select the idle wavelength: 

minimum index numbered or maximum index numbered wavelength. The authors in [78] 

showed that the connection loss probability for higher priority requests is improved but the 

overall throughput performance of their schemes is not discussed. 

  

In Chapter 4, we propose two new schemes to support QoS differentiation in OBS networks.  

The first scheme adjusts the size of the search space for a free wavelength based on the priority 

level of the burst.  The second scheme uses different proactive discarding rates in the network 

access station of the source node. Both schemes are capable of providing tangible QoS 

differentiation without negatively impacting the throughput of OBS networks. 

 

1.4 Improving throughput in optical burst switched networks 

 
There are two approaches to assemble the bursts in the network access station (NAS) of OBS 

networks: timer-based and threshold-based. In the timer-based burst assembly approach, the 
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formation of the burst is restricted by a maximum (or periodic) time interval [80] and therefore 

bursts tend to have variable lengths. In the threshold-based approach [81], a limit is used to 

restrict the size of the burst (or the number of packets in the burst) and therefore bursts tend to 

have equal, or nearly equal, length. The timer-based approach is more practical for delay 

sensitive applications and it is also the approach most suitable for throughput improvement using 

preemption.  

 

In [49], the authors proposed a merit-based scheduling algorithm for OBS networks. The scheme 

uses the route length and the current value of hop count to decide the preemption weight (priority) 

of a burst. Bursts with larger weight can preempt the channel resources reserved by bursts with 

smaller weight. The authors in [49] reported that the blocking probability is reduced by the 

merit-based scheme. Another preemption-based scheme is proposed in [74] based on 

proportional service differentiation. In [85], preemption is used as one of the approaches to 

handle channel contention and a model for analyzing preemptive burst segmentation is 

developed. Priority-based preemption is also used in [86], and in [73] a probabilistic preemptive 

scheme is proposed, mainly for the purpose of providing service differentiation. 

 

In Chapter 6, we propose a preemptive scheme to improve the throughput of OBS networks. In 

this scheme, the preemptive discipline is based on size of the burst size. The burst with larger 

size can preempt the resources reserved by some other bursts that have smaller burst size. Since 

preemption incurs overhead and waste of resources, a threshold on the size of the burst and some 

other design details are used to constrain the rate of preemption and ensure positive impact on 
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throughput. An analytical model is developed to compute the throughput of the ring topology in 

the presence of preemption.  

 

In Chapter 7, we propose and evaluate a new preemption-based scheme for the concurrent 

improvement of network throughput and burst fairness in OBS networks. The scheme uses a 

preemption weight consisting of two terms: the first term is a function of the size of the burst and 

the second term is the product of the hop count times the length of the lightpath of the burst. The 

second term is adjusted by a minimum function to prevent the problem of reverse unfairness. 

 

1.5 Organization of Dissertation 

 

This dissertation is organized as follows. In Chapter 2, the bitwise scheme for WDM optical 

networks is presented. The fairness problem in OBS networks is addressed in Chapter 3. In 

Chapter 4, two QoS differentiation schemes for OBS networks are presented. In Chapter 5, an 

advanced scheme to improve fairness in OBS networks based on constrained preemption is 

proposed. We introduce a preemption-based scheme to improve throughput in Chapter 6, and we 

also present an analytical model for computing throughput iteratively for the special case of ring 

topology. In Chapter 7, we present a preemption-based scheme for the concurrent improvement 

of throughput and fairness.  Finally, the conclusion of this dissertation and future work are 

presented in Chapter 8. 
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CHAPTER 2:  ROUTING AND WAVELENGTH ASSIGNMENT IN OPTICAL 

NETWORKS USING LOGICAL LINK REPRESENTATION AND EFFICIENT 

COMPUTATION 

 

 

2.1 Introduction 

 

Wavelength division multiplexing (WDM) in optical networks has received considerable 

attention in recent years [1-13].  In spite of good advancement in the design and implementations 

of WDM optical networks [14], there are several challenging problems facing the design of these 

networks, e.g., improving network robustness, increasing the efficiency of routing and 

wavelength assignment, enhancing the flexibility of network dimensioning, and improving 

fairness [14-19]. In this chapter, we address the issue of routing and wavelength assignment 

(RWA) and present an efficient RWA algorithm based on the logical link representation and fast 

bit-wise computation.  

 

The RWA problem can be divided into two categories: static and dynamic. The objective of 

static RWA is to reduce the blocking probability for scenarios in which the connection requests 

are known in advance. This problem can be formulated as a mixed-integer linear program (ILP) 

[1, 20], which is NP-complete [21].  In [22], a simple greedy algorithm to find the maximum 

edge disjoint paths (an NP-hard problem) is used to improve the wavelength usage in the static 

RWA problem. The second RWA category is the dynamic RWA problem [4, 6, 9, 23] that aims 

at reducing the blocking probability when connection requests arrive dynamically and are not 
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known in advance. There are two aspects of handling a connection request:  i) finding a route 

from the source to the destination and ii) assigning a wavelength for this connection.  Some 

RWA methods considered these two aspects separately [1, 3, 5].  The layered-graph RWA 

approach [4, 6, 8] usually has high computational overhead. In the method described in [6], for 

example, every wavelength in every fiber is represented by an edge in the layered graphs. This 

representation poses scalability problems when network links have multiple fibers and the 

number of wavelengths is large. Some RWA methods consider multi-fiber networks with 

arbitrary number of wavelengths [7, 24] while others have restriction on the number of fibers 

and/or wavelengths [2].  

  

In this chapter, we propose a new dynamic RWA approach based on the logical representation of 

link states and using efficient logical operators for computing the routing reward function. The 

remainder of this chapter is organized as follows. Section 2.2 introduces the model of WDM 

optical networks and the logical bitmap representation used in our RWA algorithm. Section 2.3 

presents the modified Dijkstra algorithm using the logical bitmap representation and the channel 

assignment algorithm. Section 2.4 describes the simulation model and the routing methods used 

in our comparison tests. Performance results are given in Section 2.5. 

 

 

2.2 The Network Model 

 

We consider multi-fiber multi-wavelength optical networks and primarily focus on the RWA 

problem under the constraint of wavelength-continuity. When a connection request is received at 
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the destination NAS (network access station), the network establishes a lightpath comprising a 

number of optical cross-connects (OXCs) and assigns a single wavelength for data forwarding in 

this lightpath. Although we do not consider wavelength conversion in this chapter, the 

availability of wavelength converters can be easily incorporated in our approach. The benefit of 

wavelength conversion can be obtained even when the converters are deployed in only a small 

number of nodes.  For example, [25-27] have shown that the presence of full or limited 

wavelength conversion capability in a sparse set of nodes selected by a k-minimum dominating 

set heuristic can lead to significant gains in performance.  For the sake of clarity and simplicity, 

however, we shall illustrate the main idea of our RWA approach using OXCs without 

wavelength converters. Also for the simplicity of illustration, we assume that connections are 

two-way (duplex) connections. This means that the RWA algorithm can assign the same 

wavelength to both directions of the connection and the graph representation of the network 

becomes an undirected graph. Generalizing our RWA algorithm to handle one-way (simplex) 

connections using directed graphs is straightforward and will not be included in this chapter. 

 

2.2.1 Logical Bitmap Representation 

 

In our model, the optical network is represented by a weighted undirected graph G=(V, E), 

where V is the set of nodes (vertices) and E is the set of edges. The set V corresponds to the set of 

OXCs that form the nodes of the optical network. An edge between a pair of nodes in G 

represents a link between the corresponding pair of OXCs in the optical network. Let v1 and v2 

be two adjacent vertices in G representing two OXCs in the optical network. The link between 

these two vertices has m fibers denoted f1, f2,…, fm. Each fiber can carry data using n wavelengths, 



where n=|W| and W is the set {λ1, λ2,…, λn} of operational wavelengths in the network. For 

simplicity of presentation, we shall assume that all links in the network have the same number of 

fibers, m, and each fiber is provisioned to use all n wavelengths. The n-bit integer variable 

fiber_state[v1,v2][j] is used to keep track of the free channels (free wavelengths) in fiber fj  of 

the link connecting nodes v1 and v2.  The kth bit in this variable is set to 1 if the kth wavelength is 

free and is set to 0 if this wavelength is used.  We adopt the notation that the lowest wavelength 

ID value corresponds to the least significant bit, i.e., the channel index of a bit increases as the 

significance of this bit increases. The n-bit variable Link_state[v1,v2] is used to keep track of the 

free wavelengths in the link between v1 and v2 and is computed as follows: 

  Link_state [v1,v2] =    fiber_state[v1,v2,][r] ∪
m

r 1=

where ∪  indicates the logical union (bitwise OR) operation. A bit value of 0 in Link_state 

indicates that the corresponding channel is used (i.e., is not free) in all fibers of that link. A bit 

value of 1, on the other hand, indicates that there is at least one fiber in which the channel is free.    

For example,   

Let m = 3 fibers and n = 5 wavelengths.  The link between v1 and v2 has the following values 

   fiber_state[v1,v2][1] = 01011   → λ1, λ2, λ4  are free in fiber 1  

  fiber_state[v1,v2][2]  = 00110   → λ2, λ3   are free in fiber 2 

  fiber_state[v1,v2][3]  = 00111   → λ1, λ2, λ3  are free in fiber 3 

 

The state of the link is given by  
 

            Link_state [v1,v2]   =  01011 ∪ 00110 ∪ 00111 = 01111 
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The binary value 01111 indicates that a new connection passing through this link can use any of 

the four free channels λ1, λ2, λ3, λ4 but cannot use λ5.  

 

The above logical representation of Link_state does not miss any free wavelength in any link but 

also does not record how many fibers in each link have the free channel. It turns out that this 

compact logical representation has two major benefits. First, the bitwise representation 

significantly reduces the storage requirement of the routing algorithm and improves its speed. 

Second, applying this representation in the computation of the routing cost (reward) function 

yields a scheme that is a nice compromise between least loaded routing algorithms and shortest 

path routing algorithms. Our simulation results have shown that this bitwise routing scheme 

gives very good performance with low blocking probability and can be used satisfactorily to 

replace the more complex mathematical representation (to be defined in Section 2.3.3). 

 

 

2.2.2 Logical Reward/Cost Function for Routing Algorithm 

 

Routing algorithms use a cost function (or reward function) to compare the different paths and 

select the best one. Our RWA method uses a reward function based on the logical representation 

defined in Section 2.2.1.  Let Count_one_binary(X) be a function that returns the number of  1-

valued bits in the  integer value X (or alternatively in the binary string representing X).  The 

argument X for a path is an n-bit integer value obtained from the logical intersection (bitwise 

AND) of the Link_state values of the individual links of this path. The reward function used in 
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our algorithm is the value returned by the function Count_one_binary(X). Higher reward values 

indicate higher number of free wavelengths that can be used to serve new connections.  Our 

RWA method gives preference to routes having higher reward values. If two routes have equal 

reward values, the RWA algorithm selects the route having a smaller length.  

 

 

2.3 Routing and Wavelength Assignment 

 

2.3.1 Routing Based on Bitmap Representation 

 

Many routing algorithms are based on Dijkstra algorithm [3]. We have the modified Dijkstra 

algorithm to use the bitwise logical computation described in Section 2.2.1. The modified 

algorithm uses the reward function defined in Section 2.2.2 in order to find a route that has larger 

number of free wavelengths as indicated by the bitmap representation of Link_state. If there is a 

tie, the algorithm selects the route having the smallest hop count.  

 

Figure 1 gives the pseudo code of the modified Dijkstra algorithm using the logical 

representation and the reward function presented in Section 2.2. The operator “∩” in Figure 1 

denotes the logical intersection (bitwise AND) operation and the operator “•” denotes string 

concatenation. The inputs of the modified Dijkstra algorithm are: source node S, destination node 

D, the array Fiber_state that records the free channels in each fiber and the array Link_state that 

records the free wavelengths in each link. The algorithm returns the selected path from S to D, 
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the length of this path and the free wavelengths that can be used in this path. The data structures 

used by the algorithm are as follows. For each node v,  

  Route[v] is a string that stores the route selected so far from source S to node v.  

  Hop_count[v] gives the length (i.e., number of hops) of  Route[v]. 

  Avail[v] stores the bitmap representation of the free wavelengths that can be used in Route[v]. 

  Weight[v] is the reward value for the path from S to v specified by Route[v]. 
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Modified Dijkstra Algorithm using Logical Representation: 
Step 1:  Initialization 
    Set current node C = S 
 Avail[C] = 2n – 1    /* This is a binary string of n 1’s, i.e., all n channels are free */ 
 Route[C] = “S” 
 Hop_count[C] = 0 
 Insert all nodes of the graph except node S into the set L. 
 Mark all members of L as unvisited  
  
Step 2: Adjust the path for every neighbor of the current node C. 
 For every neighbor of current node C, say v, which is a member of L, do 
 { 
        If (v is unvisited) { 
        /* first time to reach v */ 
 Route[v]=Route[C] •  “v” 
 Hop_count[v] = Hop_count[C] + 1 
 Avail[v] = Avail[C] ∩ Link_state(C,v) 
 Weight[v] = Count_one_binary(Avail[v]) /* Initial reward value for the path from S to v */ 
 Mark v as visited    } 
 else  { /* v has been visited before; a new path to v has now been found via node C */ 
  TempAvail = Avail[C] ∩ Link_state(C,v),           /* Evaluate the new path to v */ 
 TempWeight = Count_one_binary(TempAvail)    /* and compute its reward value */ 
 TempHop_count = Hop_count[C] + 1 
 if (TempWeight > Weight[v] OR  
  TempWeight = Weight[v]  AND TempHop_count < Hop_count[v])   
   {  /*  better path from S to v has been found */ 
                Route[v]=Route[C] •  “v”    /* Update the parameters based on the new path */ 
   Hop_count[v] = TempHop_count 
   Avail[v] = TempAvail 
   Weight[v] = TempWeight   } 
      } 
Step 3: /* Find next current node */ 
     If (L is not empty)  
 {   /* select new current node C */ 
 Select C as  the member of L, say member v,  having the largest value of     
                                Weight[v] and  
           if there is a tie, having the smallest value of Hop_count[v] and  
           if there is a tie, having the smallest ID. 
 Remove C from L 
 Go to Step 2  } 
Step 4: The set  L is now empty and the search is completed  
 If    (Avail[D] = 0) 
 { Failure: there is no path with free channels from S to D} 
 else  { return (Route[D], Hop_count[D], Avail[D]  ) 
 

Figure 2.1. Modified Dijkstra algorithm using logical representation and reward function 



2.3.2 Channel Assignment Based on Logical Representation 

 

In [3], Hui Zhang et al observe that first-fit is a reasonably good channel assignment algorithm 

compared to other methods, e.g., random assignment, SPREAD  (least-used assignment), and 

PACK  (most-used assignment).  Our simulation tests have also supported this observation.  It is 

easy to explain this observation by noting that, under the constraint of wavelength continuity, the 

blocking probability (BP) for a lightpath can be estimated as 

 

lightpath in the swavelength ofnumber  Total
lightpath in the  swavelengthused  ofNumber 

=BP  

 

For the first-fit algorithm, the number of used wavelengths will be generally smaller than that of 

the random assignment algorithm. This is because the first-fit algorithm always uses wavelengths 

having smaller ID values. This frees upper wavelengths with higher ID values and enhances the 

chance of finding a wavelength that is free in all the links of a given lightpath. For example, if 

W= {λ1, λ2} and there is a request for a one-hop connection between nodes v1 and v2 and another 

request for one-hop connection between v2 and v3, then the first-fit scheme will assign λ1 to both 

connections leaving λ2 free. The random scheme may however assign λ1 to one connection and 

λ2 to the other connection, thus blocking a future request for a two-hop connection between v1 

and v3. This means that under the wavelength continuity constraint, a request for a new 

connection is more likely to be accepted in the first-fit scheme than under random wavelength 

assignment. 
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We have used the first-fit assignment as follows: each wavelength is assigned an ID in the range 

1 through n and each fiber within a link is assigned an ID in the range 1 to m.  When the 

modified Dijkstra algorithm of Figure 1 succeeds in finding a path, the first-fit channel 

assignment strategy is used to select the free wavelength with the smallest ID.  Once the 

wavelength is selected, we next select the fiber with the smallest ID in which this wavelength is 

free. All the information needed to perform the first-fit strategy is contained in the link/fiber state 

information and in the results returned by the routing algorithm of Figure 1.  Figure 2 gives the 

pseudo code of the bitwise first-fit channel assignment algorithm. The input parameters Path and 

Avail_channels of this algorithm are obtained from the results Route and Avail returned by the 

modified Dijkstra algorithm of Figure 1. The code in Figure 2 selects a wavelength for the new 

connection, then for each link in the lightpath, it selects a fiber in which this wavelength is free. 

The algorithm also adjusts Fiber_state of the selected fibers and Link_state of all links in the 

lightpath. 

 

Channel Assignment (Path, Avail_channels) 
Select a channel index k such that k is the smallest positive integer satisfying       
    (2k-1   ∩ Avail_channels) ≠ 0    /* Channel k is a free channel with lowest ID */ 
For j=1 to length(Path)-1 do  { /* Process one link at a time */ 
 v1 = jth element of Path 
 v2 = (j+1)th  element of Path 
 select  a fiber index  i such that i is the smallest integer satisfying 
  Fiber_state[v1,v2,][i]  ∩  2k-1   ≠ 0    /* Fiber i has channel k free and has lowest ID */ 
 Fiber_state[v1,v2,][i]  =  Fiber_state[v1,v2,][i]  - 2k-1   /* Adjust status of channel k in fiber i  */ 

 Link_state [v1,v2] =    Fiber_state[v1,v2,][r]  }  /* Re-compute the state of this link */ ∪
m

r 1=

 

Figure 2.2. Channel assignment based on the logical representation 
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2.3.3 Mathematical Representation 

 

The efficient logical representation used in the algorithms presented in Sections 2.3.1 and 2.3.2 

can be replaced by a more complex mathematical representation. Recall from the example given 

in Section 2.2.1, the link state was obtained by the bitwise computation 

              Link_state [v1,v2]   =  01011 ∪ 00110 ∪ 00111 = 01111 

The binary value 01111 indicates that a new connection can use any one of the four free channels 

λ1, λ2, λ3, λ4 but cannot use λ5. The corresponding mathematical representation would give  

  Link_state [v1,v2]  = [0,1,2,3,2] 

The variable Link_state [v1,v2] is now an array of five integer values rather than a single 5-bit 

integer value. This array indicates that the first channel λ1 is free in two fibers of the link 

between v1 and v2, the second channel λ2 is free in three fibers, the third channel λ3 is free in 

two fibers, the fourth channel λ4 is free in only one fiber and the fifth channel λ5 is used (not free) 

in all fibers of the link between v1 and v2.  

 

Let each of A1 and A2 be an array of n integers and let α 1i and α 2i be the ith member of A1 and 

A2 respectively, 1≤  i ≤ n where n is the number of operational wavelengths used in the network.  

The logical union operator ∪ and logical intersection operator ∩ used earlier (see Figures 2.2.1 

and 2.2.2) are now replaced by the mathematical operators ⊕ and ⊗, respectively. These latter 

operators are defined as follows.  

 

Math_Sum ⊕:    P=A1⊕A2  
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P is an array of n elements pi , 1≤ i≤ n   where pi = α 1i+α 2i

Math_Min ⊗:     P=A1⊗A2,  

 P is an array of n elements pi , 1≤ i≤ n   where pi = min{α1i,α2i} 

 

The algorithms of Figures 2.1 and 2.2 can be converted to use the mathematical operators ⊕ and 

⊗ by making all appropriate changes in the different routines, e.g., definition and computation of 

the reward function, comparisons and selection of routes, wavelength assignment and adjustment 

of the link state values. We have implemented a mathematical version of the RWA method of 

Sections 2.3.1 and 2.3.2 and included it in our comparison tests that will be discussed in Section 

2.4.  

  

It is important to notice that the Modified Dijkstra algorithm using the logical representation 

(denoted as DLR) behaves differently than the modified Dijkstra algorithm using the 

mathematical representation (denoted as DMR). Specifically, DMR is a strict least loaded (i.e., 

least congested) algorithm. DLR, however, may sometimes select a shortest path route that is not 

a least loaded path. For example, consider the case of four fibers (m = 4) and five wavelengths (n 

= 5). Assume that there are two alternative paths from node S to node D, say path P1 and P2 and 

that P2 is shorter than P1. Wavelengths # 1, 3, 5 are free in all four fibers of P1 but are free in 

only two fibers in P2. Wavelengths # 2 and 4 are used in all fibers in both P1 and P2.  In DLR, 

the value of Avail[D] for both P1 and P2 is equal to the bit string "10101" which has  a reward 

value of 3. Therefore DLR will use the hop count to break the tie and will choose the shorter 

path P2.  In case of DMR, the value of Avail[D]  for P1 is equal to the array of  integers 



[4,0,4,0,4] with a reward value of 12 while that of  P2 is [2,0,2,0,2] with a reward value of 6. So 

DMR chooses P1 which is the least loaded path but DLR chooses P2 which is the shortest path.     

 

The above discussion shows that DLR is not a strict "least loaded” routing algorithm and may in 

fact choose the shortest path rather than the path with the largest number of free wavelengths.  

 

 

2.4 The Simulation Model 

 

Figure 2.3 shows the two network topologies used in our tests: (a 9-node mesh network and the 

well-known 14-node NSFNET network). 

 

 

 

 

 

 

                      3x3 Mesh network                                  NSFNET network 

 

Figure 2.3. Two network topologies 

 

Connection requests arrive according to a Poisson distribution with arrival rate λ. The connection 

holding times are negative exponentially distributed with mean 1/μ. For each request, the source 
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node and destination node are randomly selected. The traffic load ρ for the network is λ/μ.  The 

tests covered a variety of parameter values: the arrival rate λ changed from 5 to 30 in an 

increment of 1, the mean connection holding time 1/μ changed from 5 to 50 in an increment of 1, 

the number of wavelengths was 8, 16, or 24 and the number of fibers in each link was 2, 3 or 4. 

Each simulation result was gotten from the average of six scenarios and a total of 100,000 

requests were generated in each scenario.  The simulation environment is Sun sun4u 

E4500/E5500, System clock frequency: 100 MHz, Memory size: 7168MB, CPU: 400MHz and 

cache: 4MB. 

  

Our extensive simulation tests have compared the following methods: 

 

Fixed shortest-path routing method (FSR):  

In this method [3, 6], the connection is blocked if it cannot be serviced by the shortest path from 

the source to the destination. If the shortest path has free wavelengths, a first fit wavelength 

assignment is used to select the channel for the new request.  Otherwise, the request is blocked. 

 

Modified Dijkstra algorithm using Logical Representation (DLR):  

This method uses the logical representation and reward function presented in Section 2.2. The 

pseudo code of the DLR algorithm was given in Figure 2.1.  

 

 

Modified Dijkstra algorithm using Mathematical Representation (DMR):  

This method uses the mathematical representation and reward function presented in Section 2.3.3. 
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Modified Flooding algorithm using Logical Representation (FLR):   

This method finds the shortest path between the source and destination using the flooding 

approach. We used the logical representation of Section 2.2 for keeping track of free 

wavelengths (as was done in the DLR method). We assumed the routing search is terminated 

once the destination is reached; thus FLR is an ideal flooding scheme that always selects the 

shortest path but has high signaling overhead.  

 

Buffered methods (BFSR, BDLR, BDMR, BFLR): 

In all of the four previous methods, the request for a new connection is immediately discarded if 

the routing algorithm fails to find a lightpath with a free wavelength to serve this request. In the 

buffered methods (denoted by BFSR, BDLR, BDMR, and BFLR), we assume there are some 

electronic buffers of finite size in the source NAS. If a request is blocked, it can be held in these 

buffers in the hope that a wavelength/lightpath would become available to serve the blocked 

request soon. Requests waiting in the buffers are discarded if they do not get served before their 

maximum waiting time expires. In our tests, we used buffers that can store a maximum of 5 

requests and we assumed that the maximum waiting time of each request in the buffer is 10 units 

of time. 

 

2.5 Performance Results 

 

We first discuss the comparison results for the four methods: FSR, DLR, DMR and FLR when 

two fiber pairs are used per each link (i.e., two fibers in each direction). Figures 2.4 and 2.5 show 
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the results for the NSFNET topology with 16 and 24 wavelengths, respectively.  The 

corresponding results of the Mesh topology for these two scenarios are presented in Figures 2.6 

and 2.7. The results of buffered methods (using five electronic buffers in each source NAS) are 

given in Figure 2.8 for the NSFNET topology (results for the Mesh topology have similar trends 

and are omitted). In Figure 2.9, the performance results of NSFNET are compared at a load of 

200 for the methods with/without buffers. Figure 2.10 compares the routing speed of the bitwise 

DLR scheme with that of its mathematical DMR counterpart for the NSFNET topology.  The 

routing speeds are the average running time for each routing process in DLR and DMR. From all 

these results (Figures 2.4-2.10), we observe the following: 

 

DLR and DMR give very close blocking performance (DLR is usually better). DLR is much 

faster than DMR and has less storage overhead. This confirms that our proposed logical 

representation and the bitwise computations used in DLR are not only advantageous in terms of 

storage requirement and computational overhead, but are also very competitive in terms of 

improving performance and reducing the blocking probability. It is important to notice that in 

real-time dynamic routing environments, faster algorithms are highly desirable even at the 

expense of some loss of performance.  Not only the bitwise DLR scheme is faster than DMR, but 

it is even slightly better in performance. 

 

The blocking performance of DLR is superior to that of the fixed shortest-path routing (FSR) 

method.   This result can be explained by noting that our DLR method uses a reward function 

that favors the less loaded routes. Thus DLR has benefits similar to those of least-loaded routing 

algorithms [28]. Li and Somani showed in [28] that least loaded routing can usually achieve 
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better blocking performance than the fixed alternate routing (FAR) method described in [29]. 

The reason is that least loaded routing tends to spread the load on different links but is likely to 

use longer paths. Similarly, our DLR scheme usually achieves better performance than fixed 

shortest-path routing (FSR) again because of load spreading. Recall, however, that DLR is not a 

strict least loaded algorithm and, in some scenarios, it may select the shortest path rather than the 

least loaded path as was explained in Section 2.3.3.  It should be noted here that when the 

number of wavelengths is small (Figure 2.6), the difference between all methods is small since 

the small number of wavelengths induces congestion more easily and the blocking performance 

deteriorates rapidly for all methods.  

 

DLR has also better blocking performance than the ideal flooding routing scheme (FLR).  Since 

FLR is a strict shortest path algorithm, it tends to congest the links of the shortest paths at higher 

loads and its blocking performance is negatively impacted. Our DLR scheme, on the other hand, 

is a hybrid combination of least-loaded and shortest-path algorithm and often selects less 

congested routes than FLR, thereby leading to an improved blocking performance. 

 

As expected, the use of buffers at the source NAS improves the blocking performance. 

Comparing Figure 2.4 and Figure 2.8, the blocking probability is reduced when the source NAS 

is equipped with electronic buffer. This is also clearly illustrated in Figure 2.9. During 

congestion situations and when the number of wavelengths is small, the buffer gives only small 

improvement. This is because the persistence of congestion in these situations may cause the 

request to get discarded even if it is buffered for some duration. The advantage of buffering is 

significant at medium loads and when larger number of wavelengths is used.  
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Figure 2.4. Blocking probability vs traffic load. Wavelengths = 16, fibers = 2. NSFNET network 
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Figure 2.5. Blocking probability vs traffic load. Wavelengths = 24, fibers = 2. NSFNET network 
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Figure 2.6. Blocking probability vs traffic load. Wavelengths = 16, fibers = 2. Mesh network 
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Figure 2.7. Blocking probability vs traffic load. Wavelengths = 24, fibers = 2. Mesh network 
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Figure 2.8. Blocking probability vs traffic load. Wavelengths = 16, fibers = 2. NSFNET network 

with buffer 

 28 
 
 

 



 

0

0.02

0.04

0.06

0.08

0.1

0.12

DLR DMR FSR FLR

B
lo

ck
in

g 
pr

ob
ab

ili
ty

Buf=5
No buf

 

 

Figure 2.9. Blocking probability comparison for load 200. Wavelengths = 16, fibers = 2. 

NSFNET network 
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Figure 2.10. Routing speed comparison of DLR , DMR 

 

When we increased the number of fibers per link to three and four, we obtained comparison 

trends very similar to the case of two fibers per link. Of course, adding more fibers increases the 

capacity of the network and reduces the blocking probability.  For example, Figure 2.11 gives 

the blocking probability with 4 fibers and 8 wavelengths and Figure 2.12 gives the blocking 

probability with 3 fibers and 16 wavelengths for the NSFNET topology. Comparing Figure 2.4 

(case of 16 wavelengths with 2 fibers) and Figure 2.11  (case of 8 wavelengths with 4 fibers), it 

is easy to see that both figures have almost the same values of the blocking probability. This is 

due to the fact that the total number of wavelengths used in each link in both figures is the same 

(32 wavelengths). Similar observation is obtained when comparing Figure 2.5 and Figure 2.12 

(both use a total of 48 channels in each link).  The results shown in the various figures clearly 
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indicate that the blocking probability is reduced when the number of channels in each link is 

increased.  

 

Figure 2.13 gives blocking probability comparisons at a load of 250 Erlang for the NSFNET 

network for DLR, DMR, FSR, and FLR with different number of fibers in each link and different 

number of wavelengths in each fiber. Note that the blocking probabilities for DLR and DMR in 

the 3x16 and 2x24 scenarios are almost zero and are not visible in the bar chart. Figure 2.13 

shows that when the total number of channels in each link (i.e., number of fibers in each link 

times the number of wavelengths in each fiber) increases, the blocking probability is reduced. 

Since there is a wavelength-continuity constraint, we can see that the performance of 4 fibers and 

8 wavelengths is slightly better than that of 2 fibers and 16 wavelengths (similarly the case of 3 

fibers and 16 wavelengths gives slight improvement over the case of 2 fibers and 24 

wavelengths). This is because the use of more fibers improves the chance of finding a common 

free wavelength in the different links of the lightpath.  

 



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

100 120 140 160 180 200 220 240

Load (Erlang)

B
lo

ck
in

g 
pr

ob
ab

ili
ty

DLR
DMR
FSR
FLR

 

Figure 2.11. Blocking probability vs traffic load. Wavelengths = 8, fibers = 4. NSFNET network 
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Figure 2.12. Blocking probability vs traffic load. Wavelengths = 16, fibers = 3. NSFNET 

network 
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Figure 2.13. Blocking probability comparison for different scenarios. NSFNET network, Load = 

250 Erlang (notation: mxn means m fibers per link and n wavelengths per fiber) 
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CHAPTER 3:  IMPROVING FAIRNESS IN OPTICAL BURST SWITCHED 

NETWORKS 

 

 

3.1 Introduction 

 

Optical burst switching (OBS) [30-34] has been proposed to provide fine bandwidth granularity 

and improve the utilization of WDM networks. The basic idea of OBS is that each optical 

channel is time multiplexed statistically in units of data bursts. Since data bursts are much larger 

than IP packets, OBS is envisioned to be able to combine the best of optical circuit switching and 

optical packet switching.  

 

The literature on OBS is rich and growing.  Many aspects of burst switching have been 

extensively investigated including: signaling and reservation protocols [30, 32, 35, 36, 37], 

routing and scheduling [38, 39], burst assembly at the ingress nodes [40], burst technology and 

related switch architectures [41], comparison with optical flow switching [42], and contention 

resolution at the core nodes [43]. In this chapter, we address the issue of fairness in OBS 

networks. The term “fairness” has been used to address different issues in different types of 

optical networks. In optical circuit switching, for example, the capacity unfairness problem [44] 

applies to networks with traffic grooming capability, i.e., the capability of multiplexing and 

switching lower rate traffic streams onto higher capacity wavelengths. In such grooming 

environment, a call request that has bandwidth requirement closer to the full wavelength capacity 

is more likely to experience higher blocking than a call that needs only a smaller fraction. In 
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OBS networks, there is a different type of unfairness, namely, the dropping probabilities of 

optical bursts traveling through paths with large hop count tend to be higher than those whose 

paths have a small number of hops.  This latter problem has been studied in several papers as a 

secondary consideration in the evaluation of routing and channel assignment algorithms [29, 45, 

46]. For example, the authors in [45] proposed a deflection routing algorithm and showed that 

the blocking probabilities of bursts with various hop count at high load levels are almost the 

same as the case of no deflection, i.e., their proposed deflection routing does not aggravate the 

unfairness problem for bursts with large hop count.  In this chapter, we investigate the unfairness 

encountered by bursts traveling through long lightpaths and we propose and evaluate the 

performance of two schemes for alleviating this type of unfairness.  

 

The rest of the chapter is organized as follows. In section 3.2, the beat down unfairness problem 

is discussed and relevant previous work is reviewed. Our first scheme, the balanced JIT scheme, 

for alleviating the beat down problem is presented in section 3.3. Our second scheme, the 

prioritized RED scheme, is presented in section 3.4. In section 3.5, the performance results of the 

two schemes are presented and analyzed.  

 

3.2 The beat down unfairness problem in OBS networks 

 

In OBS, a control packet is transmitted ahead of the data burst on an out-of-band channel to 

announce the upcoming burst to each optical cross connect  (OXC) on the lightpath. A specific 

offset time is introduced at the source node between the transmission of the control packet and 

the data burst.  During this offset time, the data burst is buffered electronically at the source node 
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while the control packet propagates forward to reconfigure each OXC along the lightpath. At the 

end of the offset time, the data burst is transmitted and is switching all-optically through the 

network without the need of fiber delay lines in any intermediate node. Since there is no 

connection explicitly established before the burst transmission, the control packet may fail to 

secure a free channel at some node along its path and the burst may therefore be dropped.  

Obviously, the larger the number of intermediate nodes in a lightpath the higher the probability 

that a burst switched through these intermediate nodes will be dropped. This type of unfairness is 

well known in electronic packet switching networks and is often referred to as the “beat down” 

problem. For example, packets belonging to a TCP connection which traverse many links tend to 

have more chance to be dropped than packets belonging to a TCP connection with a small 

number of hops.  In particular when TCP is served by “IP over ATM”, ATM data cells traveling 

more hops have a higher probability of getting discarded than those traveling fewer hops. 

Consequently, long-hop TCP connections may not be able to increase their rates and obtain the 

bandwidth they deserve. In other words, these long-hop TCP connections are beaten down by 

their short-hop counterparts. 

 

Few methods have been proposed to deal with the “beat down” problem in electronic packet 

switching networks such as Fair Buffer Allocation and Selective Packet Dropping [47]. These 

methods are not suitable for optical networks since they normally have complex logic and 

require the use of buffers to store data cells/packets. For example, Selective Packet Discard in 

ATM switches is based on  “per-VC accounting” which tracks the number of buffered cells from 

each virtual connection (VC) in order to reduce cell discarding from low-bandwidth long-hop 

connections.  
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There have been very few attempts to design and evaluate schemes to reduce the effect of the 

beat down problem in OBS networks (note: the term “beat down” has not been used in prior 

OBS fairness research; we are borrowing this term from the literature of electronic packet 

switching networks). In [48], an OBS reservation scheme is proposed for OBS networks 

operating under the wavelength continuity constraint (i.e., no converters). The scheme uses the 

backward reservation paradigm in which a probe control message propagates from the source to 

destination then a reservation message travels back from the destination to the source before the 

data burst can be transmitted. The simulation results reported in [48] uses a three-node tandem 

network (i.e., maximum of two hops) and a total of three connections (two 1-hop and one 2-hop). 

The results show that fairness for the 2-hop connection has improved at the expense of a slight 

increase in the overall mean blocking probability of the three connections. In [49], a preemptive 

algorithm is proposed to reduce the blocking of bursts with long route lengths in OBS with just-

enough-time (JET) signaling. The scheme, called “Merit-based Channel Allocation Algorithm”, 

ranks an arriving burst against those which have been already scheduled for transmission. The 

value, called “figure of merit”, used to determine the ranking is biased in favor of bursts that 

have long routes, are closer to their destination, or have already consumed large amount of 

transmission time. If a free channel cannot be found, the scheme then seeks to preempt an 

already accepted burst based on the computed value of figure of merit for each burst.  The 

simulation results reported in [49] compared five choices (metrics) for computing the figure of 

merit and showed that the merit based preemption scheme is capable of improving the overall 

network utilization; there was no fairness analysis and the blocking probabilities for different 

hop counts were not reported.  
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In the remainder of this chapter, we propose and evaluate two schemes for dealing with the beat 

down unfairness problem in OBS. Our schemes have simple logic, do not use preemption, do not 

require repeated computation to compare accepted bursts and do not introduce any complex 

modification to the lightpath set-up scheme or the architecture of OXC.  

 

3.3 The Balanced JIT scheme 

 

Our proposed scheme can be applied to OBS networks with either just-in-time (JIT) [32] or just-

enough-time (JET)  [36] protocol. JIT has a simpler logic than JET and we have selected it for 

the implementation and evaluation of our schemes. Our OBS network model has the full 

conversion assumption required in one way reservation protocols such as JIT and JET, i.e., full 

wavelength conversion capability must be available at each node along the lightpath. However, 

no optical buffering capability (e.g., fiber delay line) is required in these nodes.  

 

In JIT, the source node delays the transmission of a burst by a certain amount of time after 

sending the control packet. This delay is called the offset time and is needed to allow each switch 

in the lightpath to process the control packet and reconfigure the input/ouput ports for the 

incoming burst. The switch reconfiguration time (also called the cut through time) must be taken 

into consideration because a burst is dropped if it arrives before the OXC completes its 

reconfiguration and port setting.  

 

If the lightpath of a burst consists of m hops, the offset time td  used in JIT can be defined as: 



 

*d pt m t tδ≥ +          (3.1) 

 

where tp is the control packet processing time in each optical cross connect (OXC) including O/E 

conversion, E/O conversion, and request analysis and routing;  tδ is the extra delay required to 

assure cut through completion at the last WDM OXC [32]. We next explain the rationale of our 

first scheme using a simplified high-level model for the probability of burst discarding.   

 

Consider a burst that arrives to an OXC. Let n be the number of wavelengths operational on the 

output links of this OXC. Let βi be the probability that the ith wavelength is not free at the time of 

burst arrival. The blocking (dropping) probability of the burst in this OXC is given by 

 

  1 2 3* * *...* nPBLK β β β β=    (3.2)  

 

If   βi  = β  for all i, then 

 

 
nPBLK β=                       (3.3)  

 

The “go through” probability of the burst in this OXC is given by 

 

        (3.4)  1PGO PBLK= −
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If the lightpath of the burst has m hops, the probability that the burst will successfully reach its 

destination is given by  

 

    (3.5) 1 2* *...* mPREACH PGO PGO PGO=

 

The beat down unfairness problem is clearly explained by equation (3.5). If a shorter lightpath 

happens to be a prefix of a longer lightpath, the value of PREACH for the longer path will be 

smaller than that of the shorter path. As the number of hops m increases, the probability that the 

burst will be delivered successfully to the destination decreases. Single-hop lightpaths (i.e., m=1) 

have the highest probability of successful burst delivery. Our first scheme to alleviate this 

unfairness is based on a simple observation of equations (3.2)-(3.5): increasing the number of 

wavelengths n increases the chances of successful burst delivery. As the burst moves from one 

hop to the next, our scheme gradually increases the number of wavelengths that can be used to 

switch this burst. Let W be the (maximum) number of wavelengths that are used for burst 

switching in each OXC. When the control packet of a burst arrives at its first OXC, a certain 

fraction of the W wavelengths in this OXC is searched for a free wavelength. If no free channel 

is found, the burst is dropped even though a free channel may be available in one of the other 

wavelengths that have not been searched.  In the second hop (OXC) of the burst, a larger fraction 

of W is searched for a free channel. Specifically, the number of wavelengths ni that are searched 

in the ith hop of a burst is given by  
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D(1 )* * * /in g W g i W= − +        (3.6) 
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where g is a parameter that is assigned a value between 0 and 1 and D is the diameter of the 

network (the maximum number of hops in a lightpath in the network). We call this method 

“balanced JIT” and denote it BJIT(g) where g is a controllable parameter of the scheme.  The 

parameter g divides the search spectrum in each OXC into two parts: a base part and an 

adjustable part. The base part has a fixed size of (1-g)*W wavelengths regardless of the hop 

count of the lightpath.  The adjustable part has a size that depends on the number of hops 

traveled by the burst so far, and can reach a maximum size of g*W wavelengths. For example if 

the network diameter is D=10, the size of the adjustable part is 0.1*g*W at the first hop, 

0.2*g*W at the second hop, and so on. It should be noted that the high-level model of equations 

(3.2)-(3.5) applies to both JIT and JET and the balanced scheme is therefore suitable for JET as 

well. The balanced scheme is very easy to implement and does not demand any additional 

software or hardware resources in the OXC’s.  The current hop count of the burst, i, used in 

equation (3.6) is easily passed from one OXC to the next via the control packet. Implementing 

the reduced (adjustable) search to find a free wavelength requires minor modification to the 

standard JIT channel allocation scheme; the adjustable search (i.e., searching in a space of size 

g*i*W/D) actually leads to a smaller average search time.  

 

Note that when g=0, the adjustable part of equation (3.6) vanishes and the scheme becomes 

equivalent to the standard JIT scheme. In other words, BJIT(g=0) has the same level of beat 

down unfairness as JIT. As the value of g increases, data bursts on long lightpaths get better 

treatment because the size of their adjustable search space increases and hence their “go 

thorough” probability gradually improves after each OXC they successfully pass. It is obvious 
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that larger value of g will be more effective in reducing the beat down unfairness. Ideally, we 

should choose a value of g that satisfies the following two conditions: 

 

• Eliminate, or reduce the severity of, the beat down unfairness by reducing the probability of 

dropping bursts with larger hop count at the expense of some increases in the dropping 

probability of bursts with small hop count.  

• Avoid negatively impacting the overall throughput of the system, i.e., do not increase the 

overall burst dropping probability.  

 

The BJIT scheme and the logic used in equation (3.6) were inspired by our earlier work on 

reducing the dropping probability of handoff requests in the base stations of cellular wireless 

networks [50]. Abstractly speaking, the adjustable term of equation (3.6) is a generalization of 

the guard channels that are exclusively dedicated to handoff requests in order to give them 

priority over new call cellular requests. Our extensive tests have shown that the BJIT scheme can 

reduce the beat down unfairness in OBS networks while maintaining (or even slightly improving) 

the throughput. As explained earlier, bursts with long lightpaths are dropped more frequently by 

standard JIT (or JET) than those with short paths. As the control packet gets closer to its 

destination, the time separating the control packet and its burst decreases, making it more 

difficult to salvage the burst using optimized scheduling techniques such as those used in JET.  

Thus bursts with longer paths are more likely to get dropped, and they are often dropped in an 

OXC closer to their destination after having wasted channel resources in the previous OXC’s. 

The BJIT scheme avoids this problem in two ways. On one hand, bursts with long paths have a 

smaller dropping probability under BJIT than under JIT. On the other hand, the bursts that get 
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dropped in the BJIT scheme are likely to be dropped near their source node rather than near their 

destination. The reason is that equation (3.6) ensures that a larger and larger adjustable search 

space is allocated to the burst as it moves from one OXC to the next. Therefore the BJIT scheme 

frees up some channel resources that would have been otherwise wasted if the dropped bursts 

were allowed to travel some more extra hops before being discarded. The discussion on choosing 

the appropriate value of g and the detailed performance results of the BJIT scheme are given in 

section 3.5.  

 

 

3.4 The Prioritized Random Early Dropping (PRED) Scheme 

 

Our second scheme adapts the concept of random early discard (RED) to the OBS environment 

and prioritizes the levels of discarding based on the length of the lightpath. We call this scheme 

Prioritized RED or PRED.   

 

The RED concept [51] has received considerable interest in electronic packet switching networks 

and RED routers have been widely deployed in various commercial applications and in the 

Internet. There have been numerous studies that support or oppose RED [51-53], present 

schemes for tuning RED parameters [54], propose modified versions of RED [55], and develop 

analytical models for RED performance [56].  The basic idea of RED is that routers proactively 

discard incoming packets with probabilities that depend on the size of the router’s queue. The 

TCP congestion control algorithm [57] reacts to lost packets by throttling the transmission rate of 

TCP senders. Studies have shown that well-configured RED routers have the potential to avoid 



severe congestion and improve the overall throughput while maintaining a small queuing delay 

within each router.  

  

Our PRED scheme uses proactive burst dropping with a discarding probability that decreases as 

the length of the lightpath increases.  The goal of burst discarding in PRED is not to avoid 

congestion or throttle TCP senders as in RED (although these could be positive side effects of 

PRED). Rather, PRED uses proactive discarding to alleviate the beat down unfairness. A major 

difference between RED and PRED is that our PRED scheme restricts burst discarding to the 

original source node of the burst while RED allows any router in the path of a packet to 

proactively drop it. Specifically, all proactive discarding in PRED is done in the network access 

station (NAS) of the source node that generated the burst. This has the advantage that the 

discarded bursts will not waste any bandwidth resources in the core of the optical network.   

 

Let αi be the probability used by PRED at the source NAS to discard a newly incoming burst 

whose lightpath has a length of i hops.  To alleviate the beat down problem, the values of the 

discarding probabilities must satisfy the following constraint 

 

                1 2 ... Dα α≥ ≥ ≥ α     (3.7) 

 

where D is the diameter of the network as explained in section 3.3.   

 

The proactive discarding of relation (3.7) is only applied to the local bursts assembled at this 

NAS.  The NAS may also be servicing transit bursts that have come from some external OXC’s 
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and are being routed to other external OXC’s. These transit bursts have already escaped the 

PRED proactive discarding in the NAS where they were generated. These transit bursts have also 

already consumed some network bandwidth resources during their partial trip toward their 

destination. By proactively discarding local bursts and not transit bursts, more bandwidth will be 

available to transit bursts at the current OXC. This increases the likelihood that transit bursts will 

reach their destination without wasting the resources that they have already used prior to 

reaching the current NAS.  

 

As in standard RED, the proactive discarding in PRED should not take place if the load on the 

OXC is light. This is because at light loads, most bursts are expected to reach their destination 

successfully and the beat down unfairness is not noticeable. We have adopted a simple 

mechanism to disable/enable proactive discarding in PRED. In OBS, each NAS uses a buffer to 

hold assembled bursts until they are sent to the local OXC. Bursts arriving when this buffer is 

empty do not get discarded by PRED. When the buffer is not empty, new bursts are subjected to 

the probabilistic discarding of PRED.  

 

3.5 Performance evaluation results and analysis 

 

Figure 3.1 shows the two network topologies that are used in our simulation (NSFNet network 

with 14 nodes and US LongHaul network with 28 nodes). 

 

 

  



 

 

 

 

         

              NSFNet Topology                                            LongHaul Topology 

 

Figure 3.1. Two network topologies 

 

In our simulation, a static lightpath between any two nodes is established using the shortest path 

first method as was done in [49, 26, 27]. Notice that the longest shortest path in the LongHaul 

topology has 7 hops and in the NSFNet topology has 3 hops.  Similar to [49], the traffic used in 

our tests is uniformly distributed among all nodes. This means that all nodes have equal 

likelihood to be the source of a data burst and for a given source node all other nodes in the 

network have equal likelihood to be the destination node. This uniform distribution on pairs of 

nodes gives the following distribution on the number of hops in the burst’s lightpath: for the 

NSFNet topology, the percentage of lightpaths with number of hops equal to 1, 2, and 3 is 23%, 

40% and 37%, respectively; for the LongHaul topology, the percentage of lightpaths with 

number of hops equal to 1, 2, 3, 4, 5, 6 and 7 is 12%, 20%, 23%, 21%, 14%, 8% and 2%, 

respectively.  

 

In our simulation tests, assembled bursts arrive according to a Poisson distribution with 

controllable arrival rate. For each burst, the source node and destination node are randomly 

 46 
 
 

 



 47 
 
 

 

selected as explained before. Our simulation tests used values for OXC and network parameters 

similar to those typically used in the literature:  the cut through time in each OXC is 2.5 

milliseconds, the link delay per hop is 3 milliseconds, the burst length is 50 microseconds 

(equivalent to a burst of 250 Kbits at 5 Gbits/sec), the control packet processing time tp at each 

hop is 50 microseconds. The number of wavelengths used in each OXC is W=40. Each point in 

the performance graphs/tables reported in this chapter was obtained by averaging the results of 6 

simulation tests using different random generation seed values. Each simulation was run for 

sufficiently long time to obtain stable statistics; the total number of bursts processed in each 

simulation test ranged from 2 million bursts at low arrival rates to 12 million bursts at high loads. 

The time unit (tu) used in the tables/graphs presented in this chapter is equal to 0.05 millisecond. 

Thus a load of 12 bursts/tu is equivalent to 60 Gbits/second.  

 

 

 

3.5.1 Performance of BJIT 

 

Figures 3.2 and 3.3 show the burst drop probability for different hop counts at load 12 burst/tu 

(60 Gbits/second) in the LongHaul and NSFNet networks, respectively. The horizontal axis gives 

the value of the parameter g. Notice that the case g=0 corresponds to the standard JIT scheme. 

The figure shows that the beat down unfairness is gradually alleviated as the value of g increases. 

When g reaches the value 1, the unfairness is more or less eliminated and the drop probabilities 

for all hop counts are nearly the same. 
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Figure 3.2. BJIT drop probability for different hop counts in LongHaul (load=12) 
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Figure 3.3. BJIT drop probability for different hop counts in NSFNet (load=12) 
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Table 3.1 shows the distribution of the drop probability at different loads for standard JIT (i.e., 

BJIT with g=0) in the LongHaul network. Table 3.2, 3.3, 3.4, and 3.5 give similar distribution 

for BJIT with parameter value of g=0.2, g=0.5, g=0.8, and g=1.0, respectively. Since the general 

trends of the drop probability distribution for the NSFNet network are similar to those of the 

distribution for the LongHaul network, we omit the tables for the drop probability distribution of 

NSFNet in this chapter.  

 

Table 3.1. Drop probability distribution for standard JIT (g=0) in LongHaul 

 
Load Hops=1 Hops=2 Hops=3 Hops=4 Hops=5 Hops=6 Hops=7 

2 0.0000 0.0002 0.0004 0.0002 0.0003 0.0006 0.0000 
4 0.0008 0.0115 0.0329 0.0621 0.0930 0.1580 0.1836 
6 0.0023 0.0407 0.1156 0.2284 0.3654 0.4730 0.4683 
8 0.0049 0.0748 0.2252 0.4058 0.5470 0.7019 0.7231 
10 0.0105 0.1236 0.3356 0.5208 0.7020 0.8103 0.8541 
12 0.0230 0.1861 0.4328 0.6325 0.7881 0.8968 0.9106 

 
 

Table 3.2. Drop probability distribution for BJIT (g=0.2) in LongHaul 

 
Load Hops=1 Hops=2 Hops=3 Hops=4 Hops=5 Hops=6 Hops=7 

2 0.0000 0.0000 0.0002 0.0012 0.0000 0.0007 0.0000 
4 0.0019 0.0138 0.0370 0.0636 0.1070 0.1439 0.1707 
6 0.0030 0.0489 0.1303 0.2352 0.3530 0.4401 0.4538 
8 0.0060 0.1211 0.2270 0.3926 0.5364 0.6954 0.7041 
10 0.0115 0.1344 0.3275 0.5235 0.6745 0.8106 0.7814 
12 0.0235 0.2033 0.4337 0.6234 0.7816 0.8766 0.9041 
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Table 3.3. Drop probability distribution for BJIT (g=0.5) in LongHaul 

 
Load Hops=1 Hops=2 Hops=3 Hops=4 Hops=5 Hops=6 Hops=7 

2 0.0008 0.0000 0.0000 0.0007 0.0010 0.0006 0.0000 
4 0.0017 0.0128 0.0364 0.0676 0.0990 0.1251 0.1287 
6 0.0038 0.0561 0.1181 0.2211 0.3472 0.4332 0.4647 
8 0.0098 0.1283 0.2557 0.3921 0.4880 0.5528 0.6019 
10 0.0232 0.1678 0.3374 0.4901 0.6328 0.7791 0.7996 
12 0.0508 0.2307 0.4467 0.5950 0.7407 0.8204 0.8286 

 

Table 3.4. Drop probability distribution for BJIT (g=0.8) in LongHaul 

 
Load Hops=1 Hops=2 Hops=3 Hops=4 Hops=5 Hops=6 Hops=7 

2 0.0000 0.0010 0.0016 0.0007 0.0007 0.0000 0.0025 
4 0.0037 0.0241 0.0584 0.0838 0.1363 0.1137 0.1070 
6 0.0066 0.0709 0.1618 0.2426 0.3511 0.4155 0.4174 
8 0.0689 0.1773 0.2967 0.3971 0.4846 0.5490 0.5133 
10 0.1616 0.2768 0.4013 0.4776 0.5790 0.6436 0.6527 
12 0.2462 0.3590 0.4954 0.5661 0.6551 0.7079 0.7189 

 

Table 3.5. Drop probability distribution for BJIT (g=1.0) in LongHaul 

Load Hops=1 Hops=2 Hops=3 Hops=4 Hops=5 Hops=6 Hops=7 
2 0.0004 0.0027 0.0013 0.0036 0.0052 0.0025 0.0000 
4 0.0925 0.1263 0.1526 0.1571 0.1511 0.1494 0.1018 
6 0.3019 0.3531 0.3690 0.3630 0.3615 0.3361 0.2848 
8 0.4498 0.5023 0.5208 0.5429 0.4819 0.4729 0.3567 
10 0.5634 0.6267 0.6246 0.5911 0.5811 0.5745 0.5268 
12 0.6491 0.6818 0.6906 0.6285 0.6323 0.6360 0.5706 

 
 

 

Figures 3.2-3.3 and Tables 3.1-3.5 examined the drop probabilities for individual hop count 

values and showed that higher values of g are more effective in alleviating the unfairness 

problem. We now examine the overall throughput and the overall average drop probability over 



all hop counts. Figures 3.4 and 3.5 show the total throughput (in Gbits per time unit) at different 

values of g and different loads in the LongHaul and NSFNet networks, respectively.  

 

The throughput is calculated by the following method.  

Let  

Total simulation time = T  time units 

Total number of bursts transferred successfully from source to destination = Nb  

Burst length = 250K bits  

then 

*250 /(1000000* )bThroughput N T=          Gbits/time unit      (3.8) 

 

As evident from these graphs, the value g=1 degrades the throughput significantly while the 

value g=0.5 has the best throughput performance. Notice that the throughput at g=0.5 is better 

than the throughput of standard JIT (i.e., when g=0). 
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Figure 3.4. BJIT throughput at different values of g in LongHaul 
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Figure 3.5. BJIT throughput at different values of g in NSFNet 
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Figure 3.6 and 3.7 give bar charts for the average drop probabilities (over all hops counts) for the 

LongHaul and NSFNet networks, respectively. Again, the value g=1 has the worst performance 

and the value g=0.5 has the best overall average drop probability.  
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Figure 3.6. BJIT overall average drop probability for different g values in LongHaul 
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Figure 3.7. BJIT overall average drop probability for different g values in NSFNet 

 

 

The above results suggest that the complete elimination of the beat down unfairness in OBS can 

be achieved at the expense of degraded throughput performance. However, using values of g in 

the neighborhood of 0.5 offers definite practical advantage compared to standard JIT, namely, 

the throughput of the system is improved and the severity of the beat down unfairness is 

alleviated.  

 

3.5.2 Performance of PRED 

 

PRED uses proactive discarding at the source NAS with probability αk to discard bursts that are 

k hops away from their destination. Unlike the BJIT(g) scheme which has a single parameter, the 

PRED scheme requires adjusting the values of D probabilities. For the LongHaul topology, for 
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example, the value of D is 7 and there are seven probabilities to adjust. However, the constraint 

needed to alleviate unfairness (i.e.,  α1 ≥ α2 ≥  …  ≥ αD) greatly simplifies the parameter’s tuning 

process.  

 

Table 3.6 shows the burst drop probability for different loads and hop counts in the LongHaul 

topology with PRED. The values of the proactive drop probabilities used in the source NAS are 

0.2, 0.15, 0.1, 0.05, 0.02, 0.0, and 0.0 for paths with 1, 2, 3, 4, 5, 6 and 7 hops, respectively. 

Notice that the probabilistic discarding is disabled when the NAS’s buffer is empty and the 

actual rate of proactive discarding is therefore much lower than the above probability values. The 

overall average drop probability (over all hop counts) corresponding to the results of Table 3.6 is 

shown in Figure 3.8.  From Table 3.1, Table 3.6 and Figure 3.8, we can easily see that the PRED 

scheme has improved the fairness compared to the standard JIT scheme without any negative 

impact on the overall drop probability (in this experiment, both PRED and standard JIT have the 

same throughput). The results for the NSFNet topology are similar and will not be given in this 

chapter.  

 

Table 3.6. Drop probability distribution for PRED in LongHaul 

 
Load Hops=1 Hops=2 Hops=3 Hops=4 Hops=5 Hops=6 Hops=7 

2 0.0012 0.0003 0.0000 0.0002 0.0003 0.0000 0.0000 
4 0.0016 0.0161 0.0385 0.0691 0.0976 0.1066 0.0999 
6 0.0165 0.0649 0.1538 0.2308 0.3120 0.3781 0.3927 
8 0.0243 0.1020 0.2603 0.3740 0.4913 0.5745 0.6402 
10 0.0312 0.1681 0.3736 0.5053 0.6362 0.7181 0.7316 
12 0.0414 0.2321 0.4741 0.6089 0.7484 0.7673 0.7716 
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Figure 3.8. Overall average drop probability for PRED in LongHaul 

 

 

The PRED scheme described above has a very simple logic and is easy to implement. We have 

found that it is possible to use more complex design variations of the above simple scheme in 

order to simultaneously improve both the fairness and throughput performance. In one variation, 

the discarding probabilities are dependent on the load of the network rather than being fixed 

values as was done in the tests of Table 3.6. In another variation, we implemented two types of 

proactive discarding with different probability values. The first type of discarding is applied to 

newly assembled bursts exactly as in the simple PRED scheme. The second type is additional 

discarding applied to the bursts that are stored in the buffer waiting for transmission to the local 

OXC. These different variations and/or combinations of them give better performance at the 
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expense of increased complexity. As an example, Table 3.7 shows the burst drop probability in 

the LongHaul topology for the variation that uses two types of discarding. Table 3.6 and Table 

3.7 show that the two-type proactive discarding scheme improves fairness compared to simple 

PRED. The throughput of this variation is very slightly better than that of simple PRED.  

 

Table 3.7. Drop probability distribution for a modified PRED in LongHaul  

Load Hops=1 Hops=2 Hops=3 Hops=4 Hops=5 Hops=6 Hops=7 
2 0.0004 0.0005 0.0000 0.0005 0.0003 0.0000 0.0000 
4 0.0095 0.0235 0.0388 0.0506 0.0714 0.0769 0.0845 
6 0.0402 0.1017 0.1622 0.2235 0.2871 0.3248 0.3588 
8 0.0684 0.1731 0.2786 0.3577 0.4217 0.4747 0.5283 
10 0.1032 0.2462 0.3871 0.4804 0.5310 0.6136 0.6151 
12 0.1551 0.3159 0.4916 0.5643 0.6386 0.6730 0.6855 
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CHAPTER 4:  SUPPORTING DIFFERENTIATED QUALITY OF SERVICE IN 

OPTICAL BURST SWITCHED NETWORKS  

 

 

4.1 Introduction 

 

To provide fine bandwidth granularity and improve the utilization of wavelength division 

multiplexed (WDM) optical networks [14], optical burst switching (OBS) has been proposed [30, 

58]. In real life applications with differentiated QoS requirements, data bursts should have 

different priority classes. Higher priority bursts should be given preferential treatment in order to 

reduce their drop probability and their end-to-end delay. The growing interest in introducing QoS 

differentiation in Internet services is motivated by the need to improve the quality of support for 

IP voice and video services, and in general, by the desire to provide clients with a range of 

service-quality levels at different prices. Since WDM optical networks are rapidly becoming the 

technology of choice in network infrastructure and next-generation Internet architectures, 

implementing QoS differentiated services and designing network protocols to support a range o 

of service-quality levels in WDM and OBS networks have received increased recent attention.  

In [58], differentiated Quality of Service has been incorporated into Just-Enough-Time (JET) 

scheduling [30] by assigning different offset times to different classes. The higher priority class 

is given larger offset time. The drawback of this approach is that larger offset times may result in 

longer delays for higher priority bursts. The review in section 4.2 presents several other 

proposals for improving QoS differentiation in optical burst switched (OBS) networks.  In this 
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chapter, we propose and evaluate two schemes to improve the QoS differentiation in OBS 

networks. The two schemes are easy to implement and produce tangible QoS differentiation.  

 

The rest of the chapter is organized as follows. In section 4.2, the QoS differentiation problem in 

optical networks is discussed and relevant previous works are reviewed. Our first scheme, 

qualified JIT, is presented in section 4.3. Our second scheme, prioritized RED, is presented in 

section 4.4. In section 4.5, the performance results of the two schemes are presented and 

analyzed. In section 4.6, the conclusion of the chapter is given. 

 

4.2 The QoS differentiation problem in OBS networks 

 

In standard OBS networks, a control packet is transmitted ahead of the data burst on an out-of-

band channel to reserve a channel for the upcoming burst in each optical cross connect (OXC) 

along the lightpath of the burst. There is a special offset time that is introduced at the source 

node between the transmission of the control packet and the data burst. During this offset time, 

the burst data is buffered electronically in the network access station (NAS) while the control 

packet propagates forward to configure each OXC along its lightpath. When the offset time 

expires, the burst is sent out and is switched all-optically from one node to the next until it 

reaches the destination. It is possible, however, that the control packet fails to secure a free 

channel in some congested intermediate node along the lightpath. This results in dropping the 

data burst at the congested node. The data burst dropping probability generally increases as the 

load on the network increases. 
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There are two main optical burst scheduling methods: just-in-time (JIT) [32] and just-enough-

time (JET) [30].  Several methods to support differentiated QoS in OBS networks have been 

proposed in the literature. For example, the authors in [58] propose a method to support QoS 

differentiation in JET by adjusting the offset time for different priority classes. The basic idea of 

this method is to assign a larger offset time for a higher priority class than the offset time 

assigned for a lower priority class. The larger offset time in JET increases the chance of securing 

a successful wavelength reservation for the burst. However, larger offset times also increase the 

delay for higher priority classes. In [75], QoS is supported by adjusting the offset time and the 

lower and upper bounds on blocking probability for two burst classes are analyzed. While the 

method of increasing offset times works well for QoS prioritization in JET, it is not exactly a 

suitable method for JIT. The JIT scheduling method is less complex than that of JET and cannot 

fully utilize delayed reservation [30]. In this chapter, we propose and investigate two schemes 

that can be used to support QoS differentiation in both JIT and JET.   

 

Burst assembly at the ingress nodes [40] is another method to improve QoS in JET. In this 

method, the window size and weight of a class determines the number of packets in the window.   

In [59], the QoS differentiation in JET is investigated by analyzing the loss probabilities of two 

classes of bursts. As was done in [58], the authors in [59] also focus on changing the offset time 

to support differentiated QoS. In [60, 69], a burst segmentation method is proposed to address 

the differentiated QoS problem. Using the segmentation scheme, the bursts with higher priority 

can preempt the overlapping segments of lower priority bursts and the preempted segments are 

dropped or are deflected to alternate routes. In [61], a proportional model is proposed to enhance 

the offset-based QoS differentiation method proposed in [58]. In the proportional model, the 
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differentiation of a particular QoS metric can be quantitatively adjusted to be proportional to the 

factors that a network service provider sets. The lower priority burst is intentionally dropped 

when the proportional differential model is violated. In [74], the authors combine a service 

differentiation model based on proportional resource allocation with a partially preemptive burst 

scheduler. The scheme improves the utilization while providing QoS with controllable service 

differentiation. In [62], the authors propose a differentiation scheme for JET that does not assign 

extra time to a higher priority class as in [58]. Rather it uses a priority queuing technique to 

schedule a higher priority burst earlier than a lower priority burst. Another proportional 

differentiation model is used in [68]. In this model, the burst control packets are queued in 

increasing order of the burst preferred scheduling time (defined as a burst arriving time minus its 

differential time). Each OXC chooses its own differential time function according to its resource 

availability and QoS requirement.  In [63], some undesired characteristics of the offset-time 

management mechanism for JET are identified. The authors found that the burst drop probability 

differentiation attained for a given offset-time value strongly depends on the distribution of the 

burst durations and that controlling the differentiation is difficult. In [64], assured Horizon is 

introduced for a coarse-grained bandwidth reservation ri for every forwarding equivalent class 

(FEC) between ingress and egress. The burst assembler marks bursts as compliant and non-

compliant bursts, depending on whether the burst is conforming to ri. The non-compliant bursts 

are dropped when congestion occurs. In [70], a generalized Latest Available Unused Channel 

with Void Filling (LAUC-VF) algorithm is proposed. The LAUC-VF algorithm aims at 

providing good performance by essentially choosing the wavelength with the smallest possible 

available window, leaving larger windows for control packets that arrive later.  LAUC-VF is 

basically another scheduling scheme for OBS networks and is used in [70] to support 



 62 
 
 

 

differentiated services with limited buffers. In [65], an algorithm is proposed to decide about the 

value of the burst offset-time in JET based on the burst priority class. In [66], linear predictive 

filter (LPF) based forward resource reservation is proposed for JET to reduce the burst delay at 

edge routers. An aggressive reservation method is also proposed to increase the successful 

forward reservation probability and to improve the delay reduction performance. In [67], 

preemptive multiclass wavelength reservation is used to provide differentiated services for the 

JET protocol. The preemption scheme provides QoS differentiation but complicates the control 

logic in OXC’s. In [73], a probability preemptive scheme is proposed in which high priority 

bursts can preempt low priority bursts in a probabilistic manner. In [76], the authors propose a 

priority-based wavelength assignment (PWA) algorithm. In this algorithm, each wavelength has 

its own priority that can be changed according to the burst reachability. In [78], the authors 

propose QoS-guaranteed wavelength allocation schemes for WDM networks. In their schemes, 

the wavelengths are classified into different sets based on the QoS requirement and higher 

priority requests can be allocated more wavelengths. In each set, there are two rules to select the 

idle wavelength: minimum index numbered or maximum index numbered wavelength. The 

authors in [78] showed that the connection loss probability for higher priority requests is 

improved but the overall throughput performance of their schemes is not discussed. 

  

In this chapter, we propose two new schemes to support QoS differentiation in OBS networks 

suitable for both JIT and JET scheduling.  Compared to the previous proposals, our schemes 

have simple logic that can be easily implemented even in the JIT scheduling method. 

Specifically, the two schemes do not increase the offset time of high priority bursts (thus do not 

increase their delay), do not use complex scheduling functions, do not introduce additional 



 63 
 
 

 

queuing or segmentation mechanisms, do not resort to burst preemption and do not introduce any 

complex modification to the lightpath set-up scheme or the architecture of OXC. We have 

implemented a performance simulation model of the two schemes in OBS networks using JIT 

scheduling. Our extensive performance results show that the two methods improve QoS 

differentiation compared to the original JIT scheduling scheme without negatively impacting the 

network throughput. Since our schemes do not modify or depend on the scheduling logic of JIT, 

they can be also easily implemented in JET. The improved JET channel scheduling algorithms 

recently proposed in [71] focus on how to assign the void intervals for bursts. Since our proposed 

schemes merely focus on how to assign wavelengths to different priority bursts, they can be 

implemented without conflict in OBS networks that use the efficient JET algorithms given in 

[71]. 

 

4.3 Qualified JIT scheme 

 

The JIT scheduling protocol is used in this chapter to illustrate the applicability of our two 

proposed QoS differentiation schemes and evaluate their efficiency. As has been frequently 

assumed in JIT/JET scheduling [58, 30, 32], full wavelength conversion capability is assumed to 

be available at each node along the lightpath of the burst.  

 

In JIT, the source node delays the transmission of a data burst by a certain amount of time after 

sending the control packet. The amount of this delay (called the offset time) is decided by the 

number of hops along the lightpath and the cut through time in each node.  The offset time 

allows each hop (OXC) along the lightpath to configure its port connection for the incoming 

burst. The switch reconfiguration time (also called the cut through time) must be taken into 



consideration because a burst is dropped if it arrives before the OXC completes its connection 

reconfiguration.  

 

Normally, if the lightpath of a burst consists of m hops, the offset time td used in JIT can be 

defined as: 

 

 *d pt m t tδ≥ +         (4.1) 

 

Where tp is the control packet processing time in each OXC including O/E-E/O conversions and 

request/routing analysis; tδ is the extra delay required to assure cut through completion at the last 

OXC in the lightpath [32].  

 

We next explain the rational of our first scheme using a simplified high-level model for the 

probability of burst discarding in JIT.  

 

Consider a burst that arrives at an OXC. Let n be the number of wavelengths operational on the 

destination output link of this OXC. Let βi be the probability that the ith wavelength is not free at 

the time of burst arrival. The dropping probability of the burst in this OXC is given by:  

 

ndropP ββββ ××××= ...321    (4.2) 

 

If βi = β for all i, then 
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n
dropP β=      (4.3) 

 

The “go through” probability of the burst in this OXC is given by  

  

      (4.4) dropPgoP −= 1

 

If the lightpath of the burst has m hops, the probability that the burst will successfully reach its 

destination is given by 

 

 
mgoPgoPgoPgoPsuccessP ××××= ...

321
 (4.5) 

 

The above equations apply to an arbitrary burst from any traffic class. This means that standard 

JIT treats all traffic classes equally and does not provide differentiated QoS to higher priority 

classes. In this section, we propose a wavelength assignment scheme that skews the search of 

free wavelength in favor of higher traffic classes. By introducing a bias in the search process, a 

higher priority burst will get a better chance to go through an OXC than a lower priority burst. 

The basic idea of the scheme is to make more free wavelengths available to higher priority bursts 

than to lower priority bursts. The scheme is based on a simple observation of equation (4.2)-(4.4), 

namely, increasing the number of wavelengths n increases the chances of successful burst 

delivery. As the priority of the burst increases, our scheme gradually increases the number of 

wavelengths that can be used to switch this burst. Let W be the maximum number of 

wavelengths that are used for burst switching in each OXC and let P be the number of burst 
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classes. We assume that class P has the highest priority, class P-1 has the second highest priority, 

and class 1 has the lowest priority. When the control packet of a burst arrives at some OXC, it 

will reserve the wavelength based on its burst priority. For the burst with priority 1, the control 

packet is allowed to search just a fraction of the W wavelengths in this OXC. For the burst with 

priority 2, the control packet is allowed to search a fraction of W wavelengths that is larger than 

the fraction for priority 1, and so on. For a burst with priority P, all of the W wavelengths can be 

searched. Specifically, for the ith priority control packet, the number of wavelengths ni that are 

searched in a hop is given by: 
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P(1 )* * * /in g W g i W= − +        (4.6) 

 

where g is a parameter that is assigned a value between 0 and 1. We call this method “qualified 

JIT” and denote it QJIT(g), where g is the controllable parameter of the scheme. The parameter g 

divides the search spectrum in each OXC into two parts: a base part and an adjustable part. The 

base part has a fixed size of (1-g)*W wavelengths regardless of the priority level of the burst. 

The base part ensures that every type of bursts can search some number of wavelengths. The 

adjustable part has a size that depends on the priority level of the burst, and can reach a 

maximum size of g*W wavelengths for the highest priority level. For example, if the highest 

priority level is P=5, the size of the adjustable part is 0.2*g*W for priority level 1, 0.4*g*W for 

priority level 2, and so on. It should be noted that the high-level model of equation (4.2)-(4.5) is 

suitable for both JIT and JET, and the qualified JIT scheme is therefore suitable for JIT as well 

as JET. The qualified JIT scheme is very easy to implement and does not demand any major 

software or hardware resources in the OXCs. The priority level of the burst is easily passed from 
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one hop to the other hop along a lightpath via the control packet. Implementing the adjustable 

search for a free wavelength implied by equation (4.6) requires minor modification to the 

standard JIT channel allocation scheme; the adjustable search (i.e., searching in a space of size 

g*i*W/P) actually leads to a smaller average search time. There are two important remarks about 

equation (4.6). 

 

Remark 1: when g=0, the adjustable part of equation (4.6) vanishes and the scheme becomes 

equivalent to the standard JIT scheme. In other words, QJIT(g=0) is identical to the standard JIT 

scheme. As the value of g increases, data bursts with higher priority can get better treatment 

since the size of their adjustable search space increases and hence their “go through” probability 

gradually improves. It is obvious that larger value of g will be more effective in providing 

differentiated QoS services. However, higher values of g could lead to severely deteriorated 

performance for low priority classes and could adversely impact the overall throughput of the 

network. Ideally, we should choose a value of g that provides a good compromise between 

differentiated QoS and network throughput. The ideal value of g should provide tangible 

improvement in the QoS of high priority traffic without negatively impacting the overall 

throughput of the system.  

 

Remark 2: the value ni in equation (4.6) should be rounded to an integer number. For effective 

QoS differentiation, different values of i (i.e., different priorities) should be mapped to different 

integer values of ni. This will ensure that a higher priority burst will have a search space strictly 

larger in size than that of a lower priority burst and will therefore have a smaller blocking 

probability. To satisfy this constraint, there should be a limit on the value of P (number of 
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supported priorities). Simply, the value of P should not exceed the value of the product g*W so 

that different values of i in equation (4.6) map to different values of ni. This is formally described 

by the following constraint on the number of priorities P that can be supported by the QJIT 

scheme. 

  P ≤  g*W   (4.7) 

 

The QJIT scheme and the logic used in equation (4.6) were inspired by our earlier work on 

reducing the dropping probability of handoff requests in the base stations of cellular wireless 

networks [50]. Abstractly speaking, the adjustable term of equation (4.6) is a generalization of 

the guard channels that are exclusively dedicated to handoff requests in order to give them 

priority over new call cellular requests. Our extensive tests have shown that the QJIT scheme can 

improve the differentiated QoS performance of optical burst switched networks while 

maintaining the overall throughput of the network. Our performance tests presented in section 

4.5 show the effectiveness of the QJIT scheme in providing improved QoS differentiated 

services in optical burst switched networks.  It should be mentioned that while equation (4.6) 

gives the size of the search space for a given priority, it does not require a fixed set of 

wavelengths to be searched for that priority. In our QJIT scheme, the starting point of the search 

process is randomly selected. Even though the size of the search space is fixed, the set of 

wavelengths searched by QJIT is randomized. Unlike the schemes given in [78], by randomly 

selecting the sets for different priority bursts, the QJIT can maintain a healthy total network 

performance while improving QoS for higher priority bursts.  
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4.4 Prioritized random early dropping (PRED) scheme 

 

Our second scheme adapts the concept of random early discard (RED) to the OBS environment 

and prioritizes the levels of discarding based on the priority levels of bursts. We call this scheme 

prioritized RED or PRED.  

 

The RED concept [51] has received considerable interest in electronic packet switching networks 

and RED routers have been widely deployed in various commercial applications and in the 

Internet. There have been numerous studies that support or oppose RED [51-53], present 

schemes for tuning RED parameters [54], propose modified versions of RED [55], and develop 

analytical models for RED performance [56]. The basic idea of RED is that routers proactively 

discard incoming packets with probabilities that depend on the size of the router’s queue. The 

TCP congestion control algorithm [57] reacts to lost packets by throttling the transmission rate of 

TCP senders. Studies have shown that well-configured RED routers have the potential to avoid 

severe congestion and improve the overall throughput while maintaining a small queuing delay 

within each router. The PRED scheme performs random proactive dropping different from the 

burst discarding mentioned in [72]. In [77], the authors proposed a priority based wavelength 

assignment scheme for all-optical networks. In their scheme, the higher priority requests can get 

the channel reserved by lower priority bursts. Unlike the scheme in [77], the dropping policy of 

PRED is not preemptive and is not triggered by the arrival of higher priority requests. 

  

Our PRED differentiated QoS scheme for JIT uses proactive burst dropping with a discarding 

probability that decreases as the burst priority level increases. The goal of burst discarding in 

PRED is not to avoid congestion or throttle TCP senders as in RED (although these could be 



positive side effects of PRED). Rather, PRED uses proactive discarding to improve the QoS of 

higher priority bursts at the expense of some deterioration of the QoS of lower priority bursts. A 

major difference between RED and PRED is that our PRED scheme restricts burst discarding to 

the original source node of the burst while RED allows any router in the path of a packet to 

proactively drop it. Specifically, all proactive discarding in PRED is done in the network access 

station (NAS) of the source node that generated the burst. This restricted mode of discarding has 

the advantage that the discarded bursts will not waste any bandwidth resources in the core of the 

optical networks. 

 

Let αi be the probability used by PRED at the source NAS to discard a newly incoming burst 

whose priority level is i (larger i means higher priority level). To improve QoS differentiation in 

OBS networks, the values of the discarding probability should satisfy the following constraint: 

 

pααα >>> ...21    (4.8) 

 

Where P is the number of priority levels in an optical burst switched network as explained in 

section 4.3. The proactive discarding of relation (4.8) is only applied to the local bursts 

assembled at this NAS. The NAS may also be servicing transit bursts that have come from some 

external OXC’s and are being routed to other external OXC’s. These transit bursts have already 

escaped the PRED proactive discarding in the originating NAS where they were assembled. 

These transit bursts have also already consumed some network bandwidth resources during their 

partial trip toward their destination. By proactively discarding local bursts and not transit bursts, 

more bandwidth will be available to transit bursts in each OXC. This increases the likelihood that 
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transit bursts will reach their destination without wasting the resources that they have already 

used prior to reaching the current OXC. 

 

As in standard RED, the proactive discarding in PRED should not take place if the load on the 

OXC is not heavy. This is because at light loads, most bursts are expected to reach their 

destination successfully and the burst dropping probabilities for all priority levels are nearly zero. 

We have adopted a simple mechanism to disable/enable proactive discarding in PRED. In OBS, 

each NAS uses some buffers to hold assembled bursts until they are sent to the local OXC. 

PRED does not discard arriving bursts when the free space in these buffers is greater than or 

equal to some threshold. When the free buffer space is less than the threshold, new bursts are 

subjected to the prioritized probabilistic discarding of relation (4.8). Notice that when the 

network is lightly loaded, the amount of free buffer space will be relatively large and the PRED 

proactive discarding is disabled. Consequently, the actual discarding probabilities will be smaller 

than the probabilities αi  given in relation (4.8). 

 

 

4.5 Performance evaluation  results and analysis 

 

Figure 4.1 shows the two network topologies that are used in our simulation (US LongHaul 

network with 28 nodes and 5x5 mesh-torus network). 
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Figure 4.1.  Two network topologies 

 

In our simulation, a static lightpath between any two nodes is established using the shortest path 

first method as was done in [30, 56, 3]. Notice that the longest shortest path has 7 hops in the 

LongHaul topology and 4 hops in the 5x5 mesh-torus topology. The labels on the links of the 

LongHaul network represent the relative integer ratios of the lengths of the fiber cables of these 

links. For example, the delay of a link with label 5 is half the delay of a link with label 10. 

Similar to [56], the traffic used in our tests is uniformly distributed among all nodes. This means 

that all nodes have equal likelihood to be the source of a data burst and for a given source node 

all other nodes in the network have equal likelihood to be the destination node. The number of 

priority levels in our simulation tests is P=5 and the traffic is equally distributed among all 5 

classes (except the scenario in Figure 4.14 and Figure 4.15, which have P=12 priority levels). 

Bursts with priority P have the highest priority and those with priority 1 have the lowest priority.  
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In our simulation tests, assembled bursts arrive according to a Poisson distribution with 

controllable arrival rate λ. For each burst, the source node and destination node are randomly 

selected as explained before. Our simulation tests used parameter values similar to those 

typically used in the literature: the cut through time in each OXC is 2.5 milliseconds, the link 

delay per hop is 3 milliseconds for the Mesh network, the burst length is 50 microseconds 

(equivalent to a burst of 250 Kbits at 5 Gbits/second), the control packet processing time tp at 

each hop is 50 microseconds. For the LongHaul network shown in Figure 1, the delay of a link in 

milliseconds is 0.5 multiplied by the length label of that link.  Thus the delay for a link with 

length 6 is 3 milliseconds. The number of wavelengths used in each OXC is W=40 (except 

Figure 14 and Figure 15 which use 12 wavelengths). Each point in the performance graphs 

reported in this chapter was obtained by averaging the results of 6 simulation tests using different 

randomly generated seeds. Each simulation was run for sufficiently long time to obtain stable 

statistics; the total number of bursts processed in each simulation test ranged from 4 million 

bursts at low arrival rates to 12 million bursts at high loads for the LongHaul network and from 

10 million bursts at low arrival rates to 20 million bursts at high loads for the mesh-torus 

network. The unit of time (denoted ut) used in the graphs presented in this chapter is equal to 

0.05 millisecond. Thus a load λ of 12 bursts/ut is equivalent to 60 Gbits/second. 

 

 

4.5.1 Performance of QJIT 

 

Figure 4.2 shows the burst drop probability for different priority levels at load 12 bursts/ut (60 

Gbits/second) in the LongHaul network. Figure 4.3 shows the burst drop probability for different 



priority levels at load 20 bursts/ut (100 Gbits/second) in the 5x5 mesh-torus network. Notice that 

the mesh-torus network has more links than the LongHaul network and it often has multiple 

shortest-path routes connecting the same source-destination pair. The mesh-torus network 

therefore requires higher total load than the LongHaul network to induce a certain level of 

congestion on the individual links. The horizontal axis in Figures 4.2 and 4.3 gives the value of 

the parameter g. Notice that the case g=0 corresponds to the standard JIT scheme. The figures 

show that the QoS for the highest priority levels (level 5 and 4) gradually improves as the value 

of g increases. The value g=1 gives the largest difference of drop probability between level 5 and 

level 1.  
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Figure 4.2. QJIT drop probabilities for different priority levels in LongHaul network (load =12) 
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Figure 4.3. QJIT drop probabilities for different priority levels in 5x5 mesh-torus  network (load 

=20) 

 

Figures 4.4-4.6 show the QJIT drop probability in the LongHaul network for priority values 1, 3 

and 5, respectively. For each priority value, the drop probability is plotted for different values of 

g and load λ. Figures 4.7-4.9 show the corresponding graphs for the Mesh network. For the 

lowest priority (priority 1), Figure 4.4 and Figure 4.7 show that the drop probability increases as 

the value of g increases. For the medium priority (priority 3), Figure 4.5 and 4.8 show that the 

burst drop probability does not change much as the value of g increases from 0 to around 0.8. 

When g reaches the value 0.8 there is a slight decrease in the drop probability for priority 3 then 

there is a significant increase in the drop probability as g increases to 1. Figure 4.6 and 4.9 show 

that as g increases, the drop probability for the highest priority (priority 5) decreases. 
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Figure 4.4. Drop probability for different loads with Priority=1, LongHaul network 
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Figure 4.5. Drop probability for different loads with Priority=3, LongHaul network 
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Figure 4.6. Drop probability for different loads with Priority=5, LongHaul network 
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Figure 4.7. Drop probability for different loads with Priority=1, mesh-torus network 
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Figure 4.8. Drop probability for different loads with Priority=3, mesh-torus network 
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Figure 4.9. Drop probability for different loads with Priority=5, mesh-torus network 
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Figures 4.2-4.9 examined the QJIT drop probabilities for different priority levels and clearly 

showed that higher values of g are more effective in providing differentiated QoS. We now 

examine the overall throughput and the overall average drop probability (i.e., averaged over all 

priority levels). Figures 4.10 and 4.11 show the total throughput (in Gbits per unit time) at 

different values of g and different loads in the LongHaul and 5x5 mesh-torus networks, 

respectively. As evident from these graphs, the value g=1 degrades the throughput significantly.  

In general, values around g=0.5-0.6 give the best throughput performance while still providing 

noticeable differentiated QoS. Notice that the throughput around g=0.5 is almost the same as the 

throughput of standard JIT (i.e., when g=0). 
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Figure 4.10. QJIT throughput for different values of g, LongHaul Network 
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Figure 4.11. QJIT throughput for different values of g,  mesh-torus network 

 

 

Figures 4.12 and 4.13 give bar charts for the average burst drop probability (i.e., averaged over 

all priority levels) for the LongHaul and 5x5 mesh-torus networks, respectively. Again, the value 

g=1 has the worst performance and values around g=0.5 give the best overall average drop 

probability. 
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Figure 4.12. QJIT Overall drop probability for LongHaul network 
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Figure 4.13. QJIT overall drop probability for mesh-torus network 
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The above results suggest that when using values of g close to 1, the QJIT(g) scheme provides 

strong QoS differentiation in OBS networks at the expense of degraded total network throughput 

performance. However, using values of g in the neighborhood of 0.5 offers definite practical 

advantage compared to standard JIT, namely, the throughput of the system is kept at normal 

levels and good QoS differentiation among priority levels is achieved. 

 

As explained earlier in relation (4.7), the number of supported priorities P should not exceed 

g*W. Since the above results show that g=0.5 provide a good compromise between QoS 

differentiation and network throughput, the number of supported priorities P should be less than 

0.5*W. The smaller the value of P we use the better QoS differentiation we get from the QJIT 

scheme. In all previous graphs, we used P=5 and W=40 and therefore constraint (4.7) was well 

satisfied. If the value of P exceeds g*W, the QJIT scheme will not be able to provide strict 

differentiation between every pair of priorities. This is illustrated in Figures 4.14 and 4.15 which 

use P=12, W=12 and g=0.5. The value of P is double the value of g*W and equation (4.6) 

produces the same value of ni for two values of the priority i. As show in Figure 4.14 and 4.15, 

priority 2 and priority 3 have the same drop probability and therefore the same QoS. Similarly, 

priority 4 and priority 5 have the same QoS, priority 7 and priority 8 have the same QoS, and so 

on. Assuming the value of g is 0.5, the number of supported priorities P should preferably be less 

than 0.5*W. For example, if W=8, the maximum number of supported priorities P is 

recommended to be 3 or less and for W=16 it is recommended to be 5 or less.    
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Figure 4.14. Drop probability for LongHaul network with W=12, P=12 and g=0.5 
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Figure 4.15. Drop probability for mesh-torus network with W=12, P=12 and g=0.5 
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Table 4.1 shows the distribution of the drop probability for different priority levels at different 

loads for standard JIT (i.e., QJIT with g=0) in the LongHual network. Tables 4.2, 4.3, 4.4 and 4.5 

give similar distributions for QJIT(g) with parameter value g=0.2, g=0.5, g=0.8, and g=1.0, 

respectively. The corresponding drop probability distributions for the 5x5 mesh-torus network 

are given in table 6 for standard JIT and tables 4.7-4.10 for QJIT(g) with different values of g. 

 

Table 4.1. Drop probability distribution in standard JIT (g=0), LongHaul 

Load Pri= 1 Pri= 2 Pri=3 Pri= 4 Pri= 5 
4 0.0514 0.0501 0.0514 0.0513 0.0513 
6 0.2018 0.2001 0.2025 0.2064 0.2090 
8 0.3038 0.2956 0.3022 0.2942 0.3019 
10 0.3991 0.3995 0.3992 0.3993 0.3931 
12 0.4754 0.4760 0.4759 0.4750 0.4735 

 

Table 4.2. Drop probability distribution in QJIT(g=0.2), LongHaul 

 
Load Pri= 1 Pri= 2 Pri=3 Pri= 4 Pri= 5 

4 0.0674 0.0644 0.0565 0.0465 0.0421 
6 0.2040 0.1897 0.1765 0.1632 0.1508 
8 0.3350 0.3159 0.2955 0.2762 0.2460 
10 0.4322 0.4114 0.3905 0.3650 0.3348 
12 0.5370 0.4925 0.4763 0.4464 0.4206 

 
Table 4.3. Drop probability distribution in QJIT(g=0.5), LongHaul 

 
Load Pri= 1 Pri= 2 Pri=3 Pri= 4 Pri= 5 

4 0.0795 0.0591 0.0459 0.0313 0.0220 
6 0.2467 0.2119 0.1779 0.1474 0.1217 
8 0.3846 0.3334 0.2917 0.2540 0.2217 
10 0.4844 0.4246 0.3820 0.3378 0.2947 
12 0.6122 0.5261 0.4598 0.4131 0.3612 
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Table 4.4. Drop probability distribution in QJIT(g=0.8), LongHaul 

 
Load Pri= 1 Pri= 2 Pri=3 Pri= 4 Pri= 5 

4 0.1560 0.0906 0.0487 0.0279 0.0145 
6 0.3240 0.2462 0.1759 0.1284 0.0928 
8 0.5245 0.3646 0.2687 0.2131 0.1550 
10 0.6904 0.4874 0.3358 0.2666 0.2019 
12 0.7729 0.6252 0.4165 0.3014 0.2320 

 

Table 4.5. Drop probability distribution in QJIT(g=1.0), LongHaul 

 
Load Pri= 1 Pri= 2 Pri=3 Pri= 4 Pri= 5 

4 0.2745 0.0988 0.0326 0.0124 0.0061 
6 0.6935 0.3497 0.1132 0.0553 0.0295 
8 0.8612 0.6437 0.2741 0.1091 0.0625 
10 0.9247 0.8224 0.5249 0.1535 0.0724 
12 0.9582 0.8903 0.6831 0.2665 0.0891 

 
Table 4.6. Drop probability distribution in standard JIT(g=0.0), 5x5 mesh-torus 

Load Pri= 1 Pri= 2 Pri=3 Pri= 4 Pri= 5 
10 0.0174 0.0175 0.0171 0.0173 0.0173 
12 0.0704 0.0706 0.0707 0.0706 0.0710 
14 0.1133 0.1103 0.1134 0.1133 0.1103 
16 0.1979 0.1951 0.1969 0.1969 0.1984 
18 0.2758 0.2706 0.2757 0.2764 0.2726 
20 0.3561 0.3562 0.3579 0.3560 0.3585 

 
 

Table 4.7. Drop probability distribution in QJIT(g=0.2), 5x5 mesh-torus 

 
Load Pri= 1 Pri= 2 Pri=3 Pri= 4 Pri= 5 

10 0.0210 0.0206 0.0190 0.0175 0.0169 
12 0.0590 0.0543 0.0516 0.0446 0.0426 
14 0.1280 0.1130 0.1070 0.0971 0.0871 
16 0.2295 0.2028 0.1909 0.1684 0.1503 
18 0.3310 0.2999 0.2821 0.2511 0.2294 
20 0.4363 0.3845 0.3558 0.3239 0.2976 

 



Table 4.8. Drop probability distribution in QJIT(g=0.5), 5x5 mesh-torus 

 
Load Pri= 1 Pri= 2 Pri=3 Pri= 4 Pri= 5 

10 0.0295 0.0221 0.0193 0.0155 0.0153 
12 0.0895 0.0654 0.0475 0.0391 0.0340 
14 0.1808 0.1321 0.0981 0.0798 0.0653 
16 0.3181 0.2191 0.1691 0.1255 0.1032 
18 0.4475 0.3184 0.2475 0.1959 0.1602 
20 0.5929 0.3978 0.3060 0.2477 0.1988 

 
Table 4.9. Drop probability distribution in QJIT(g=0.8), 5x5 mesh-torus 

 
 

 

Load Pri= 1 Pri= 2 Pri=3 Pri= 4 Pri= 5 
10 0.1205 0.0387 0.0175 0.0165 0.0133 
12 0.3118 0.1004 0.0393 0.0268 0.0224 
14 0.5785 0.2140 0.0629 0.0385 0.0318 
16 0.7812 0.3312 0.0971 0.0541 0.0430 
18 0.8750 0.5149 0.1359 0.0711 0.0522 
20 0.9268 0.6726 0.2175 0.0910 0.0729 

Table 4.10. Drop probability distribution in QJIT(g=1.0), 5x5 mesh-torus 

 
Load Pri= 1 Pri= 2 Pri=3 Pri= 4 Pri= 5 

10 0.8840 0.5484 0.1229 0.0245 0.0165 
12 0.9347 0.8243 0.3273 0.0426 0.0271 
14 0.9560 0.9238 0.5405 0.0734 0.0363 
16 0.9615 0.9509 0.7200 0.1387 0.0490 
18 0.9661 0.9600 0.8288 0.2250 0.0605 
20 0.9693 0.9607 0.8877 0.3389 0.0769 

 

 

4.5.2 Performance of PRED 

 

As explained in section 4.4, PRED uses proactive discarding at the source NAS with probability 

αk to discard bursts that have priority level k. Unlike the QJIT(g) scheme which has a single 
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parameter g, the PRED scheme has P+1 parameters (P discarding probabilities and the threshold 

on the size of free buffer space used to enable/disable proactive discarding). However, the 

constraint represented by relation (4.8) greatly simplifies the parameter tuning process. 

 

Figures 4.16, 4.18, and 4.20 show the drop probability distribution for four scenarios with 

different proactive dropping parameters in the LongHaul network. The empty buffer threshold 

used in these tests is 10% of the total buffer space. Notice that the probabilistic discarding is 

disabled when the total number of free buffers is greater than the threshold. Therefore the actual 

rate of proactive discarding is lower than the values of the discarding probabilities αk. The 

overall average drop probability (i.e., averaged over all priority levels) corresponding to the 

results of Figures 4.16, 4.18, and 4.20 are shown in Figures 4.17, 4.19, and 4.21, respectively. 

From Figures 4.16, 4.18, and 4.20, we can easily see that the PRED scheme improves the level 

of QoS differentiation compared to the standard JIT scheme. As the intervals among the 

discarding probabilities αk increase, the drop probability difference for different priority levels 

also increases. Figures 4.17, 4.19, and 4.21 show that as the QoS performance is improved by the 

PRED scheme, there is no negative impact on the overall drop probability. Similar results for the 

5x5 mesh-torus topology are shown in Figures 4.22-4.27. 
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Figure 4.16 . Drop probability distribution using PRED for LongHaul network.  

The values αk of the proactive burst drop probabilities used in the source NAS are 0.8, 0.6, 0.4, 

0.2, and 0.0 for priority levels 1, 2, 3, 4 and 5, respectively. 
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Figure 4.17. Overall average drop probability corresponding to Figure 16. 
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Figure 4.18. Drop probability distribution using PRED for the LongHaul network. 

The values αk of the proactive burst drop probabilities used in the source NAS are 1.0, 0.85, 0.55, 

0.25, and 0.0 for priority levels 1, 2, 3, 4 and 5, respectively. 
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Figure 4.19. Overall average drop probability corresponding to Figure 4.18. 
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Figure 4.20. Drop probability distribution using PRED for the LongHaul network. 

The values αk of the proactive burst drop probabilities used in the source NAS are 0.9, 0.7, 0.5, 

0.3, and 0.0 for priority levels 1, 2, 3, 4 and 5, respectively. 
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Figure 4.21. Overall average drop probability corresponding to Figure  4.20. 
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Figure 4.22. Drop probability distribution using PRED for the mesh-torus network. 

The values αk of the proactive burst drop probabilities used in the source NAS are 0.6, 0.45, 0.3, 

0.15, and 0.0 for priority levels 1, 2, 3, 4 and 5, respectively. 
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Figure 4.23. Overall average drop probability corresponding to Figure 4.22. 
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Figure 4.24. Drop probability distribution using PRED for the mesh-torus network. 

The values αk of the proactive burst drop probabilities used in the source NAS are 0.8, 0.6, 0.4, 

0.2, and 0.0 for priority levels 1, 2, 3, 4 and 5 respectively. 
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Figure 4.25. Overall average drop probability corresponding to Figure 4.24. 
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Figure 4.26. Drop probability distribution using PRED for mesh-torus network 

The values αk of the proactive burst drop probabilities used in the source NAS are 1, 0.8, 0.6, 0.4, 

and 0.0 for priority levels 1, 2, 3, 4 and 5 respectively. 
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Figure 4.27. Overall average drop probability corresponding to Figure 4.26. 

 

Table 4.11 shows the PRED burst drop probability for different loads using five priority levels in 

the LongHaul topology. The values of the proactive burst drop probabilities used in the source 

NAS are 0.8, 0.6, 0.4, 0.2, and 0.0 for priority levels 1, 2, 3, 4 and 5 respectively. The empty 

buffer threshold used in this test is 10% of the total buffer space. Notice that the probabilistic 

discarding is disabled when the total number of free buffers is greater than the threshold. 

Therefore the actual rate of proactive discarding is lower than the values of the discarding 

probabilities αk. The overall average drop probability (averaged over all priority levels) 

corresponding to the results of Table 4.11 is shown in Figure 4.17. From Table 4.1 (for standard 

JIT), Table 4.11 and Figure 4.17, we can easily see that the PRED scheme has improved the QoS 

differentiation compared to the standard JIT scheme (i.e., has reduced the drop probability of 
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higher priority bursts), almost without any negative impact on the overall drop probability (in 

this experiment, we found that both PRED and standard JIT have almost the same throughput). 

The results for 5x5 mesh-torus topology and some LongHaul topology scenarios are similar and 

will not be given in this dissertation. 

 

Table 4.11. Drop probability distribution using PRED for LongHaul network 

 
 

 

 

Load Pri= 1 Pri= 2 Pri=3 Pri= 4 Pri= 5 
4 0.0591 0.0549 0.0497 0.0447 0.0431 
6 0.2074 0.2001 0.1871 0.1799 0.1603 
8 0.3398 0.3200 0.2997 0.2822 0.2575 
10 0.4471 0.4140 0.3790 0.3524 0.3206 
12 0.5499 0.4996 0.4677 0.4307 0.3920 
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CHAPTER 5. USING CONSTRAINED PREEMPTION TO IMPROVE DROPPING 

FAIRNESS IN OPTICAL BURST SWITCHED NETWORKS  

 

5.1 Introduction 

 
In recent years, wavelength division multiplexed (WDM) optical networks have received 

considerable attention and many researchers proposed schemes to improve the throughput and 

resource management of these networks [3, 26, 44, 87]. To be able to support the burst traffic on 

Internet, optical burst switching (OBS) has been proposed to provide fine bandwidth granularity 

and improve the utilization of WDM optical networks [30]. The basic idea of OBS is that the 

traffic is formed as units of data bursts. Since the data bursts are much larger than IP packets, 

OBS is envisioned to combine the advantages of optical circuit switching and optical packet 

switching. 

 

In optical burst switched networks, a control packet is sent out ahead of the data burst to make 

channel reservation and configure each optical cross connect (OXC) along the lightpath of the 

burst. Just-in-time (JIT) signaling and just-enough-time (JET) signaling [30, 32] are the two 

main scheduling protocols for OBS networks. Both protocols have the shortcoming of the beat 

down unfairness problem, namely, the bursts with longer lightpaths have higher dropping 

probability than the bursts with shorter lightpaths. Due to the difficulty of optical buffering, 

schemes proposed to solve the beat down problem in electronic networks are not suitable for 

implementation in OBS optical networks. In this chapter, we propose a new scheme for the beat 
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down problem in OBS networks based on constrained burst preemption. Compared to previous 

work, the new scheme gives improved fairness without degrading network throughput.  .  

 

The rest of this chapter is organized as follows. In section 5.2, we review the related schemes 

proposed in the literature for optical burst switched networks. The burst preemptive strategy is 

analyzed in section 5.3. In section 5.4, our constrained preemption scheme is presented. The 

simulation results and performance comparisons are presented and analyzed in section 5.5.  

 
 

5.2 Related works 

 
Optical burst switching (OBS) has been proposed in recent years to achieve the balance of circuit 

switching and packet switching [26]. Two important scheduling protocols of OBS networks are 

just-in-time (JIT) and just-enough-time (JET) [30, 32]. Generally, the JIT protocol is simpler 

than JET protocol. Compared with JIT protocol, JET attempts to utilize more information of the 

duration of burst transmission in order to schedule the cross-connect settings more efficiently in 

each OXC. A number of papers have focused on improving different performance aspects of 

OBS networks [49, 60, 67, 75]. In [49], the authors proposed a merit-based scheduling algorithm 

based on JET signaling for optical burst switched networks. In that algorithm, a priority-based 

preemptive method is used to realize channel reservation along the lightpath of the data burst. 

The results show that the preemptive scheme improves the overall blocking performance (and 

hence throughput) of the network.  In [67], preemptive multi-class wavelength reservation is 

used to provide differentiated services.  
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The problem of improving fairness in OBS networks has received less attention than the problem 

of improving throughput. The term “fairness” has been used to address different issues in 

different types of optical networks. For example, in optical circuit switching, the capacity 

unfairness problem [44] applies to networks with traffic grooming capability, i.e., the capability 

of multiplexing and switching lower rate traffic streams onto higher capacity wavelengths. In 

optical burst switching networks, data bursts traveling through longer lightpaths have higher 

dropping probabilities than bursts with shorter lightpaths. This type of unfairness is well known 

in electronic packet switching networks and is often referred to as the “beat down” problem. Fair 

Buffer Allocation and Selective Packet Dropping [47] are two of the methods proposed to deal 

with the “beat down” problem in electronic packet switching networks. In WDM and OBS 

networks, the unfairness problem has often been discussed as a secondary consideration [45, 46, 

48, 63]. For example, in [63], the authors mainly discuss the impact of the offset time on the 

performance of the network and the differentiated QoS that can be given to selected bursts.  In 

[48], an OBS reservation scheme is proposed for OBS networks operating under the wavelength 

continuity constraint (i.e., no converters). The scheme uses the backward reservation paradigm in 

which a probe control message propagates from the source to destination then a reservation 

message travels back from the destination to the source before the data burst can be transmitted. 

The simulation results reported in [48] uses a three-node tandem network (i.e., maximum of two 

hops) and a total of three connections (two 1-hop and one 2-hop). The results show that fairness 

for the 2-hop connection has improved at the expense of a slight increase in the overall mean 

blocking probability of the three connections. The authors in [45] proposed a deflection routing 

algorithm and showed that the blocking probabilities of bursts with various hop count at high 
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load levels are almost the same as the case of no deflection, i.e., this deflection routing does not 

aggravate the unfairness problem for bursts with large hop count.  

 

In Chapter 3, we proposed two schemes to alleviate the unfairness problem in optical burst 

switched networks: balanced JIT (BJIT) and prioritized random early discard (PRED). The BJIT 

scheme uses a simple equation to adjust the size of the search space in order to give bursts with 

large hop count better chance to find a free wavelength. The PRED scheme uses a probabilistic 

random early discard strategy to proactively drop some bursts in their first hop before they go to 

the core of the optical network; larger proactive dropping probabilities are applied to bursts with 

smaller hop count. The analysis and the test results reported in Chapter 3 show that the BJIT and 

PRED schemes alleviate, to a limited extent, the unfairness problem in optical burst switched 

networks without degrading the throughput performance. Both the BJIT and PRED schemes do 

not use preemption, i.e., the control packet of a data burst makes channel reservation without 

preempting the channel resources reserved by any other data burst. In this chapter, we present 

and evaluate a new scheme to improve the fairness performance in OBS networks based on 

constrained preemptions. The scheme achieves better and more balanced fairness among bursts 

with different hop counts without degrading the throughput of the network.  

 
 

5.3 Preemptive scheme in optical burst switched networks 

 
In [49], a preemptive scheme is used to improve the total blocking performance of optical burst 

switched networks. The authors observed that in OBS networks using JET scheduling, the 

blocking probability is higher for longer routes. They proposed a set of preemptive schemes 
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whose main idea is to assign different priorities for different types of bursts. The preemptive 

priority metric for a burst is the product H*L, where H is the current hop count (how far the burst 

has traveled from its source) and L is the route length (lightpath length from source to 

destination). The control packet with larger metric value can preempt the channels reserved by 

the control packet with smaller metric value. The metric H*L gives higher preemptive priority to 

the burst with longer lightpath and to the burst that is close to arriving to its destination.  In our 

simulation tests, we found that using the metric H*L alone leads to a “reversed unfairness” 

problem, i.e., the blocking probabilities for the bursts with longer route length become much 

smaller than the blocking probabilities of bursts with shorter route length.  The details of our 

tests will be discussed in section 5.5. Below, we introduce the OBS network model and the 

notation used in this chapter. 

 

In OBS networks, data bursts are assembled at the network access station (NAS). Before 

transmitting a data burst, NAS sends out a control packet to do the resource reservation in each 

one of the optical cross connects (OXC’s) along the path of this burst. After some offset time, the 

data burst is sent out from the NAS and is routed all-optically toward the destination using the 

resources reserved by the control packet. Failure of the control packet to reserve a channel 

resource in some intermediate OXC leads to dropping the data burst when it arrives to this OXC. 

The more the number of hops along the lightpath of a data burst, the larger the probability that 

the data burst will be dropped. This “beat down” unfairness problem can be modeled at high 

level as follows. 

 

The blocking probability of a burst in one OXC can be expressed as: 



   

1 2 3* * *...* nPBLK β β β β=                     (5.1) 

 

where βi (1 ≤ i ≤ n) is the probability that the ith wavelength is not free and n is the number of 

active channels in this OXC.  

 

The “go through” probability of the burst in this OXC is therefore given by 

 

1PGO PBLK= −                                         (5.2) 

 

If the lightpath of the burst has m hops, the probability that the burst will successfully reach its 

destination is given by 

 

1 2* *...* mPREACH PGO PGO PGO=        (5.3) 

 

Equation (5.3) clearly explains the beat down unfairness problem: as m increases, the go-through 

probability PREACH decreases.  

 

Wasted Reservations & Preemptions: 

 

For an effective preemptive scheme in OBS networks, the preemption process in an OXC should 

only occur during the offset time of the burst, i.e., after the control packet has successfully 

reserved the free channel and before the data burst has started using the reserved channel. In this 
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chapter, we assume that no OXC is allowed to preempt an active data burst whose transfer 

through this OXC is in progress.  

 

Consider the following scenario in an optical cross connect, say OXCi. At time t1, control packet 

C1 of data burst B1 arrives and reserves a channel. Data burst B1 is expected to arrive and use 

the reserved channel at time t1+offset. At time t2, t1< t2< t1+offset, control packet C2 of data 

burst B2 arrives and preempts the channel reserved by C1 because no other free channel exists at 

that time. Thus the channel reserved by C1 in OXCi has been wasted from time t1 to time t2. 

Furthermore, channel resources are also wasted upstream and downstream of OXCi.  After 

control packet C1 has reserved the free channel successfully at time t1, it travels downstream to 

reserve channels in subsequent optical cross connects: OXCi+1, OXCi+2, etc. Furthermore, as C1 

gets closer to its destination, its preemptive priority H*L [9] increases, i.e., C1 gains increasing 

privilege to preempt the resources reserved by other control packets. Reservations and 

preemptions done by C1 in its downstream path from OXCi to the destination are wasted 

operations; in particular each preemption by C1 further exacerbates the “wasted resources” 

problem and may cause cascaded propagation of other useless preemptions. This issue has not 

been considered in [9] and has motivated us to design additional constraints that reduce the 

harmful effect of wasted preemptions.    
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5.4 Constrained preemption fairness scheme 

 
Our scheme uses the preemptive metric H*L as was done in [49], but we introduce three new 

constraints to alleviate the problem of wasted resources, solve the problem of reversed unfairness 

and improve the throughput of the network.  

 

Constraint 1: “Only the channels reserved for bursts with lightpath length equal to or less than 

ϒ can be preempted”, where ϒ is a controllable threshold parameter. The purpose of this 

constraint is to reduce the number of wasted preemptions induced by the control packet of a 

preempted burst. With Constraint 1, the largest preemptive metric value of the control packet of 

a preempted burst is ϒ2, which is attained in the last hop when H=L= ϒ. In section 5.5, we will 

present the simulation results to evaluate the improvement obtained by Constraint 1. 

 

Constraint 2: “Preemption is not applied in the first hop along the lightpath of the control 

packet”. This means that the control packet cannot resort to preempt at its first hop to reserve the 

needed wavelength channel. The purpose of this constraint is to reduce the overall preemption 

rate, and in particular reduce early (unwarranted) preemptions. Notice that the control packet that 

generates preemption in its first hop (i.e., H=1 and H*L=1) is likely to have a long lightpath L 

and is therefore likely to cause more preemption processes before it arrives to its distant 

destination. Furthermore, the first hop is intrinsically suitable for the implementation of 

Constraint 2 because of its immediate proximity to the Network Access Station (NAS) that 

generated the connection request to transmit the data burst. If the control packet of a data burst 

fails to reserve a channel in the first hop, a negative feedback signal can be sent back to NAS 



before the offset period expires, i.e., while the data burst is still stored in the electrical buffer.   If 

NAS is not congested, it can continue to store the data burst in its electrical buffer and attempt 

the request at a later time. Our performance tests have shown that Constraint 2 is useful in 

solving the reversed unfairness problem and preventing the degradation of the throughput of the 

network.  

 

Constraint 3: An additional probabilistic throttle is used to disable the application of preemption 

in each optical cross connect. The additional throttle has been found to further improve the 

throughput performance and prevent reversed unfairness. When a control packet cannot find a 

free channel in an OXC that is not the first hop, Constraint 3 is applied prior to invoking 

preemption. If Constraint 3 results in disabling preemption, the control packet is dropped and a 

negative feedback signal is sent to the source. Otherwise, preemption is applied subject to the 

preemptive metric H*L and Constraint 1.  We have evaluated two variations of the probabilistic 

throttles used by Constraint 3. The first variation, called Route-based Preemption (RP), uses the 

total length of the route from source to destination to determine the probability of disabling 

preemption for the control packet. The second variation, called Hop-based Preemption (HP), 

uses a probability based on the length of the partial path from the source to the current hop. In 

the RP variation, the throttle parameters to decide when the preemptive action can be executed 

are denoted αR[i], where 1 , d is the diameter of the network  and each αi d≤ ≤ R[i] has a value 

between 0 and 1. If a control packet with route length j cannot find a free wavelength in an OXC 

along its path, preemption for this control packet is disabled with probability 1- αR[j], i.e., αR[j] 

is the probability to enable preemption.  For best performance results, our extensive tests have 

shown that for small network diameters the values of αR[j] should increase as j increases. For 
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networks with large diameters, the values of αR[j] should increase as j increases until it reaches a 

maximum value (close to 1) then starts to decrease as j continues to increase toward d, the 

network diameter.  

 

In the HP variation of Constraint 3, the corresponding parameters are denoted αH[i], where 

and d is the diameter of the network. Here also, the value of each α1 i d≤ ≤ H[i] is between 0 and 

1. If a control packet cannot find a free wavelength in an OXC that is j hops away from the 

source, preemption for this control packet is disabled with probability 1- αH[j], i.e., αH[j] is the 

probability to enable preemption. Generally, the following relation is enforced: 

 

   [1] [2] ... [ ]H H H dα α α≤ ≤ ≤               (5.4) 

 

For networks with large diameter d, the value of αH[d]  is set to 1. 

 

Notice that in the RP variation, the control packet uses the same throttle parameter value αR[L] 

in all OXC’s along its path, where L is the length of the route of this control packet. In the HP 

variation, however, the control packet uses successively increasing parameter values, αH[2], 

αH[3], …, αH[L] as it moves from its second hop to its destination.  We now summarize our 

preemption scheme. 

 

First hop: if no free channel is found in the first hop of the control packet, a negative feedback is 

sent to NAS and the control packet is discarded. The NAS may keep the data burst stored in its 
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electrical buffer and then send out a control packet at a later time. If the control packet finds a 

free channel in the first hop, this channel is reserved for a duration equaling to the offset time 

plus the data burst transfer time. After the successful reservation, the control packet is sent out 

from the first hop to the next hop along its lightpath to do channel reservation. If the reservation 

is not preempted or canceled, the data burst is sent out from the NAS after the offset time expires. 

The reserved channel is released immediately after the completion of the transfer of the data 

burst. 

 

Intermediate hop:  if there is a free channel, the channel is reserved and if the current OXC is not 

the final OXC, the control packet is sent out to the next OXC. If no free channel is found, 

Constraint 3 is applied to determine whether preemption is disabled. If Constraint 3 does not 

disable preemption, preemption is considered based on the metric H*L and Constraint 1. Once 

preemption is judged to be feasible, the preemptive action is executed as follows. Among all 

occupied wavelengths, the wavelength reserved for the data burst with the smallest metric value 

(H*L) is chosen as the preempted wavelength (if there is a tie, a random wavelength is chosen).  

Once a preempted wavelength is selected, a RELEASE message is sent out to release the 

reserved channel along the upstream lightpath from the current hop to the first hop. This message 

travels upstream and is stopped when it reaches the first hop or when the reserved channel has 

already been released (due to a preemption or after the completion of the transfer of the data 

burst). Another RELEASE message is sent out to release the channel along the downstream path 

from the current hop to the destination.  This message is stopped when it arrives to the final hop 

or when it reaches an OXC that has no channel reserved for the preempted burst. 

  



5.5 Simulation results 

 

Figure 5.1 shows the two network topologies that are used in our simulation. The first topology 

is the 5x5 Mesh-torus network with 25 nodes used in [49] and the second topology is the widely 

used US LongHaul network with 28 nodes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     
                 5x5 Mesh-torus Topology                                LongHaul Topology 
        
 

Figure 5.1. Two network topologies 

 
In our simulation, a static lightpath between any two nodes is established using the “shortest path 

first” method as was done in [30, 48]. Notice that the longest shortest path has 7 hops in the 

LongHaul topology and has 4 hops in the 5x5 Mesh-torus topology.  Similar to [49, 87], the 

traffic used in our tests is uniformly distributed among all nodes. This means that all nodes have 

equal likelihood to be the source of a data burst and for a given source node all other nodes in the 

network have equal likelihood to be the destination node. This uniform distribution on pairs of 

nodes gives the following distribution on the number of hops in the burst’s lightpath: for the 5x5 
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mesh topology, the percentage of lightpaths with number of hops equal to 1, 2, 3 and 4 is 16.7%, 

33.3%, 33.3%, and 16.7% respectively; for the LongHaul topology, the percentage of lightpaths 

with number of hops equal to 1, 2, 3, 4, 5, 6 and 7 is 12%, 20%, 23%, 21%, 14%, 8% and 2%, 

respectively. As in [30, 32, 49], we assume each node in the network has a full wavelength 

conversion capability. We evaluate the performance of our scheme and assess its benefits using 

the JIT signaling protocol. Our scheme, however, is equally applicable to the JET protocol since 

it does not modify the logic of the underlying signaling protocol or the value of the offset time.  

 

In our simulation tests, assembled bursts arrive according to a Poisson distribution with 

controllable arrival rate. For each burst, the source node and destination node are randomly 

selected as explained before. Our simulation tests used values for OXC and network parameters 

similar to those typically used in the literature:  the cut through time in each OXC is 2.5 

milliseconds, the link delay per hop is 3 milliseconds, the burst length is 50 microseconds 

(equivalent to a burst of 250 Kbits at 5 Gbits/sec), the control packet processing time at each hop 

is 50 microseconds. The number of wavelengths used in each OXC is W=20, i.e., each incoming 

or outgoing fiber can carry 20 wavelengths. Each point in the performance graphs reported in 

this chapter was obtained by averaging the results of 6 simulation tests using different random 

generation seed values. Each simulation was run for sufficiently long time to obtain stable 

statistics; the total number of bursts processed in each simulation test ranged from 2 million 

bursts at low arrival rates to 20 million bursts at high loads. The unit time (ut) used in the graphs 

presented in this chapter is equal to 0.05 millisecond. Thus a load of 12 bursts/ut is equivalent to 

60 Gbits/second.  In our simulation scenario, the number of (electrical) buffers in each NAS is 

equal to half of the diameter of the network. 



 

We denote the merit-based approach presented in [49] (which uses H*L as the preemption metric) 

as MJIT; M stands for merit-based.  If we modify the MJIT scheme by adding Constraint 2 (i.e., 

preemption is not allowed in the first hop), the resulting scheme is denoted by MJIT+C2. If we 

modify the MJIT scheme by adding Constraint1, Constraint 2 and the RP-based variation of 

Constraint 3, the resulting scheme is denoted RPJIT. If we modify the MJIT scheme by adding 

Constraint 1, Constraint 2 and the HP-based variation of Constraint 3, the resulting scheme is 

denoted HPJIT. 
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Figure 5.2. Dropping probability comparison with different threshold values ϒ for the LongHaul 

network 

 
Figure 5.2 investigates the impact of the threshold parameter ϒ used in Constraint 1. The 

notation RPJIT_i means that the test used the RPJIT scheme with threshold value ϒ=i for 
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Constraint 1, i.e., only bursts with route length less than or equal to i can be preempted. In Figure 

5.2, the values of the throttle used by Constraint 3 for bursts with route lengths 1, 2, 3, 4, 5, 6 and 

7 are 0, 0.29, 0.7, 0.9, 0.78, 0.84 and 0.88, respectively. The figure shows that the value ϒ=2 

(RPJIT_2) gives the best performance, i.e., the lowest overall dropping probability. Results for 

the 5x5 mesh-torus network (that has smaller diameter) are similar and are not given in this 

chapter. The results of the tests on both networks support the use of Constraint 1, i.e., imposing a 

threshold on the maximum route length of preempted bursts is a useful refinement to the 

preemption metric H*L. Unless otherwise stated, the throttle value ϒ=2 will be used in the 

various graphs presented in this chapter. 

 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

2 5 8 11 14 17 20

Load (bursts/ut)

D
ro

pp
in

g 
pr

ob
ab

ili
ty

JIT
RPJIT
RPJIT-C2

 
 

Figure 5.3. Dropping probability comparison among JIT, RPJIT and RPJIT-C2 for the Mesh-

torus network 
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Figure 5.4. Dropping probability comparison for JIT, RPJIT and RPJIT-C2 for the LongHaul 

network 

 
 
Figure 5.3 and 5.4 investigate the impact of Constraint 2, i.e., disabling preemption in the first 

hop of the control packet. The notation RPJIT-C2 means Constraint 2 is not used in the RPJIT 

scheme and therefore preemption is allowed in the first hop of the control packet.  In Figure 5.3 

for the mesh-torus network, the values of the throttle used by the RP version of Constraint 5.3 for 

bursts with route lengths 1, 2, 3 and 4 are 0, 0.4, 0.6, and 0.7, respectively. In Figure 5.4 for the 

LongHaul network, the values of the throttle used by the RP version of Constraint 3 for bursts 

with route lengths 1, 2, 3, 4, 5, 6 and 7 are 0, 0.29, 0.7, 0.9, 0.78, 0.84 and 0.88, respectively. 

Both figures clearly show that Constraint 2 is helpful in reducing the overall dropping probability 

(and hence improving the throughput) of the network. 

 

 111 
 
 

 



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

JIT RPJIT MJIT+C2 MJIT

D
ro

pp
in

g 
pr

ob
ab

ili
ty

Hops=1
Hops=2
Hops=3
Hops=4

 
 

Figure 5.5. Dropping probability fairness comparison for the Mesh network at load =16 
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Figure 5.6. Dropping probability fairness comparison for the Mesh network at load =20 
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Figure 5.5 and Figure 5.6 present fairness comparisons for the Mesh-torus network at loads 16 

and 20, respectively. The values of the throttle used by the RP version of Constraint 3 are the 

same as those used in Figure 5.3. Recall that the MJIT scheme is the merit-based approach [9] 

that uses H*L as the preemption metric, the MJIT+C2 scheme uses the H*L metric as well as 

Constraint 2, and the RPJIT scheme uses the H*L metric, Constraint 1, Constraint 2 and the 

Route-based version of Constraint 3. Figures 5.5 and 5.6 show that MJIT+C2 alleviates the 

reversed unfairness problem exhibited by MJIT. Thus Constraint 2 is helpful in improving the 

fairness of the network in addition to being helpful in improving the overall throughput 

performance (as shown earlier in Figures 5.3 and 5.4). Among the four schemes compared in 

Figures 5.5 and 5.6, the RPJIT scheme gives the best fairness among bursts with different route 

lengths. 
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Figure 5.7. Dropping probability comparison among JIT, MJIT, MJIT+C2 and RPJIT in the 

Mesh-torus network 
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Figure 5.7 shows that the RPJIT scheme improves fairness without degrading the overall 

dropping probability (and hence throughput performance) of the network. Notice that the overall 

average dropping probability (overall all route lengths) of the RPJIT scheme is almost equal to 

that of the original JIT scheme. 
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Figure 5.8. Dropping probability fairness comparison for the LongHaul network at load=10 
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Figure 5.9. Dropping probability fairness comparison for the LongHaul network at load=14 

 
Figure 5.8 and Figure 5.9 present fairness comparisons for the LongHaul network at loads 10 and 

14, respectively. The values of the throttle used by the RP version of Constraint 3 are the same as 

those used in Figure 5.4. Again, both figures show that MJIT+C2 improves fairness compared to 

MJIT. The RPJIT scheme gives good fairness with less variation in dropping probability among 

the different route lengths. 
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Figure 5.10. Dropping probability comparison among JIT, MJIT, MJIT+C2 and RPJIT in the 

LongHaul network 

 
Figure 5.10 for LongHaul network confirms the trend explained earlier for the mesh-torus 

network in Figure 5.7, namely, the RPJIT scheme improves fairness without degrading the 

overall throughput performance of the network. The overall dropping probability of the RPJIT 

scheme is almost equal to that of the original JIT scheme.  

 

Figure 5.11 compares the fairness of the Route-based version and the Hop-based version of 

Constraint 3 for the mesh-torus network at load 16.  The throttle parameter values used in the 

HPJIT scheme for hop counts 1, 2, 3 and 4 are 0, 0.6, 0.75 and 0.9, respectively. The throttle 

parameter values used in the RPJIT scheme have the same values as those used in Figure 5.3. 

Figure 5.12 compares the overall dropping probability of the Route-based version and the Hop-

based version of Constraint 3 for the Mesh-torus network at different loads. Both Figures 5.11 
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and 5.12 show that the Hop-based version HPJIT is slightly better than the Route-based version 

RPJIT both in fairness and throughput.  
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Figure 5.11. Route-based and Hop-based fairness comparison for the Mesh-torus network at 

load=16 
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Figure 5.12. Total dropping probability comparison among JIT,  RPJIT and HPJIT for the Mesh-

torus network 
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Figure 5.13. Route-based and Hop-based fairness comparison for the LongHaul network at load= 

10 
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Figure 5.13 compares the fairness of the Route-based version and the Hop-based version of 

Constraint 3 for the LongHaul network at load 10.  The throttle parameter values used in HPJIT 

for hop counts 1, 2, 3, 4, 5, 6 and 7 are 0, 0.7, 0.75, 0.8, 0.9, 0.95 and 1.0, respectively. The 

throttle parameter values used in RPJIT have the same values as those used in Figure 5.4. Figure 

5.14 compares the overall dropping probability of the Route-based version and the Hop-based 

version of Constraint 3 for the LongHaul network at different loads. Figures 5.13 and 5.14 show 

that the Hop-based version HPJIT is slightly better than the Route-based version RPJIT with 

respect to both fairness and throughput. Figures 5.13 and 5.14 also show the performance of the 

BJIT scheme proposed earlier in Chapter 3 (the BJIT scheme uses the optimal parameter value 

g=0.5 that improves fairness without degrading throughput). The BJIT scheme, which does not 

use preemption, has better fairness than JIT but worse fairness than the new scheme 

HPJIT/RPJIT at roughly the same overall dropping probability. 
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Figure 5.14. Total dropping probability comparison among JIT, RPJIT, HPJIT and BJIT for the 

LongHaul network 
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We now discuss how to choose the seven values of the hop-based throttles for Constraint 3 in the 

LongHaul network. The throttle αH[1] must be set to 0 and αH[7] can be set to 1 (or very close 

to 1). For the remaining five throttles, we found that equal spacing is an easy and good heuristic 

to use. Simply, we pick appropriate values for αH[2]  and for the spacing Δ, then we apply the 

following equation: 

 

 αH[i] = αH[2] + (i-2)*Δ  i>2  (5.5) 

 

Figure 5.15 shows the fairness performance results when equations (5.5) is used with αH[2]=0.7 

and Δ=0.06 at load 10. The scheme that uses this equation is denoted HPJITe. Figure 5.16 

compares the overall dropping probability of HPJIT and HPJITe at different loads.  
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Figure 5.15. Dropping probability comparison, LongHaul network at load=10 

 

 120 
 
 

 



 

0

0.1

0.2

0.3

0.4

0.5

0.6

2 5 8 11

Load (bursts/ut)

D
ro

pp
in

g 
pr

ob
ab

ili
ty

14

JIT
RPJIT
HPJIT
HPJITe

 
 

Figure 5.16. Total dropping probability comparison among JIT, RPJIT, HPJIT and HPJITe for 

the LongHaul network 
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CHAPTER 6. A PREEMPTION-BASED SCHEME FOR IMPROVING THROUGHPUT 

IN OBS NETWORKS 

 

6.1 Introduction 

 

In this chapter, we propose a preemption-based scheme to improve the throughput of OBS 

networks. In our proposal, the preemptive discipline is based on the burst size. The burst with 

larger size can preempt the resources reserved by a burst with a smaller size. The basic idea of 

the scheme proposed and analyzed in this section is that bursts with large sizes contribute more 

positively to the throughput of the network than bursts with small sizes.    

 

The remainder of this chapter is organized as follows. In section 6.2, the preemption-based 

scheme for improving throughput is presented. In section 6.3, an analytical model for computing 

the throughput of a ring OBS network is developed. In section 6.4, extensive simulation results 

are presented to validate the analytical model of the ring topology as well as evaluate the 

improvement obtained by the preemption scheme in two other topologies: Mesh-torus and 

LongHaul. 

 

6.2 Preemptive scheme for throughput improvement in OBS networks 

 

In this chapter, we propose a preemptive scheme for OBS networks based on the burst size. We 

assume that the wavelength conversion is available in all OXCs [30, 32] and we do not consider 

electrical buffering at the source NAS. Information about the burst size is assumed to be included 
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in the control packet of the burst. When the control packet makes a channel reservation in an 

OXC, the burst size is recorded in the OXC along with other reservation information.  Our 

preemptive scheme is outlined below. 

 

The control packet is sent out from the source NAS on an out-of-band channel to reserve a 

wavelength in each OXC along the lightpath. When the control packet arrives at a node on the 

path, it tries to reserve a channel using the normal JIT protocol. If there are no free channels, 

preemption is considered as a last resort before dropping the burst. Let S1 be the size of burst B1 

that is trying to reserve a wavelength in the current OXC and let S2 be the size of some burst B2 

that already has a reservation in this OXC. If S1 ≥ S2 + η (where η is a controllable threshold) 

then the wavelength reserved by B2 is preempted and given to B1. If there are multiple bursts 

with existing reservations that satisfy the threshold criterion, the preempted burst is chosen to be 

the one with the smallest size (or selected randomly for the sake of analytical tractability as will 

be explained in section 6.3). If preemption cannot be executed, burst B1 is blocked.  

 

6.3 Analytical model for computing throughput of ring networks 

 

In this section, we analyze the performance of a ring topology and present a model to compute 

the throughput of the ring network when the preemption weight is based on the burst size. We 

assume that the ring network uses the JIT scheduling method. The preempted burst is chosen 

randomly from eligible bursts. After preemption, the same wavelength cannot be preempted 

again until the preempting burst is completely transmitted or its channel reservation is cancelled 

by a release message. The total burst arrival process to the ring network is assumed to be Poisson 



with rate λnet and the transmission time (size) of the burst is exponentially distributed with 

service rate μ (i.e., average burst size 1/μ). Let N be the total number of nodes in the ring, W be 

the number of wavelengths in each fiber link and λ be the local Poisson arrival rate of bursts per 

one node. The arrival rate is assumed to be symmetric for all nodes and therefore λnet = N*λ. The 

traffic is assumed to be uniform, i.e., a burst arriving to a node has equal likelihood to be 

destined to any of the other N–1 nodes.  

 

Each fiber link in the network can be modeled as M/M/W/W server. The blocking probability pb 

of the link can be approximated by the Erlang-B formula, 

 

!

!
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( , )
W

W
W m

m
m

bp W
ρ

ρ
β ρ

=

= =
∑            (6.1)                                    

 

where ρ is the traffic intensity. An initial estimate of ρ is 0.5*λ/μ where 0.5*λ represents the 

burst arrival rate for one link (i.e., half the local arrival rate of a node). The go-through 

probability  pg for this link is given by 

 

1g bp p= −          (6.2) 

Each of the two links in a node gets two types of traffic. The first type is local traffic and has a 

rate of 0.5*λ. The second type is traffic generated in downstream nodes and destined to upstream 

nodes.  Let gj be the probability that the lightpath of a burst has j hops. The lightpath length 

distribution is given by g1,g2,…,gd for lightpath lengths 1, 2, …,d, respectively, where d is the 
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diameter of the ring. The arrival rate to the link from the first (closest) downstream node is 

1*0.5* *(1 )gp gλ − . Similarly, the arrival rate from the second downstream node is 

2
1 2*0.5* *(1 )gp g gλ − − , and so on. The actual arrival rate to a link in the current node is 

therefore given by 

1
1

1 1

' 0.5* * *(1 )
d i

i
g j

i j

p gλ λ
−

−

= =

= ∑ ∑−                (6.3)  

The average go-through probability gP  for the entire ring network is given by 

1

*(1 )
d

i
g i

i

P g p
=

= −∑ b        (6.4) 

The controllable threshold of the preemption scheme is η. This means that a burst can be 

preempted only by a burst whose size is larger than the size of the preempted burst by a value 

that is equal to or exceeds the threshold η. For a burst with size t and the preemptive threshold is 

η, the average preempting burst size is 
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     (6.5) 

 

The probability that a burst with size x can preempt another burst with size t is  

( )

( , )
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0, 0

x t

x t
e t

p
x t

μ η

η
η

η

− − −⎧ − +
= ⎨

< ≤ +⎩

<
.              (6.6)                                                   

The burst transfer duration is defined to be the entire period in which the wavelength is reserved 

for or used by the burst (reservation time is the cut-through time and usage time is the burst 

transmission time).  Preemption of a burst can only occur during the cut-through time. If 

 125 
 
 

 



preemption occurs, a new cut-through time is started and the new (preempting) burst will not be 

preempted again until the wavelength is released. When the link has no free wavelengths during 

the cut-through time of a burst, newly arriving bursts will attempt to preempt this burst. The 

average size, Spted(M), of the preempted burst given that there are M arrivals of bursts during the 

cut-through time is 
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(6.7)   

Note that each of the M bursts attempts to preempt the current burst and once one of the M bursts 

succeeds, the remaining bursts cannot perform any additional preemption. The probability for M 

bursts arriving during the cut-through time is assumed to have a Poisson distribution. 
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where M is the average number of bursts arriving during the cut-through time of the burst. The 

average size, Spted, of the preempted burst is 
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We can now get the mean size of the preempting burst, Spting. 
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The value of M  is given by 

0.5* * *cW bM T pλ=                       (6.11) 

where Tc is the cut-through time and pb is the blocking probability of the node (note that all M  

bursts arrive during link congestion).    

     

Now we compute the average size of the burst that does not get preempted given that there are M 

burst arrivals during the cut-through time of this (non-preempted) burst.  
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The unconditional average size of the burst that does not get preempted is given by 
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where pM is given by equation (6.8). 

 

The preemptive probability ppr for a burst with size t in a node of the ring network given M 

bursts arriving during the cut-through time is given by  
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The corresponding probability unconditional on the burst size is 
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Finally the preemptive probability for all bursts in a node is 
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where pM is given by equation (6.8). 

 

Assuming arrivals of bursts are evenly spaced during the cut-through time Tc, the earliest time 

for preemption is Tc /M, the second earliest time for preemption is 2*Tc/M and so on. The 

probability that the mth burst is the one that causes preemption is ( ) 1 ( )(1 )t m te eμ η μ η− + − − +− where t is 

the size of the preempted burst. Given M arrivals, the average wasted cut-through time due to 

preemption is 
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After preemption, a new cut-through time is started and is guaranteed to be safe from further 

preemptions in this node.  The average burst duration, denoted 1/ν, is therefore extended with 

wasted cut-through time and is given by 
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bWhere,  is the new extended 

cut-through time, 

(( )* *(1 ))* *(1 ) * *c cp pr c pr b c b c c prT T p T p p T p T T p p+ + − + − = +

1
μ  is the average burst size, and tp is the control packet processing time.  Since 

the preemptive processes are randomly selected, by Jackson’s theorem, the combined arrival rate 

may still be considered Poisson. Thus we can still use the Erlang-B formula, however, the load is 

changed. That means in equation (6.1), new blocking probability is changed to: 
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where ρr=λ’/ν, λ’ is computed iteratively using equation (6.3) and (6.20). The corresponding go-

through probability is computed as  pg=1-pb. Since the go-through probability will be changed 

when the preemption is executed, we can iteratively change the go-through probability and 

recalculate the preemptive probability and go-through probability in a node, till the difference of 

two adjacent go-through probabilities is almost the same. 

 

The total throughput of the network is decided by  

*gnetThr Sλ=  

where S is the average size of bursts that successfully reach their destination and λgnet is the go-

through arrival rate, i.e., the  number of bursts that successfully go from their source to their 

destination per  unit of time. This means that  λgnet = λnet* gP   where  gP is the average go-through 

probability of the entire network given in equation (6.4).  



 

Now we consider the average size of bursts that reach their destination, S. There are three types 

of such bursts. The first type is bursts that do not experience blocking. The second type is bursts 

that go through congested nodes but they are not preempted.  The third type is bursts that 

preempt other bursts during their journey from source to destination. The first type has an 

average size of 1/μ and represents a fraction gP of the total bursts successfully reaching their 

destination. For the second type, the average size is Sno-pr. The blocking probability of a hop is pb 

and the preemptive probability during congestion at that hop is ppr. The preemptive probability 

for a hop during all times (congestion and non-congestion) is pb*ppr. If a successful burst has a 

lightpath of i hops, its preemption probability is (pb*ppr+pg)i-pg
i. 

 

Thus, the average preemptive probability for all bursts reaching their destination is: 

( )
1 1 1

*( ( * ) ) *(( * ) )
d i d

j i j i i
i b pr g i b pr g g

i j i

ig p p p g p p p pj
−

= = =

= + −∑ ∑ ∑ prP=  

 

Similarly, the average “no preemption” probability for all bursts reaching their destination is: 

 
1 1

*(1 ( * ) ) 1 *(( * ) ) 1
d d

i i i i
i b pr g i b pr g g g pr g

i i

g p p p g p p p p p P
= =

− + = − + − + = −∑ ∑ P−  

Hence, the final throughput of the network is: 

1*( *(1 ) * (1 ))gnet no pr pr g pting pr bThr S P P S P Pμλ −= − − + + −               (6.21)  

 

The above analytical model can be used to compute the throughput of the ring network 

iteratively. We first use equations (6.1) and (6.2) to compute the initial values of pg and pb. An 

 131 
 
 

 



initial value of λ’ is computed using equation (6.3). In successive iterations, we compute the 

different values of bursts sizes, the wasted cut-through time using equation (6.18) and the 

extended duration time 1/ν using equation (6.19). New values of pb and pg are computed using 

equation (6.20) and a new value of λ’ is computed using equation (6.3). The iteration process 

stops when pg converges to a stable value. The network throughput is finally computed using 

equation (6.21).  

 

 
6.4 Simulation results 

 
 
We present the simulation results and validate the analytical throughput model for a ring network 

with 7, 17 and 33 nodes (denoted as Ring7 , Ring 17 and Ring 33). In addition, we present 

simulation results for two additional networks shown in Figure 6.1, a 5x5 Mesh-torus network 

with 25 nodes and the LongHual network with 28 nodes. 

 

 

 

 

 

 

 

                        5x5 Mesh-torus Topology                                           US LongHaul topology 

 

Figure 6.1. Additional network topologies 
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For our simulation, the burst arrival process is Poisson and the cut-through time is 2.5 

milliseconds. The link delay is 3 milliseconds. The burst size has an exponential distribution and 

its mean size is 10. For every data burst, the source and destination nodes are randomly selected 

from any nodes in the network, and the lightpath between source and destination nodes is the 

shortest path between these two nodes. Thus, for 5x5 Mesh-torus network, the network diameter 

is 4 and the distribution for lightpath length of 1, 2, 3 and 4 is 1/6, 1/3, 1/3 and 1/6, respectively. 

For Ring17 network, the network diameter is 8 and the lightpath distribution for each lightpath 

length is 1/8. For Ring33 network, the network diameter is 16 and the lightpath distribution for 

each lightpath length is 1/16.  

 

The mean size of burst is 10 data units and its transmission time is 0.5 millisecond (time unit). 

We assume that a data burst has an average size of 5 megabytes, so the data transfer rate is 10 

Gigabytes/second. The cut-through time is Tc = 2.5ms. The average control packet process time 

tp is 5 μs (microseconds). 

 

Figures 6.2 to 6. 6 show the throughput results for ring networks with nodes 7, 17, and 33 using 

different number of wavelengths at different loads. Figures 6.7 to Figure 6.11 give the go-

through probability comparison corresponding to Figures 6.2 to 6.6. 
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Figure 6.2. Throughput for Ring7, W=8, load λnet =12 bursts/(100ms). 
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Figure 6.3 Throughput for Ring7 network with W=16, load λnet=24 bursts/(100 ms).  
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Figure 6.4. Throughput for Ring 17, W=16, load λnet =24 bursts/(100 ms). 
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Figure 6.5. Throughput for Ring33, W=16 and load λnet =24 bursts/(100ms). 
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Figure 6.6. Throughput for Ring33, W=32 and load λnet =60 bursts/(100 ms). 
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Figure 6.7. Go-through probability of Ring7, W=8 and load λnet =12 bursts/(100 ms). 
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Figure 6.8. Go-through probability of Ring7, W=16 and load λnet =24 bursts/(100 ms). 
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Figure 6.9. Go-through probability of Ring17, W=16 and load λnet =24 bursts/(100ms).  
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Figure 6.10. Go-through probability of Ring33, W=16 and load λnet =24 bursts/(100ms). 
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Figure 6.11. Go-through probability of Ring33, W=32 and load λnet =60 bursts/(100ms). 

 

The comparisons in Figures 6.2 through 6.11 all prove that the analytical model works accurately 

and can be used to analyze the throughput performance of ring networks using burst preemption 

based on burst size.  

 

Now, we give some extended simulation results to show that the preemptive scheme can improve 

the throughput of the OBS networks in ring, Mesh-torus and LongHaul networks.  

 

Figure 6.12 to Figure 6.14 give the simulation results comparison for Ring 7 with W=16 and 

load λnet = 24 bursts/ (100 ms), Ring17 with W=16 and load λnet = 40 bursts/ (100 ms) and Ring 

33 with W=16 and load λnet = 60 bursts/ (100 ms). In these figures, the notation SP random 

means only single preemption per wavelength is allowed and the preempted burst is randomly 
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selected (this is the scheme analyzed in section 6.3). The notation MP random means multiple 

preemptions are allowed and the preempted bursts are randomly selected. The notation SP 

smallest means only single preemption is allowed and the preempted burst is the one that has the 

smallest size.  
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Figure 6.12. Throughput comparison for different preemptive schemes. Ring 7, W=16, load λnet 

= 24 bursts/ (100 ms) 
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Figure 6.13. Throughput comparison for different preemptive schemes. Ring 17, W=16, load λnet 

= 40 bursts/ (100 ms) 
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Figure 14. Throughput comparison for different preemptive schemes. Ring 33, W=16, load λnet = 

60 bursts/ (100 ms) 
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Figure 6.12 to Figure 6.14 show that the multiple preemptions and the single preemption 

schemes have almost the same performance. However, if the burst with smallest size is 

preempted rather than a random burst, the performance is improved. 

 

Figure 6.15 and Figure 6.16 give the throughput comparison between JIT and the preemptive 

scheme (i.e., single preemption with random selection) at different thresholds for Ring17 and 

Mesh-torus networks, respectively. Figures 6.15 and 6.16 show that, compared with the 

conventional JIT scheme, our preemptive scheme can greatly improve the network throughput 

performance, especially when the load is large, and the improvement is significant. 
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Figure 6.15. Throughput comparison for different Load, Ring17 network, W=8  
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Figure 6.16. Throughput comparison for different threshold, Mesh-torus network, W=16 

 

Figure 6.17 and Figure 6.18 show the throughput of Ring17 with W=8 and 5x5 Mesh-torus 

network with W=16, respectively. The figures show that the improvement of the network 

throughput is dependent on the threshold used in the preemption scheme. 
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Figure 6.17. Throughput comparison for different thresholds, Ring17 network, W=8 
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Figure 6.18. Throughput comparison for different thresholds, Mesh-torus network, W=16 
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Figure 6.19 gives the comparison for the multiple preemptions and single preemption schemes 

for 5x5 Mesh-torus network. The figure shows that the performance of multiple preemptions and 

single preemption have almost the same values. Figure 6.20 shows that the throughput when the 

smallest burst is chosen for preemption is better than when the preempted burst is chosen 

randomly. 
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Figure 6.19. Throughput comparison for multi-preemption versus single-preemption, Mesh-torus 

5x5 network, W=16 
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Figure 6.20. Throughput comparison for randomly selected burst versus smallest selected burst, 

Mesh-torus 5x5 network, W=16  

 

 

Figures 6.21, 6.22 and 6.23 give the performance results for the LongHaul network under 

different scenarios. These results confirm the previous conclusions for the ring and Mesh-torus 

network. The three figures show that the throughput is improved by the preemptive scheme and 

the level of improvement is dependent on the threshold. Figure 6.23 shows that when the 

smallest burst size is chosen for preemption, the throughput performance is better than when the 

preempted burst is randomly selected. 
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Figure 6.21. Throughput comparison for different threshold, LongHaul network, W=16 
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Figure 6.22. Throughput comparison for different thresholds, LongHaul network, W=16 
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Figure 6.23. Throughput comparison for randomly selected burst versus smallest selected burst, 

LongHaul network, W=16 
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CHAPTER 7. CONCURRENT ENHANCEMENT OF NETWORK THROUGHPUT AND 

FAIRNESS IN OPTICAL BURST SWITCHING ENVIRONMENTS  

 
 

7.1 Introduction 

 

Optical burst switched (OBS) networks [30, 32] have received considerable attention in the 

literature. Research proposals to improve the performance and reliability of OBS networks have 

addressed various issues including QoS support [69, 73, 75], scheduling efficiency [71], blocking 

probability [12, 69, 73, 83, 84] and fairness.  

 

Standard OBS scheduling protocols [30, 32] suffer from the hop count unfairness problem, i.e., 

bursts with longer lightpaths have higher dropping probability than bursts with shorter lightpaths. 

To alleviate this unfairness, bursts with large hop counts must be given higher scheduling 

priority over bursts with small hop counts. Schemes for improving fairness, however, can result 

in degrading the overall throughput performance of the OBS network. Likewise, schemes to 

reduce the blocking probability and improve the throughput of OBS networks can aggravate the 

burst unfairness problem. In this chapter, we propose schemes based on burst preemption to 

improve the fairness performance as well as the throughput performance in OBS networks.  

 

The rest of the chapter is organized as follows. In section 7.2, a brief overview of related work is 

presented. In section 7.3, the model for our proposed preemption-based scheme is presented. In 

section 7.4, the preemption-based scheme is further enhanced by combining it with a non-

preemptive fairness-improving scheme. In section 7.5, the simulation results are presented.  
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7.2 Some related works 

 

There are two approaches to assemble the bursts in the network access station (NAS) of OBS 

networks: timer-based and threshold-based. In the timer-based burst assembly approach, the 

formation of the burst is restricted by a maximum (or periodic) time interval [81] and therefore 

bursts tend to have variable lengths. In the threshold-based approach [82], a limit is used to 

restrict the size of the burst (or the number of packets in the burst) and therefore bursts tend to 

have equal, or nearly equal, length. In this chapter, bursts are assumed to have variable sizes; our 

tests used exponential and uniform distributions for burst sizes.  

 

There are several schemes in the literature that can also produce variable length bursts, even if 

the threshold-based burst assembly approach is used. Examples of these schemes are burst 

segmentation methods [12, 69, 80, 83, 84, 85]. These schemes are mostly used to reduce the 

packet loss and improve the throughput of OBS networks. Since an optical burst is an 

aggregation of many IP packets, the packet loss probability is reduced by applying segmentation 

that discards the initial part of a burst until a wavelength becomes free on the output fiber. Once 

a wavelength becomes free, the switch transmits only the remainder of the burst [80]. Another 

scenario occurs when preemption of a burst is allowed while the burst is being transmitted. In 

[12, 69] when contention occurs, the higher priority burst preempts the resource used by the 

lower priority burst, and the tail of the lower priority burst is discarded. In [80, 83], the benefit of 

burst segmentation is analyzed.  
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In [49], the authors proposed a merit-based scheduling algorithm for OBS networks. The scheme 

uses the route length and the current value of hop count to decide the preemption weight (priority) 

of a burst. Bursts with larger weight can preempt the channel resources reserved by bursts with 

smaller weight. The authors in [49] reported that the blocking probability is reduced by the 

merit-based scheme; however, the fairness issue is not discussed. Another preemption-based 

scheme is proposed in [74] based on proportional service differentiation. In [85], preemption is 

used as one of the approaches to handle channel contention and a model for analyzing 

preemptive burst segmentation is developed. Priority-based preemption is also used in [86], and 

in [73] a probabilistic preemptive scheme is proposed, mainly for the purpose of providing 

service differentiation.  

 

7.3 Burst preemption for fairness and throughput improvement 

 
The issue of fairness in OBS has received less attention than the issue of reducing burst blocking 

and improving throughput. In Chapter 3, we proposed two schemes to improve the fairness 

performance in OBS networks. In this chapter, we address the issue of improving fairness and 

throughput concurrently.  

 

The preemption priority used in [49] is based on the weight H*L, where H is the current hop 

count of the burst (distance from the source node of the burst to the current node) and L is the 

route length (distance from the source node to the destination node).  A burst can be preempted 

by another burst in an OXC node if the latter burst has a higher H*L value than the former. Our 

extensive tests showed that the metric H*L is not capable alone to improve fairness and 
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throughput concurrently. Guided by our tests, we modified the preemption weight function to 

include information about the burst size. The rationale for this is straightforward; bursts with 

large size contribute positively to the throughput of the network. Below, we briefly discuss some 

general preemption strategies in OBS networks then outline our proposed scheme for the 

concurrent improvement of fairness and throughput.  

 

In normal OBS networks, a control packet is sent out from the source NAS at an earlier time 

before the actual data burst. Specifically, the transmission of the control packet and that of the 

data burst are separated by a time duration called the offset time. The control packet is used to 

reserve an optical channel for its data burst in each OXC along the lightpath of the burst. If the 

reservation is successful in all OXC’s, the data burst can be transferred along the lightpath all-

optically. If one OXC is congested and all channels are reserved, the control packet will fail to 

make a reservation for its data burst and the burst is dropped. Data bursts with longer lightpaths 

have higher probability of being dropped than bursts with shorter lightpaths. One way to 

alleviate this unfairness is to allow the control packet to reserve a channel by preempting the 

channel resource reserved by another control packet. We adopt the policy that the preemption 

process in any OXC should only occur before the arrival of the preempted burst. Specifically, we 

assume that no OXC is allowed to preempt an active data burst whose transfer through this OXC 

is in progress. When preemption occurs, two release processes take place: backward propagation 

to release the channels already reserved in the upstream path (toward source), and forward 

propagation to release the channels that may have been reserved in the downstream path (toward 

destination).  
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In order to improve both fairness and throughput, we use the following preemption weight 

function:  

 

       ω = f(S) + H*L                   (7.1) 

 

Where S is the burst size and f() is a function to transfer the burst size into the catalog value of 

H*L. Our tests showed that better results are obtained when the mean value of f(S) is roughly 

equal to the mean value of H*L. A simple way to construct f(S) is to divide burst sizes into 

different groups (ranges), and assign an integer value to each group. The smallest value for f(S) is 

1 and corresponds to the burst group whose members have sizes that fall in the smallest range. 

The burst group whose members have the second smallest size range is assigned f(S) value 2, and 

so on. The number of groups is chosen such that the mean value of f(S) is roughly equal to the 

mean value of H*L. To offset the overhead of preemption, the preempting burst must have a 

higher preemption weight than the weight of the preempted burst. We use a parameter ℜ>1, 

called the preemption threshold, to control the preemption process. Specifically, burst 

preemption is allowed only if the following constraint is satisfied: 

 

               ω preempting burst  ≥ ℜ  * ω preempted burst  

 

We refer to the scheme that uses equation (7.1) as the Fairness and Throughput Improvement 1 

(FATI1) scheme. Notice that the preemption weight of equation (7.1) has two terms. The goal of 

the first term, f(S), is to improve the throughput performance by helping the bursts with larger 

size to preempt the resources reserved by bursts with smaller size. The second term, H*L, helps 
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improve fairness by giving advantage to bursts with long lightpaths and/or bursts that are close to 

reaching their destination.  

 

We further improve equation (7.1) in order to alleviate the problem of reverse unfairness (i.e., 

bursts with long lightpaths start to gain advantage over bursts with shorter lightpaths). The 

improved   weight function is given by: 

 

                   ω = f(S) + Min{H*L, c*E(H*L)}                    (7.2) 

 

Where E(H*L) is the average value of H*L, and c is a constant that is slightly larger than but 

very close to 1. The Min function ensures that bursts with long route paths will not have very 

high preemption weight and will be confined to the average value of the product H*L. The value 

E(H*L) can be easily computed for a given network topology. We denote the scheme that uses 

equation (7.2) as the Fairness and Throughput Improvement 2 (FATI2) scheme. The simulation 

results reported in section 7.5 demonstrate that using equation (7.2) gives better performance 

than using equation (7.1), i.e., the FATI2 scheme is better than the FATI1 scheme. 

 

The FATI1 and FATI2 scheme are applicable to both types of signaling protocols: just-enough-

time (JET) signaling [30] and just-in-time (JIT) signaling  [32]. In this chapter, we used JIT to 

implement the FATI1 and FATI2 schemes.  
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7.4 Preemption combined with Balanced JIT (BJIT) 

 

In Chapter 3, we proposed the balanced JIT (BJIT) scheme to improve the fairness performance 

of JIT. The idea of BJIT is to constrain the size of the search space allowed for a control packet 

within an OXC based on the length of the partial path of this control packet. Specifically, the 

number of channels ni that are searched in the ith hop of a control packet is constrained by: 

 

             ni= (1-g)*W  +   g*i*W/D                          (7.3) 

 

where g is a parameter that is assigned a value between 0 and 1, D is the diameter of the network 

(the maximum number of hops in a shortest path in the network), i is the current hop count of the 

control packet (i.e., number of hops from the source node to the current node), and W is the total 

number of channels available in the current node. The BJIT scheme improves fairness but does 

not improve throughput. In this chapter, we further improve the FATI2 scheme proposed in 

section 7.3 by combining it with the BJIT scheme. The resulting scheme is called FATI2B.  

 

In the FATI2B scheme, a control packet is allowed to search only ni channels when it arrives at 

its ith hop. The starting position of the search (within the circular space of W channels) is 

randomized to improve performance. If the constrained search does not find a free channel, the 

preemption scheme FATI2 proposed in section 7.3 takes place. In section 7.5, the test results 

show that this combined scheme gives a further fairness-throughput performance improvement 

over the FATI2 scheme. In Chapter 3, the value g=0.5 was found to be the best parameter value 

that improves the fairness performance of BJIT without negatively impacting the throughput 



performance. The value g=0.5 means that each control packet is guaranteed to search at least 

50% of the total search space of W channels. However, since equation (7.2) of the FATI2 scheme 

already has a term to improve fairness, a smaller value of g is needed in the FATI2B scheme. 

Our tests showed that a value of g=0.2 is the best value when the BJIT is combined with FATI2. 

The value g=0.2 means that each control packet is guaranteed to search at least 80% of the total 

search space of W channels. 

 

 

7.5 Simulation results 

 

In this section, we report the results of our extensive simulation tests using two network 

topologies: the US LongHaul network with 28 nodes and a 5x5 mesh-torus network, as shown in 

Figure 7.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                       
                           LongHaul topology                                  5x5 Mesh-torus topology 
 

Figure 7.1.  Two network topologies 
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In our simulation, a static lightpath between any two nodes is established using the shortest path 

first method as was done in [30, 49]. Notice that the diameter of the LongHaul topology has 7 

hops and the diameter of the 5x5 Mesh-torus topology has 4 hops. Similar to [26, 49, 87], the 

traffic used in our tests is uniformly distributed among all nodes. This means that all nodes have 

equal likelihood to be the source of a data burst and for a given source node, all other nodes in 

the network have equal likelihood to be the destination node. As in [30, 49], we assume that full 

wavelength conversion capability is available in all OXCs. 

 

In our simulation tests, assembled bursts arrive according to a Poisson distribution with 

controllable arrival rate. For each burst, the source node and the destination node are randomly 

selected as explained before. Our simulation tests used parameter values similar to those 

typically used in the literature: the cut through time in each OXC is 2.5 milliseconds, the link 

delay per hop is 3 milliseconds, the average burst length is 50 microseconds (equivalent to a 

burst of 250 Kbits at 5 Gbits/second), the control packet processing time tp at each hop is 50 

microseconds. The number of wavelengths used in each fiber is W=16 in each direction. Each 

point in the performance graphs reported in this chapter was obtained by averaging the results of 

6 simulation tests using different randomly generated seeds. We used multiple batch means at 

95% confidence interval and each simulation was run for sufficiently long time to obtain stable 

statistics; the total number of bursts processed in each simulation test ranged from 2.5 million 

bursts at low arrival rates to 25 million bursts at high loads for the LongHaul network and from 4 

million bursts at low arrival rates to 40 million bursts at high loads for the Mesh-torus network. 
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The unit of time (denoted ut) used in the graphs presented in this chapter is equal to 0.05 

millisecond. Thus a load of 12 bursts/ut is equivalent to a total network load of 60 Gbits/second. 

 

Figures 7.2 to 7.5 give the fairness results of the three schemes: original JIT, FATI1 (using 

equation 7.1) and FATI2 (using equation 7.2) for the Mesh-torus network. We experimented 

with various values of the preemptive threshold ℜ and selected values that improve both fairness 

and throughput. The preemptive threshold used for FATI1 and FATI2 in Figures 7.2-7.5 is 

ℜ=1.2, i.e., preemption occurs only if the weight of the preempting burst is equal to or greater 

than 1.2 times the weight of the preempted burst. As shown in Figure 7.2, the standard JIT 

scheme has poor fairness performance. Bursts with longer lightpaths have higher blocking 

probability than bursts with shorter lightpaths and the unfairness problem is exacerbated as the 

load increases. Figures 7.3 and 7.4 show that the FATI1 and the FATI2 schemes improve the 

fairness performance compared to JIT. Figure 7.5 gives detailed comparison of the three schemes 

at load 4; the figure shows that the FATI2 scheme has the best fairness (least variation in 

blocking probabilities) among the three schemes. 

 

Figure 7.6 shows that for loads higher than 2, the throughput of FATI2 and FATI1 in the Mesh-

torus network is significantly better than the throughput of the original JIT scheme.  
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Figure 7.2. JIT blocking probability distribution, Mesh-torus 5x5 network 
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Figure 7.3. FATI1 blocking probability distribution, Mesh-torus 5x5 network 
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Figure 7.4. FATI2 blocking probability distribution, Mesh-torus 5x5 network 
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Figure 7.5. Blocking probability comparison among JIT, FATI1 and FATI2 at load =4, Mesh-

torus 5x5 network 
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Figure 7.6. Throughput comparison among JIT, FATI1 and FATI2, Mesh-torus 5x5 network 

 
 
 
Figure 7.7 and 7.8 give the blocking probabilities of JIT, FATI1, FAIT2 in the U.S. LongHaul 

network at loads 2 and 2.5, respectively. The preemptive thresholds used in FATI1 and FATI2 is 

ℜ=1.2 (i.e., the preempting burst should be at least 20% larger than the preempted burst). Both 

figures clearly show that FATI2 has the best fairness performance (least variation in blocking 

probabilities) among the three schemes. Figure 7.9 shows that the FATI2 scheme has the best 

throughput performance followed closely by the FATI1 scheme. Both FATI1 and FATI2 have 

significantly better throughput than JIT.  It should be noted that the throughput plotted in Figure 

7.6 and Figure 7.9 are the average throughput over all bursts. Due to the uniform distribution on 

source-destination pairs, bursts with different lightpath lengths have different arrival rates. 

Specifically, the uniform distribution on node pairs gives the following distribution on the 
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number of hops in the burst’s lightpath: for the 5x5 mesh topology, the percentage of lightpaths 

with number of hops equal to 1, 2, 3 and 4 is 16.7%, 33.3%, 33.3%, and 16.7% respectively; for 

the LongHaul topology, the percentage of lightpaths with number of hops equal to 1, 2, 3, 4, 5, 6 

and 7 is 12%, 20%, 23%, 21%, 14%, 8% and 2%, respectively. 
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Figure 7.7. Blocking probability comparison among JIT, FATI1 and FATI2 at load =2, 

LongHaul network 
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Figure 7.8. Blocking probability comparison among JIT, FATI1 and FATI2 at load =2.5, 

LongHaul network 
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Figure 7.9. Throughput comparison, LongHaul network 
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We further validate the previous results by a quantitative fairness metric. In [88], the authors 

discuss methods to alleviate the inherent unfairness of TCP towards connections with long 

round-trip times. They use the coefficient of variation of the individual throughputs of TCP 

flows as a metric to evaluate fairness. We borrow this concept and define the fairness coefficient 

in optical burst switched networks as the coefficient of variation (standard deviation over mean) 

of the individual average blocking probabilities for bursts with different hop lengths.  Figure 7.10 

shows the values of the fairness coefficient for the three schemes JIT, FATI1, and FATI2 at four 

different configurations: Mesh-torus network at load 3.2, Mesh-torus network at load 4.0, 

LongHaul network at load 2.0 and LongHaul network at load 2.5. The FATI2 scheme has the 

lowest fairness coefficient in all cases. 
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Figure 7.10. Fairness coefficient comparison of JIT, FATI1 and FATI2 for four configurations 
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As has been shown in Figures 7.2-7.10, the fairness of the FATI2 scheme is better than that of 

the FATI1 scheme and the throughput of FATI2 is slightly better than that of FATI1. In the 

remainder of this chapter, the FATI2 scheme will be used for further fine tuning and 

comparisons. 

 

Figures 7.11-7.13 show the improvement obtained in the LongHaul network by combining the 

preemption-based FATI2 scheme with the non-preemptive BJIT scheme presented in Chapter 3. 

The resulting scheme, denoted FATI2B, uses burst preemption based on equation (7.2) and also 

uses a parameterized wavelength search based on equation (7.3). Figure 7.11 shows the blocking 

probabilities at load 2 and Figure 7.12 shows the blocking probabilities at load 2.5. The value of 

g used in the BJIT scheme in Figures 7.11 and 7.12 is equal to 0.5. This value gives the best 

fairness-throughput performance results for the non-preemptive BJIT scheme. When BJIT is 

used in conjunction with burst preemption, a smaller value of g is needed to get best fairness-

throughput results; the value of g used for the FATI2B scheme in Figures 7.11-7.12 is 0.2. Figure 

7.13 shows that the FATI2B scheme has slightly higher throughput than FATI2 and much better 

throughput than JIT and BJIT at all loads. We conclude that the combined application of 

equations (7.2) and (7.3) produces a scheme, FATI2B, that has better fairness-throughput 

properties than the FATI2 scheme that uses equation (7.2) only.  
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Figure 7.11. Blocking probability comparison among JIT, BJIT, FATI2 and FATI2B for 

LongHaul network, load = 2 (bursts/ut) 
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Figure 7.12. Blocking probability comparison among JIT, BJIT, FATI2 and FATI2B for 

LongHaul network, load = 2.5 (bursts/ut) 
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Figure 7.13. Throughput comparison among JIT, FATI2B (g=0.2), FATI2 and BJIT (g=0.5), 

LongHaul network 

 

 
Figure 7.14 and 7.15 show the corresponding results for FATI2B in the Mesh-torus network.  

The FATI2B scheme improves fairness compared to FATI2 (Figure 7.14) and gives equal or 

slightly better throughput (Figure 7.15). 

 
 

 167 
 
 

 



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

JIT BJIT FATI2B FATI2

B
lo

ck
in

g 
pr

ob
ab

ili
ty

path=1
path=2
path=3
path=4

 
 

Figure 7.14. Blocking probability comparison among JIT, BJIT(g=0.5), FATI2 and 

FATI2B(g=0.2) in Mesh-torus 5x5 network at load=4 
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Figure 7.15. Throughput comparison among JIT, BJIT (g=0.5), FATI2 and FATI2B (g=0.2), 

Mesh-torus 5x5 network 
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Figure 7.16 gives the fairness coefficient comparison among the four schemes JIT, BJIT, FATI2 

and FATI2B in the LongHaul network. The FATI2B scheme gives the lowest fairness coefficient 

at all loads. Similar results were obtained for the mesh network. 
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Figure 7.16. Fairness coefficient comparison for JIT, BJIT, FATI2 and FATI2B for LongHaul 

network at load=2 and load=2.5 

 
 
Next we further fine tune the FATI2B scheme and present comparison results that offer more 

insight into the performance of our scheme. Two additional variations of the FATI2 scheme are 

included in the comparisons, FATI-v4 and FATI-v5.  In the FATI-v4 variation, the f(s) term of 

equation (7.2) is divided by 4 to reduce emphasis on throughput. Thus FATI-v4 replaces 

equation (7.2) by equation (7.4) given below and represents a FATI2 scheme that is intended to 
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give less priority to improving throughput. The FATI-v5 variation, on the other hand, replaces 

equation (7.2) by equation (7.5), i.e., the second term is divided by 3 to increase emphasis on 

improving throughput.   

 

                ω = 0.25*f(S) + Min{H*L, E(H*L)}                    (7.4) 

 

                 ω = f(S)+ 0.334*Min{H*L, E(H*L)}                  (7.5) 

 

Figure 7.17 gives the blocking probability comparison among JIT, FATI-v4, FATI-v5, 

FATI2B(g=0.2), FATI2B (g=0.5) for the LongHaul network at load 2 (similar trends were 

obtained at other loads). Figure 7.18 gives the throughput comparison among these five schemes 

at different loads. The FATI-v4 scheme, with its dominant H*L factor, eliminated the unfairness 

problem against bursts with long lightpaths but unfortunately created a reverse unfairness 

problem, i.e., bursts with longer lightpaths enjoy smaller blocking probabilities than bursts with 

shorter lightpaths.  The FATI-v5 scheme, with its dominant f(s) factor, improved the throughput 

over JIT. Figure 7.18 shows that FATI-v5 has the best throughput among all five schemes at all 

loads. The FATI2B(g=0.2) scheme comes a close second followed by FATI2B(g=0.5). The JIT 

and FATI-v4 scheme have the worst throughput. Figure 7.19 shows the fairness coefficient of the 

five schemes for the LongHaul network at loads 2 and 2.5. Comparison tests for using different 

values of the parameter g of equation (7.3) have shown that using a value of g=0.2 is the best 

compromise for FATI2B. The values g=0.2 and g=0.5 have approximately the same fairness 

coefficient but the value g=0.2 has consistently given higher throughput than g=0.5.  For the 



Mesh-torus network, we obtained similar results in the comparison of fairness and throughput 

among the five schemes (results are omitted). 
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Figure 7.17.  Blocking probability comparison among JIT, FATI-v4, FATI-v5, FATI2B(0.2), 

FATI2B (0.5), at load =2, LongHaul network 
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Figure 7.18. Throughput comparison among JIT, FATI-v4, FATI-v5, FATI2B(0.2), FATI2B 

(0.5) at load =2, LongHaul network 
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Figure 7.19.  Fairness coefficient comparison for JIT, FATI-v4, FATI-v5, FATI2B(0.2) and 

FATI2B(0.5) for LongHaul network at load=2 and load=2.5 
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The distributions of burst sizes used in all previous results are exponential distributions. We also 

performed tests with burst sizes having uniform distributions. For both the LongHaul and Mesh-

torus networks, the results for the uniform burst size distributions have given the same general 

trends as the results obtained for the exponential distributions. Basically, using burst preemption 

based on equation (7.2) significantly improves the fairness as well as the throughput performance 

of OBS networks. Combining equation (7.2) with the parameterized wavelength search of 

equation (7.3) further improves the fairness and throughput performance. 



 174 
 
 

 

CHAPTER 8.  CONCLUSIONS 

 

Below, we present a summary of the contributions of the work presented in this dissertation and 

discuss future research ideas to extend this work. 

  

8.1 Efficient routing and channel assignment 

 
We proposed and evaluated a new approach for implementing efficient RWA in WDM networks 

with multiple-fiber links. Our method uses a compact bitmap representation that uniformly 

applies to fibers, links, and lightpaths. A modified Dijkstra’s shortest path algorithm is developed 

for dynamic routing based on the bitmap representation and the efficient logical intersection 

operation. A first-fit channel assignment algorithm is developed using a simple computation on 

the bitmap of the selected route and a shortest hop criterion is used to break ties.  The proposed 

bitwise routing algorithm combines the benefits of least loaded and shortest path routing 

algorithms. Our simulation tests have shown that the blocking performance of our RWA method 

is better than that of three previous schemes.  

 

One possible extension of our proposed RWA method is to consider the availability of 

wavelength converters as a way to reduce the blocking probability. Wavelength conversion is 

still a maturing and costly technology. Fortunately, it has been shown that the sparse deployment 

of wavelength converters can achieve significant benefit comparable to that obtained by full 

deployment of converters in all nodes of the network. The impact of converters on the bitwise 

RWA method can be evaluated in two steps. First, the converter placement algorithm proposed 
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in [25-27] can be applied to select the nodes that will be equipped with wavelength converters. 

Second, the RWA method is modified to take advantage of the presence of converters in some 

nodes. Encountering a node with a converter during the routing search removes the constraint of 

wavelength continuity and enables the routing algorithm to start a new search phase, thus 

improving the prospects of accepting the request.  

 

8.2 Proactive schemes for improving fairness and providing differentiated QoS 

 
We investigated two methods for alleviating the beat down problem in OBS networks. The first 

scheme, Balanced JIT, uses a simple equation to adjust the size of the search space for a free 

wavelength based on the number of hops traveled by the burst. The BJIT scheme has a single 

parameter and is implemented in each OXC. The second scheme, PRED, uses proactive 

discarding to reduce the probability of dropping bursts with large hop count at the expense of an 

increase in the dropping probability of bursts with small hop count. The PRED scheme is 

implemented in the source network access stations and does not therefore waste any bandwidth 

resources in the core of the optical network. Detailed performance results showed that both BJIT 

and PRED can alleviate the beat down unfairness without negatively impacting the overall 

throughput of the system.  

 

We further modified the BJIT and PRED schemes and extended them in order to support QoS 

differentiation in OBS networks. The first scheme adjusts the size of the search space for a free 

wavelength based on the priority level of the burst.  The second scheme uses different proactive 

discarding rates in the network access station of the source node. The first scheme has less 
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number of parameters and is easier to implement/tune than the second scheme. Performance 

simulation tests showed that both schemes are capable of providing tangible QoS differentiation 

without negatively impacting the throughput of OBS networks.  

 

In our implementation of the two schemes for fairness and for QoS differentiation, we used the 

JIT scheduling protocol and assumed the availability of full wavelength converters in each node 

in the network. One future extension of this work is to apply the two schemes to the JET 

scheduling protocol. Another extension is to investigate the case in which wavelength converters 

are not available in all nodes of the network. 

 

8.3 Preemption-based schemes for improving fairness and throughput 

 
We proposed two schemes, RPJIT and HPJIT, to improve the fairness performance in OBS 

networks based on burst preemption. Our schemes use carefully designed constraints to avoid 

excessive wasted channel reservations, reduce cascaded useless preemptions, and maintain 

healthy throughput levels. Our extensive simulation results showed that the constrained 

preemption schemes improve fairness compared to previous methods without degrading network 

throughput. 

 

We also proposed and fine-tuned a preemption-based scheme for improving the throughput of 

OBS networks based on the burst size. Extensive simulation results on different network 

topologies showed that the scheme significantly improves the throughput of the network. We 

developed an analytical model to compute the throughput of the network iteratively for the 
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special case when the network has a ring topology. The analytical model has been shown to be 

accurate; it gives results close to those obtained by simulation.   

 

Finally, we proposed a preemption-based scheme for the concurrent improvement of throughput 

and fairness. The preemption weight of an incoming burst is a function of the route length, the 

current hop count and the burst size. Extensive simulation tests showed that the application of the 

scheme results in higher throughput and at the same time improves the fairness coefficient 

compared to the standard JIT scheme. 

 

The preemption-based schemes described above can be extended in many ways. As mentioned in 

section 8.2, one area of future research is to adapt these schemes to JET scheduling. Adapting 

preemption-based schemes to JET scheduling requires more sophisticated design than adapting 

the proactive schemes mentioned in section 8.2. This is because the preemption of a reserved 

channel must be handled carefully since the size of the burst plays a more critical role in JET’s 

channel reservation. Another area of future research is to extend the analytical model for 

estimating the throughput of ring OBS networks to other topologies. Extending this analytical 

model to arbitrary topologies may be quite difficult and we may therefore need to start by 

tackling topologies with uniform structure such as the mesh-torus topology. A third area of 

future research is to adapt the schemes to dynamic routing. Static routing is easier to implement 

than dynamic routing, but is generally less capable of achieving maximum throughput levels. 

The offset times for the JIT or JET protocols are best suited for static routing and these protocols 

will need to be redesigned if dynamic routing is used.  
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