
Equivalent Random Analysis of a Buffered

Optical Switch with General Interarrival Times

Conor McArdle, Daniele Tafani and Liam P. Barry

Research Institute for Networks & Communications Engineering,

School of Electronic Engineering, Dublin City University, Ireland.

Email: mcardlec@eeng.dcu.ie

Abstract—We propose an approximate analytic model of an
optical switch with fibre delay lines and wavelength converters
by employing Equivalent Random Theory. General arrival traffic
is modelled by means of Gamma-distributed interarrival times.
The analysis is formulated in terms of virtual traffic flows
within the optical switch from which we derive expressions for
burst blocking probability, fibre delay line occupancy and mean
delay. Emphasis is on approximations that give good numerical
efficiency so that the method can be useful for formulating dimen-
sioning problems for large-scale networks. Numerical solution
values from the proposed analysis method compare well with
results from a discrete-event simulation of an optical burst switch.

I. INTRODUCTION

In recent years, considerable research effort has been

focused on developing efficient Optical Burst Switching (OBS)

and Optical Packet Switching (OPS) architectures and on

performance improvements by way of contention-resolution

schemes [1], [2] and optimised burst aggregation algorithms

[3], [4]. Although the technologies are maturing to the extent

that test-beds have been built [5], [6] and it seems likely

that OBS and OPS may be deployed in the medium-term,

there remains a need to resolve pertinent network design,

dimensioning and cost-optimisation challenges to enable net-

work deployment. To this end, efficient analysis methods

for OBS/OPS node and network performance evaluation are

desirable and considerable attention is now focused there [7].

In particular, the analysis of wavelength conversion schemes

and fibre delay lines (FDLs), as two of the main contention-

resolution components of the switch, is receiving attention.

The addition of wavelength converters to the switch reduces

contention at output ports by enabling a packet arriving on

one wavelength channel to be directed to an alternative free

wavelength channel at the output. In performance evaluation

studies, there may be assumed restrictions on the number of

available wavelength converters and on the sharing strategy.

Additionally, there may be restrictions on the range of con-

version between one wavelength and another, due to limiting

physical properties of the conversion devices [8], [9].

The addition of FDLs to the switch has also been shown

to achieve a substantial reduction in packet loss (by orders

of magnitude in some cases [10]) by selectively delaying

packets in order to reduce contention for outgoing channels.

This work is based on research supported by Science Foundation Ireland
under the Research Frontiers Programme, Grant No. [08/RFP/CMS1402].

Our focus in this paper is on the analysis of burst/packet

loss and delay in OBS/OPS nodes with FDLs and unrestricted

wavelength conversion. We develop an approximate model of

switch performance, for general offered traffic, by applying

circuit-switching analysis methods to model the switch output

port and associated FDLs. Our goal is an efficient model that

can accurately account for likely traffic characteristics within

an OBS/OPS network so that the node model may be applied

to modelling/dimensioning large networks of optical switches.

There are several existing approaches to performance eval-

uation of optical nodes with buffering functionality imple-

mented with FDLs. In [11], Callegati presents a framework for

evaluating the blocking probability for asynchronous variable

length bursts and models a single FDL as a queue with

balking. A similar approach has been adopted by Lu & Mark

in [10], where the overall system behaviour is characterised

as a multi-dimensional continuous-time Markov chain. They

develop an asymptotic approximation based on the M/M/k
queue with balking, when arriving bursts are short, and an

M/M/k/m queue for long bursts. An exact Markov chain

analysis is also provided by Rogiest et al. [12] and an analysis

for correlated arrivals is considered in [13]. In [14], Fan et

al. model buffers as M/M/k/m queues and provide bounds

on the loss probabilities for classless and prioritised bursts.

Gauger [15] investigates the influence of the combination

of wavelength converters and FDL buffers in OBS, through

simulation. The performance of several scenarios of feed-back

and feed-forward FDL schemes are evaluated.

Previous work on performance evaluation of FDLs has

largely assumed that burst interarrival times are exponentially

distributed. Recently, Mountrouidou and Perros have studied

burst aggregation algorithms at ingress nodes and propose that

this assumption is not accurate [16]. Burst interarrival times

are shown to be Gaussian or Erlang distributed, depending on

the burst aggregation method and the packet arrival process

at the aggregator. As for burst length distribution, Gauger

[17] has found from simulation that performance is relatively

insensitive to burst length distribution. Rostami and Wolisz

[18], through analysis, also show that burst length distribution

has little impact on performance, concluding that assuming

exponentially-distributed burst lengths is appropriate.

This previous work leads us to consider a modelling

framework for generally-distributed arrivals and exponentially-

distributed burst lengths and we base our analysis on the
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GI/M/N/N loss system. We have chosen gamma-distributed

interarrivals as a concrete case of a general independent

(GI) traffic arrival process, although our analysis method is

applicable for any renewal-type traffic with known interarrival

distribution. Gamma-distributed interarrivals allow a full range

of interarrival-time variance to be modelled (both ‘smooth’ and

‘peaked’ traffic). It is known that variance of ingress traffic

can range widely, depending on the burst aggregation method

employed [16] and the traffic offered to the aggregator. We

note that some popular traffic models, such as the Interrupted

Poisson Process [21], do not allow representation of low vari-

ances (smooth traffic). Additionally, the gamma distribution

can be parameterised to correspond exactly to the exponential

distribution, allowing comparison of results to Poisson traffic,

the most commonly assumed traffic type.

The modelling approach in the current paper identifies

virtual traffic flows, between the output channels and FDLs,

modelling the node as a network of relatively simple queuing

systems. This differs from previous work, as outlined above,

which has focused mainly on direct evaluation of more com-

plex single-queue systems. We make use of existing results for

calculating overflow and carried traffic characteristics in loss

systems, by way of Equivalent Random Theory (ERT) [19]

and Brandt and Brandt’s work on the GI/M/N/N system

[20]. Our approach most closely relates to Reviriego et al.

[9], where overflow analysis is applied to evaluate blocking,

for Poisson arrivals, for a limited number of shared wavelength

converters in an OBS node without FDLs. We do not consider

the added complexity of converter sharing in the present work.

II. SWITCH ARCHITECTURE

The system under study (Fig. 1) is an optical burst switching

node with wavelength conversion and feed-forward FDLs at

the output ports. It is assumed that the range of conversion

from one wavelength to another is unrestricted and that

there are as many converters at an output port as there are

wavelength channels, that is, ‘full’ wavelength conversion is

available. We note that, although we deal with the case of

burst switching, the model we develop may also be applied to

an optical packet switch with feed-forward buffers.

Our model focuses on the analysis of the blocking prob-

ability and mean delay at an output port with N channels

and a bank of FDLs containing K FDL units. Each FDL

unit is a single fibre offering a constant delay time of Dk

seconds, k ∈ {1, 2, . . . ,K}. Delay times of the units are each

a multiple of a base delay time C so that Dk = kC. There is

also a direct channel from the switch to the output unit, with

delay D0 ≈ 0. Additionally, each fibre may be wavelength

division multiplexed carrying multiple wavelengths simulta-

neously with FDL unit k supporting Lk wavelength channels.

The total number of wavelength channels provided by the bank

of FDLs is L =
∑

k Lk.

A controller in the switch coordinates scheduling of the

channels and FDLs. If none of the N output channels is

available for the duration of a burst arriving at a time t, an

attempt is made to simultaneously schedule a free FDL (of
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Fig. 1. Optical Switch Under Study

delay length Dk) and any output channel that will become

free at time t+Dk. The scheduler first attempts the procedure

using FDL unit 1, offering delay D1, and iterates in sequence

through all K FDLs until a feasible schedule is found. If none

of the available FDL delay times can resolve the schedule,

then the burst is blocked (lost). We next develop a traffic

model which represents an approximate analogue of the switch

resource scheduling behaviour just described.

III. OUTPUT PORT TRAFFIC MODEL

We assume that the aggregate traffic arriving to the output

port is of general renewal type (GI traffic) and burst lengths

are taken to be exponentially distributed. Thus, the proba-

bility of blocking at the output port could be estimated, in

the first instance, by analysing blocking in an GI/M/N/N
system, where N is the number of output channels. A single

GI/M/N/N model would, of course, not take into account

the coordinated scheduling of output channels and FDLs in

the actual system, which tends to correlate burst arrivals at

the output channels in a manner that gives a reduction in

blocking compared to that of a GI/M/N/N system. Our

modelling aim is to approximate the improvement given by

the FDLs without resorting to a detailed analysis of the

traffic correlations involved. We model FDL behaviour as an

additional GI/M/L/L blocking system and develop a model

of virtual flows (Fig. 2) that approximates the overall output

port scheduling behaviour.

We make the observation that traffic which is potentially

blocked by the output channels, before the scheduler attempts

to resolve conflicts by delaying bursts in the FDLs, may be ap-

proximated as a (virtual) overflow traffic from an GI/M/N/N
system representing the group of output channels. This over-

flow is indicated in Fig. 2 as flow F̂ . We then consider this

overflow traffic as forming offered traffic to an independent

GI/M/L/L system representing the bank of FDL.

We justify this lumped model of the FDL bank by observing

that each FDL k, consisting of a group of Lk channels, may

be approximately modelled as an GI/M/Lk/Lk system. As

traffic offered to the output channels is assumed renewal, then

so is the overflow F̂ [19] and as the scheduler first attempts to
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resolve a conflict with FDL 1, we may consider FDL 1 as an

independent loss system offered all overflow traffic from the

group of N channels. FDL 1 is itself a group of L1 channels

and, when all L1 channels are occupied, the scheduler cannot

resolve a conflict using FDL 1 and instead attempts to resolve

it with the delay offered by FDL 2. Thus we can view FDL

1 as generating its own renewal overflow traffic F̂1 which in

turn is offered to FDL 2, and so on down the chain of K
FDLs, with each FDL k producing overflow which is offered

to FDL k +1. These virtual traffic flows within the FDL bank

are depicted in Fig. 3. Overflow F̂K = FB from the final FDL

represents the actual overflow from the output port. This traffic

flow, FB , is lost from the system (blocked). For the purposes

of calculating overflow (blocking) from the FDL bank, we

may combine this cascade of overflowing loss systems as a

single GI/M/L/L system, where L is the aggregate number

of channels in the bank. To calculate mean delay, we resolve

the occupancy in each of the K FDLs.

To complete the flow model, we consider the combined

traffic carried by all FDLs in the bank as a traffic flow that is

offered again (notionally) to the output channels, at some time

in the future. This total carried traffic flow from the FDLs,

F̄ , competes with the input traffic flow (FI ) for the output

channels at that future time. We neglect time correlations

between these flows and identify an effective (virtual) flow

F that is the aggregation of the input flow (FI ) and the FDL

carried traffic (F̄) that is fed back to the input of the channel

model. We emphasise that there is no such feedback path in

the actual system. We have adopted it solely to capture the

balance of flows in our modelling analogue. As the feedback

traffic is not renewal, neither is the aggregated input traffic

(F). For the purpose of formulating an approximate model,

we assume that the feedback flow (F̄) is small in comparison

with (FI ) and so the renewal nature of F is assumed to be

undisturbed.

We characterise the various traffic flows in the model using

the notion of an infinite server (or ‘infinite trunk group’)

[21], whereby a traffic flow is described in terms of the

moments of the channel occupancy distribution in a GI/M/∞
system when offered an identical traffic flow. The channel

occupancy distribution may be classes as being ‘peaked’, when

the variance V is greater than the mean M , or ‘smooth’ when

the variance is less than the mean. The ‘peakedness’ of the

traffic is denoted as Z = V/M . The mean of the occupancy

distribution is termed ‘traffic intensity’. We summarise the

main flows in the model and identify the traffic moments

of interest, below. We identify either the central or factorial

moments of the flows depending on which representation is

the most convenient in the analysis that follows (Section IV).

• FI is the actual traffic flow offered to the output port. It

is assumed to be renewal, that is, burst interarrival times

are independent and identically distributed. The factorial

moments of this traffic flow are denoted MI,(j), j ∈ N.

• FO is the actual carried traffic from the node, with traffic

intensity MO.

• FB is the total actual blocked traffic from the node, with

factorial moments denoted M̂B,(j), j ∈ N.

• F̂ is the virtual overflow traffic from the GI/M/N/N
system. This flow constitutes the traffic that must either

be delayed and scheduled on output channels for trans-

mission at a later time, or else blocked if there is no

feasible schedule. The factorial moments of the flow are

denoted M̂(j), j ∈ N.

• F̄ is the carried traffic from the GI/M/L/L system. This

flow represents the traffic that is successfully scheduled

to be delayed in the FDL bank and subsequently carried

by the output channels. The first and second factorial mo-

ments of the flow are denoted M̄(1) and M̄(2) respectively.

• F is the effective total offered traffic at the output

channels. This consists of the actual offered traffic to the

node plus the traffic flow generated by previously delayed

traffic from the FDL bank. It is assumed to be renewal

with factorial moments M(j), j ∈ N.

• With respect to flows within the FDL bank (Fig. 3), F̂k

is overflow traffic from FDL k, with mean and variance

M̂k and V̂k. The mean of the channel occupancy in FDL

k is denoted M̄k.
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M( )j
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Fig. 3. Virtual Cascading Overflows Within FDL Bank
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We next analyse the model of Fig. 2 to resolve the moments

of the flows identified above. Having done so, we may estimate

the burst blocking probability at the output port and then, by

resolving the flows of Fig. 3, we may estimate the mean delay

experienced by a packet transiting through the port.

IV. MODEL ANALYSIS

To resolve blocking probability we require the mean of flow

FB . We first resolve the effective input traffic flow, F , from

which calculation of the other flows follow. Although only

the mean of flow FB is required, we include higher moments

of the flows in calculations in order to achieve an accurate

estimate.

A. Offered Traffic

We model the offered traffic flow FI as having interarrival

times distributed according to a gamma distribution. This char-

acterisation enables performance for a full range of offered-

traffic peakedness to be examined. We note, however, that the

methods that follow allow any independent interarrival time

distribution to be represented.

In order to apply the gamma distribution in our analysis, we

need to first derive the relationship between the parameters of

the distribution and the moments of the traffic, that is, the

moments of the occupancy distribution in an infinite trunk

group with exponential holding times, when offered traffic

with gamma-distributed interarrivals.

It is known [20] that the factorial moments of the traffic, de-

noted M(j) here, may be expressed in terms of the interarrival

time distribution for a renewal arrival process as

M(j) =
1

µE[τ ]
·

j−1
∏

i=1

i F ∗(iµ)

1 − F ∗(iµ)
, j ∈ N, (1)

where F ∗(·) denotes the Laplace-Stieltjes transform (LST) of

the interarrival cdf, µ is the parameter of the exponentially

distributed holding times in the infinite trunk group and E[τ ]
is the mean interarrival time. In our analysis, we will also

require expressions for the first two moments of the traffic

in terms of the interarrival time distribution, and we derive

these as follows. Let τ be the random variable denoting the

interarrival time where τ has a gamma distribution, that is, its

probability density function fτ (t) is given by

fτ (t) =
θ−k tk−1 e−t/θ

Γ(k)
t ≥ 0 (2)

where k > 0 is the shape parameter, θ > 0 is the scale

parameter and Γ(k) is the gamma function. The LST F ∗(s)
of the corresponding cumulative distribution function Fτ (t) is

given as

F ∗(s) =

∫ ∞

0

e−stfτ (t) dt = (1 + θs)−k (3)

from which the first moment of the interarrival time τ is

E[τ ] = −
[dF ∗(s)

ds

]

s=0
= θk. (4)

We now wish to find values of the parameters θ and k such

that traffic with interarrival time τ arriving to an infinite trunk

group has a given mean intensity M and peakedness Z. From

(1) and (3) we may calculate the first two factorial moments

of the traffic as

M(1) =
1

µE[τ ]
= M (5)

M(2) =
1

µE[τ ]
·

(1 + θµ)−k

1 − (1 + θµ)−k
=

M

(1 + 1
Mk )k − 1

. (6)

The mean and peakedness expressed in terms of the factorial

moments of the offered traffic are

M = M(1) and Z = 1 − M(1) + M(2)/M(1), (7)

and so we may relate the mean and peakedness of the traffic

to the gamma distribution parameters by the equations:

θ =
1

Mµk
(8)

Z = 1 − M +
1

(1 + 1
Mk )k − 1

(9)

Given desired values of mean M and peakedness Z of

the offered traffic, we may solve (9) numerically to yield

corresponding values of k and θ.

It is also useful to derive the bounds on traffic peakedness

Z for gamma interarrivals. From (9) we see that, as k → 0,

Z → ∞, so there is no upper bound. To find the lower bound

on Z, we compute the limit of (1 + 1
Mk )k as k → ∞. This

limit has the indeterminate from 1∞ but we may transform to

the form 00 and apply l’Hôpital’s rule to find

lim
k→∞

(

1 +
1

Mk

)k

= e1/M (10)

and so the lower bound on Z is given as

Zmin = 1 − M + (e1/M − 1)−1 (11)

This limit is identical to the general result [20], so we may

conclude that there is no restriction on the range of peakedness

we may examine using gamma-distributed interarrivals.

B. Overflow and Carried Traffics

We wish to characterise the overflow traffic from the

GI/M/N/N system, representing the output port channels

(Fig. 2). Let us assume initially that there is no feedback

flow F̄ and so the effective offered flow F is equal to the

actual gamma-distributed offered flow FI . We may calculate

the factorial moments of the overflow F̂ , from Potter’s formula

[20], as

1

M̂(k)

=

N
∑

l=0

(

N

l

)

(k + l − 1)!

(k − 1)!M(l+k)
, k ∈ N, (12)

where M(j), j ∈ N are the factorial moments of the offered

traffic F , which may be computed from (1) given the LST of

the gamma distribution from (3).

In a similar manner, we may compute the factorial moments

of the overflow FB from the FDL bank, given the factorial
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moments of the offered traffic, which in this case is the flow

F̂ with factorial moments M̂(j), j ∈ N computed by (12):

1

M̂B,(k)

=

L
∑

l=0

(

L

l

)

(k + l − 1)!

(k − 1)! M̂(l+k)

, k ∈ N. (13)

We have calculated the overflow moments when the feed-

back traffic F̄ is neglected. To accurately estimate F (and

subsequently all other flows in the model) we account for the

additional feedback traffic as follows. Given an estimate of

the moments of F , we may calculate the first two moments

of the carried traffic F̄ using Brandt’s calculation [20], where

the offered traffic in this case is again the overflow F̂ with

factorial moments M̂(j) given by (12), that is,

M̄(2) = M̄(1)

M̂(2)

M̂(1)

− M̂B,(1)M̂B,(2)

L
∑

l=1

(

L

l

)

l!

M̂(l+1)

l
∑

m=1

(

mM̂(m)

M̂(m+1)

+ 1

)

,

(14)

where M̄(1) = M̂(1) − M̂B,(1), by the conservation principle,

and M̂B,(1) and M̂B,(2) are given by (13). We note that (14)

gives the required moments of the “freed” carried traffic as

distinct from the moments of channel occupancy, provided by

the usual equivalent random methods [19].

Having calculated the moments of the feedback traffic,

we now make the assumption that F may be estimated as

begin gamma-distributed traffic with moments determined as

follows. The mean of F may be calculated simply as the sum

of the means of F̄ and the actual offered traffic FI , that is,

M(1) = M̄(1) + MI,(1). (15)

We make the assumption that F and F̄ are independent traffic

streams and so the variance of F̄ may similarly be estimated

as the sum of the variances of F̄ and FI or, in terms of the

factorial moments, we may derive

M(2) = 2MI,(1)M̄(1) + MI,(2) + M̄(2). (16)

Given the first two moments of F , which we have assumed

remains gamma-distributed, we may calculate further moments

by calculating the distribution parameters k, θ from (8) and (9),

calculating the distribution’s LST from (3) and then calculating

higher factorial moments from (1).

We now have a set of open-form equations relating the

factorial moments of all flows from which we may form an

iterative algorithm to resolve the blocking probability.

C. Resolving Blocking Probability

To resolve the factorial moments of the effective offered

traffic F we first calculate overflow and carried traffic mo-

ments assuming no feedback flow F̄ . This yields an approx-

imation for the moments of F̄ from which a new estimate

for F may be calculated. We then iterate this calculation until

the first two moments of F are within a desired ǫ over two

successive iterations. We note from [20] that the complexity

of calculation of overflow and carried traffic moments in (12),

(13) and (14) is O(C), where C is the number of channels,

and thus our simple iterative method has good efficiency. (We

have found the algorithm to converge rapidly for a range of test

cases, although we do not have a convergence proof.) Given

the solution values for the moments of F , we have a solution

value for the first moment of the node overflow traffic M̂B,(1)

from (13) and so the burst blocking probability at the node

may be calculated as

B = M̂B,(1)/MI,(1) (17)

D. Resolving Mean Delay

Delay in the system occurs when FDLs are employed by

the scheduler to resolve contention at the output channels. To

estimate the mean delay we first resolve the mean and variance

of the offered traffic to each of the K FDL units (Fig. 3).

Having done so, we may then resolve the mean occupancy of

each FDL, M̄k, from which, given a set of FDL delay times

{Dk}, we may approximate the mean delay in the system.

We denote the mean and variance of the overflow from FDL

k as M̂k and V̂k respectively, as per Fig. 3. As the overflow

from an FDL is the offered traffic to the next FDL in the chain,

the offered traffic to FDL k has mean and variance M̂k−1 and

V̂k−1.

Having solved for the factorial moments M̂(k) of the over-

flow from the group of N channels in the previous subsection,

the mean and variance of the traffic offered to the first FDL

in the FDL bank are given as

M̂ = M̂(1) (18)

V̂ = M̂(1) − M̂(1)
2 + M̂(2). (19)

We now wish to resolve the mean and variance of the over-

flow from FDL 1, M̂1 and V̂1 respectively, when it is offered

traffic M̂, V̂ . We employ Equivalent Random Theory (ERT) to

resolve M̂1, V̂1 [19]. Having done so, M̂1, V̂1 becomes offered

traffic to FDL 2 and, assuming independence between flows,

reapplying ERT resolves M̂2, V̂2 and so on down the chain of

K FDLs.

We show the solution for an arbitrary FDL k receiving

traffic M̂k−1, V̂k−1 and producing overflow M̂k, V̂k. With this

solution and M̂0, V̂0 given by M̂, V̂ respectively, we may

iterate for all K FDLs in the bank. The details of the method

follow.

In Equivalent Random Theory, a virtual group of size N∗ is

offered virtual Poisson traffic of intensity A∗ which produces

an overflow mean and variance which may be matched, given

appropriate values of N∗ and A∗, to the given (actual) mean

and variance. This overflow traffic is the offered traffic to the

actual group. The problem reduces to finding the A∗ and N∗

group whose overflow matches the required actual (peaked)

offered traffic. Having resolved A∗ and N∗, the mean and

variance of the overflow (and carried traffic) from the actual

group may be resolved using the equivalent overflow model

of Fig. 4.
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From Fig. 4, for FDL k, expressions for the mean and

variance of the actual overflow, in terms of the virtual group

size N∗
k , the virtual offered intensity A∗

k and the actual group

size Lk are given by the equivalent system as

M̂k = A∗
k · E(A∗

k, Lk + N∗
k ) (20)

V̂k = M̂k

(

1 − M̂k +
A∗

k

Lk + N∗
k + 1 − A∗

k + M̂k

)

. (21)

A∗
k and N∗

k are given implicitly in terms of M̂k−1 and V̂k−1,

the previously calculated mean and variance of the overflow

from the virtual source, as

M̂k−1 = A∗
k · E(A∗

k, N∗
k ) (22)

V̂k−1 = M̂k−1

(

1 − M̂k−1 +
A∗

k

N∗
k + 1 + M̂k−1 − A∗

k

)

.

(23)

From (22) and (23), N∗
k may be written in terms of A∗

k and

known constants M̂k−1 and V̂k−1 as

N∗
k = A∗

k

(

M̂k−1 + V̂k−1/M̂k−1

M̂k−1 + V̂k−1/M̂k−1 − 1

)

− M̂k−1 − 1 (24)

and so, from (22), we have a function of a single variable A∗
k,

f(A∗
k) = M̂k−1 − A∗

k · E(A∗
k, N∗

k ) = 0, (25)

which may be solved for A∗
k as a numerical root finding

problem. We may choose an initial solution for the numerical

solution from Rapp’s approximation [19] for an overflow

system:

A∗ ≈ V + 3Z(Z − 1)

N∗ ≈
A∗(M + Z)

M + Z − 1
− M − 1

where Z is the peakedness.

We note that, in the numerical method, the values of N∗

must be allowed to take non-integer values for a solution to be

found. The usual recurrent evaluation method for the Erlang

B formula

E(A, k + 1) =
A · E(A, k)

k + 1 + A · E(A, k)
, E(A, 0) = 1 (26)

is extended using Szybicky’s approximation [22] which gives

the blocking probability for real-valued 0 ≤ N ≤ 2 as

Es(A,n) ≈
(2 − n)A + A2

n + 2A + A2
n ∈ real interval [0, 2].

For a given positive real-valued N = ⌊N⌋+(N−⌊N⌋), where

N may be ≥ 2, we first evaluate

E(A,N − ⌊N⌋) = Es(A,N − ⌊N⌋).

and then (from (26)) form the recursion

E(A, k + 1 + (N − ⌊N⌋)) =

A · E(A, k + (N − ⌊N⌋))

k + 1 + (N − ⌊N⌋) + A · E(A, k + (N − ⌊N⌋))

where, for k = 0

E(A, 0 + N − ⌊N⌋) = Es(A,N − ⌊N⌋).

Iterating for k = 0, 1, . . . , ⌊N⌋ − 1 gives the final value of

E(A,N), for positive real-valued N .

We have solved (25) for A∗
k, and thus N∗

k is given by

equation (24). The mean and variance of the overflow traffic

from FDL k are then given by equations (20) and (21)

respectively. We now have the mean of the carried traffic from

FDL k as

M̄k = M̂k−1 − M̂k.

With this solution for FDL k, and M̂0, V̂0 given by M̂, V̂ ,

we may solve for all k ∈ {1, 2, . . . ,K} iteratively. The average

burst delay D at the output port is then given as

D =
∑

k∈{1,...,K}

M̄k

MO
Dk (27)

where MO is the mean of the carried traffic from the port,

which may be calculated, by the conservation principle, as:

MO = M(1) − M̂(1).

V. RESULTS AND ANALYSIS

We compare analytic results for blocking B and mean delay

D with results from a discrete-event simulation of an OBS

node implemented in Opnet ModelerTM [23]. Two different

node configurations are considered, Scenario I: a node with 10

output channels and 2 FDLs and Scenario II: a node with 40

output channels and 5 FDLs. In both cases, each FDL carries

a single wavelength.

Our discrete-event simulator models the full details of the

output channel and FDL scheduling. The channel scheduler

implements Latest Available Unscheduled Channel (LAUC)

on both the output channels and the FDLs. When there is no

output channel available for an arriving burst, coordination of

output channel and FDL scheduling is of the “PreRes” type
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Fig. 5. Blocking Probability - Simulation vs Analysis - Scenario I
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Fig. 6. Blocking Probability - Simulation vs Analysis - Scenario II

[15]. In this scheme a schedule is sought simultaneously for

future availability of an output channel and FDL. Also, the

simulator implements full wavelength conversion at the output

port.

Burst interarrival times are gamma-distributed and burst

lengths are exponentially distributed of mean length 1ms. We

note that our simulator packet generator is parameterised by

the gamma-distribution parameters (k, θ) while our analytic

model is parameterised by the factorial moments of gamma-

distributed traffic offered to a virtual GI/M/∞ group, how-

ever, we may match simulation setup with analytic model input

values by evaluating our previously derived relations (8), (9)

to give the appropriate (k, θ) to generate a given mean and

peakedness of offered traffic.

The FDL base delay time is chosen as C = 2ms. It has been

shown in [15] that, when C is shorter than the average burst

length, the FDLs are less effective and blocking increases due

to increased overlap between bursts at the output channels.

When C is increased beyond the average burst length, burst

blocking settles to a near constant value for a given load. C
should not be too large, as fibre lengths in FDLs become

unfeasibly long and delay increases. We set C to be twice

the average burst length as a trade-off.
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0.4 0.5 0.6 0.7 0.8 0.9 1
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Delay vs Traffic Intensity - 40 Channels - 5 FDLs

Normalised Offered Load (1 Unit = 40 Erlangs)

M
ea

n
 D

el
ay

 (
m

s)

Z
=
0.
75

Z
=
1.
0

Z=1.5

Z=2.5

Simulation
Analysis

Fig. 8. Mean Delay - Simulation vs Analysis - Scenario II

The simulations were executed such that the confidence

interval for all points is better than ± 1% at a confidence level

of 99%. These intervals are small and omitted from result plots

for clarity.

We compare the blocking probability B for Scenarios I and

II, over a range of offered load intensities (MI,(1)), in Fig. 5

and Fig. 6 respectively. Load values are shown normalised

with respect to the number of output channels N . Results

from our analytic model in both scenarios compare favourably

with simulation over the range of offered load examined. The

error in the analytic results, when compared to simulation, is

tabulated in Table 1. We compare results for mean delay D
for Scenarios I and II in Fig. 7 and Fig. 8 respectively.

Fig. 9 illustrates the effect of increasing peakedness on

blocking probability, for a fixed mean traffic intensity. For

higher mean loads, it can be seen that blocking probability

increases quite strongly with peakedness and thus the peaked-

ness of the offered traffic is an important factor to consider in

determining system performance.

VI. CONCLUSION

We have developed a relatively simple approximate model

for the analysis of an OBS node with FDLs by applying circuit
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TABLE I
ESTIMATED AVERAGE ERRORS IN ANALYTIC RESULTS

Offered Blocking Delay

Peakedness % Error % Error

(Z) % σ % σ

Scenario I 0.75 -2.7 5.3 0.2 2.2

10 Channels 1.00 0.6 1.9 1.5 1.4

2 FDLs 1.50 0.7 2.4 2.5 1.6

2.50 -0.1 2.2 3.1 1.8

Scenario II 0.75 1.0 4.2 1.3 2.0

40 Channels 1.00 3.2 1.6 2.8 1.1

5 FDLs 1.50 0.9 4.5 0.9 4.6

2.50 -4.1 3.9 -2.0 3.4

switching analysis methods in a novel way, by allowing a feed-

back path between groups of channels. Our overall aim is to

produce a relatively simple model, of good accuracy and good

numerical efficiency, that may easily be extended to modelling

and dimensioning of large networks of optical switches. We

note the potential usefulness of modelling smooth, as well

as peaked, offered traffic. As carried traffic from a group of

channels is generally smoother than offered traffic, in network

models smooth offered traffic may be encountered at some

point on a transmission path, even if traffic is peaked at the

ingress point. The traffic peakedness will also vary with the

burst aggregation mechanism in use. We also note that the

model may be used to evaluate performance under any GI
traffic stream that may be expressed in terms of an interarrival

distribution (e.g. Gaussian interarrivals). As future work, an

extension to the model will be to include limited numbers of

shared wavelength converters and to investigate dimensioning

optimisation based on this extended model. We also plan to

explore the accuracy of the method for modelling a network

of switches where ingress traffic is generated by various burst

aggregation schemes.
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