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ABSTRACT

Optical networking, employing wavelength division multiplexing (WDM), is seen as the tech-

nology of the future for the Internet. This dissertation investigates several important problems

affecting optical circuit switching (OCS) and optical burst switching (OBS) networks. Novel algo-

rithms and new approaches to improve the performance of these networks through effective routing

and channel scheduling are presented. Extensive simulations and analytical modeling have both

been used to evaluate the effectiveness of the proposed algorithms in achieving lower blocking

probability, better fairness as well as faster switching. The simulation tests were performed over a

variety of optical network topologies including the ring and mesh topologies, the U.S. Long-Haul

topology, the Abilene high-speed optical network used in Internet 2, the Toronto Metropolitan

topology and the European Optical topology.

Optical routing protocols previously published in the literature have largely ignored the noise

and timing jitter accumulation caused by cascading several wavelength conversions along the light-

path of the data burst. This dissertation has identified and evaluated a new constraint, called the

wavelength conversion cascading constraint. According to this constraint, the deployment of wave-

length converters in future optical networks will be constrained by a bound on the number of wave-

length conversions that a signal can go through when it is switched all-optically from the source
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to the destination. Extensive simulation results have conclusively demonstrated that the presence

of this constraint causes significant performance deterioration in existing routing and wavelength

assignment (RWA) algorithms. Higher blocking probability and/or worse fairness have been ob-

served for existing RWA algorithms when the cascading constraint is not ignored.

To counteract the negative side effect of the cascading constraint, two constraint-aware routing

algorithms are proposed for OCS networks: the desirable greedy algorithm and the weighted adap-

tive algorithm. The two algorithms perform source routing using link connectivity and the global

state information of each wavelength. Extensive comparative simulation results have illustrated

that by limiting the negative cascading impact to the minimum extent practicable, the proposed

approaches can dramatically decrease the blocking probability for a variety of optical network

topologies.

The dissertation has developed a suite of three fairness-improving adaptive routing algorithms

in OBS networks. The adaptive routing schemes consider the transient link congestion at the mo-

ment when bursts arrive and use this information to reduce the overall burst loss probability. The

proposed schemes also resolve the intrinsic unfairness defect of existing popular signaling proto-

cols. The extensive simulation results have shown that the proposed schemes generally outperform

the popular shortest path routing algorithm and the improvement could be substantial. A two-

dimensional Markov chain analytical model has also been developed and used to analyze the burst

loss probabilities for symmetrical ring networks. The accuracy of the model has been validated by

simulation.

iv



Effective proactive routing and preemptive channel scheduling have also been proposed to ad-

dress the conversion cascading constraint in OBS environments. The proactive routing adapts the

fairness-improving adaptive routing mentioned earlier to the environment of cascaded wavelength

conversions. On the other hand, the preemptive channel scheduling approach uses a dynamic pri-

ority for each burst based on the constraint threshold and the current number of performed wave-

length conversions. Empirical results have proved that when the cascading constraint is present,

both approaches would not only decrease the burst loss rates greatly, but also improve the trans-

mission fairness among bursts with different hop counts to a large extent.
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CHAPTER 1

INTRODUCTION

In this chapter, we first review briefly WDM optical networks and the background of optical switch-

ing mechanisms. We then provide an overview of our motivations and achievements towards this

dissertation.

1.1 Optical Switching Network Background

Optical transmission has been playing a critical role in the backbone of current commercial telecom-

munication networks. Optical transmission is also rapidly expanding toward the customer or busi-

ness premises, which are the sources or sinks of information. Nowadays, a single wavelength

channel can transmit data at a rate of 10 Gb/s and beyond under WDM. Dense WDM (DWDM)

technology allows tens or even hundreds of wavelength channels to be transmitted over a single

optical fiber. This means that the data rate can reach 10 Tb/s in each individual fiber. Thus, it

makes optical networks a logical choice to meet the growing stupendous communication demands,

such as faster Internet browsing, video-on-demand, and interactive television. Properly designed

1



and operated, optical switching technologies can potentially utilize the immense fiber bandwidth

and would eventually replace the current traditional networks.

In WDM networks, channels are created by dividing the bandwidth into a number of wave-

lengths or frequency bands, each of which can be accessed by the end-user at peak electronic

rates [CP99]. In order to efficiently utilize this bandwidth, we need to design efficient transport

architectures and protocols based on the state-of-the-art optical device technology. Optical trans-

port methodologies have been evolving from generation to generation. In this report, we focus on

transport methodologies that are based on optical cross connects (OXC). There are primarily three

all-optical transport methodologies, namely, optical circuit switching, optical burst switching, and

optical packet switching (OPS).

In wavelength routed WDM networks, end users communicate with each other via all optical

WDM channels, which are referred to as lightpaths. A lightpath is necessary to create and keep

a connection up in a wavelength routed WDM network and may span multiple fiber links. When

wavelength converters are absent, a lightpath must occupy the same wavelength on all the fiber

links through which it traverses [ZJM00]. This property is known as the wavelength continuity

constraint. Given a set of connections, the problem of setting up lightpaths by routing and as-

signing a wavelength to each connection is called the routing and wavelength assignment (RWA)

problem. The wavelength continuity constraint implies that when the RWA protocol is unable to

find a path and allocate the same wavelength to all links along the path, the call will be blocked.
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Circuit and packet switching have been used in traditional (electronic) communication net-

works for many years for voice and data communications, respectively. Burst switching, on the

other hand, is less common. Switching techniques primarily differ based on whether data will

use switch cut-through or store and forward. In circuit switching, a dedicated path between two

end stations is required. A call is established, the data is transferred, and the call is disconnected.

Relevant resources are exclusively reserved for the call until it is terminated. In packet switching,

the data is assembled into small packets and transmitted. The resources can be shared by different

sources. End stations can send and receive data at their own speed. The individual packets can be

individually switched or a virtual circuit can be set up. In the first case, the routing decision is done

at a packet level while in the later, it is on a virtual channel level. Individual routing may lead to

out-of-order message delivery.

Optical circuit switching has been available in the optical domain for the past several years. Its

widespread deployment is not yet available since it offers the coarse granularity of switching. On

the other side, optical packet switching will not be favorable in the foreseeable future until optical

buffers outgrow their immaturity, even though it can switch at the packet level with fine granularity.

Circuit switching uses two-way reservation schemes that have a large round trip. Packet switch-

ing has a large buffer requirement, complicated control, and strict synchronization issues. Only

recently optical burst switching emerges to achieve a good balance between the coarse-grained

circuit switching and the fine-grained packet switching by consolidating the currently available
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techniques. It uses one-way reservation schemes with immediate transmission, in which the data

burst follows a corresponding packet without waiting for an acknowledgment.

1.2 Motivations and Our Proposals

In this dissertation, we investigate several important problems affecting optical circuit switching

and/or optical burst switching, and present our approaches to improve system performance, such

as lower blocking probability, more effective routing and better fairness.

We evaluate the negative impact of wavelength conversion cascading on the performance of all-

optical routing in OCS networks [GBL06]. When data in a circuit-switched connection is routed

all optically from source to destination, each wavelength conversion performed along the lightpath

of the connection causes some signal-to-noise deterioration. If the distortion of the signal quality

becomes significant enough, the receiver would not be able to recover the original data. There is

therefore an upper bound (threshold) on the number of wavelength conversions that a signal can

go through when it is switched all optically. This new constraint, we refer to as the conversion

cascading constraint, has largely been ignored by previous performance evaluation studies on

all-optical routing. Our simulation studies have shown that the blocking performance of optical

routing deteriorates substantially in the presence of the conversion cascading constraint, especially

when the connectivity of the network topology is relatively low. Consequently an effective RWA
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algorithm needs to take account of the impact of this constraint to avoid the serious negative side

effects.

We proceed to propose two constraint-aware dynamic algorithms under the circumstance of

bounded cascaded wavelength conversions in optical circuit switching [GBL07]. The first greedy

constraint-aware routing algorithm minimizes the number of wavelength conversions for each con-

nection establishing, and the second weighted adaptive constraint-aware routing algorithm consid-

ers the distribution of free wavelengths, the lengths of each route and the conversion cascading

constraint jointly. Simulation results conclusively demonstrate that the proposed algorithms, espe-

cially the latter one, can achieve much better blocking performance in the environments of both

full and sparse wavelength conversion.

One of the key components in the design of optical burst-switched networks is the develop-

ment of efficient adaptive routing. In most existing studies of optical burst-switched networks,

adaptive routing is based on deflection routing and/or feedback from the past intervals which of-

ten introduces excessive transmission delay and architectural complexity. We propose three novel

adaptive routing schemes which consider the transient link congestion at the moment when the

bursts arrive; moreover they can utilize the same offset times for the same node pairs implying

zero additional transmission delay and simplicity [GB08a,GB09]. The proposed schemes also aim

to address the intrinsic unfairness defect of existing popular signaling protocols by increasing the

effective link utilization. In performance results, we show that with our routing techniques, the

fairness among the bursts with different hop counts can be greatly improved; and our methods can

5



decrease the burst loss probability substantially as well in large-scale optical burst-switched WDM

mesh networks.

The three novel adaptive routing schemes described above aim to improve both loss fair-

ness among bursts with various hop counts and overall burst loss performance in optical burst-

switched networks. We continue to present a reduced load fixed point approximation analysis to

evaluate burst loss probabilities for symmetrical ring networks operated under the proposed rout-

ing [GB08b, GB09]. The analysis is based on a two-dimensional Markov chain model and its

accuracy is validated by simulation.

As it happens on OCS networks, we presuppose that the conversion cascading constraint would

cause similarly substantial negative impact on OBS routing algorithms. Due to the inherent differ-

ences of signaling protocols between the two switching mechanisms, we need to further investigate

this negative impact in OBS to design effective methods to resolve or alleviate this problem. Effec-

tive proactive routing [GBL08b,GBL08a,GBL09a] and preemptive channel scheduling [GBL09b]

have been proposed as the solutions. The proactive routing approach is based on the previously

presented hop-based adaptive routing, while the preemptive scheduling approach uses a dynamic

priority for each burst based on the constraint threshold and the current number of performed wave-

length conversions. Extensive comparative simulation results have illustrated that by limiting the

negative cascading impact to the minimum extent practicable, the proposed approaches can dra-

matically decrease the blocking probability and improve the transmission fairness among bursts

with different hop counts.
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1.3 Outline of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 identifies the conversion cas-

cading constraint and evaluates the negative impact it brings to optical circuit-switched networks.

In Chapter 3, two constraint-aware dynamic algorithms are presented in the environment of cas-

caded wavelength conversions. Chapter 4 introduces a set of fairness-improving adaptive routing

mechanisms in optical burst-switched networks. We also develop analytical loss models for sym-

metrical ring networks and verify the analytical results by simulation. Chapters 5 and 6 present the

proactive routing scheme and the preemptive channel scheduling to address the cascaded wave-

length conversions in OBS environments. Chapter 7 concludes the dissertation and discusses our

future ideas to extend the work we have accomplished.
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CHAPTER 2

IMPACT OF CASCADED WAVELENGTH CONVERSIONS

In wavelength-routed (circuit-switched) WDM networks, due to the wavelength continuity con-

straint, if wavelength converters are absent a lightpath accommodating a new connection request

must occupy the same wavelength on all the fiber links through which it traverses. It implies that

when not being able to find a path and allocate the same wavelength to all links along the path,

the RWA protocol will block the call. To remedy the high connection blocking rates caused by

this problem, wavelength converters are introduced. As its name suggests, wavelength converters

can convert one wavelength to another, which would help establish more connections successfully.

However, we can not perform wavelength conversions for an individual connection unlimitedly as

each wavelength conversion would deteriorate the quality of the data being transmitted, resulting

in the data being rendered useless at the end nodes. In this chapter, we evaluate the impact on

blocking performance if an upper bound on the number of wavelength conversions per connection

is applied (hence the conversion cascading constraint). To the best of our knowledge, we are the

first to conduct this evaluation empirically.
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2.1 Introduction

Many efforts have been done in obtaining the call blocking performance of wavelength-routed

networks [RS97, JX01]. Since the technology of optical wavelength conversion can significantly

improve the network blocking performance and network throughput, it has received considerable

attention in the optical community [Bir96, SAS96, LL93b, LL93a, EB03]. The performance im-

provement obtained by wavelength converters depends on the topology of the network, the traffic

demand, and the number of available wavelengths, among other factors [SAS96].

The full-range wavelength converter (FWC) is one of the most important wavelength convert-

ers and it can convert an incoming wavelength to any of the outgoing wavelengths of the WDM

network [XL99, QY02]. Since converters are very costly, there are trade-offs between the number

of converters deployed in a WDM network and how much performance improvement is achieved.

Subramaniam et al. [SAS96] studied the effects of topological connectivity and wavelength con-

version in circuit-switched all-optical wavelength networks. They combined their analytical model

and numerical simulation together to show the strong correlation between the benefits of conver-

sion and network topology as well as the number of available wavelengths. Lee and Li [LL93b]

examined networks with partial wavelength conversion, where a small number of full-range wave-

length converters are shared by different wavelengths within one node architecture. They showed

that the problem of finding the optimal RWA solution with incomplete wavelength conversion

is non-deterministic polynomial NP-complete. Houmaidi et al. [HBL03, EB03] presented the k-
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minimum dominating set (k-MDS) algorithm to place the FWC’s optimally in optical networks

and proved to gain better blocking performance than the approach that placed the converters in

nodes that have the highest blocking probabilities [IM99, SS02]. They have also presented a new

link-dependency analytical model that is useful for enhancing the k-MDS algorithm [EB06].

However, all of the above efforts on all-optical networks disregarded the practical impediments

and constraints that face the deployment of the wavelength conversion technology, such as the

conversion cascading constraint. Our study in this chapter is mainly motivated by the observation

that the conversion cascading constraint may have noticeable or even significant negative impact

on blocking performance of existing routing algorithms in optical environments with sparse and/or

full wavelength conversion. We evaluate this negative impact in all-optical networks and show that

it indeed can be substantial and that RWA needs to take it into account.

The rest of the chapter is organized as follows. In Section 2.2, we discuss briefly wavelength

conversion mechanisms and the conversion limitation from the perspective of physical layer. In

Section 2.3, we discuss the potential impact of the conversion cascading constraint on optical rout-

ing algorithms. In Section 2.4, we review briefly the routing and wavelength assignment algorithms

studied in this chapter. In Section 2.5, we evaluate the blocking performance of the existing static

routing algorithms at the presence of the conversion cascading constraint in different topologies,

and we also discuss the performance measures in terms of sparse converters placement. Finally,

Section 2.6 summarizes the chapter.
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2.2 Wavelength Conversion Mechanisms and Physical Limitations

In general, the core of the wavelength converter is a three terminal device consisting of input, out-

put, and control terminals [Yoo96]. Depending on the mapping functions and the form of control

signals, wavelength converters can be classified into three categories: optoelectronic, optical gat-

ing, and wave-mixing [Yoo96, RM98]. In this chapter, we focus on all-optical routing, i.e., the

optical signal travels from the source node to the destination node without being converted to elec-

tronic signal. Specifically, the performance results discussed in this chapter do not apply to the

case when the signal is subjected to O/E & E/O conversions in the intermediate OXC’s along the

lightpath of the connection.

There are countless issues to be considered when comparing wavelength conversion techniques.

These issues can be grouped in three large categories: signal quality, configuration, and perfor-

mance [Yoo96]. Signal quality includes signal-to-noise ratio, chirp, amplitude distortion, and

extinction ratio, and it largely determines the bit-error-rate and the cascadability of wavelength

converters. Configuration is related to the actual implementation of the wavelength conversion in

the OXC, and is closely linked to the mapping function of the wavelength converter and the re-

sulting OXC architecture. The configuration issue includes control requirements, dynamic ranges

of input signals, polarization dependence, filtering requirements, and power requirements. Lastly,

performance includes conversion efficiencies, conversion bandwidths, and bit-rate limits.
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Future optical networks are expected to rely on optical technologies not only for transmission

but also for signal processing. Wavelength conversion and optical buffering are two envisioned all-

optical signal processing technologies to facilitate and enable the switching and routing of optical

signals. It is well understood that wavelength conversion degrades the quality of the signal and

reduces the signal to noise ratio; cascading wavelength conversion further aggravates this problem

and must be carefully dealt with [LGV97]. The extinction ratio of the converted signal is typically

low, and the reduced extinction ratio leads to power penalties measured right after wavelength con-

version. In addition, some types of wavelength conversion produce chirp in the converted signal,

which leads to excessive pulse broadening after fiber transmission. Because of all of these factors,

wavelength conversion cannot be repeatedly cascaded without a bound. Although the signal dete-

rioration problems associated with wavelength conversion and with conversion cascadability have

been investigated at the physical layer level, the rich literature on the performance evaluation of op-

tical routing has largely ignored this problem. Ideally, a connection should be discarded (blocked)

if the number of wavelength conversions employed to switch the connection causes the signal qual-

ity to degrade to a point of no return. In this chapter, we present the results of a study to evaluate

the level of deterioration of the blocking performance of all-optical routing due to a constraint on

the maximum number of allowed wavelength conversion within the lightpath of circuit-switched

optical connections.
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Figure 2.1: Example blocking due to the conversion cascading constraint.

2.3 Negative Impact of Conversion Cascading Constraint

As aforementioned in previous sections, it is inferred that the enforcement of the conversion cas-

cading constraint would inevitably degrade the blocking performance. In this section, let us briefly

look at how the entire system can be affected by this constraint through an example.

In Figure 2.1, there are four optical nodes and three available wavelengths on each directional

link between any two nodes. The arrowed solid lines represent that the corresponding wavelengths

are currently in use, while the wavelengths represented by the dotted lines are still available. As

shown in Figure 2.1a, a control packet tries to schedule a wavelength channel and related resources

for a data burst traversing from node 1 to node 4. At node 2, it finds only λ1 is available and thus

one wavelength conversion from λ2 to λ1 has to be set up and conducted when the burst arrives. A
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similar situation happens at node 3 which will convert further from λ1 to λ3 in order to reach node 4.

If we do not consider the conversion cascading constraint or if the constraint has a threshold larger

than one (i.e., two or more cascaded conversions are permitted in total for each data transmission),

the control packet is able to finish reservation as usual. However, if the system can only accept a

maximum of one wavelength conversion per data transmission, the burst would be dropped at node

3 as showed in Figure 2.1b (if the burst is not discarded, it will arrive at the receiver as a useless

signal that cannot be recovered). When bursts get excessively discarded due to the conversion

cascading constraint, the burst loss performance will be degraded, and the wavelengths already

utilized by the dropped bursts and other related resources are wasted as well.

2.4 Routing Algorithms in Study

In the dynamic traffic situation, it is desirable to choose a route and a wavelength that maximize

the probability of setting up a given connection, while at the same time attempting to minimize

blocking for future connections. Consequently, RWA algorithms play a key role in improving the

blocking performance of wavelength-routed all-optical networks.

Shortest path routing has been widely used in telecommunication networks because it con-

sumes less resource and has very simple complexity. Shortest path routing can be classified into

two categories: static routing and dynamic (or adaptive) routing. In static routing, the routes are
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usually pre-computed without considering the current network state; while in dynamic routing,

the route selection is based on the current network state. Typical examples of algorithms that uti-

lize static routes are fixed shortest-path routing (FSR) and fixed-alternative shortest-path routing

(FAR). For dynamic routing, the two well-known algorithms - least-loaded routing (LLR) [KA98]

and least-congested-path (LCP) [CY94] routing were proposed.

Static routing provides simplicity of control for setting up and tearing down lightpaths without

requiring extensive support from the control and management protocols to continuously update the

routing tables as in adaptive routing [RS97]. Fixed-alternative routing can provide some degree

of fault tolerance upon link failures. In this chapter, we focus on evaluating the impact of the

conversion cascading constraint on the FSR and FAR algorithms through simulation.

While deploying full conversion capability in all nodes of a large optical network would be

very expensive, the sparse placement of full wavelength converters in selected nodes is a good

compromise between cost and blocking performance. Therefore, we also carry out simulation with

sparse wavelength conversion based on the k-MDS (k = 1) sparse converter placement algorithm

[HBL03].
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Figure 2.2: U.S. Long-Haul Network.

2.5 Impact Evaluation

We have conducted extensive simulations to evaluate the impact of the conversion cascading con-

straint on the blocking performance of the FSR and FAR static routing algorithms. The perfor-

mance tests use a variety of network topologies including the U.S. Long-Haul network (shown in

Figure 2.2), 5 x 5 mesh-torus, 10 x 10 mesh-torus, 20-node ring and 40-node ring networks. The

lightpath connection requests arrive to the network according to a Poisson process with rate λ , and

the connection holding time is exponentially distributed with mean 1/µ . For each connection re-

quest, the source and destination nodes are uniformly selected. So all the source-destination node

pairs have the same traffic load in Erlangs, ρ = λ/µ . The number of wavelengths, W, is the same

on all fiber links. In the tests, we use W = {32,48,64}. For the FSR routing, the connection is

blocked if the chosen shortest path cannot accommodate it. For the FAR routing, one more edge-
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disjoint candidate route is added so that the blocking events on the two routes can be considered to

be independent. If the connection fails on the primary path, it re-attempts on the alternative path.

Wavelengths are assigned to a session randomly from the set of free wavelengths on the associated

path.

For each topology, we compare the performance of the FSR algorithm under the full wave-

length conversion environment with and without the presence of the conversion cascading con-

straint. We also present simulation results for the FAR algorithm on the 20-node ring network and

the U.S. Long-Haul network. Finally, the case of sparse deployment of wavelength conversion is

tested on the U.S. Long-Haul topology using FAR.

We use the notation c j to represent a constraint when the maximum allowed number of wave-

length conversions in the lightpath of a connection is j. If constraint c j is in effect, then any path

that requires j + 1 or more wavelength conversions is not acceptable. Another notation nc, no

constraint, indicates that the cascading constraint is ignored.

2.5.1 U.S. Long-Haul Network

Figures 2.3a and 2.3b depict the blocking performance of the fixed shortest-path routing algorithm

for the U.S. Long-Haul network with full wavelength conversion at W = 32 and W = 48, respec-

tively. U.S. Long-Haul has 28 nodes, 45 links and its longest shortest-path between source and
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Figure 2.3: U.S. Long-Haul Network, FSR, Full Wavelength Conversion.
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destination has six intermediate OXC’s. Therefore no connection needs more than six wavelength

conversions to reach its destination. However, most source-destination pairs in the U.S. Long-Haul

network have lightpaths with much less number of intermediates OXC’s. We have found that the

constraint c j when j > 3 does not affect most connections in the Long-Haul network and thus im-

poses very little impact on the network blocking performance. The constraint c3 has slightly little

negative impact but both the constraint c2 and c1 cause noticeable performance degradation.

The two figures highlight the negative performance impact when the constraint c2 is in effect,

i.e., when the maximum allowed number of conversions in the lightpath is two. In Figure 2.3a

under a load of 180 (W = 32) without the enforcement of the constraint, the blocking percentage

is around 1.3%. When we apply the c2 constraint, the blocking percentage is increased to 4%,

which is three times worse than when the constraint is ignored. Similarly in Figure 2.3b when

W = 48, load is equal to 300, the blocking percentage is increased from 1.7% without conversion

constraints to 4.8% with the c2 constraint. Figures 2.3a and 2.3b show that there is a persistent

significant deterioration of the blocking performance of the U.S. Long-Haul network when the c2

constraint is present.
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(a) Ring with 20 nodes, W = 48
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(b) Ring with 40 nodes, W = 64

Figure 2.4: Ring Networks, FSR, Full Wavelength Conversion.
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2.5.2 20-node and 40-node Ring Topologies

The impact of the conversion cascading constraint on the sparsely connected ring topology is quite

noticeable and is more apparent than on the Long-Haul and mesh topologies. Figure 2.4a compares

the blocking probabilities for the 20-node ring at different loads for the constraints c2, c3, c4 and

c5, while Figure 2.4b compares the blocking probabilities for the 40-node ring at different loads for

the constraints c2− c7. In all cases, the negative impact of the constraint c j increases as the value

of j decreases. The constraint c j with a relatively high value of j has been found to cause clear

deterioration on the blocking performance of the ring networks. This is attributed to the unique

nature of the ring topology: every node has only two neighbors and thus a lot of wavelength

conversions are needed to help establish the connection requests.

2.5.3 5 x 5 and 10 x 10 Mesh Topologies

Similar to the U.S. Long-Haul network, the 5 x 5 mesh network has a limited number of interme-

diate hops in any lightpath and only the constraint c2 (and of course c1) has a noticeable impact

on the blocking performance. For the constraint c2 in the 5 x 5 mesh, the biggest deterioration in

terms of blocking probability is observed at load 800 in Figure 2.5a when it is increased from 1.6%

to 2.96%. The graphs for W = 32 and W = 64 have similar trends and are thus omitted. An in-

teresting observation in Figure 2.5a is that the two curves labelled c2 and nc are interleaved when
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the loads are high. This is because at high loads the connections dropped due to the constraint

would leave some wavelengths free and help with the setup of the next incoming requests. This

fluctuation is often observed at very high loads. The 10 x 10 mesh network has a larger diameter

and consequently has a larger average number of intermediate OXC’s between pairs of nodes. As

demonstrated in Figure 2.5b, the constraints c4, c3 and c2 all cause noticeable impact. As expected,

the impact of the cascading constraint c j becomes worse as the value of j decreases.

The simulation results so far have shown that the level of impact of the conversion cascading

constraint on routing performance depends greatly on the network topology and traffic load. In

conclusion, a network with a small diameter and low/moderate traffic load would typically need

very few wavelength conversions and its blocking rate would not be affected much by the pres-

ence of an upper bound on the number of cascaded wavelength conversions. A network with a

large diameter and heavy dynamic traffic will frequently use wavelength conversion and its block-

ing rate will rise when there exists a maximum threshold on the number of cascaded wavelength

conversions.
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(a) Mesh-torus (5 x 5), W = 48
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Figure 2.5: Mesh-torus Networks, FSR, Full Wavelength Conversion.
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Figure 2.6: Ring with 20 nodes, W = 48, FSR and FAR, Full Wavelength Conversion.

2.5.4 FAR algorithm and Sparse Wavelength Conversion

To better investigate the impact of wavelength conversion cascading on blocking performance of

optical routing algorithms, we conduct simulation tests using the fixed-alternative shortest-path

routing (FAR) algorithm that provides a primary path and an alternative path.

The performances of the FSR and FAR algorithms on the 20-node Ring network in the environ-

ment of full deployment of wavelength conversion are compared in Figure 2.6. When there is no

conversion cascading constraint, FAR performs better than FSR with respect to the blocking prob-

ability which is expected. However when the conversion cascading constraint is in effect, there

is almost no difference between FSR and FAR even for c3 and c4. The reason is that the usually

much longer alternative path in the ring network cannot generally provide less number of conver-

sions than the shorter primary path and thus blocking would still often occur on the alternative

path.
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Figure 2.7: U.S. Long-Haul, W = 32, FAR, Full and Sparse Wavelength Conversion.

Figure 2.7 plots the performance comparison for the U.S. Long-Haul network under the two

different environments: sparse deployment of wavelength conversion and full deployment of wave-

length conversion. The FAR algorithm is used in both cases. Sparse wavelength converters are allo-

cated according to the k-MDS (k = 1) converter placement algorithm [HBL03]; more specifically,

the optical nodes in the set {1,3,4,5,8,10,12,15,17,20,22,25,27} in Figure 2.2 are equipped

with full-range wavelength converters (FWC). In the environment of full deployment of wave-

length conversion (i.e., there are converters in every node), the blocking performance deteriorates

significantly for c2 (curves labeled c2-FAR versus nc-FAR) for the similar reason happening on

the 20-node Ring, which was explained in the previous paragraph. When every node is equipped

with converters, the blocking performance for c4 is very close to nc (curves labeled c4-FAR versus

nc-FAR). As expected, FAR performs worse for the same constraint with sparse deployment of

wavelength conversion than with full deployment. For sparse deployment, FAR almost has the

same performance for c3 and nc (markers labeled c3-FAR-Sparse versus nc-FAR-Sparse). But the
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difference between c2 and nc in sparse deployment is noticeable (markers labeled c2-FAR-Sparse

versus nc-FAR-Sparse). This indicates clearly that the impact of the cascading constraint cannot

be ignored even if only sparse deployment of wavelength conversion is used.

2.6 Summary

In this chapter, we have evaluated the impact of the conversion cascading constraint on the per-

formance of static optical routing algorithms in OCS networks. The simulation tests used popular

optical network topologies, including U.S. Long-Haul, mesh-torus, and ring. The results show

that the negative impact of cascaded conversions can be substantial and should not be ignored.

In next chapter, we extend the tests to other network topologies and dynamic routing. To solve

the problem, adaptive constraint-aware routing algorithms are proposed, and extensive associated

empirical results are also presented.
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CHAPTER 3

CONSTRAINT-AWARE ADAPTIVE ROUTING

Our study in this chapter is mainly motivated by the observation that the conversion cascading

constraint may have noticeable or even significant negative impact on the conventional dynamic

routing algorithms in optical environments with full and sparse wavelength conversion, similar as

what we have discovered on the static all-optical routing algorithms in last chapter [GBL06]. While

the dynamic routing algorithms in [YAK03,ZBL05,LS99] have shown that they could obtain good

network-wide blocking performance by selecting a path with the maximum available wavelengths

in a wavelength-routed all-optical network without wavelength converters, we find that they do not

perform well when being simply extended for the environment of wavelength conversion. More-

over they can be significantly impacted by the conversion cascading constraint especially under

the environment of full wavelength conversion. We propose two dynamic RWA algorithms to

take the wavelength conversion and/or the conversion cascading constraint into account. The two

algorithms named Greedy Constraint-aware Routing (GCAR) and Weighted Adaptive Constraint-

aware Routing (W-ACAR) perform source routing using both link connectivity and the global

state information of each wavelength. They also consider the wavelength conversion capability of

OXC’s and additionally recognize the limitation of the conversions cascading constraint. We carry
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out extensive performance studies of the proposed dynamic algorithms over a variety of topologies

including the U.S. Long-Haul topology, ring topology and mesh-torus topology. The results con-

clusively demonstrate that the two constraint-aware GCAR and W-ACAR algorithms especially the

latter one can achieve much better performance than fixed shortest-path routing, fixed-alternative

routing and conventional dynamic routing algorithms, in the environment of full or/and sparse

wavelength conversion.

3.1 Overview of Optical Adaptive Routing

In static routing, the routes are usually pre-computed without considering the current network

state; while in dynamic (adaptive) routing, the route selection is based on the current network

state. The two well-known algorithms - least-loaded routing (LLR) [KA98] and least-congested-

path (LCP) [CY94] routing were proposed. The major advantage of adaptive routing is that it often

results in higher resource utilization and lower connection blocking than static routing. Adaptive

routing combined with full-wavelength converters in each optical node usually offers very low

blocking probability. In this sense, the conversion cascading constraint might not have noticeable

impact on adaptive routing. However, it has been shown that the average hop counts of con-

nections set up with dynamic routing are much higher than FSR and FAR [YAK03]. To further

improve the blocking performance and reduce the path lengths as well, Chu et al. [CLZ03] pro-

posed a dynamic RWA algorithm called weighted least-congestion routing and first-fit wavelength
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assignment (WLCR-FF) in a wavelength-routed all-optical network with wavelength converters.

Given appropriate weights to wavelength conversion, shorter path length and better blocking prob-

ability can be achieved. But, as the other proposed algorithms, WLCR-FF ignored the negative

impact of the conversion cascading constraint. While converters get more involved, the negative

impact caused by the conversion cascading constraint may be noticeable. Furthermore, in certain

cases, e.g., in ring networks with full wavelength conversion, the LLR algorithm actually resulted

in worse performance compared to that of the static fixed-alternative routing algorithm [CLZ03],

where the wavelength conversion cascading constraint may also impose their probably most sig-

nificant impact.

Based on the principle of least-congested-path routing [CY94], a variety of dynamic routing

algorithms have been proposed to select the lightpaths with the maximum idle wavelengths which

proved to achieve good blocking performance, as well as good link utilization (load balancing).

The authors in [LS99] proposed dynamic routing using congestion and neighborhood information

which searches only the neighborhood including the links up to distance k on the pre-computed

paths and then determines the maximum idle wavelengths. Zhou et al. [ZBL05] showed the ef-

ficiency and effectiveness of logical link representation and bitwise computation in single-fiber

and multiple-fiber optical networks by adopting a modified Dijkstra algorithm that chooses the

lightpaths with the maximum free wavelengths dynamically. Yoo et al. [YAK03] further presented

four adaptive routing algorithms that favor paths with near-maximum number of available wave-

lengths between two nodes and concluded NAW (near-maximum available wavelength) was the
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best routing algorithm. However, when the least-congested-path based routing is simply extended

to incorporate the wavelength converter deployment, it may not perform well as desired and more

importantly it may be significantly impacted by the conversion cascading constraint since the avail-

able wavelengths likely get fragmented (explained in Section 3.2 in more depth). Therefore, we

need to take the impact of the conversion cascading constraint into account and thus propose the

two constraint-aware dynamic algorithms GCAR and W-ACAR in the following section.

3.2 Adaptive Constraint-Aware Routing and Wavelength Assignment

The proposed set of algorithms requires the support of Open Shortest Path First (OSPF) exten-

sions that provide information on wavelengths being used at each link of the entire network. Using

this information, source routing is performed to search for a route with the near-minimum num-

ber of wavelength conversions at the arrival time of a connection request, in a similar fashion to

the Dijkstra shortest path algorithm. We first demonstrate an extension of NAW [YAK03] called

Near-maximum Available Wavelength Routing with Wavelength Conversion (NAW-WC) by incor-

porating wavelength converter deployment, and then propose two adaptive algorithms based on this

extension, which additionally consider the impact of the conversion cascading constraint under the

environment of full and sparse wavelength conversion. As aforementioned, they are called Greedy

Constraint-aware Routing (GCAR) and Weighted Adaptive Constraint-aware Routing (W-ACAR).
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3.2.1 Near-maximum Available Wavelength Routing with Wavelength Conversion

Extending the NAW algorithm proposed in [YAK03] for routing in circuit-switched networks,

we consider both full and sparse placement of FWC’s in the network. The resulting algorithm

searches for a route that has the largest number of free wavelengths with the required wavelength

conversions subject to an upper limit of the conversion cascading constraint. If there is a tie, the

algorithm selects the route having the smallest hop count. We investigate the negative impact of the

conversion cascading constraint on NAW-WC through the following method: when the searched

route needs more wavelength conversions than the upper bound of the cascading constraint, the

connection request will be discarded.

The pseudo-code given in Figure 3.1 describes the NAW-WC algorithm as it finds a route

with the near-maximum number of free wavelengths between two nodes subject to the conversion

cascading constraint. We use the notations and data structures similar to the ones used in [ZBL05].

The operator “∩” denotes the logical intersection (bitwise AND) operation and the operator “•”

denotes string concatenation. NAW-WC accepts three inputs: source node S, destination node D,

and the array LinkState that records the free wavelengths on each link. The algorithm returns the

selected path from S to D, the length of this path, the number of wavelength conversions required

to fulfill the connection request and the largest free wavelengths that can be used in this path.

The data structures used by the algorithm are as follows. For each node v, we use the following

notations:
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• Route[v]: a string that stores the route selected so far from source S to node v.

• HopCount[v]: the length (i.e., number of hops) of Route[v].

• Nconversions[v]: the number of wavelength conversions required by Route[v].

• Avail[v]: the mask bit array representing the free wavelengths that can be used in Route[v].

As we mentioned at the beginning of this section, up-to-date information on wavelengths being

used at each link of the entire network is required to support the NAW-WC routing algorithm. The

array LinkState records the free wavelengths available on each link. We assume each link to be

a bidirectional fiber and also assume that all links in the network have the same W wavelengths.

The variable LinkState[C,v] is used to keep track of the free channels on the link connecting the

two nodes from C to v. The kth bit in this variable is set to one if the kth wavelength is free and is

set to zero if this wavelength is used. The function NF(X) is used to calculate the number of free

wavelengths along the path. For instance, NF(Avail[v]) returns the number of 1-valued bits stored

in Avail[v], which is the number of free wavelengths that can be used in Route[v].

In Step One, the algorithm does the initialization work by setting the initial values of the data

structures for the source node. It also marks all the optical nodes except the source node as un-

visited. In Step Two, it tries to find the next better node(s) that has the larger number of free

wavelengths from all or some of the neighbor nodes directly connected to the current node, de-

pending on whether they have been selected before or not. Two situations are considered here: 1)
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Near-Maximum Available Wavelength Routing with Wavelength Conversion (NAW-WC)

Input parameters: S, D, array LinkState

Step 1:   /* Initialization */

Set current node C = S;

Avail[C] = 2n – 1 /* All n bits of Avail[C] have a value 1, i.e. all n wavelengths are free */

Route[C] = “S”; HopCount[C] = 0; Nconversions[C] = 0;

Insert all nodes of the graph except node S into the set L;

Mark all members of L as unvisited;

Step 2: /* Update the values computed for every neighbor of C */

for every neighbor of current node C, say v, which is a member of L

do

if (v is unvisited) { /* First time to reach v */

Mark v as visited;

Route[v] = Route[C] “v”;

HopCount[v] = HopCount[C] + 1; Nconversions[v] = Nconversions[C];

Avail[v] = Avail[C] LinkState[C, v];

if (Avail[v] == 0 AND LinkState[C, v] 0 AND (Node C has FWC) ) {

/* Conversion is needed to reach v from C */

Nconversions[v] = Nconversions[C] + 1;

Avail[v] = LinkState[C, v];

}

} else { /* v has been visited before */

TempAvail = Avail[C] LinkState[C, v];

TempHopCount = HopCount[C] + 1; TempNconv = Nconversions[C];

if (TempAvail == 0 AND LinkState[C, v] 0 AND (Node C has FWC) ) {

/* Conversion is needed to reach v from C */

TempNconv = Nconversions[C] + 1;

TempAvail = LinkState[C, v];

}

/* Check if this is a better path to reach node v */

// CHECK_START

if ( (TempAvail > NF(Avail[v])) OR

(NF(TempAvail) == NF(Avail[v]) AND TempHopCount < HopCount[v]) ) {

/* Better path to node v has been found via node C */

Route[v] = Route[C] “v”; Nconversions[v] = TempNconv;

HopCount[v] = TempHopCount; Avail[v] = TempAvail;

}

// CHECK_END

}

done

Step 3: /* Find next current node */

if (L is not empty) {

Select a node v from L having the largest value of NF(Avail[v]);

If there is a tie, select the node v having the smallest value of HopCount[v];

Remove v from L; set C = v; go to step 2;

}

Step 4:   /* Return success or failure */

if (( Avail[D] == 0) OR (Nconversions[D] > ConversionBound) {

Failure: the NAW-WC algorithm failed to find a valid path from S to D;

} else {

Success: return (Route[D], HopCount[D], Nconversions[D], Avail[D]); 

}

Figure 3.1: Algorithm NAW-WC.
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if the neighbor node is unvisited so far, only its associated data structures need to be updated based

on the path Route[C] found by the current node; 2) if the neighbor node has been visited, compar-

ison on the number of free wavelengths owned by the original path and the new projected path is

needed in order to distribute the load to less congested links. If the new projected path proves to

be better because of either larger free wavelengths or fewer hop counts, then it is picked and the

associated variables are updated accordingly. In Step Three, the node having the largest number

of free wavelengths from all eligible nodes in the set L is chosen and a shorter path breaks a tie.

The algorithm repeats Step Two until all the nodes have been selected. In Step Four, the algorithm

returns the resulting route to the destination node if the total number of conversions required does

not exceed the upper bound, otherwise failure is returned.

The major disadvantage of NAW-WC is that it does not take the conversion cascading constraint

into consideration during the searching process for an admittable route. In Step Two, when a con-

version is required to reach v from C, Avail[v] or TempAvail is defined to be equal to LinkState[C,v]

instead of the intersection set of LinkState[C,v] and Avail[v] like when no wavelength converter is

used. In this way, the path with the conversion has a higher probability of being picked in Step

Three because of its probably larger set of available wavelengths. The preference of conversion

may lead to longer average hop lengths of established connections and significant impact when the

cascading constraint is applied, which would eventually result in worse blocking performance.
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3.2.2 Greedy Constraint-Aware Routing Algorithm

By recognizing the drawbacks of the NAW-WC routing algorithm, we improve the checking pro-

cess for a better path to an already visited node in Step Two by looking for less number of con-

versions before comparing the free wavelengths. Figure 3.2 depicts this important change based

on the relevant block of pseudo code of NAW-WC (corresponding to the pseudo code between the

two labels CHECK START and CHECK END in Figure 3.1) for the GCAR algorithm. The new

algorithm is called Greedy Constraint-Aware Routing algorithm as it continuously searches for

the routes with the least wavelength conversions greedily. Step Three is also modified to comply

with the new algorithm as follows: the next current node will be chosen based on a series of pa-

rameters in order of the smallest Nconversions[v], the largest NF(Avail[v]) and lastly the smallest

HopCount[v]. In fact, all the lightpaths set up by the GCAR algorithm use the minimum number

of wavelength conversions as possible based on the current network state information according to

the principle of Dijkstra’s algorithm.

Since the GCAR algorithm is aware of the conversion cascading constraint and thus fewer

connections will be discarded due to the constraint, it should not be surprising to conclude that

it would perform better than NAW-WC when the constraint is enforced. GCAR still has certain

advantage over NAW-WC even if no cascading constraint exist because GCAR assigns higher

priority to the Nconversions[v] in Step Three when selecting the next node to be traversed, which

eventually leads to overall shorter average hop lengths of the established connections. This can
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/* Check if this is a better path to reach node v */

// CHECK_START

if ( (Avail[v] == 0 AND TempAvail > 0) OR

(TempNconv < Nconversions[v] AND TempAvail > 0) OR

(TempNconv == Nconversions[v] AND NF(TempAvail) > NF(Avail[v]) ) OR

(TempNconv == Nconversions[v] AND NF(TempAvail) == NF(Avail[v])

AND TempHopCount < HopCount[v]) ) 

/* Better path to node v has been found via node C */

Route[v] = Route[C] ● “v”; Nconversions[v] = TempNconv;

HopCount[v] = TempHopCount; Avail[v] = TempAvail;

}

// CHECK_END

Figure 3.2: Pseudo code regarding better path checking (GCAR).

be explained through a simplified example depicted in Figure 3.3 that shows a subset of an entire

optical network where a connection request having node 9 as its destination comes to node 5.

The symbol AND represents the number of available wavelengths as computed by the logical-

AND of the two wavelength sets on the current link and the uplink; and NUW is the number

of unreserved wavelengths on each edge. The two dotted edges (7, 8) and (6, 10) indicate a

wavelength conversion would be required if a connection flow from the former node to the latter

one. If a wavelength conversion occurs, the common free wavelengths between the two involved

nodes will be updated to use those available on the relevant downlink according to the algorithm

(implying AND is equal to NUW ), which usually embraces a higher probability of having a larger

value than what is gotten through several successive logical-ANDs. Both NAW-WC and GCAR

will choose node 7 first and then node 8. However, NAW-WC will then select nodes 6, 10 and

finally node 9 because larger free wavelengths are available on this partial path. Nevertheless,

GCAR will choose node 9 directly for fewer number of wavelength conversions despite larger
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Figure 3.3: GCAR uses fewer hops than NAW-WC under certain scenario without enforcing the

conversion cascading constraint.

available wavelengths on the other route which also has more hops. In fact, assuming wavelength

conversions are required in the two nodes 6 and 7, GCAR will always result in an equal or shorter

path than NAW-WC as long as there is a feasible lightpath available. Although sometimes GCAR

may have longer paths than NAW-WC, with overall shorter paths of successful connections and its

awareness of the constraints, GCAR usually performs better than NAW-WC regarding the blocking

probability.

3.2.3 Weighted Adaptive Constraint-Aware Routing Algorithm

We may draw a conclusion from the previous dynamic routing algorithm GCAR that the dominat-

ing factors of impacting the blocking performance in the networks are as follows: the number of

wavelength conversions, the availability of common free wavelengths and the lengths of the paths.

It may be a good idea to integrate them into a single factor using a weight function (or penalty
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function):

Weight[v] =
Avail[v]

HopCount[v]
+δ ×θ(v) (3.1)

A feasible route from the source S to the destination D with the maximum weight is then

picked. In the weight function, the natural logarithm part θ(v) contributes to the negative impact

of the conversion cascading constraint as follows:

θ(v) = ln

(

1− Nconversion[v]

ConversionBound +1

)

(3.2)

The parameter δ controls the contribution of θ(v) in the weight function and with bigger values

it would generally make the impact of the cascading constraint more obvious. Except to investigate

the trend of the impact when varying δ , we assume δ = 1 in most of our performance tests in

Section 3.3 (exceptions will be clearly noted). The natural logarithm function in θ(v) has the

following good properties that interpret the negative impact of the cascading constraint very well:

• θ(v) is always non-positive. When Nconversions[v] equals zero, θ(v) (which is also zero)

has no impact at all. When Nconversions[v] increases, θ(v) becomes smaller (negative)

which has a larger negative influence on the decision question whether the current route

indicated by Route[v] should be chosen for the node v.

• When ConversionBound is fixed, the non-linear logarithm degradation of θ(v) caused by the

increasing of Nconversions[v] matches the expected real-world situation: if Nconversions[v]
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is small we may not care about it much because appropriate conversions can improve the

blocking performance; but if Nconversions[v] is becoming larger its negative impact also is

becoming accumulatively noticeable and thus it should be suppressed.

• The same value of Nconversions[v] has different degrees of negative impacts when Conver-

sionBound varies which is also desired. For instance, it is obviously more urgent to restrain

further cascading conversions when ConversionBound is set to two than it is set to four if

the wavelength conversion already occurred once (i.e., Nconversions[v] = 1).

We select the weight function Weight[v] mainly because of the following consideration: first,

it is important to decrease resource consumption by reducing lightpath lengths, which can be

achieved through FSR routing; second, routing through least congested paths (LCP) allows load

sharing and thus preserves resources on critical links for future connections. Intuitively, these two

techniques reduce the blocking probability. However, they run in opposite directions. In fact, since

FSR routing is not aware of the network status, it cannot perform load sharing. On the other hand,

LCP routing may choose longer paths in order to avoid congested links, which is resource waste-

ful. Finally, to prevent the number of cascading conversions required by the selected lightpaths

from exceeding the upper bound, it should be controlled gradually. Thus in summary, in order to

achieve a good blocking performance, the weight function should be proportional to the number of

free wavelengths, and be inversely proportional to the length of the route, and decrease gradually
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when the number of conversion cascading conversions approaches to the limit, which is the main

reason why we select the proposed weighted function.

3.3 Numerical Results and Analysis

We have conducted extensive simulations to evaluate call blocking performance of the three algo-

rithms: NAW-WC, GCWR and W-ACAR, and the other two static methods: the FSR and FAR

algorithms, under the environment of full/sparse wavelength conversion and the impact of the con-

version cascading constraint. The performance tests use a variety of network topologies including

the U.S. Long-Haul network (shown in Figure 2.2), 5 x 5 mesh-torus, 10 x 10 mesh-torus, 20-node

ring and 40-node ring networks. The lightpath connection requests arrive to the network accord-

ing to a Poisson process with rate λ , and the connection holding time is negatively exponentially

distributed with mean 1/µ . For each connection request, the source and destination nodes are uni-

formly selected. So all the source-destination node pairs have the same traffic load in Erlangs. This

assumption adheres to the model of uniform traffic used in [EB06]. The number of wavelengths,

W, is the same on all fiber links. For the FSR routing, the connection is blocked if the chosen

shortest path cannot accommodate it. For the FAR routing, one more edge-disjoint candidate route

is added so that the blocking events on the two routes can be considered to be independent. If

the connection fails on the primary path, it re-attempts on the alternative path. We use hop-based

routing with forward reservation in both FSR and FAR, which is different from what we adopt in
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the three dynamic algorithms. Wavelengths are assigned to a session randomly from the set of free

wavelengths on the associated path. All simulation results are given with 95% confidence intervals

by use of the batch means method with 50 batches or more.

For each topology, we compare the performance of FSR, FAR and the three dynamic algorithms

under the full/sparse wavelength conversion environment with and without the presence of the

cascading constraint. We include the graphs of FSR and FAR presented in Chapter 2 here to make

the comparisons complete. Since how to allocate converters in the network is not the focus of this

chapter and the k-MDS converter placement algorithm [HBL03,EB03,EB06] has proved to achieve

good blocking performance both empirically and theoretically, we adopt the k-MDS algorithm for

our sparse deployment of wavelength converters. The simulation results for the FAR algorithm as

well as the dynamic algorithms on the 40-node ring network and the 10 x 10 mesh-torus network

are ignored due to the similarity.

Same as in Chapter 2, we use the notation c j to represent a constraint when the maximum

allowed number of wavelength conversions in the lightpath of a connection is j. If constraint c j is in

effect, then any path that requires j+1 or more wavelength conversions is not acceptable. Another

notation nc, no constraint, indicates that the cascading constraint is ignored. These notations will

not be explained again when they are used in the following chapters.
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3.3.1 Blocking Performance Analysis of U.S. Long-Haul Network

Figures 3.4a-3.4f depict the blocking performance of different RWA algorithms in the U.S. Long-

Haul network with full or/and sparse wavelength conversion. U.S. Long-Haul has 28 nodes, 45

links and its longest shortest-path between source and destination has six intermediate OXC’s.

Therefore no connection needs more than six wavelength conversions to reach its destination.

However, most source-destination pairs in the U.S. Long-Haul network have lightpaths with much

less number of intermediates OXC’s. In Figures 3.4a and 3.4b we have found that for the primitive

FSR algorithm, the conversion constraints c j when j > 3 do not affect most connections in the

Long-Haul network and thus have very little impact on the network blocking performance. The

constraint c3 has slightly little negative impact but both the constraint c2 and the constraint c1 cause

noticeable performance degradation. We can also observe in Figure 3.4a that the FAR algorithm

works much better than the FSR algorithm, which is expected. For FAR, the performance degra-

dation is still significant when the constraint c3 or c2 is in effect. Moreover, the gap between the

two curves labeled C2-FAR and C3-FAR is even larger than the gap between the other two curves

labeled C2-FSR and C3-FSR at high loads. It can be explained as follows: when we provide two

candidate routes for a node pair, the blocking events of these two routes can be considered to be

independent; hence the blocking probability can be decreased a lot at high loads even if the c3

or c4 constraint exists. Nevertheless, because the alternative paths are typically longer than the

primary paths, blocking would still often occur on the alternative paths when only two cascaded

42



60 80 100 120 140 160 180 200 220 240
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Load in Erlangs

B
lo

c
k
in

g
 P

ro
b

a
b

ili
ty

 

 
c

2
−FAR

c
3
−FAR

c
4
−FAR

nc−FAR

c
2
−FSR

c
3
−FSR

nc−FSR

(a) FSR vs. FAR

240 260 280 300 320 340 360 380 400
0

0.02

0.04

0.06

0.08

0.1

0.12

Load in Erlangs

B
lo

c
k
in

g
 P

ro
b

a
b

ili
ty

 

 
c

2

c
3

nc

(b) FSR, W = 48

60 80 100 120 140 160 180 200 220 240
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Load in Erlangs

B
lo

c
k
in

g
 P

ro
b

a
b

ili
ty

 

 
c

2
−FAR

c
3
−FAR

c
4
−FAR

nc−FAR

c
2
−FAR−Sparse

c
3
−FAR−Spare

nc−FAR−Sparse

(c) FAR, Full Conversion vs. 1-MDS

210 220 230 240 250 260 270 280
0

0.002

0.004

0.006

0.008

0.01

0.012

Load in Erlangs

B
lo

c
k
in

g
 P

ro
b
a
b
ili

ty

 

 
c

1
−W−ACAR

c
2
−W−ACAR

nc−W−ACAR

c
1
−GCAR

c
2
−GCAR

nc−GCAR

(d) W-ACAR vs. GCAR

210 220 230 240 250 260 270 280
0

0.01

0.02

0.03

0.04

0.05

0.06

Load in Erlangs

B
lo

c
k
in

g
 P

ro
b

a
b

ili
ty

 

 
c

1

c
2

c
3

nc

c
1
(1−MDS)

c
2
(1−MDS)

c
3
(1−MDS)

nc(1−MDS)

(e) NAW-WC, Full Conversion vs. 1-MDS

210 220 230 240 250 260 270 280
0

0.01

0.02

0.03

0.04

0.05

0.06

Load in Erlangs

B
lo

c
k
in

g
 P

ro
b

a
b

ili
ty

 

 
c

1
−N(1−MDS)

c
2
−N(1−MDS)

nc−N(1−MDS)

c
1
−N(2−MDS)

c
2
−N(2−MDS)

nc−N(2−MDS)

c
1
−W(1−MDS)

c
2
−W(1−MDS)

nc−W(1−MDS)

(f) W-ACAR vs. NAW-WC

Figure 3.4: Blocking probability versus traffic load in U.S. Long-Haul network. Unless speci-

fied otherwise, all graphs imply full wavelength conversion with W = 32. In (f), C1-N stands for

C1-NAW-WC while C1-W stands for C1-W-ACAR and so on.
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wavelength conversions are allowed at maximum. Thus C2-FAR has a smaller improvement over

C2-FSR than C3-FAR over C3-FSR with respect to blocking performance.

Figure 3.4c plots the performance comparison for the U.S. Long-Haul network under the two

different environments: full wavelength conversion and sparse wavelength conversion using 1-

MDS. The FAR algorithm is used in both cases. Sparse wavelength converters are allocated ac-

cording to the k-MDS (k = 1) converter placement algorithm; more specifically, the optical nodes

in the set {1,3,4,5,8,10,12,15,17,20,22,25,27} in Figure 2.2 are equipped with full-range wave-

length converters (FWC). In the environment of full wavelength conversion, the blocking perfor-

mance deteriorates significantly for c2 for the same reason explained in the previous paragraph.

When every node is equipped with converters, the blocking performance for c4 is very close to nc.

As expected, FAR performs worse for the same constraint with sparse conversion than with full

conversion. For sparse conversion, FAR almost has the same performance for c3 and nc. But the

difference between c2 and nc with sparse conversion is still noticeable. This indicates clearly that

the impact of the cascading constraint cannot be ignored even if only sparse wavelength conversion

is used.

Figures 3.4d-3.4f show that the blocking performance of the NAW-WC, GCAR and W-ACAR

algorithms is a significant improvement over FSR and FAR. It is primarily because the network

state is known when the requests come and more wavelengths are left free for future connections

in dynamic algorithms. We can also observe that overall the GCAR and W-ACAR algorithms have

similar blocking performance, while they are better than the NAW-WC algorithm that is a con-
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ventional dynamic algorithm without considering the negative impact of the conversion cascading

constraint in the environment of either full or sparse wavelength conversion. The performance

results with sparse conversion for GCAR are omitted because they are very close to the results for

W-ACAR. This indicates that this negative impact cannot be ignored even in dynamic algorithms.

Furthermore, without the presence of the cascading constraint (curves labeled nc) GCAR and W-

ACAR still perform better than NAW-WC, which we have discussed the reason when introducing

these two algorithms in Section 3.2. In Figure 3.4d we can observe all the four curves representing

the different conditions of the two algorithms GCAR and W-ACAR are interleaved. It is basically

because they get similar average hop lengths of the established connections and similar link utiliza-

tion under these conditions. We will look into this scenario in a quantitative way when discussing

the ring and mesh-torus topologies in the following subsections.

Figure 3.4e compares the performance for NAW-WC with full conversion and with 1-MDS

sparse conversion, while Figure 3.4f compares the performance between W-ACAR and NAW-WC

both with 1-MDS or 2-MDS sparse conversion. The 2-MDS sparse conversion indicates the op-

tical nodes in the set {4,8,12,17,25} in Figure 2.2 are equipped with FWC’s. If no constraints

exist the blocking performance decreases when the U.S. Long-Haul network is switched from full

conversion to 1-MDS sparse conversion, but the difference is kept small; and there is almost no

degradation from 1-MDS to 2-MDS. This observation is mainly attributed to the effectiveness

of the k-MDS algorithm and is consistent with the common conclusion obtained in many past

researches [SAS96, LL93b, IM99, KA98] that sparse conversion can achieve similar blocking per-
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formance as full conversion when an appropriate number of converters are allocated in the right

place. However, if any cascading constraint exists, the imposed negative impact on NAW-WC

is still obvious. Figure 3.4f shows W-ACAR also performs much better than NAW-WC in the

environment of 1-MDS sparse conversion.

3.3.2 Performance Analysis of 20-node and 40-node Ring Topologies

The impact of the conversion cascading constraint on the sparsely connected ring topology is quite

noticeable and is more apparent than on the Long-Haul and mesh topologies. Figures 3.5a-3.5c

compare the blocking probabilities for the static FSR and FAR algorithms with full wavelength

conversion in the 20-node ring and the 40-node ring, respectively. In all cases, the negative impact

of the constraints c j increases as the value of j decreases. The constraints c j with relatively high

value of j have been found to cause clear deterioration on the blocking performance of the ring

networks. This is attributed to the unique nature of the ring topology: every node has only two

neighbors and thus a lot of wavelength conversions are needed to help establish the connection

requests. The more wavelength conversions are involved, the more apparent will be the impact of

the conversion cascading constraint. When there is no cascading constraint, FAR performs better

than FSR with respect to the blocking probability which is expected. However, when the cascading

constraint is in effect, there is almost no difference between FSR and FAR even for the c3 and c4

constraints (Figure 3.5c). The reason is that for most node pairs in a ring topology, one route is
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(b) 40-node Ring, FSR, W = 64
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Figure 3.5: Blocking probability versus traffic load in ring networks (unless specified otherwise,

all graphs imply 20-node ring and full wavelength conversion with W = 48).
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very short and another route is very long. Due to this nature, a connection request using FAR

is very likely to get rejected on the much longer alternative route when it cannot go through the

shorter primary route due to the restriction of the conversion cascading constraint.

As expected, the NAW-WC, GCAR and W-ACAR algorithms perform much better than FSR

and FAR. Figure 3.5d and Figure 3.5e show the GCAR algorithm is slightly better than the NAW-

WC algorithm and W-ACAR is the best. Although GCAR is constraint-aware, it has the same

very few choices as NAW-WC when selecting the routes for the connection requests in the ring

networks, and thus it has only minor advantages over NAW-WC. On the other side, by considering

the path length and the conversion cascading constraint jointly, the W-ACAR algorithm gains better

performance. It is also important to observe that at high loads, the blocking probability is higher

for all the dynamic algorithms when there is no cascading constraint than when c j ( j = 2 or 3) is in

effect. We call it high load abnormality because it is typically observed when loads are very high.

Many factors contribute to this abnormality, e.g., network topology, network connectivity, traffic

load and RWA algorithms. In the ring networks, it is mainly because if no cascading constraint

exists many connections with long routes can be easily set up by dynamic algorithms with the

sacrifice of many more potential connection requests having shorter routes which results in poorer

blocking performance. We observe in Figure 3.5e this high load abnormality is alleviated in the

W-ACAR algorithm because it suppresses a lot of long-route connections.

Figure 3.5f demonstrates the performance comparison between W-ACAR and NAW-WC in the

environment of 1-MDS sparse conversion where each other node in the 20-node Ring is placed a
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Figure 3.6: Average hop length (link utilization) versus traffic load in 20-node ring network, full

wavelength conversion, W = 48.

FWC. The performance result of GCAR is very close to that of NAW-WC in this environment and

is thus omitted. We can observe that there is still noticeable performance degradation for NAW-

WC when c2/c1 is applied, but W-ACAR has almost the same better performance for c1 and nc.

This is also determined by the unique ring topology as we have discussed earlier.

To better understand the performance of the three dynamic algorithms, we plot the link utiliza-

tion of the entire network and average hop length of all successful connections with full wavelength

conversion in Figures 3.6a-3.6d. Figure 3.6a shows for NAW-WC and GCAR when there is no ef-
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fective cascading constraint and when the load gets higher, both routing algorithms would have to

search more links for admittable routes to accommodate new connection requests, as the nearby

links were already congested by the existing connections. This has resulted in the continuously

growing average hop lengths until a saturation point at around the load equal to 200 Erlangs. How-

ever, the more links a route has to traverse, the more wavelength conversions it requires. Therefore,

when the c2 and c3 constraints are in effect, the long paths requiring over-the-limit wavelength con-

versions could not be fulfilled. It turns out the hop numbers of the dropped connection requests

due to the cascading constraint are typically more than twice of the average hop length, which

causes the average hop length to drop when the load gets higher. Usually, when the entire net-

work is loaded appropriately higher average hop lengths mean higher resource consumption and

thus higher blocking probabilities. We conclude that the large gap among the average hop lengths

corresponding to the no constraint conditions and the c2/c3 constraint conditions showed in Fig-

ure 3.6a determines the high load abnormalities occurred in Figure 3.5d as well in Figure 3.5e.

3.3.3 Blocking Performance Analysis of 5 x 5 and 10 x 10 Mesh Topologies

Similar to the U.S. Long-Haul network, the 5 x 5 mesh network has a limited number of interme-

diate hops in any lightpath and only the constraint c2 (and of course c1) has a noticeable impact on

the blocking performance for the FSR and FAR algorithms (Figure 3.7a). The FAR algorithm has

much higher blocking probabilities with the c2 constraint enforced than with the c3 constraint. The
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(e) W-ACAR, Full Conversion vs. 1-MDS

Figure 3.7: Blocking probability versus traffic load in mesh-torus networks (unless specified oth-

erwise, all graphs imply 5 x 5 mesh-torus and full wavelength conversion with W = 16).
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reason is similar to our analysis on FAR that we conducted in the U.S. Long-Haul network except

that the 5 x 5 mesh is denser and smaller. Another interesting observation in Figure 3.7a is that the

two curves labeled C3-FSR and nc-FSR are interleaved when the loads are high. This fluctuation

is also an alleviated phenomenon of high load abnormality due to the high density of mesh-torus.

The 10 x 10 mesh network has a larger diameter and consequently has a larger average number of

intermediate OXC’s between pairs of nodes. As demonstrated in Figure 3.7b, the constraints c4, c3

and c2 all cause noticeable impact. As expected, the impact of the conversion cascading constraint

c j becomes worse as the value of j decreases.

Figure 3.7c and Figure 3.7e depict the simulation results on the 5 x 5 mesh network of the three

dynamic algorithms W-ACAR, GCAR and NAW-WC (in order of blocking performance) in the

environment of both full and sparse wavelength conversion. The 1-MDS algorithm chooses to al-

locate FWC’s to the optical nodes in the set {(0,4), (2,4), (1,3), (3,3), (0,2), (2,2), (4,2), (1,1), (3,1),

(2,0), (4,0)} in 5 x 5 Mesh-torus. The link utilization of the entire network and average hop lengths

of all successful connections with full wavelength conversion are demonstrated in Figures 3.8a -

3.8d. Figure 3.8c shows that the W-ACAR algorithm almost has the same average hop lengths

when no constraint exists or c j ( j = 2, 3) is in effect across different loads. Simultaneously, its link

utilization increases gradually as the load increases but the differences between different c j and no

constraint keep very small. These can explain well why the blocking performances are so close

for c j and nc in Figure 3.7e. On the other hand, we can observe in Figure 3.8a that the NAW-WC

algorithm has the largest average hop length with nc but smaller values at the same loads under the
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Figure 3.8: Average hop length (link utilization) versus traffic load in 5 x 5 mesh-torus network,

full wavelength conversion, W = 48.
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impact of the cascading constraint c j as j decreases. However, it has obviously lower link utiliza-

tion with c j as j decreases and the highest link utilization with nc (Figure 3.8b). When the loads

are less than 310 Erlangs, the connections having longer hops are compensated through higher link

utilization and the system keeps balanced which contributes to the steady performance degradation

with c j as j decreases. When the traffic loads exceed 310 Erlangs, the nc case in the NAW-WC

algorithm begins to have steadily growing average hop lengths but it does not have the same fast

increase on the link utilization. This breaks the system balance and thus its blocking performance

degrades faster than with c j ( j = 2,3,4). Actually this can be used to explain quantitatively the

blocking performance of the GCAR algorithm as well.

As showed in Figure 3.7d with 1-MDS sparse conversion (less than 50% nodes have convert-

ers), the NAW-WC also has similar trend as the full conversion condition regarding the negative

impact imposed by the cascading constraint and c1 still causes a large performance degradation.

In Figure 3.7e, W-ACAR has significant performance deterioration with 1-MDS sparse conversion

compared to full conversion but the negative impact of cascading constraint is very small.

The simulation results so far have shown that the level of impact of the conversion cascading

constraint on routing performance depends greatly on the network topology and traffic load. In

conclusion, a network with a small diameter and low/moderate traffic load would typically need

very little wavelength conversion and its blocking rate would not be affected much by the pres-

ence of an upper bound on the number of cascaded wavelength conversions. A network with a

large diameter and high dynamic traffic patterns will frequently use wavelength conversion and its
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(b) U.S. Long-Haul, Load = 270, W = 32
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(c) 5 x 5 Mesh-torus, Load = 350, W = 16
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(d) 5 x 5 Mesh-torus, Load = 370, W = 16

Figure 3.9: Blocking probability versus conversion penalty factor, full wavelength conversion.

blocking rate will rise when there exists a maximum threshold on the number of cascaded wave-

length conversion.

3.3.4 Performance Trend Analysis of W-ACAR by Varying Conversion Penalty Factors

To investigate how the performance of W-ACAR fluctuates when varying the conversion penalty

factor δ , we re-run the simulation for U.S. Long-Haul and 5 x 5 Mesh-torus networks with full

wavelength conversion by using different δ values. Figures 3.9a-3.9b depict the blocking perfor-
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mance for U.S. Long-Haul at load = 250 and load = 270, respectively; while Figures 3.9c-3.9d

show for 5 x 5 mesh-torus at load = 350 and load = 370, respectively. All the graphs demon-

strate when δ changes from 0.0 to 1.0 the blocking performance has an obvious improvement even

for nc conditions and thus it is critical to take the wavelength conversion as well as the cascad-

ing constraint into account. When δ grows gradually from 1.0 to larger values, the performance

fluctuation in the U.S Long-Haul network is not big; but in 5 x 5 mesh-torus network there is a

near-linear performance degradation until δ reaches a relatively large value. Therefore, through

careful tuning, it is possible to find an optimal or near-optimal δ for each network i.e., δ = 1.0 for

5 x 5 mesh-torus and δ = 32.0−48.0 for U.S. Long-Haul so that the overall blocking probability

is the lowest and the high load abnormality problem that occurred previously gets minimized.

3.4 Summary

In this chapter, we have examined the impact of the conversion cascading constraint on the perfor-

mance of optical routing algorithms. We proposed two new dynamic algorithms GCAR and W-

ACAR algorithms based on NAW-WC, in wavelength-routed all-optical networks. The GCAR and

W-ACAR algorithms take into account the negative impact of the conversion cascading constraint

when they make a route decision. Furthermore, the W-ACAR algorithm considers the distribu-

tion of free wavelengths, the lengths of each route and the conversion cascading constraint jointly

and hence has the best blocking performance in most cases. The results demonstrated that the
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two constraint-aware algorithms could improve the blocking performance significantly compared

to conventional dynamic RWA algorithms in the environment of full or/and sparse wavelength

conversion.
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CHAPTER 4

FAIRNESS-IMPROVING DYNAMIC ROUTING

In most existing studies of optical burst-switched networks, adaptive routing is based on deflection

routing and/or feedback from the past intervals which often introduces excessive transmission de-

lay and architectural complexity. Our proposed novel adaptive routing schemes, however, consider

the transient link congestion at the moment when the bursts arrive and have potential to reduce

the overall burst loss probability. Moreover, they can utilize the same offset times for the same

node pairs implying zero additional transmission delay and simplicity. The proposed hop-by-hop

routing schemes also aim to address the intrinsic unfairness defect of existing popular signaling

protocols by increasing the effective link utilization. The results show that the proposed schemes

generally outperform shortest path routing and depending on the routing strategy involved, the

network topology and the traffic load, this improvement can be substantial. We develop analytical

loss models to demonstrate the need for such an adaptive routing scheme at each hop and show its

effectiveness. We also verify the analytical results by simulation.
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4.1 Introduction

Optical burst switching has been considered as one of the most promising technologies for the

next-generation optical Internet based on wavelength division multiplexing. In OBS networks,

data packets are aggregated into much larger sized bursts before transmission. A data burst is

preceded in time by a control packet which is sent on a separate control wavelength and requests

resource allocation at switches. Data bursts can be transmitted in an all-optical fashion. Unlike

bursts, control packets would have to experience O/E/O conversion for resource reservation at each

intermediate optical node. The signaling protocol plays a crucial role in the burst transmission.

The well-known Just-Enough-Time (JET) is the one most widely adopted among several signaling

protocols proposed for OBS networks in the literature [QY99,YQD00,WM00]. In this chapter and

after, we will consider OBS networks using JET.

In the JET protocol, an output wavelength is reserved with a control packet just before the

arrival of the burst (Delayed Reservation). The wavelength is released just after the burst transmis-

sion with a timer. When there are no available wavelengths at the arrival time of the corresponding

burst, the control packet is rejected and the burst is lost. The time duration between a control

packet and its associated burst is called the offset time. For a successful burst transmission in JET,

its control packet must always be ahead of time at each hop, otherwise the burst will arrive before

completion of bandwidth reservation and will be dropped.
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One of the primary objectives in the design of an OBS network is to minimize burst loss.

Burst loss occurs primarily due to the contention of bursts in the bufferless core nodes. Ap-

proaches for resolving contention include wavelength conversion, optical buffering, and deflec-

tion routing [WL04, YQD00, WMA00, HLH02, CWX03, ZVR04, ZVR07]. Apart from the three

contention resolution approaches, burst segmentation and preemption techniques were also pro-

posed [VJS02, CCE03]. In general, the above contention resolution techniques are reactive such

that they attempt to resolve contentions rather than avoid them. A more proactive alternative is

to prevent contention before it happens by policing the traffic at the source, or by routing traffic

in a way that the congestion in the network is minimized. The authors in [TVJ03] proposed two

dynamic congestion-based load balanced routing techniques to avoid congestion. In the schemes,

a list of link-disjoint alternate paths are pre-calculated for each pair of source and destination

nodes. The routes are re-computed periodically based on certain dynamic traffic information such

as link congestion or number of contentions, and one specific route is selected/used for a chosen

time interval. In order to achieve good performance, each source node must frequently gather

information concerning the link utilization and switch the selected path. The authors in [YR06]

focused on presenting a suite of path selection strategies, each utilizing a different type of informa-

tion regarding the link congestion status. In the two adaptive path selection mechanisms proposed

in [TVJ03] and [YR06], the average transfer delay always exceeds that of the shortest-path routing

because alternative paths with a larger transfer delay are also utilized in the multi-path routing.

The paper [OA05] proposed a decentralized routing scheme based on multiple paths in which each
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source node splits the traffic load according to the measured loss rate instead of link utilization.

Moreover, load splitting ratios for the multiple paths are autonomously adjusted to minimize the

average transfer delay based on the condition that the required loss rate of optical bursts is satisfied.

However, this proposed load splitting method is more complex and thus requires more processing

overheads at the source nodes.

On the other hand, it is highly desirable to support Quality of Service (QoS, e.g., to achieve

fairness) when designing a channel scheduling algorithm or routing scheme in OBS [VJ03,ZVJ04,

CTZ07]. In this chapter, we newly propose three adaptive routing schemes to resolve the unfairness

among bursts with different numbers of hop count. Each scheme performs hop-by-hop routing

using local and/or immediate neighborhood link congestion information based on link connectivity.

They are named hop-by-hop routing using forward channel reservation (Hop-FCR), hop-by-hop

routing using link connectivity (Hop-LC) and hop-by-hop routing using neighborhood forward

channel reservation (Hop-N-FCR). In contrast to most existing feedback-based dynamic routing

algorithms, the Hop-FCR scheme considers the transient output wavelength reservation status at

the epoch when the control packets arrive to select the next hop. The total channel reservation

on the output link ahead of this epoch is called forward channel reservation (FCR). Additionally,

the Hop-LC algorithm takes the connectivity of the immediate candidate nodes into account. The

third routing technique, Hop-N-FCR, also considers the state information of the next candidate

links ahead of time.
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Our proposed routing schemes not only improve fairness remarkably but also improve burst

loss performance to a large extent. They are relatively easy to implement which is very important

especially in high-speed optical networks. In conventional deflection routing [WMA00, HLH02],

the burst is deflected to an alternate port in case of a contention on the primary port. Nevertheless,

the deflection in the network results in several side effects including burst transmission delay, and

out-of-order packet arrival at the destination. Furthermore, in general buffer is not necessary for

the deflection routing mechanism. However, optical buffer is required to enable deflection routing

to function correctly in JET-based OBS networks as showed in [HLH02, YR06]. Our schemes

do not suffer from these disadvantages, neither would they enforce the optical buffer requirement

because they can utilize the same offset times for the same node pairs during the dynamic routing

process. We shall further elaborate on this in later sections.

This chapter is organized as follows. Section 4.2 discusses related work about designing chan-

nel reservation algorithms and routing techniques to achieve fairness in OBS networks. Section

4.3 describes the proposed fairness-improving dynamic routing schemes in-depth. The analytical

performance model is provided in Section 4.4. Section 4.5 demonstrates analysis validation and

simulation results. Finally Section 4.6 summarizes the chapter.
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4.2 Related Work

Many aspects of burst switching have been extensively studied in the OBS literature, which include

but are not limited to signaling and reservation protocols, routing and scheduling, burst assembly

at the ingress nodes and contention resolution at the core nodes. However, there have been very

few attempts to design and evaluate schemes to reduce the effect of the fairness problem in the

OBS networks.

In the OBS networks, the fairness problem indicates the loss probabilities of optical bursts

traveling through lightpaths with larger hop counts tend to be higher than those whose paths

have a smaller number of hops. This fairness problem, which is common to most networks, has

been investigated in several papers as a secondary consideration in the evaluation of routing and

wavelength-assignment algorithms [WMA00, OAM01]. For instance, the authors in [WMA00]

proposed a deflection routing algorithm and showed that it can evenly decrease the blocking prob-

abilities of the bursts with various hop counts under a variety of traffic loads; i.e., their proposed

deflection routing could neither improve nor aggravate fairness between bursts with large hop

counts. In [OAM01], an OBS reservation scheme using parallel backward reservation paradigm

was proposed for OBS networks operated under the wavelength-continuity constraint (i.e., no con-

verters). The authors achieved fairness by classifying bursts into several groups according to their

total hop counts and then limiting the number of wavelengths dedicated to the group composed

of shorter-hop bursts. The simulation results reported in [OAM01] showed that the overall mean
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blocking probability was slightly increased while better fairness was achieved. Requiring that

the traffic load of bursts be known a priori in order to derive an effective wavelength-partitioning

method is another drawback of this scheme.

The work in [ZBL04] was dedicated to improve fairness in OBS networks. The authors pro-

posed two approaches - balanced just-in-time scheme (BJIT) and prioritized random early dropping

scheme (PRED). BJIT dealt with the fairness problem by adjusting the size of the search space for

a free wavelength based on the number of hops traveled by the burst. PRED adapted the concept

of random early discard (RED) to the OBS environment and prioritized the levels of discarding at

the network access stations on the basis of the length of the lightpath. The detailed performance

results presented in the chapter showed that both schemes can alleviate the fairness problem with-

out negatively affecting the overall throughput of the system. Since BJIT is more practical than

PRED in regards to implementation and has slightly better performance too, we shall focus on

BJIT thereafter. More specifically, the scheduler in the BJIT scheme is only allowed to search for

a free wavelength out of total ni number of wavelengths for an incoming burst arriving at its ith

hop, where ni < n j if i < j, which is different from the approach in [OAM01]. The value of ni is

determined according to (4.1)

ni = (1−g)×W+g× i×W/D, 0≤ g≤ 1. (4.1)

64



where W is the number of wavelengths on a fiber link and D is the maximum hop count of any

shortest lightpath in the network topology. The parameter g controls the degree of effectiveness

of resolving fairness. Generally speaking, the larger we assign a value to g, the better fairness

we can obtain. As the authors mentioned, BJIT becomes BJET if this technique applies to a JET-

based network, and when g = 0 BJET is exactly equivalent to the standard JET scheme. However,

the authors did not describe which subset of ni wavelengths should be searched from the entire

W wavelength set [1,W] at the burst’s ith hop. Two simple policies can be employed — choose

the first ni applicable wavelengths sequentially, i.e., search the subset [1,ni]; or select a total of

ni wavelengths randomly. We name them BJET-F and BJET-R, respectively, in our performance

comparison section (Section 4.5).

4.3 Proposed Adaptive Routing

There are several important criteria to consider when designing and implementing an adaptive

OBS routing scheme: burst loss probability, resource utilization, system complexity and fairness.

Most of all, a dynamic OBS routing scheme should be very careful when selecting a route and

a wavelength for a burst so that it does not severely harm burst loss performance and utilization

on the whole. Simultaneously, in order to address the inherent unfairness issue in JET, we have

to favor bursts with longer paths in a certain method, which often results in slight or noticeable

overall burst loss performance degradation in the conventional fairness solutions. In this section,
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we propose three simple adaptive routing schemes, considering the routing and wavelength reser-

vation problems jointly. Furthermore, by exposing a larger proportion of underutilized network

resources to the longer-path bursts, we are able to improve fairness as well as overall burst loss

performance. Since our schemes are distributed, the network architecture still remains simple and

scalable. They are called Hop-FCR, Hop-LC and Hop-N-FCR, as aforementioned. In this work,

we use JET as our signaling protocol and assume that each OBS switch in the network has full

wavelength conversion capabilities, which are used in the case of wavelength contention.

In order to examine and measure the burst loss fairness quantitatively, we adopt a variation of

the standard coefficient of variance (CoV) for expression purpose. Compared with the standard

deviation, the metric CoV still offers a good view of fairness even when the overall burst loss ratios

are quite different for various experiments. We slightly revise the standard CoV for our usage as

follows. Given a network topology, we compute the number of hops that the longest path has

by using any shortest-path algorithm. We use pi to indicate the burst loss probability for i-hop

bursts, where 1≤ i≤ n and n is the largest number of hops. The term p0 indicates the overall burst

loss probability for all bursts. Hence, the standard CoV expressed as a percentage (also known as

relative standard deviation) is modified as follows:

CoV′ =
σ ′

p0
×100%, (4.2)
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where

σ ′ =

√

(n−1)−1
n

∑
i=1

(pi− p0)
2. (4.3)

In the above expression, p0 replaces the loss mean of all bursts with individual hops, as explained

previously. Thus CoV′ represents the degree to which the burst loss probabilities for bursts with

different hops deviate from p0. When assessing the fairness, the lower the variation percentage,

the better the loss fairness is for bursts with various path lengths.

4.3.1 Foward Channel Reservation

We first give a general definition of forward channel reservation. Its computation shown later

mainly depends on the wavelength state information managed by the wavelength scheduler de-

ployed at each optical fabric.

Consider a unidirectional link ℓi j of the OBS network which transmits incoming bursts from

node i to node j. Let Wk denote the kth index of the wavelength set [1,W] on link ℓi j and let

FCRℓi j
(k, t) denote the current state of forward channel reservations of wavelength Wk at time

t. Generally, FCRℓi j
(k, t) is defined as the sum of the residual channel reservation time of any

burst(s) in transmission and the channel reservation time of the burst(s) to be transmitted, if any.

How we actually compute FCRℓi j
(k, t) would depend on the system implementation, i.e., what

information each optical switch is supposed to track and process. In particular, we intend to utilize
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Figure 4.1: Computing FCR on candidate links.

the available wavelength state information provided by the wavelength scheduling algorithm in

order to avoid adding extra system overhead. Two widely-used scheduling algorithms called LAUC

(latest available unscheduled channel) and LAUC-VF (LAUC with void filling) were proposed

in [XVC00]. LAUC, which is very similar to the Horizon algorithm [Tur99], maintains a single

variable recording the latest reservation time of each channel and assigns the channel with the

latest starting time that is still earlier than the arrival time of the incoming burst. On the other

hand, LAUC-VF additionally keeps track of all void intervals within the channel space and assigns

the intervals that would give the minimum of gaps or voids. We shall show how to compute

FCRℓi j
(k, t) for LAUC and LAUC-VF, respectively.

Let {bk(z, t),z = 1, ...,mk} be the set of mk scheduled bursts (in transmission and to be trans-

mitted) on wavelength Wk of link ℓi j at time t (for simplicity, we omit the subscript ℓi j in bk(z, t)).
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Consider any burst bk(z, t), let sk(z, t) and ek(z, t) denote its starting time and ending time, respec-

tively. According to LAUC, only ek(mk, t) is tracked on wavelength Wk. Let ta denote the arrival

time of a new burst (Figure 4.1 draws an example of link state at ta for two adjoining candidate

links). At time ta, FCRℓi j
(k, t) is obtained as

FCRℓi j
(k, ta) =



















ek(mk, ta)− ta, if ek(mk, ta) > ta;

0, otherwise.

(4.4)

When LAUC-VF is selected for scheduling, sk(z, t) and ek(z, t) are assumed to be known for any

burst bk(z, t). Let bk(z
∗, t) denote the only burst (if there is such one) that satisfies sk(z

∗, ta)≤ ta <

ek(z
∗, ta) and let Λ = {z : sk(z, ta) > ta} be the set of index z that their corresponding bursts are

scheduled to be transmitted after ta. In consequence, FCRℓi j
(k, t) at time ta is calculated as

FCRℓi j
(k, ta) =

[

ek(z
∗, ta)− ta

]

+ ∑
∀z∈Λ

[

ek(z, ta)− sk(z, ta)
]

(4.5)

Specially, if ek(mk, ta)≤ ta then FCRℓi j
(k, ta) = 0, same as it was defined in LAUC.

After FCRℓi j
(k, ta) is known, we can add up them for all k ∈ [1,W] to get the total forward chan-

nel reservations for link ℓi j. In this chapter, we choose LAUC scheduling (hence Equation (4.4))

for the purpose of demonstration.
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4.3.2 Hop-based Routing Using Forward Channel Reservation

The Hop-FCR routing scheme selects paths using information on immediate candidate link state.

The motivation behind Hop-FCR is to dynamically route bursts hop-by-hop to one of the desig-

nated paths based on the metric of forward channel reservation.

In Hop-FCR, as a burst control packet (BCP) proceeds toward its destination, it instantaneously

chooses the next node with the lowest preference value among the candidate nodes that are ahead

of the current node. The preference is the barometer indicating the state of the forward channel

reservations of the immediate candidate link. Obviously, the smaller preference value is, the less

congested the candidate link would be at the epoch. Consider a source-destination pair (s,d) and

a BCP destined for node d from node s has arrived at an intermediate node i. The data counterpart

of this BCP will arrive at time ta. Let Ψ = { j : L jd < Lid} be the set of candidate neighbor nodes

of node i that are closer to node d. Lid (respectively, L jd) denotes the shortest-path length (in

number of hops) from node i (respectively, node j) to node d. Here we choose hop count instead

of physical distance as the path-length metric because it has been shown in [TVJ03] that lower

blocking performance could be scored with the former metric. As a consequence, L jd = Lid − 1.

The preference value for node j as the next routing hop at ta, denoted as Prefi( j, ta), is defined as

follows:

Prefi( j, ta) =
W

∑
k=1

FCRℓi j
(k, ta). (4.6)

70



The burst will be routed to the next node whose index id j∗ is determined by

j∗ = arg min
∀ j∈Ψ′

Prefi( j, ta). (4.7)

To ensure that the burst can be scheduled on link ℓi j∗ , we define the set Ψ′ = { j : j ∈ Ψ and the

scheduler returns success on link ℓi j} by excluding those nodes that fail the scheduler on their link

counterparts.

Equation (4.7) shows that the proposed routing selects the next neighboring node from the set

Ψ′ with the least preference value. Since we limit the candidate nodes to those that are closer to the

destination, Hop-FCR always finds shortest paths with the same number of hops as that found by

any conventional fixed shortest-path routing. Using multiple shortest paths with the same number

of hops ensures that the same offset times for the same node pairs can be used. The multiple

paths may share one or more common links, though. This property in conjunction with dynamic

routing makes Hop-FCR superior to conventional deflection routings in many regards, as explained

in Section 4.1. We confine our search for immediate candidate nodes for two main reasons: 1) If

a request moves to the nodes farther away from the destination, the path length may increase too

much, resulting in wasted network resources; 2) It can keep a simple network architecture and fast

processing speed, as we do not require optical buffers at the intermediate nodes to accommodate

bursts because of insufficient offset time if they are deflected to a longer lightpath.
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Figure 4.2: Demonstration of hop-by-hop routing using FCR.

Figure 4.2 shows a sample forwarding process for a BCP through the schemes that utilize

forward channel reservation. FCR in the figure is the sum of forward channel reservations for all

wavelengths on the related links (T is a given time unit). Assuming that a control packet originated

from node s to node d arrives at node 1, the request can move to node 3 or node 4, since only these

two nodes are closer to the destination d. According to (4.6)

Pref1(3, ta) = 5.58×T,

Pref1(4, ta) = 3.0×T.

Same as before, time ta refers to when the data counterpart of the control packet will arrive at

node 1. Therefore, the control packet is forwarded to node 4 (assuming it satisfies (4.7)) — a less

congested node at the current point indicated by the preference values, and the same forwarding

process occurs until it arrives at the destination. If the control packet arrives at the destination

node, a routing lightpath has been chosen and the required channel on each link along the path
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has been successfully reserved. After the offset time elapses, the data burst can be transmitted all

optically.

4.3.3 Hop-based Routing Using Link Connectivity

This algorithm (Hop-LC) is the same as Hop-FCR except for the equation used to compute the

preference value. In the preference calculation, Hop-FCR uses the sum of FCRs of all wavelengths

on each candidate outgoing links along which a control packet can be delivered. Hop-LC addition-

ally takes the connectivity of the immediate candidate nodes into account. In other words, consider

a data burst that reaches an intermediate node i between a source-destination pair (s,d) at time ta,

let node j be one of the possible next hops and Ω = {y : Lyd = L jd − 1} be the set of neighbor

nodes of node j that are closer to node d. We define forward connectivity index of node j (to node

d) as C f ( j,d) = |Ω|, which is the number of next candidate nodes ahead of node j assuming the

burst will be forwarded to node j from the current node i. The preference of node j as the next hop

is defined and calculated as follows:

Prefi( j, ta) =
Prefi( j, ta)

′

C f ( j,d)
. (4.8)

where Prefi( j, ta)
′ is the same preference computed using (4.6). After Prefi( j, ta) is obtained for

all candidate nodes, the node with the least preference value will be selected for the next hop,
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same as (4.7). By taking the forward connectivity index into account as in (4.8), we incline to

direct bursts along the node with more future routing options which may further decrease burst

loss probabilities. The selection of the denominator is heuristic. We also undertake experiments

on other weighted C f ( j,d) choices like
√

C f ( j,d) and C2
f ( j,d), nevertheless we have found that

(4.8) performs best for all example network topologies examined in this work.

It is worth mentioning that C f ( j,d) is not the same as the node degree D( j). Instead, its value

depends on how many shortest paths exist between node j and node d, so C f ( j,d) ≤ D( j). In

Figure 4.2, as we have discussed in Subsection 4.3.2, when a control packet arrives at node 1 it can

move to either node 3 or node 4. Assuming the request arriving at node 3, it has two next candidate

nodes 5 or 6 that are closer to the destination d to choose (hence, C f (3,d) = 2). However, if the

request selects node 4 instead of node 3, node 5 would be the only next candidate node (hence,

C f (4,d) = 1). From this perspective, choosing node 3 instead of node 4 that was chosen by Hop-

FCR may be a better choice depending on the value of FCRs. Therefore, we have:

C f (3,d) = 2,Pref1(3, ta) = 5.58/2 = 2.79×T,

C f (4,d) = 1,Pref1(4, ta) = 3.0/1 = 3.0×T.

Since Pref1(3, ta) < Pref1(4, ta), node 3 is selected as the next hop by the algorithm Hop-LC.
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4.3.4 Hop-based Routing Using Neighborhood Forward Channel Reservation

In the last two algorithms Hop-FCR and Hop-LC, we only considered the FCRs on the immediate

candidate links. It has been well-known that in optical circuit-switched networks dynamic routing

algorithms utilizing global link-state information often achieve better blocking performance than

those utilizing only local link state information. Nevertheless, due to the bursty characteristic and

the nature of optical burst switching, it would cause a lot excessive overhead and outdated link-state

information if we want to exchange channel reservation messages in an intensive way (beyond next

candidate links) as in optical circuit switching. In this regard, our third routing scheme, called Hop-

N-FCR, not only takes the FCRs on the immediate candidate links into account, but also checks the

FCRs on the next candidate links. We assume that the control plane of the OBS network provides

support for the collection and dissemination of information on the next candidate links. Consider

a source-destination pair (s,d) and assume that a burst arrives at an intermediate node i at time ta.

Let node j be one of the candidate next hops, and let Ω = {y : Lyd = L jd−1} be the set of neighbor

nodes of node j that are closer to node d, then the preference of node j is defined as follows:

Prefi( j, ta) = Prefi( j, ta)
′+ξ × ∑k∈Ω Pref j(k, ta)

′

C2
f ( j,d)

. (4.9)

Prefi( j, ta)
′ and Pref j(k, ta)

′ have the same definitions as in (4.6), while C f ( j,d) has the same

meaning as in (4.8). Responding to possibly large summation of preference values on those next
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candidate links compared with (4.8) where a single immediate candidate link is considered, we

select C2
f ( j,d) heuristically as the denominator in the second part of the above expression (4.9).

Because when calculating the final preference value Prefi( j, ta) at time ta, Pref j(k, ta)
′ is computed

earlier than when the burst arrives at node j (as there is a link propagation delay), it may not be

accurate if many bursts come to node j during the link propagation delay. Therefore, the parameter

ξ (0 < ξ < 1) is introduced to diminish this negative impact by giving the contribution of the

neighborhood Pref j(k, ta)
′ aggregation a relatively smaller weight. Same as (4.7), in the end the

node with index id j∗ having the least Prefi( j, ta) will be selected for the next hop.

In the example Figure 4.2, when a control packet arrives at node 1 by following (4.9) we have

(ξ is set to 0.8 here):

Pref1(3, ta) = 5.58+0.8× (2.5+1.6)/4 = 6.4×T,

Pref1(4, ta) = 3.0+0.8× (4.6)/1 = 6.68×T.

Since Pref1(3, ta) < Pref1(4, ta), node 3 is selected as the next hop by the scheme Hop-N-FCR as

Hop-LC selected previously.

4.3.5 Fairness Capability, Complexity and Extensibility

As mentioned earlier, the proposed routing methods also bear fairness-solving in mind, which

distinguishes them from the other path-based adaptive routing mechanisms [OA05,TVJ03,YR06].
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To achieve better fairness, our proposed routing methods allow longer-hop bursts to have more

routing choices. For example, in Figure 4.2 there are three hops from node 1 to node d. According

to the routing principle, data bursts can take three different paths:

node 1→ node 3→ node 6→ node d

node 1→ node 3→ node 5→ node d

node 1→ node 4→ node 5→ node d

However, two-hop data bursts traversing from node 3 to node d can only take the following two

paths:

node 3→ node 6→ node d

node 3→ node 5→ node d

And all one-hop bursts always have only one routing choice. By being offered more routing op-

portunities, those longer-hop bursts will obtain relatively greater possibilities of passing through

intermediate optical nodes. Consequently, better fairness can be achieved as desired.

The running time for the three routing schemes is described as follows. It includes static path

computation and dynamic routing/scheduling times. Let N denote the number of nodes in the

network topology. The path computation for all the three schemes is the same, which typically

takes O(N2) for one source node using Dijkstra’s algorithm. Compared with the simple shortest

path routing, we would additionally use a path finding algorithm such as depth-first search to find

all shortest paths between two given nodes, but it takes only linear time. All candidate next hops
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from the current node to the destination are stored in the routing table of this node and let M̄

denote the average of this value in the network. M̄ is generally very small, such as 2− 5. For

Hop-FCR, it takes O(M̄W) to calculate FCRs on the candidate links for routing comparison, and

takes O(logW) for burst scheduling via LAUC (with its best implementation). Hop-LC adds a little

division overhead for the routing comparison process. Since Hop-N-FCR considers neighborhood

link state information, the time complexity for its routing comparison is O(M̄W + M̄
2
W), while

the running time for its burst scheduling is the same as the other two. Besides the increased time

complexity, Hop-N-FCR requires support of neighborhood link state dispatching and gathering.

Although Hop-FCR and the other two strategies, in general, are expected to outperform shortest

path routing, they have limitations. More specifically, since they compute only (multiple) shortest

paths between source-destination pairs, the network topology plays an important role in achieving

their advantages. Denser networks are usually expected to perform better than sparser ones oper-

ated under the same routing strategy. To make the hop-by-hop routing work well in the diverse

network environments, we can relax path computing by allowing extended routes with a longer

hop count, i.e., shortest hops plus η more hops. The threshold η is tunable for different networks.

It is also well-known that the average path length of admissible bursts has significant impact on

burst loss performance, so we suggest that the extended routing be applied to sparse networks like

Ring topologies and/or if optical buffering is available to compensate the increased offset time.
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Figure 4.3: An Nx2 OBS Fabric with FCR-based adaptive routing.

4.4 Analysis

In this section, we develop burst loss models to demonstrate the need for a FCR-based adaptive

routing at each hop and show its effectiveness. We first derive the burst loss probability in an Nx2

OBS switch operated under the specified adaptive routing. Figure 4.3 shows a sketch of this fabric

with its two output links (or ports), denoted as ℓa and ℓb. Afterwards, for the sake of simplicity, we

apply the adaptive routing to symmetrical Ring networks and further compute the end-to-end burst

loss rate approximately through analysis. The possibility of extending the model to general mesh

networks is also discussed.
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4.4.1 Notation and Assumptions

Let us consider the following notation.

λ Rate of total Poisson burst arrivals to the node including arrivals of bursts locally

generated in this node and arrivals of external bursts received from neighboring

nodes.

λa Arrival rate of bursts destined for ℓa only.

λb Arrival rate of bursts destined for ℓb only.

λab Arrival rate of bursts that can be switched to either ℓa or ℓb, i.e., λ = λa +λb +λab.

pa Probability that arriving bursts with λab are switched to ℓa.

pb Probability that arriving bursts with λab are switched to ℓb, i.e., pb = 1− pa.

µ Service rate of arriving bursts.

W Total number of wavelengths per output link.

ρ Normalized traffic load of all burst arrivals, i.e., ρ = λ/(Wµ).

We assume bursts (i.e., with λa, λb and λab respectively) come to the node fabric according

to independent Poisson processes and burst transmission time on each link are independently and

exponentially distributed with a common mean of 1/µ . To make it clear, let us look at a six-node

Ring network operated under the designated adaptive routing through Figure 4.4a. According to

the routing principle, the arrowed dotted lines demonstrate all the possible routes of the bursts

that are originated from node r0 to the rest of five nodes (r1 - r5). Without loss of generality,
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Figure 4.4: A six-node Ring with first-hop adaptive routing.

we designate output link ℓa of node r0 as the port used to reach the immediate neighbor in the

clockwise direction (node r1) and output link ℓb as the port to reach the immediate neighbor in the

anticlockwise direction (node r5). The two nodes r1 and r2 are within two-hop distance from the

sender and thus their shortest paths can be reached only via ℓa in the clockwise direction. Similarly,

the two nodes r4 and r5 can be reached only via ℓb in the anticlockwise direction. On the other

hand, to reach node r3, the sender r0 would choose either ℓa or ℓb depending on their FCRs.

4.4.2 Loss Model for Single Node Switch

We model the OBS node in Figure 4.3 using a two-dimensional Markov chain with the state defined

as Q = {i, j}, where i is the number of wavelengths that are reserved on ℓa and j is the number of

wavelengths that are reserved on ℓb. The state transition diagram for the Markov chain is shown in
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Figure 4.5 and the state transition rates are as follows:

q(i, j)(i, j+1) =



















λ1 = λb + pb ·λab, i < W

λ3 = λb +λab, i = W ,

q(i, j)(i+1, j) =



















λ2 = λa + pa ·λab, j < W

λ4 = λa +λab, j = W ,

q(i, j)(i, j−1) =



















j ·µ, j > 0

0, otherwise,

q(i, j)(i−1, j) =



















i ·µ, i > 0

0, otherwise.

(4.10)

Denote the steady state probability that the system in state {i, j} as p(i, j), and it is subject to

W

∑
i=0

W

∑
j=0

p(i, j) = 1. (4.11)

By solving the (W+1)× (W+1) linear equations representing the state transitions and (4.11),

we can get the steady state probabilities of the system. A burst gets dropped as all of the wave-

lengths on both output links are busy, or when all the wavelengths are occupied on either link and,
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Figure 4.5: Markov chain for a single optical switch with two output links.

if and only if the burst is not designated to use the other link, regardless when there is some free

wavelength(s) on that link. Therefore, the loss probabilities at output link ℓa and ℓb are derived by

Pℓa
=

λa + pa ·λab

λ
· p(W,W)+

λa

λ
·

W−1

∑
j=0

p(W, j), (4.12)

Pℓb
=

λb + pb ·λab

λ
· p(W,W)+

λb

λ
·

W−1

∑
i=0

p(i,W). (4.13)

Accordingly, the total burst loss probability at the optical switch is given as (4.14).

Ploss = Pℓa
+Pℓb

. (4.14)
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4.4.3 Loss Model for Ring Topology

Due to the unique node connectivity property of Ring networks, the proposed hop-by-hop routing

applied to ring networks behaves in the same way as first-hop adaptive routing. Furthermore,

Hop-LC is the same as Hop-FCR, and Hop-N-FCR is also projected to perform closely as them.

As suggested in Subsection 4.3.5, extended routing may be adopted for Rings with a small η .

Therefore, we consider extended Hop-FCR only and η is set to one to avoid undesirable vibration

effects, as explained in [ZVR04, ZVR07].

Let us first consider the six-node Ring network shown in Figures 4.4a-4.4b, and then we gener-

alize to Ring networks with an arbitrary number of nodes. As we can see, when η = 1 all node pairs

in an even-numbered Ring still utilize only shortest paths, because any extended route requires at

least two more hops. By symmetry and the Poisson arrivals assumption, the blocking probability

B on each link in Figure 4.4a is the same. Let λ̄ denote the arrival rate of bursts offered to each

source-destination (SD) pair; therefore the total traffic locally generated in any node in Figure 4.4a

is 5 · λ̄ . As aforementioned, bursts arrive at each optical node independently. Each optical node

can be modeled as an Nx2 OBS switch which has been depicted in the former subsection. Without

loss of generality, we take node r0 for example. The directed link from node r0 to r5 (or r1) is

denoted as ℓb (or ℓa). Using the notation defined in 4.4.1, we can easily show the following

λb = λ̄ + λ̄ +(1−B) · λ̄ +(1−B) · λ̄
2

+(1−B)2 · λ̄
2

. (4.15)
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We shall explain the above equation using the help of Figures 4.4a and 4.4b. In (4.15), the first two

components (single λ̄ ) represent the burst arrivals directed to ℓb from the traffic destined from node

r0 to the two nodes r5 and r4 (shown by dotted arrowed lines in Figure 4.4a). The term (1−B) · λ̄

represents the burst arrivals directed to ℓb from the traffic destined from node r1 to r5 (shown by

dotted arrowed line in Figure 4.4b). These latter bursts have arrived at node r0 by traversing the

link r1→ r0 whose blocking probability is B. Similarly, (1−B) · λ̄
2

and (1−B)2 · λ̄
2

stand for the

burst arrivals directed to ℓb from the traffic destined from node r1 to r4 and from node r2 to r5

(shown by dotted arrowed lines in Figure 4.4b). Before arriving at node r0, the traffic from node

r1 to r4 suffers blocking on link r1 → r0 while the traffic from node r2 to r5 suffers blocking on

both link r2→ r1 and link r1→ r0. Since the traffic destined from node r1 to r4 (or from node r2 to

r5) has two selectable paths, only half the bursts in this traffic travel in the anticlockwise direction

from node r1 to r0 (or from node r2 to r1). And the bursts originated from node r0 to node r3

can be switched to either ℓa or ℓb, so λab is equal to λ̄ . Also by symmetry, we have λa = λb and

pa = pb = 1
2
.

We begin the successive substitution procedure with an arbitrary initial blocking probability

of B. We calculate λa and λb using (4.15) and supply them to (4.12) or (4.13). Notice that by

symmetry, B = Pℓa
= Pℓb

. We repeatedly apply this process until B converges to a unique fixed

point. After B is known, the end-to-end blocking probability of an arbitrary burst is derived by

P =
2

5
·B+

2

5
·
[

1− (1−B)2

]

+
1

5
·
[

1− (1−B)3

]

. (4.16)
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The three elements in (4.16) indicate the corresponding blocking probabilities for one-hop, two-

hop and three-hop bursts, respectively.

We now look at how to compute the end-to-end burst loss rate in a general Ring network with

even number of nodes (the case of odd number of nodes will be addressed shortly). Let N be an

even integer representing the number of nodes and N ≥ 4. For any of the optical nodes with two

output links ℓa and ℓb, it can be easily shown that the respective arrival rates and probabilities are

given as

λa = λb =
λ̄

2
·
[

2 ·ϕ +
ϕ

∑
i=1

(2 · (ϕ− i)+1)(1−B)i

]

, (4.17)

λab = λ̄ , (4.18)

pa = pb =
1

2
. (4.19)

where ϕ = N/2− 1. Similar to what we have achieved on the six-node Ring, we first calculate

B through successive substitution, and the end-to-end blocking probability of an arbitrary burst is

thus given by

P =
2

N−1
·

ϕ

∑
i=1

[

1− (1−B)i

]

+
1

N−1
·
[

1− (1−B)ϕ+1

]

. (4.20)

When N is odd and N ≥ 3, for simplicity’s sake, we disregard any out-of-symmetry that may be

caused by the extended routes R∗1 and R∗2 as displayed in Figure 4.6 (L(R∗1) = L(R1)+1, L(R∗2) =

L(R2)+1). We project that the possible impact should be very small and this conjecture is verified

by the subsequent simulation results. Therefore, we set λa = λb and pa = pb = 1
2

as for the even-
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Figure 4.6: A five-node Ring with first-hop adaptive routing (extended).

numbered Rings. Note that here λab = 2 · λ̄ . Similarly, Equations (4.21) and (4.22) can be deduced

by letting ϕ = ⌊N/2⌋−1.

λa =
λ̄

2
·
[

2 ·ϕ +
ϕ−1

∑
i=0

2 · (ϕ− i)(1−B)i+1 +(1−B)ϕ+1

]

, (4.21)

P =
2

N−1
·
[ ϕ

∑
i=1

(

1− (1−B)i
)

+
1

2
·
(

1− (1−B)ϕ+1
)

+
1

2
·
(

1− (1−B)ϕ+2
)

]

. (4.22)

It is desirable to extend our model to analyze the network performance of general mesh topolo-

gies. Two tasks would need to be fulfilled to achieve this goal: 1) Since the alternate paths between

each node pair in arbitrary networks may share common link(s), it is necessary to take into account
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Figure 4.7: Scenario one: λa = 0.5λ , λb = 0.3λ , pa = 0.4.

the interdependencies between the blocking on alternate routes. This is different from most works

in the past [RM02, ZVR07], which usually assume that alternate routes block independently. In-

stead, the enhanced model may follow the techniques proposed in [GS97]. 2) If a fabric has more

than two output links, the proposed two-dimensional Markov chain model may need to be up-

graded to multi-dimensional. Unfortunately, this would force the computation complexity to grow

exponentially. We leave the modeling of general topologies to be an open problem.

4.5 Numerical Results

In this section, we conduct simulation to evaluate the performance of the proposed schemes and to

verify the analytical model. We first compare the simulation and analytical results obtained for a
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Figure 4.8: Scenario two: λa = 0.1λ , λb = 0.2λ , pa = 0.2.

single optical switch with two output links and then proceed to present the comparison results for

Ring networks. Arrivals follow a Poisson process with total normalized traffic load ρ = λ/(Wµ)

per optical Ring node. Thereafter we demonstrate performance evaluation in the JET-based OBS

networks by simulation. In network simulations, bursts are generated by Poisson model with a

network-wide traffic load ρ = λ/µ in Erlangs. Each data point shown in all the simulation graphs

is obtained by running 107 burst transmission requests.

4.5.1 Validation of Analytical Model

Firstly, we show the total burst loss results at a single optical node in Figures 4.7 and 4.8 for two

different scenarios, respectively. In scenario one, λa = 0.5λ , λb = 0.3λ , λab = 0.2λ , pa = 0.4, pb
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= 0.6 and W = 8, 12, 16. On the other hand, in scenario two, λa = 0.1λ , λb = 0.2λ , λab = 0.7λ ,

pa = 0.2, pb = 0.8 and W keeps the same. In general, the results from the analytical model fit the

corresponding simulation curves quite well.

Comparing Figure 4.7 with Figure 4.8, We observe that the optical switch achieves better burst

loss performance in scenario one than in scenario two for both simulation and analysis. The reason

is explained as follows. In scenario one, most bursts (80% of total arrivals) can flow through only

one output link, i.e., λa + λb = 0.8λ , and more importantly the load for the two links is balanced.

The rest 20% of total arrivals would be directed to two links (ℓa and ℓb) proportionally too (i.e., pa

= 0.4 vs. pb = 0.6). On the contrary, in scenario two, the load for ℓa and ℓb is seriously unbalanced.

Although 70% of total arrivals (i.e., λab = 0.7λ ) shall select one out of them, ℓb is given obvious

precedence over ℓa since pb is equal to 0.8. In conjunction with the fact that a very small amount

of bursts are destined for ℓa only (i.e., λa = 0.1λ ), ℓb would consequently be overloaded whereas ℓa

is kind of underutilized. This results in worse loss performance in the optical switch which proves

indirectly that dynamic balanced routing plays a vital role in improving burst loss performance.

Figure 4.9 illustrates the results for the seven-node Ring at both W = 10 and W = 20 (we got

similar results for the six-node Ring), while Figure 4.10 shows the comparisons for a variety of

Ring networks across different network loads. As a whole, the simulation results are in good

agreement with the results obtained from the analytical model. We also observe that the model

and simulation are almost identical at low loads, and the model is reasonably accurate at high

loads. This is expected because the actual minor blocking interdependencies among different links

90



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Normalized Traffic Load −−>

O
v
e
ra

ll 
B

u
rs

t 
L
o
s
s
 P

ro
b
a
b
ili

ty
 −

−
>

 

 

Sim(W=10)

Model(W=10)

Sim(W=20)

Model(W=20)

Figure 4.9: Overall burst loss versus load (Seven-node Ring).

are negligible at low loads, but they lead to burst loss underestimation in analysis at high loads.

It is also interesting to observe that when N grows the simulation results still match with the

corresponding analysis results very well.

4.5.2 Network Performance on Mesh-torus 5 x 5

We investigate the burst lost performance and the fairness of the proposed hop-by-hop dynamic

routing schemes in a 5 x 5 mesh-torus network. We also consider another three cases for perfor-

mance comparison: general JET, BJET-F and BJET-R (with g = 0.5 for both BJETs) which all use

a static lightpath between any SD pair computed by the shortest-path-first method. Since general
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Figure 4.10: Overall burst loss versus load across different Rings at W = 10.

JET does not employ any special treatment to deal with fairness, we consider it as the Base case

for performance comparison.

In the 5 x 5 mesh-torus network, each bidirectional fiber link consists of W data channels,

excluding the one dedicated to the control channel. No buffering is assumed in optical nodes. For

each burst arrival, the SD pair is uniformly selected; hence all the SD pairs have the same traffic

load. The average burst length is 2 ms, and the transmission rate on a wavelength is 2.5 Gb/s.

4.5.2.1 Overall Burst Loss Performance Comparisons

Figure 4.11 plots the overall burst loss probability against load for all the six methods at W = 4.

The three FCR-based dynamic routing schemes are much superior at light and moderate loads.
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Figure 4.11: Overall burst loss versus load at W = 4 (Mesh 5 x 5).

The rationale behind this observation is mainly because dynamic routing can maximize the link

utilization as much as possible. Since Hop-LC tries to distribute data bursts to the candidate nodes

having a higher forward connectivity index, it has better chances to let bursts go through success-

fully and thus performs slightly better than Hop-FCR (the discrepancy is too small to discriminate

though). As expected, Hop-N-FCR performs best because it utilizes more link state information

than others (ξ = 0.8 is used for all tests as we found Hop-N-FCR performs best with this value).

On the other hand, the Base method (general JET) outperforming both balanced JET techniques

proves the general concept that fairness can be improved ordinarily at the expense of burst loss per-

formance reduction. BJET-F and BJET-R intentionally block part of short-route bursts which may

cause unnecessary burst drops. And besides, although long-route bursts are more likely getting

accepted when they are approaching to the destination node, they have the same difficulty (very
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Figure 4.12: Overall burst loss versus load at various Ws (Mesh 5 x 5).

limited number of wavelengths to choose) going through the first or even the second hop accord-

ing to (4.1) as the bursts with shorter total hops. Since BJET-F always searches the limited space

[1,ni] for a free wavelength for incoming bursts at their ith hops, it would cause a larger number

of wavelength collisions at the first or second hop, which may result in excessive drops of bursts.

BJET-R avoids this drawback by checking the entire wavelength space [1,W] randomly for a free

channel as long as the total number of examined channels is also restricted to ni. This explains

why BJET-R is superior to BJET-F.

Figure 4.12 compares the overall burst loss probability against load for general JET and Hop-

FCR with different number of wavelengths. It shows at low loads Hop-FCR can improve the

performance by one order of magnitude at W = 4, and even two orders of magnitude at W = 6 and

W = 8. This growing performance gain over Base is because Hop-FCR can dynamically distribute
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Figure 4.13: Burst loss versus load for different hops at W = 4. OL stands for overall burst loss in

this and following figures (Mesh 5 x 5).
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Figure 4.14: Unfairness measure versus load at various Ws (Mesh 5 x 5).
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the burst arrivals more evenly to the next hops based on the FCRs when W gets larger, leading

to a higher effective link utilization. When load becomes higher, the performance discrepancies

between the two methods vanish gradually as expected and they eventually saturate at a similar

level, but at a higher load for a larger W.

4.5.2.2 Fairness Comparisons

Figure 4.13 demonstrates the burst loss performance based on the number of hops for BJET-R and

Hop-FCR at W = 4. We do not consider BJET-F here because it is not meaningful that someone

would appreciate the improved fairness by tolerating a large performance drop. It is clear to see

in Figure 4.13 that there are distinguishable disparities between bursts of different hops for almost

all loads in BJET-R. On the contrary, very small discrepancies exist in Hop-FCR except for one-

hop bursts at medium/high loads. We shall explain why the two schemes behave differently by

combining Figure 4.14.

Figure 4.14 shows the modified coefficient of variance against load, which gives the unfairness

measurement for the entire network in a quantitative way. Abstractly speaking, it is desirable to

achieve two general fairness properties with any scheme: 1) CoV ′ (the metric of unfairness) starts

at smaller values. Since there is a light contention at low loads usually, the system employed

with even a simple fairness-improving technique can manage to transmit most bursts end-to-end
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regardless of total hops. It thus achieves better fairness than when short-route bursts get more

precedences inherently at tight contention; 2) Fairness improves at same loads if W increases or

at least keeps a similar level. Nowadays fiber technology continues improving and a fiber link is

expected to carry more wavelengths. Apparently, it would be destructive if the fairness problem

gets worse when W increases. As displayed in Figure 4.14, Base behaves adversely due to lacking

of capability to deal with fairness. On the other hand, BJET-R is in compliance with property

one but violates property two, whereas Hop-FCR is in good agreement with both properties. It

can be explained as follows: BJET-R achieves fairness by limiting the number of wavelengths for

searching at smaller hops, but it performs wavelength assignment statically and cannot adapt to

the real traffic loads. When W increases, the performance gains obtained by bursts with smaller

hop counts grow faster than ones with larger hop counts, which results in poorer fairness as a

consequence. Hop-FCR, however, provides a larger proportion of underutilized data channels to

long-route bursts dynamically, as demonstrated in the sample Figure 4.2 and Subsection 4.3.5.

Therefore, it can improve fairness and overall burst loss performance both to a large extent.

In order to investigate the fairness improvements by the proposed three adaptive schemes in

greater detail, we plot the ratio of burst loss probabilities of i-hop bursts to that of all incoming

bursts individually in Figures 4.15 and 4.16. Figure 4.17 compares the unfairness measurements

based on CoV ′. Basically, the three methods perform very closely and all converge at a level of

less than 20% CoV ′, but Hop-LC slightly outperforms the other two when load is greater than

30 Erlangs. It is worth pointing out that since overall burst loss probabilities are almost identical
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Figure 4.15: Loss ratio for i-hop bursts versus load at W = 4 (Mesh 5 x 5).
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Figure 4.16: Loss ratio for i-hop bursts versus load at W = 4 (Mesh 5 x 5).
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Figure 4.17: Unfairness measure versus load at W = 4 (Mesh 5 x 5).

for the three schemes as displayed in Figure 4.11, Figures 4.15 and 4.16 can be used to compare

approximately the absolute burst loss probabilities of counterparts in two methods, i.e., one-hop

bursts have a higher loss probability in Hop-LC than in Hop-FCR. The two figures show Hop-LC

gains better fairness at moderate and high loads by letting more long-route bursts (three-hop and

four-hop bursts) go through. We have discussed previously that because Hop-N-FCR considers the

FCRs both on the immediate candidate links and the next candidate links, it may understand the

network congestion state better than Hop-LC. At low loads, this advantage leads to even higher

bandwidth utilization in Hop-N-FCR. Hence, the drop performances for all arriving bursts regard-

less of total hops have been improved, which can be observed in Figure 4.16. Nevertheless, when

load grows the second part on the right side in (4.9) may contain too many outdated or conflict-

ing data channel reservations as discussed in Subsection 4.3.4. This negative effect aggravates
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when bursts have to pass through more hops which gradually degrades the performance as well as

fairness-capability of Hop-N-FCR and makes it less superior to Hop-LC.

4.5.3 Network Performance Summary

We have also conducted tests on the European Optical Network of 19 nodes and 38 links at various

Ws, and the results are in compliance with those of the Mesh 5 x 5 network (the simulation results

are omitted here due to space limitations). Overall, we can summarize our main findings as follows.

• The proposed routing schemes can achieve lower burst loss probability than both BJET

methods and the general JET scheme, especially under low loads. This performance gain

generally grows when W increases.

• Unlike conventional methodologies which often secure fairness at the expense of burst loss

probability, the proposed schemes are meant to improve both performances. By distributing

the underutilized link resources dynamically in favor of longer-hop bursts, the proposed

schemes can even keep the improved fairness at a similar level when W increases.

• The performance improvement depends on various parameters, including the link state in-

formation utilized by the routing mechanism, the network topology and the traffic load. In

many cases, the performance improvement over shortest path routing can be considerable.

The extended adaptive routing along with a reasonably-set parameter η is suggested for
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sparse topologies and may perform better than the regular adaptive routing in general mesh

networks.

• Hop-N-FCR routing can further reduce the burst drop probability at low loads. However,

considering the increased computation complexity and the support required for information

collection and dissemination, it is best to use Hop-LC which is simpler to implement and has

better fairness-capability.

4.6 Summary

In this chapter, we proposed three adaptive routing schemes namely Hop-FCR, Hop-LC and Hop-

N-FCR to decrease burst losses and solve the fairness problem in OBS networks. They adopt

forward channel reservation to dynamically route the burst arrivals hop-by-hop. We evaluated

the proposed methods with simulation, and numerical results showed that our methods are highly

effective in OBS mesh networks. They can generally achieve dramatic improvement in both burst

loss performance and fairness. We also observed that Hop-N-FCR obtains the best fairness at low

loads while Hop-LC dominates at moderate and high loads. In short, Hop-LC is suggested in terms

of burst loss performance, fairness and implementation complexity. We developed an analytical

model to help predict the end-to-end burst loss probability in general Ring networks operated under

the simplified first-hop adaptive routing. The analytical model was verified via simulation.
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CHAPTER 5

CONVERSION CASCADING IN OBS NETWORKS

In contrast to optical circuit switching, it will incur too much overheads in OBS if we try to develop

a wavelength scheduling scheme and/or routing algorithm on the basis of global link state infor-

mation. This is because bursts are relatively short and link states change too frequently. Therefore,

investigations of burst loss performance in OBS often assume that contention resolution is achieved

in the wavelength domain through full wavelength conversion [QY99,XVC00,YQD00,WMA00].

Chapters 2 and 3 have shown that the conversion cascading constraint may increase blocking prob-

ability in OCS networks substantially, especially in the environment of full wavelength conversion.

We expect similar negative side effects to exist in OBS networks. Due to the inherent differences

of signaling protocols between the two switching mechanisms, we need to further investigate this

negative impact in OBS in order to design effective methods to resolve or alleviate this problem.

Based on the fairness-improving adaptive routing presented in Chapter 4, we develop a proac-

tive routing scheme to counteract the negative impact and also extend the proposed mechanism to

embrace a variant of regulated deflection routing which can further improve network performance.
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Figure 5.1: Increasing losses under the conversion cascading constraint.

Table 5.1: Negative impact of the conversion cascading constraint on fairness (U.S. Long-Haul,

load = 0.06)

constraint one-hop two-hop three-hop four-hop five-hop six-hop seven-hop

nc 6.19E-4 0.001631 0.003054 0.004532 0.006056 0.007606 0.00704

c3 6.14E-4 0.001614 0.003036 0.004501 0.029045 0.072899 0.107434

c2 5.69E-4 0.001491 0.00281 0.052729 0.126291 0.200644 0.237704

c1 3.42E-4 8.62E-4 0.133151 0.268722 0.393779 0.496653 0.537703

5.1 Preliminary Experimental Examples

As aforementioned, it is expected that the enforcement of the conversion cascading constraint

would inevitably degrade the burst loss performance and probably worsen the fairness problem too.

In this section, we will demonstrate some preliminary experimental examples about the negative

impact of this constraint.
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Figure 5.1 illustrates the overall burst loss probability versus traffic load per wavelength in the

U.S. Long-Haul network. The number of wavelengths per fiber link (W ) is equal to six, and JET is

used as the signaling protocol in this simulation. Under c1 to c4, burst loss rates are significantly

higher than that under nc at light and medium traffic loads. The performance degradation at light

loads ranges from one order to three orders of magnitude. When the conversion cascading thresh-

old is higher (c5 or even higher), the performance difference between ci and nc becomes very small

or completely disappears. On the other hand, we deduce that when W gets larger more wavelength

conversions would appear and possibly there would be more data bursts getting dropped because

of the cascading constraint. This conjecture is proved later in the detailed performance evaluation.

Table 5.1 shows the relationship between loss rate and hop count with various thresholds of

the conversion cascading constraint. The performance results for nc act as the baseline during

comparison. It is clear from Table 5.1 that even under no existence of the conversion cascading

constraint the unfairness among bursts of different hop counts is still significant. For example

seven-hop bursts have ten times the loss rate of one-hop bursts (0.00704 vs. 6.19E-4). We thus

can reason that the fairness problem would worsen if we take the conversion cascading constraint

into account. Since i-hop bursts require a maximum of i−1 wavelength conversions for successful

transmission, the loss rate of bursts with four or less hops is not expected to increase because of the

presence of constraint c3. Similarly bursts with three hops or less are not affected by the constraint

c2 and so on. Actually, we observe in Table 5.1 that under c3 the loss performance of one-hop to

four-hop bursts has improved to different extents compared with the case of nc, but the losses of
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longer-hop bursts have increased adversely which makes the fairness problem much more serious.

Similar phenomenon happens for c2 and c1. This behavior is understandable because when longer-

hop bursts are excessively blocked due to the cascading constraint, more wavelengths are left free

for shorter-hop bursts.

5.2 Proposed Work

Most of the previously proposed scheduling and/or routing mechanisms in OBS have assumed

full wavelength conversion. Nobody has considered the negative impact of the conversion cas-

cading constraint, nor did anyone attempt to minimize the number of conversions required. we

now proceed to describe our proposed proactive routing scheme and an extension in this section,

which take the scheduling and routing jointly when bursts are on their way from source to destina-

tion. We demonstrate burst loss reduction and fairness improvement simultaneously, among other

advantages under the environment of the conversion cascading constraint.

5.2.1 Hop-based Proactive Routing

The fairness-improving adaptive routing scheme called Hop-LC is suggested in Chapter 4 in

terms of burst loss performance, fairness and implementation complexity. Therefore, we adapt
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Algorithm 1 Hop-LC-CC

Input: New burst Γnew = 〈λprev, ∆c〉, cmax, current node i and current schedule

Output: Grant reservation request of Γnew or not, if yes return chosen next node nx;

nx←−1, Λ← φ , Ω← φ ;

Ψ← neighbor node id’s calculated by means of designated routing;

while Ψ 6= φ do

j← next neighbor node;

if (Γnew can be scheduled via λprev on link ei j using LAUC-VF) then

Λ← Λ∪{ j}; /* w/o conversion to reach node j */

else

Ω←Ω∪{ j}; /* w/ conversion to reach node j */

end if

Remove node j from Ψ;

end while

if (Ω == φ) then

nx← j such that Pre f ( j) = min∀k∈Λ Pre f (k);
else if (Λ == φ and ∆c < cmax) then

(∆c← ∆c + 1, nx← j) such that Pre f ( j) = min∀k∈Ω Pre f (k) and Γnew can be scheduled on

link ei j using LAUC-VF;

else if (Ω 6= φ and Λ 6= φ) then

nnc← j such that Pre f ( j) = min∀k∈Λ Pre f (k);
nc ← k such that Pre f (k) = min∀ j∈Ω Pre f ( j) and ∆c < cmax and Γnew can be scheduled on

link eik using LAUC-VF;

if ((Pre f (nnc)−Pre f (nc)) > σ ×L) then

nx← nc, ∆c← ∆c +1;

else

nx← nnc;

end if

end if

if (nx 6=−1) then

Reserve resources for Γnew, update λprev and return nx;

else

Drop new burst Γnew;

end if
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Hop-LC to accommodate the constraint of cascaded wavelength conversions. The new algorithm

is named hop-by-hop proactive routing using FCR and neighborhood link connectivity under con-

version cascading (Hop-LC-CC). In Algorithm Hop-LC-CC, the wavelength utilized by the pre-

vious hop is favorable when it is free at the current hop and thus unnecessary conversions are

avoided during the scheduling and routing process. Nevertheless, when converters are required

(i.e., a conversion is inevitable when the control packet tries to schedule the burst on any candidate

link ei j), we will have to consider the preference value and the conversion cascading constraint

together. In the algorithm, λprev denotes the wavelength used at the previous hop(s), Λ denotes the

set of candidate nodes that the burst can be scheduled via λprev on the corresponding links from

the current node i to them, and Ω denotes the set of candidate nodes that can be reached only

through wavelength conversion. When Ω is empty (Ω = φ ), it corresponds to the condition that

no converters are involved and a neighbor node from Λ with the minimum preference value will

be picked. When Λ is empty, it indicates one wavelength conversion will have to be conducted

in order to transmit the new burst at the current hop. When both Ω and Λ are not empty, we first

need to find both candidate nodes with the minimum preference values from their respective sets.

If and only if the preference value along with a conversion (from Ω) is less than the one without

any conversion (from Λ) to a certain extent (σ ×L, L is the average burst duration time and σ is

a tunable parameter), the candidate node requiring a conversion is picked. Moreover, if the to-

tal number of accumulated conversions (∆c) has reached the threshold (cmax), no more conversions

will be accepted due to the conversion cascading constraint. This scheme tries to balance the trade-
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off between wavelength conversion and link utilization, which is proved to be effective in the next

performance study section.

The routing method proposed also bears fairness-solving in mind, which distinguishes itself

from the other adaptive routing mechanisms [TVJ03,YR06,OA05]. By being offered more routing

opportunities, those longer-hop bursts will have a relatively greater possibility of passing through

intermediate optical nodes. As a consequence, better fairness can be achieved as desired.

5.2.2 Deflection-enabled Hop-LC-CC (Hop-LC-CC2)

Despite of the buffering issue and the possible oscillation effect at high loads, it has been proved

that deflection routing brings great improvement on burst loss performance [WMA00, HLH02,

CWX03, LSK03, ZVZ04]. As illustrated in [HLH02], unlimitedly performing deflection does not

always bring performance gain. The reason is that more deflection occurrences will cause longer

end-to-end delay, which is equivalent to occupying more resources. Consequently, we enable a

variant of deflection in the proposed Hop-LC-CC which is subject to the following two conditions:

• Condition I: there is a limit on the additional deflection hops to avoid side effects. This

condition is different from the deflection frequency limit applied in [HLH02] which implies

the maximum allowed deflection occurrence ( fmax) cannot exceed a specified number. As

we know, whenever a deflection occurs, the original routing path will be lengthened. Let
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d(b) denote the additional deflection hops of a burst b. The limit on d(b) indicates the total

allowed hops increased because of deflection cannot exceed a network-wide threshold Dmax,

i.e., d(b)≤ Dmax for any burst b.

• Condition II: another restriction specifies that bursts may not trigger deflection even if they

have not reached the pre-set maximum deflection hops. The decision is based on the original

hop count h(b) (before any deflection) of bursts in transmission. As described, Hop-LC-CC

inherently possesses the capability to solve or alleviate the fairness problem. However, this

fairness-relevant capability depends on network topology. For instance, it is expected to ac-

quire better fairness in a densely connected network than in a sparsely connected one where

longer-hop bursts may have as few routing options as shorter-hop bursts. This condition

(h(b) ≤ Hstart , where Hstart is the bound) specifies particular short-hop bursts cannot carry

out deflection routing and leave more free wavelength channels to the rest.

We shall refer to this extension of Hop-LC-CC as Algorithm Hop-LC-CC2. In Hop-LC-CC2, we

extend Algorithm Hop-LC-CC to embrace deflection routing when the latter cannot accommodate

the new burst Γnew.
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Algorithm 2 Hop-LC-CC2

begin Execute Hop-LC-CC to schedule the incoming burst;

if Hop-LC-CC returns with a failure then

Θ← all unvisited neighbor nodes of the current node i;

d(b)← the minimum number of total hops added to the original routing path if deflected to

nodes in Θ;

if ((d(b) > Dmax) or (h(b) > Hstart)) then

Drop new burst Γnew;

else

if Γnew can be deflected to every node in Θ via λprev using LAUC-VF then

Pick the neighbor node minimizing the number of increased hops and schedule Γnew;

else

Pick the neighbor node minimizing the number of increased hops such that ∆c < cmax

and schedule Γnew using LAUC-VF;

end if

end if

end if

Figure 5.2: U.S. Long-Haul network topology.
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Figure 5.3: Toronto Metropolitan network topology.

5.3 Experimental Results

In this section, we investigate the burst lost performance and the fairness of the two proposed dy-

namic routing mechanisms. We also consider another three cases for performance comparisons:

FSR (fixed shortest-path routing), FSR-CasCt (FSR under the Conversion Cascading Constraint)

and FSR-CA (FSR with Conversion Avoidance). They all adopt a static lightpath between any

two nodes computed by the shortest-path-first method and the LAUC-VF channel scheduling algo-

rithm. FSR is a general JET method which does not consider the conversion cascading constraint.

On the other hand, FSR-CasCt, based on FSR, additionally blocks a burst request if it has already

conducted the maximum number of wavelength conversions but still requires another one for its

next scheduling. FSR-CA, however, is more intelligent than FSR-CasCt in that it tries to first

schedule the bursts on the same wavelengths utilized in the previous hop(s) and thus avoids un-

necessary wavelength conversions whenever possible. We consider FSR as the baseline case for

performance comparisons.
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The evaluation network models are the U.S. Long-Haul (Figure 5.2) and the Toronto Metropoli-

tan (Figure 5.3) topologies. The Toronto Metropolitan topology [THT05] which has 25 nodes and

55 links is a high link density sample. The U.S. Long-Haul topology which has 28 nodes and

45 links is a low link density sample. The longest-shortest path between source and destination

has six and four intermediate OXCs, for U.S. Long-Haul and Toronto Metropolitan, respectively.

Therefore no burst needs more than six or four wavelength conversions to reach its destination.

Meanwhile, most source-destination pairs in both networks have lightpaths with a much fewer

number of intermediate OXCs. We assume that all nodes have the capability of full-range wave-

length conversion. Every link is a bidirectional fiber and consists of W data channels. The burst

arrival pattern follows a Poisson process, and the burst duration time is negative exponentially

distributed with mean L. For each burst arrival, the source and destination nodes are uniformly

selected. The time required for control packet processing in a single node is denoted as δ time

units. In U.S. Long-Haul, the propagation delay of a link in milliseconds is 0.5 multiplied by the

length label of that link. Thus, the delay for a link with length 6 is 3 ms. Unless specified, in

both Hop-LC-CC and Hop-LC-CC2, σ is set to 2.0 or 6.0 for W = 4 and W = 8 respectively for

U.S. Long-Haul. In Toronto Metropolitan every link has the same propagation delay of 0.1 ms,

and σ is set to 8.0 for both Hop-LC-CC and Hop-LC-CC2 when W = 8 as it is denser than U.S.

Long-Haul. Each data point shown in the performance graphs is obtained by running 10 million

burst transmission requests.
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5.3.1 Overall Burst Loss Performance Results

Figure 5.4 plots the overall burst loss probability against traffic load in U.S. Long-Haul for all the

three static routing methods and the Hop-LC-CC algorithm at different Ws. The curves labeled

with “nc” represent FSR without the conversion cascading constraint. It is easy to observe in

Figures 5.4b, 5.4d and 5.4f that when W = 8, the conversion cascading constraint causes significant

performance degradation to FSR-CasCt at light and moderate loads, in despite of the values of

cmax. The worst could be over three orders of magnitude for a moderate constraint of c3 at load

0.04 compared with the no-constraint environment. And it imposes similar negative impacts on

FSR-CA and even Hop-LC-CC for cmax ≤ 3. From this point of view, the negative impact of the

conversion cascading constraint is not negligible at all. On the other hand, the influences illustrated

in Figures 5.4a, 5.4c and 5.4e when W = 4 are not as distinct as those when W = 8. Combining

these results with Figure 5.1, we can project that if W gets larger there will be more channels

as well as voids available and consequently more conversions would occur. Generally speaking,

the larger number of conversions, the more severe the negative impact of the cascading constraint

would be. Actually, pure LAUC-VF is a kind of channel scheduling algorithm that is biased to

converter utilization. It performs exhaustive searching trying to find the matching void throughout

the available ones on all channels. This selection process regardless of wavelength converting is so

predominant that it even counteracts the benefit of a larger W . Figures 5.4a and 5.4b show that the

absolute overall burst loss probabilities are higher with W = 8 under c1 - c4 than their counterparts
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(a) FSR-CasCt, W = 4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Traffic Load per wavelength

O
v
e
ra

ll 
B

u
rs

t 
L
o
s
s
 P

ro
b
a
b
ili

ty

 

 

c
1

c
2

c
3

c
4

c
5

nc

(b) FSR-CasCt, W = 8
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(c) FSR-CA, W = 4
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(d) FSR-CA, W = 8
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(e) Hop-LC-CC, W = 4
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(f) Hop-LC-CC, W = 8

Figure 5.4: Overall burst loss probability versus traffic load per wavelength in U.S. Long-Haul

(δ = 0.01L).
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with W = 4, especially at light loads when there are more voids available. Similar phenomenon

happens in FSR-CA and Hop-LC-CC too but is much more slim since these two schemes possess

certain intelligence to deal with the cascading constraint.

As illustrated in Figure 5.4d, owing to the conversion avoidance technique the burst loss perfor-

mance of FSR-CA under cmax = 4 or 5 is almost the same as FSR without the cascading constraint.

This indicates that conversion avoidance may be an economic and effective way to diminish or

eliminate the impact caused by the cascading constraint in some not very stringent circumstances.

Compared with FSR-CA, Hop-LC-CC is much superior especially when cmax ≥ 3 as depicted in

Figure 5.4f. It is worth pointing out that FSR-CA performs worse than FSR in all circumstances

(i.e., no matter what the value of cmax is) due to the conversion cascading constraint, as expected.

Nevertheless, Hop-LC-CC has better performance than FSR at all loads when cmax ≥ 4 and at

moderate/high loads when cmax = 3 (Figure 5.4f). The rationale behind this observation is mainly

because Hop-LC-CC takes both the cascading constraint and link utilization into account during its

dynamic routing and wavelength scheduling process. By distributing data bursts to the candidate

nodes having a higher connectivity index as demonstrated in Equation (4.8), Hop-LC-CC obtains

better chances to let bursts go through successfully and thus improve the link utilization as much

as possible. Furthermore, in traditional deflection routing methods the loss performance is usually

worse than that of fixed shortest-path routing at very high loads. As showed in Figures 5.4e and

5.4f, Hop-LC-CC does not preserve this prevalent undesirable property since the proactive routing

limits the candidate nodes to only the nodes that are closer to the destination nodes.
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Figure 5.5: Performance of Hop-LC-CC in Toronto Metropolitan (δ = 0.01L, W = 8).

The different routing schemes have shown similar performance results on Toronto Metropolitan

network under the environment of cascaded wavelength conversions. Due to the similarity, we only

illustrate the loss performance of Hop-LC-CC when δ = 0.01L and W = 8 in Figure 5.5a. Since

the diameter of Toronto Metropolitan is smaller but the network is denser, Hop-LC-CC is able

to achieve performance gain even at a smaller cmax, e.g., when load > 0.2 Hop-LC-CC performs

better than FSR nc at c2, compared with Figure 5.4f.

5.3.2 Fairness Results

We use a similar way as [HY08] to exploit the fairness achievement in this chapter. The unfairness

indicator is defined as the standard deviation of mean burst loss probabilities calculated according
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to statistics of bursts with identical total hop count. The lower the unfairness indicator is, the

fairer a routing and/or scheduling algorithm is. As shown in Figures 5.6, 5.7 and 5.8 on the U.S.

Long-Haul network, FSR acts as a baseline since it does not employ any special method to deal

with fairness (the curves labeled with FSR nc represent the same outcome under no constraint

in all the three groups of figures if the two factors W and δ are the same). Basically, for all

the three FSR-CasCt, FSR-CA and Hop-LC-CC schemes, we find that unfairness becomes more

serious with smaller cmax. The reason is obvious: bursts with a high total hop count should suffer

from higher loss probability because more of them will be blocked when the conversion cascading

constraint is more stringent. We have explained in Subsection 5.3.1 that the above three schemes

have worse loss performances with W = 8 in stringent cases (small cmax) mainly because LAUC-

VF “encourages” converter usage. It has similar effect on unfairness which becomes worse when

W is equal to 8 since longer-route bursts are more easily affected (Figure 5.6a vs Figure 5.6b under

c1, and so on). Overall, under the same cmax and provided the other factors are identical, FSR-CA

outperforms FSR-CasCt whereas Hop-LC-CC performs the best and even a lot better than FSR in

many cases. This superiority partly lies on more routing choices designated for bursts with a high

total hop count in Hop-LC-CC. On the other hand, FSR-CA performs rather well which further

proves conversion avoidance can preserve not only the loss performance but also the fairness in

certain relaxed conditions.

Figures 5.6c, 5.7c and 5.8c plot the unfairness measurements with a larger packet processing

time (δ = 0.1L) for W = 8. We omit the corresponding figures for W = 4 because the comparison
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(a) W = 4, δ = 0.01L
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(b) W = 8, δ = 0.01L
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(c) W = 8, δ = 0.1L

Figure 5.6: Unfairness measure versus traffic load per wavelength in U.S. Long-Haul (FSR-CasCt).
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(a) W = 4, δ = 0.01L
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(b) W = 8, δ = 0.01L
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Figure 5.7: Unfairness measure versus traffic load per wavelength in U.S. Long-Haul (FSR-CA).

results are very similar. As the current offset time is determined by the remaining hop count, a

larger δ can boost the advantage in the reservation process of longer-route bursts. Compared with

the results showed in Figures 5.6b, 5.7b and 5.8b where δ = 0.01L, Figures 5.6c, 5.7c and 5.8c

show better performance which is in good agreement with the findings in [HY08]. Hop-LC-CC

can achieve similar fairness on Toronto Metropolitan as shown in Figure 5.5b.
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(b) W = 8, δ = 0.01L
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(c) W = 8, δ = 0.1L

Figure 5.8: Unfairness measure versus traffic load per wavelength in U.S. Long-Haul (Hop-L-

C-CC).

Table 5.2: Effect of σ on burst loss in Hop-LC-CC under cmax = 3 (W = 8, δ = 0.01L)

traffic load σ = 3.0 σ = 4.0 σ = 5.0 σ = 6.0 σ = 7.0 σ = 8.0 σ = 9.0

0.1 0.001778 0.001758 0.001754 0.001751 0.00175 0.00175 0.00175

0.2 0.020891 0.020841 0.0208 0.020791 0.02078 0.020785 0.020789

0.2 0.075895 0.075742 0.075648 0.075623 0.075574 0.075624 0.075648

0.4 0.147813 0.147578 0.147451 0.147505 0.147479 0.147491 0.147458

0.5 0.22004 0.219746 0.219755 0.219638 0.219602 0.21962 0.219806

↑

5.3.3 Effect of Sigma on Burst Loss in Hop-LC-CC

In Algorithm Hop-LC-CC, the scheduler will try to balance the tradeoff between wavelength con-

version and link utilization in the case that a wavelength conversion is needed to reach some can-

didate nodes while no conversion is required to reach the rest of candidates. This property is

controlled by the tunable parameter σ . It is expected that σ should depend on network topology,

cmax, W as well as traffic load. When the other conditions are identical, the larger σ is, the more
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Table 5.3: Effect of σ on burst loss in Hop-LC-CC under cmax = 5 (W = 8, δ = 0.01L)

traffic load σ = 1.0 σ = 2.0 σ = 3.0 σ = 4.0 σ = 5.0 σ = 6.0 σ = 7.0 σ = 8.0

0.1 3.81E-4 3.79E-4 3.8E-4 3.82E-4 3.82E-4 3.82E-4 3.83E-4 3.83E-4

0.2 0.01604 0.016005 0.015992 0.01603 0.016053 0.016075 0.016087 0.016096

0.3 0.068377 0.068225 0.068173 0.068236 0.068256 0.06833 0.068316 0.068348

0.4 0.138851 0.13854 0.138386 0.138465 0.138649 0.138576 0.138717 0.13872

0.5 0.210442 0.210099 0.20999 0.20992 0.210114 0.210035 0.21007 0.210033

↑

preference to wavelength continuity (bursts are to be scheduled to maintain wavelength continu-

ity) would gain over wavelength conversion. Less wavelength conversions means that less bursts

would be blocked due to the cascading constraint. However, extremely large σ would prevent the

scheduler from scheduling bursts to a lightly loaded link even though the bursts have conducted

no or only very few wavelength conversions so far. Tables 5.2 and 5.3 demonstrate the effect of

σ on overall burst loss probability in the U.S. Long-Haul network under cmax = 3 (a moderate

value) and cmax = 5, respectively. As analyzed above, to achieve the best performance σ cannot be

extremely small or large. Approximately, σ = 7.0 and 3.0 show the lowest losses across various

loads, respectively. When cmax gets larger, the impact caused by the cascading constraint becomes

smaller. Consequently, more wavelength conversions can be fulfilled to improve the link utilization

which accounts for why the network under cmax = 5 reaches the equilibrium state at a smaller σ

according to Algorithm Hop-LC-CC.
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In reality, the estimation of σ is also pertinent to link load. Thus, in order to obtain the best

performance, it is desirable to first estimate the average link load through traffic engineering and

then determine which σ should be used via simulation and analysis.

5.3.4 Performance Comparison with Deflection Routing

In order to discover further the effectiveness of Algorithm Hop-LC-CC, we also conduct a study on

deflection routing and compare their performances. The deflection routing we implement is based

on [HLH02]. We adapt it to the environment of cascaded wavelength conversions by incorporating

the conversion avoidance technique used in FSR-CA. As a result, it is named DR-CA. During

simulation, fmax (maximum allowed deflection occurrence) is set to up to two.

Figures 5.9a and 5.9c plot burst losses at cmax = 3 for U.S. Long-Haul and Toronto Metropolitan

respectively. Figure 5.9a exhibits a typical scenario presented by deflection routing, where DR-CA

brings performance gain under light load and the gain is gradually reduced under heavier traffic.

On the other side, the two routing schemes perform adversely in Figure 5.9c. It can be interpreted

as follows: since the Toronto Metropolitan topology is denser, both Hop-LC-CC and DR-CA have

more choices during routing. When load is light, Hop-LC-CC has fewer burst losses owing to its

managed routing (bursts are not directed to long lightpaths randomly as in DR-CA). Under heavier

traffic the constrained paths in Hop-LC-CC may be congested, although there are still some other
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(d) Toronto Metropolitan, cmax = 3
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(e) Toronto Metropolitan, cmax = 2
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(f) Toronto Metropolitan, cmax = 2

Figure 5.9: Performance comparisons with DR-CA (δ = 0.01L, W = 8).
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underutilized links in a dense network as Toronto Metropolitan. DR-CA takes advantage of those

underutilized links and consequently decreases its burst losses. However, this property of DR-CA

is suppressed when cmax gets smaller because deflected bursts, that are expected to experience more

wavelength conversions, get dropped more often. Figure 5.9e is in compliance with this inference.

Because DR-CA concentrates on reducing burst losses, it has consistently shown poorer fairness

than Hop-LC-CC in Figures 5.9b, 5.9d and 5.9f.

5.3.5 Performance of the Extension Algorithm Hop-LC-CC2

Figure 5.10 illustrates the performance comparisons regarding various configurations of Dmax and

Hstart in Hop-LC-CC2. Since Hstart is set to be greater than one, all bursts with only one hop will

not perform any deflection routing. The curves labeled with Hop-LC-CC exhibit the corresponding

performance outcomes of Algorithm Hop-LC-CC under the same circumstances. We have the

following observations:

• First of all, Hop-LC-CC2 is superior to Hop-LC-CC for almost all configurations in regard

to both loss and fairness. Apparently, the combination with deflection routing brings great

improvement on loss performance, especially when traffic load is light as there is more room

for improvement by deflection routing.
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Figure 5.10: Performance comparisons with Hop-LC-CC2 under various configurations of Dmax

and Hstart (δ = 0.01L, W = 8).

• In general, when the configuration is more aggressive (i.e., higher Dmax and/or lower Hstart),

Hop-LC-CC2 can achieve even better performance. Although Hop-LC-CC2 has restrained

deflection to a minimum level, the more aggressive configurations still bring many excessive

deflections under high load. That causes negative impact and the improvement diminishes

gradually. Considering fairness specifically, it is expected that Hop-LC-CC2 performs better
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with Dmax = 2 than with Dmax = 1 in most cases, especially under light and moderate loads

(Figures 5.10b, and 5.10d). However, with the same Dmax if we want to achieve even better

fairness, we should leave more deflection routing to longer-route bursts by setting a higher

threshold of Hstart .

5.4 Summary

In this chapter, we have examined the negative impact of the conversion cascading constraint in

the JET-based OBS networks. We have shown that the impact on burst loss performance is quite

noticeable or even significant when conditions are stringent. Furthermore, the fairness problem

is worsened by this negative impact since bursts with a high hop count usually suffer much more

than those with a short lightpath. Motivated by these observations, we proposed a novel proactive

scheduling and routing scheme as well as an extension that adopts forward channel reservation

to dynamically route burst requests under the cascading constraint. Extensive numerical results

have demonstrated that our methods effectively improve burst loss performance and yields better

fairness as well.
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CHAPTER 6

PREEMPTIVE CHANNEL SCHEDULING

In this chapter we introduce a new preemptive scheduling technique for next generation OBS net-

works considering the impact of cascaded wavelength conversions. Subject to this practical imped-

iment under full wavelength conversion, we improve a recently proposed fair channel scheduling

algorithm to deal with the fairness problem and aim at burst loss reduction simultaneously in OBS

environments. In our scheme, the dynamic priority associated with each burst is based on a con-

straint threshold and the number of already conducted wavelength conversions among other factors

for this burst. When contention occurs, a new arriving superior burst may preempt another sched-

uled one according to their priorities. Extensive simulation results have shown that the proposed

scheme further improves fairness and achieves burst loss reduction as well.
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6.1 Related Work

In this section, we first discuss the fundamental wavelength scheduling algorithms, the contention

problem, and then we shall investigate the fairness problem and several relevant approaches ad-

dressed in previous literature.

In JET-based OBS, data bursts are assigned variable offset lengths at edge nodes according to

their path distance, and as the bursts are traveling through the network, these offsets will shrink.

The presence of this variability and the dynamic random arrival of bursts create a large number

of idle periods (voids) on wavelength channels. The scheduler in each optical node faces herein

the challenge that it must accommodate efficiently bursts in the absence of global link state infor-

mation. To overcome this difficulty, Xiong et al. [XVC00] proposed two scheduling algorithms

called LAUC (latest available unscheduled channel) and LAUC-VF (LAUC with void filling), re-

spectively. LAUC, which is the same as the Horizon algorithm [Tur99], maintains a single variable

recording the latest reservation time of each channel and assigns the channel with the latest start-

ing time that is still earlier than the arrival time of the incoming burst. LAUC is simple but cannot

utilize all existing voids. LAUC-VF keeps track of all void intervals within the channel space and

assigns the intervals that would give the minimum of gaps or voids. This has the effect of filling

channel space more effectively, ensuring that any newly created voids would occur closer to the

present time and hence be more capable of being filled by newly arriving bursts. The minimum

starting void (Min-SV) algorithm [XQL03, XQL04] uses a geometric approach and organizes the
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voids into a balanced binary tree. Min-SV algorithm finds a void that minimizes the distance

between the starting time of the void and the starting time of the burst. It can produce efficient

burst schedules as LAUC-VF but more quickly. A more efficient scheduling approach proposed

in [CTM07] which requires a special hardware-based constant time burst resequencing (CTBR)

scheduler can achieve only O(1) runtime complexity. CTBR is similar to the free channel queue

(FCQ) burst scheduling algorithm introduced in [BS05, BS06], which fits in with the new dual-

header optical burst switching (DOBS) architecture.

One of the primary objectives in the design of an OBS network is to minimize burst loss.

Burst loss occurs primarily due to the contention of bursts in the bufferless core nodes. During

scheduling, an arriving burst may contend with one or more scheduled bursts on the outgoing data

channels. This contention results in the burst being dropped, leading to burst loss. Approaches for

resolving contention include wavelength conversion [Gau04, AKD06], optical buffering [XVC00,

WL04, CTM07], and deflection routing [WMA00, HLH02, CWX03, LSK03, ZVZ04]. Apart from

these three contention resolution approaches, burst segmentation [VJS02,RVZ03] and preemption

techniques [CCE03, TUK04, MMI05] were also proposed.

As we have discussed in OBS networks, the fairness problem causes the loss probabilities of

optical bursts traveling through lightpaths with larger hop counts to be higher than those whose

paths have a smaller number of hops. It is an important topic that we need to face and solve. The

works [LTT04,ZBL04,ZBL07,HY08] were dedicated to improving fairness in OBS networks. The

monitoring group drop probability (MGDP) approach [LTT04] intentionally drops a burst with a
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small total hop count so that more resources can be left for bursts with longer paths. However, this

feature may cause unnecessary burst drops and consequently blocking performance is sacrificed to

satisfy fairness. Another disadvantage of MGDP is that it focuses on achieving fairness on a single

switching node but may worsen the fairness of bursts transmission in the whole network as a result.

The balanced just-in-time scheme (BJIT) proposed in [ZBL04] deals with the fairness problem by

adjusting the size of the search space for a free wavelength based on the number of hops traveled

by the burst. The size for searching is designed to grow gradually as the burst approaches to its

destination. Similar to MGDP, BJIT may suffer from higher burst losses because some bursts with

a short lightpath have difficulty in finding free wavelengths at their first or even second hop and

get dropped excessively.

In addition to providing contention solution and achieving service differentiation as shown

in [CCE03, TUK04, MMI05], preemption has also been used to offer fair scheduling in JET-based

OBS networks as well. Provided carefully designed, when dropping is inevitable, preemption can

pick the one maintaining fairness while causing the least significance to the network performance

at the same time. The authors in [ZBL07] proposed to use constrained preemption to improve fair-

ness without degrading network throughput. They set a couple of additional constraints to reduce

resource waste and improve efficiency of preemption. On the other hand, the authors in [HY08]

first provided an in-depth analysis of the fairness problem in JET-based OBS networks. They

then derived a priority function evaluated on a bunch of parameters inferred from their analysis:

successful hops, remaining hops, initial offset time, and average burst duration time. Preemption
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(taking account of both fairness and loss performance) is triggered based on the priority function in

case of any burst contention. The resulting fair prioritized preemption algorithm (FPP) is remark-

able and the simulation results showed that it yields better fairness and lower losses than the other

two fairness solutions - MGDP and BJIT. Therefore, our proposed preemptive scheduling scheme

is based on FPP. To accommodate the conversion cascading constraint that the current converter

technology is facing, we reduce the converter usage whenever possible and combine a constraint

threshold into a new priority function. The details of the algorithm are presented in the following

section. The techniques introduced in [ZBL07] could be incorporated into our preemption solution

for further improvement, and we may consider them in real implementation.

6.2 Conversion Reduction and Fair Prioritized Preemption

In this section, we shall describe the proposed wavelength scheduling scheme - conversion reduc-

tion and fair prioritized preemption algorithm (CR-FPP) in detail.

We use the following same notations as in FPP [HY08] to present CR-FPP:

• Xi: any arriving burst i

• Hi: total hop counts of burst Xi

• σi: successful hop counts of burst Xi
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• τi: remaining hop counts of burst Xi, i.e., Hi = σi + τi

• L: average burst duration time

• δ : processing time of a control packet at core nodes

• △i: initial offset time of burst Xi, i.e.,△i = Hi×δ

• θ : the evaluation function for preemption

As pointed out in FPP [HY08], the total number of hops pertains to fairness, the remaining

hops can promote the priority of bursts close to its destination, and the number of successful hops

is relevant to link utilization. FPP integrates these considerations into the evaluation function θ

to achieve fairness improvement and efficient link utilization together. The evaluation function θ

biased to longer Hi at some point is given as (6.1):

θ (Xi) = σi− (△i/L)× τi (6.1)

In (6.1), the negative term is used to prune the biased preference for bursts with longer initial offset

time and the significance is determined by the ratio△i/L. If this pruning is not executed, the above

preemptive scheme may apparently over-correct the fairness problem.

To address the negative performance impact caused by the conversion cascading constraint,

our proposed scheme CR-FPP shall first try to schedule the incoming burst on its current channel

λprev that it used at the previous hop(s). Only if the channel occupied by the incoming burst is
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not available on the outgoing link, LAUC-VF scheduling is applied. If LAUC-VF still can not

accommodate the new burst, CR-FPP shall look for the candidate bursts to preempt according to

the new evaluation function θ̄ :

θ̄ (Xi) =

(

1− πi

cmax

· 1√
Hi

)

×σi−β × (△i/L)× τi (6.2)

where πi denotes the accumulated number of wavelength conversions conducted for bust Xi so far,

cmax is the threshold and πi ≤ cmax. Due to the cascading constraint, we determine the eligibility

of a candidate burst not only by how many successful hops (σi) it has traversed, but also by how

many wavelength conversions (πi) it has experienced. The term πi

cmax
· 1√

Hi
represents the latter

impactor and should be negative. It is in inverse proportion to Hi, which gives more bias on

longer-path bursts to achieve fairness, because as aforementioned those bursts may be affected by

the constraint more often in general. In (6.2) a new parameter β is also added to the second term

relevant to τi. This parameter β provides us with more flexibility determining the significance of

τi. We can fine-tune β to further reduce the two opposite side-effects brought by the preemption

scheme: overcorrection because of the over-preference for bursts with longer initial offset time and

over-suppression of longer-hop bursts due to possible increasing packet process time δ . We shall

discuss the effects in more detail in Section 6.3. When a burst is preempted, messages are sent to

both uplink(s) and downlink(s) to release the resources reserved for this burst.
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Algorithm 3 CR-FPP

Input: Burst Xnew = 〈Hnew, σnew, τnew,△new,πnew, λprev〉, cmax, and the current schedule

Output: Grant reservation request of Xnew or not

if Xnew can be scheduled into the current schedule on λprev then

Reserve Xnew on λprev; return;

else if Xnew can be scheduled on λm (6= λprev) via LAUC-VF then

Reserve Xnew on λm; return;

else

Ψ← φ ;

for i = 1 to W do

Xcon = 〈Hcon, σcon, τcon,△con,πcon〉 /* the contending burst on λi */

if θ̄ (Xnew) > θ̄ (Xcon) then

Ψ←Ψ∪{Xcon};
end if

end for

if Ψ 6= φ then

Pick X j such that
σ j

H j
= min∀Xi

σi

Hi
;

Reserve Xnew on the channel that X j was scheduled;

Send message to release reservations for X j on both uplink(s) and downlink(s);

else

Drop Xnew;

end if

return;

end if
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Figure 6.1: 21-node Abilene (Internet2) network with link distance in km.

The resulting algorithm is described in Algorithm CR-FPP. Similar to FPP, in Algorithm CR-

FPP if more than one scheduled bursts lose in a contention, the algorithm picks the one with the

shortest relative successful path as the victim to be preempted in this contention, i.e., burst X j such

that
σ j

H j
= min∀Xi

σi

Hi
. If two or more bursts on a channel are involved in a contention, in other words

over one scheduled burst shall be preempted to accommodate the single new burst, we discard the

new burst directly to save the possible bandwidth waste.

6.3 Numerical Results

In this section, we investigate the burst loss performance and the fairness of the proposed preemp-

tive scheduling scheme. Since it has been shown in [HY08] that FPP outperforms both BJIT and
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MGDP, we shall focus on comparing CR-FPP with FPP only. The evaluation network model is

the topology comprising the optical routing nodes extracted from the Abilene (Internet2) network.

In the simplified Abilene topology (Figure 6.1), the longest-shortest path between source and des-

tination has seven intermediate OXCs. Therefore no burst needs more than seven wavelength

conversions to reach its destination. We assume that all nodes have the capability of full-range

wavelength conversion. Every link is a bidirectional fiber and consists of W data channels. The

burst arrival pattern follows a Poisson process, and the burst duration time is negatively exponen-

tially distributed with mean L. Traffic load is normalized with ρ = (λL)/W per optical node.

For each burst arrival, the source and destination nodes are uniformly selected. Unless specified,

W = 8, the ratio δ/L = 0.01 and β in CR-FPP is set to 1.0. The unfairness measure is defined as the

standard deviation of mean dropping probabilities calculated according to statistics of bursts with

identical total hop count. The lower the unfairness measure is, the fairer a scheduling algorithm

is. Each data point shown in the performance graphs is obtained by running 107 burst transmission

requests.

We first briefly illustrate the advantages of FPP over the pure LAUC-VF scheduling algorithm

under no effect of the conversion cascading constraint. Figures 6.2 and 6.3 plot the burst loss

rate and unfairness measure against traffic load, respectively. When cmax = 7, FPP shall not be

affected by the cascading constraint at all. Because of its intelligent discarding, FPP shows large

performance improvement for both burst loss and fairness. In short, FPP would not drop any burst

deliberately, and it determines bursts priorities dynamically for preemption.
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Figure 6.2: Burst loss: pure LAUC-VF versus FPP (cmax = 7).
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Figure 6.3: Unfairness measure: pure LAUC-VF versus FPP (cmax = 7).

136



1 2 3 4 5 6 7
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

c
max

 −−>

B
u

rs
t 

L
o

s
s
 R

a
te

 −
−

>

 

 

load=0.05

load=0.15

load=0.25

load=0.35

load=0.45

load=0.55

load=0.65

Figure 6.4: FPP: burst loss versus cmax.
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Figure 6.5: CR-FPP: burst loss versus cmax.
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Figure 6.6: FPP: burst loss versus traffic

load.
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Figure 6.7: CR-FPP: burst loss versus traffic

load.
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Figure 6.8: FPP: unfairness measure versus

cmax.
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Figure 6.9: CR-FPP: unfairness measure

versus cmax.
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Figures 6.4-6.9 compares the performance achievements between CR-FPP and FPP side by

side. We have the following observations:

• CR-FPP achieves lower burst loss rates across almost all kinds of loads, and regardless of

the value of cmax. Moreover, as depicted in Figures 6.4 and 6.5, for the same load CR-FPP

is able to suppress the negative impact of the conversion cascading constraint much faster

than FPP when this constraint becomes less stringent (with higher cmax), especially under

lower loads. For instance, under load 0.05 CR-FPP has reached the stable loss rate at c4, but

FPP still suffers from high burst losses at same c4 which is over one order of magnitude in

disparity. The merit of CR-FPP lies on two aspects: at first it effectively reduces unnecessary

wavelength conversions by scheduling the bursts on the channel that they have used at their

previous hop(s); secondly, it incorporates the consideration of the cascading constraint into

the priority evaluation function for preemption. In this way, some bursts that have experi-

enced relatively too many wavelength conversions, which are very possible to get dropped

at their next hop(s) due to the cascading constraint, may be sacrificed at the current hop to

accommodate other bursts with less conversions. Consequently, resource wastes have been

saved ahead of time.

• Figures 6.6 and 6.7 further prove the above findings. It is clear that starting at c4 CR-FPP

almost gains the same loss performance as the cascading constraint is not in effect (i.e.,
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Figure 6.10: Burst loss versus traffic load at W = 16.
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Figure 6.11: Unfairness measure versus traffic load at W = 16.

cmax ≥ 7). And the loss rates obtained under cmax ≤ 3 are closer to the counterparts under c7

in CR-FPP than in FPP.

• Owing to the similar reasons explained above, Figures 6.8 and 6.9 show that CR-FPP achieves

better fairness too for the same load.

Figures 6.10 and 6.11 depict the performance comparisons between CR-FPP and FPP for c1,

c3 and c5 at W = 16. CR-FPP is superior as expected. On the other hand, it is noticeable that
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Table 6.1: Impact of β on burst loss under c1

load / β -0.5 -0.25 0.0 0.25 0.5 1.0 2.0 3.0 4.0 5.0

0.05 0.072718 0.072696 0.072671 0.072684 0.072681 0.072513 0.072023 0.071857 0.071645 0.07155

0.35 0.307824 0.307779 0.306885 0.302778 0.302713 0.300531 0.295888 0.293615 0.290728 0.289678

0.70 0.483667 0.483264 0.478419 0.458995 0.458594 0.455494 0.448272 0.442965 0.437204 0.43502

Table 6.2: Impact of β on burst loss under c5

load / β -0.5 -0.25 0.0 0.25 0.5 1.0 2.0 3.0 4.0 5.0

0.05 0.000054 0.000054 0.000054 0.000054 0.000054 0.000054 0.000054 0.000054 0.000054 0.000054

0.35 0.181062 0.180544 0.179496 0.173313 0.172721 0.172348 0.172114 0.171344 0.170118 0.169275

0.70 0.399438 0.398218 0.393653 0.368539 0.366999 0.366195 0.365374 0.362781 0.359315 0.357135

for either algorithm the performance disparity between c1 and c3, or between c3 and c5 (e.g., CR-

FPP c1 vs. CR-FPP c3) is bigger than that when W = 8, especially at lower loads. It can be

interpreted as follows. Both algorithms are expected to use LAUC-VF for scheduling most of

the time. Actually, pure LAUC-VF is a kind of channel scheduling algorithm that is biased to

converter utilization. It performs exhaustive searching trying to find the matching void throughout

the available ones on all channels. When W gets larger, there will be more channels as well as more

voids available and consequently more conversions would occur. Generally speaking, the larger

number of conversions, the more severe the negative impact of the cascading constraint would be.

Whereas, since CR-FPP possesses the intelligence to deal with the cascading constraint, it is still

able to maintain a very small performance discrepancy between CR-FPP c3 and CR-FPP c5.
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Figure 6.12: Unfairness measure versus β under c1.
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Figure 6.13: Unfairness measure versus β under c5.
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We also exploit the impact on the network performance when the parameter β varies. In the

original FPP algorithm, the term (△i/L)× τi was designed to suppress the over-preference for

bursts with longer initial offset time. However, we expect this significance would also be related

to a variety of other conditions such as network topology, traffic load and the cascading constraint

threshold in our studying case. Tables 6.1 and 6.2 display burst loss variations when β grows

under c1 and c5, respectively, while Figures 6.12-6.13 show fairness fluctuations. To ensure com-

pleteness, we consider some negative β values too. We can observe that burst loss rates have been

decreasing at most cases when β increases for the values of β we select. On the contrary, fair-

ness has shown a different curve roughly decreasing at first, reaching the bottom in the middle and

increasing afterwards. Furthermore, the variations on both burst loss and fairness intend to grow

larger at higher loads and under more stringent cascading thresholds (i.e., smaller cmax). We shall

explain these two related phenomena as follows. When β including negative ones is smaller, bursts

with longer hop counts (therefore longer initial offset times) would generally gain more preference

during preemption. If β is small enough, the overcorrection would occur resulting in fairness dete-

rioration. If β is big enough, bursts with longer hop counts would be suppressed too much, which

results in fairness deterioration too. Consequently fairness reaches the equilibrium state only with

a reasonable moderate β . On the other side, more longer-hop bursts getting dropped would benefit

the other shorter-hop bursts. For example the resources released because of the discarding of one

eight-hop burst would probably rescue two or more one-hop bursts. That explains why overall

burst loss rates continue to decrease when β grows. Certainly, this trend would stop or go inverse
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Figure 6.14: FPP: burst loss versus traffic

load.
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Figure 6.15: CR-FPP: burst loss versus traf-

fic load.
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Figure 6.16: FPP: unfairness measure versus

traffic load.
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Figure 6.17: CR-FPP: unfairness measure

versus traffic load.

if β is rather big. Finally, at higher loads and under smaller cmax, more preemptions are expected to

being performed. So the variations brought by different β values have occurred faster or appeared

larger.

Being able to alleviate the side effect caused by a larger packet processing time δ is another

plausible feature through β adaptation. In (6.2) if δ becomes bigger but β keeps unchanged, bursts

with longer hop counts will probably be over-suppressed by the preemption process. It may result
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in fairness deterioration. Therefore, decreasing β shall solve this dilemma. Figures 6.14-6.17

demonstrate the performance comparisons side by side for CR-FPP and FPP under the effect of

different δ values. The cmax is set to a moderate value of three. It is obvious that while FPP

suffers from a noticeable performance fluctuation (mostly degradation, especially on the fairness

problem) when δ increase, CR-FPP maintains a very small performance discrepancy by adjusting

β appropriately.

6.4 Summary

In this chapter, we re-examine the fairness problem under the effect of the conversion cascading

constraint in OBS networks. Both fairness and burst loss performance may deteriorate when bursts

especially those with longer hop counts are dropped due to the cascading constraint. Subject to

this conversion impediment, we improve an existing preemptive fair channel scheduling algorithm

named FPP by integrating the impact of the constraint into the priority evaluation function. The

resulting new preemptive scheme CR-FPP also tries to reduce unnecessary wavelength conversions

whenever possible. Simulation results show that CR-FPP yields better fairness and achieves lower

burst loss rates simultaneously over FPP. The former also has the flexibility to work with a diversity

of network topologies and to mitigate the side effect resulting from a large packet processing time.
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CHAPTER 7

CONCLUSION

We have designed and analyzed effective routing and channel scheduling schemes to improve sys-

tem performance for WDM optical networks. Our main findings and contributions are summarized

in this chapter. Possible future research ideas are also discussed.

The new wavelength conversion cascading constraint has been identified. The cascadability

of wavelength converters is limited for the resulted reduced signal quality measured by various

factors including signal-to-noise ratio, chirp, amplitude distortion, and extinction ratio. It is thus

desirable to put a constraint on the maximum number of wavelength conversions we can perform

on each data transmitting. This constraint would inevitably cause negative side effects on network

performance such as higher blocking probability and worse fairness among transmitted data of

different hop counts.

To address the cascading constraint in optical circuit-switched networks, two constraint-aware

dynamic routing algorithms were proposed and presented. They perform source routing using

link connectivity and the global state information of each wavelength. The simulation results

demonstrated that these two constraint-aware algorithms could improve the blocking performance
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significantly compared to conventional dynamic RWA algorithms in the environment of full or/and

sparse wavelength conversion.

In the literature of optical burst switching, full wavelength conversion is commonly assumed to

resolve high burst loss rates. Similar to what we have discovered on the connection blocking per-

formance degradation in OCS networks, it is inferred that the cascading constraint causes negative

impact on network performance in OBS too. Due to the inherent differences of signal proto-

cols between the two switching mechanisms, we further investigated this negative impact in OBS.

We developed a proactive routing mechanism tailored to the environment of constrained cascaded

wavelength conversions on the basis of the proposed routing methods presented in Chapter 4.

The routing schemes proposed in Chapter 4 have the advantage that bursts traversing the same

node pairs can utilize the same default offset time, while providing adaptive routing. The pro-

posed hop-by-hop routing schemes also aim to address the intrinsic unfairness defect of existing

popular signaling protocols by increasing the effective link utilization. The results showed that the

proposed schemes generally outperform shortest path routing and depending on the routing strat-

egy involved, the network topology and the traffic load, this improvement can be substantial. We

developed analytical loss models to demonstrate the need for such an adaptive routing scheme at

each hop and show its effectiveness. We also verified the analytical results by simulation.

We introduced a new preemptive scheduling scheme for next generation optical burst-switched

networks considering the impact of cascaded wavelength conversions. Accordingly, subject to
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this practical impediment, we showed how to improve a recently proposed fair channel scheduling

algorithm [HY08] to deal with the fairness problem and aim at burst loss reduction simultaneously

in optical burst switching. In this scheme, the dynamic priority associated with each burst is based

on a constraint threshold and the number of already conducted wavelength conversions among

other factors for this burst. When contention occurs, a new arriving superior burst may preempt

another scheduled one according to their priorities.

Our research can be extended in a variety of ways. It is desirable to extend our analytical model

for ring networks proposed in Chapter 4 to a more robust model that can analyze the network

performance of more general topologies. In order to achieve this goal, we will need to extend

the two-dimensional Markov chain model to multi-dimensional chains and develop computational

methods for the efficient solution of these complex multi-dimensional chains.

Another point worthy of investigation is in the area of computing alternate routes. Although

performance analyses of arbitrary networks have been largely researched in the past [RM02,

ZVR07], they often assume that alternate routes block independently which is not generally true.

It is desirable to derive a new model to cover general network topologies by taking into account

the interdependencies between the blocking on alternate routes based on the techniques proposed

in [GS97].

A third possible area of future research is to improve our OBS algorithms by utilizing the

possible knowledge of burst arrivals in the future. Although it is not generally possible to know
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the exact pattern of future burst arrivals, a limited knowledge of future traffic behavior can be

used to improve the routing and wavelength assignment decisions of our algorithms. Developing

predictive versions of the algorithms proposed in this dissertation is a point of research worthy of

future investigation.
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