41,133 research outputs found

    Wiener modelling and model predictive control for wastewater applications

    Get PDF
    The research presented in this paper aims to demonstrate the application of predictive control to an integrated wastewater system with the use of the wiener modeling approach. This allows the controlled process, dissolved oxygen, to be considered to be composed of two parts: the linear dynamics, and a static nonlinearity, thus allowing control other than common approaches such as gain-scheduling, or switching, for series of linear controllers. The paper discusses various approaches to the modelling required for control purposes, and the use of wiener modelling for the specific application of integrated waste water control. This paper demonstrates this application and compares with that of another nonlinear approach, fuzzy gain-scheduled control

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    The predictive functional control and the management of constraints in GUANAY II autonomous underwater vehicle actuators

    Get PDF
    Autonomous underwater vehicle control has been a topic of research in the last decades. The challenges addressed vary depending on each research group's interests. In this paper, we focus on the predictive functional control (PFC), which is a control strategy that is easy to understand, install, tune, and optimize. PFC is being developed and applied in industrial applications, such as distillation, reactors, and furnaces. This paper presents the rst application of the PFC in autonomous underwater vehicles, as well as the simulation results of PFC, fuzzy, and gain scheduling controllers. Through simulations and navigation tests at sea, which successfully validate the performance of PFC strategy in motion control of autonomous underwater vehicles, PFC performance is compared with other control techniques such as fuzzy and gain scheduling control. The experimental tests presented here offer effective results concerning control objectives in high and intermediate levels of control. In high-level point, stabilization and path following scenarios are proven. In the intermediate levels, the results show that position and speed behaviors are improved using the PFC controller, which offers the smoothest behavior. The simulation depicting predictive functional control was the most effective regarding constraints management and control rate change in the Guanay II underwater vehicle actuator. The industry has not embraced the development of control theories for industrial systems because of the high investment in experts required to implement each technique successfully. However, this paper on the functional predictive control strategy evidences its easy implementation in several applications, making it a viable option for the industry given the short time needed to learn, implement, and operate, decreasing impact on the business and increasing immediacy.Peer ReviewedPostprint (author's final draft

    Fuzzy Predictive Controller for Mobile Robot Path Tracking

    Get PDF
    IFAC Intelligent Components and Instruments for Control Applications, Annecy, France 1997This paper presents a way of implementing a Model Based Predictive Controller (MBPC) for mobile robot path-tracking. The method uses a non-linear model of mobile robot dynamics and thus allows an accurate prediction of the future trajectories. Constraints on the maximum attainable angular velocity is also considered by the algorithm. A fuzzy approach is used to implement the MBPC. The fuzzy controller has been trained using a lookup-table scheme, where the database of fuzzy-rules has been obtained automatically from a set of input-output training patterns, computed with the predictive controller. Experimental results obtained when applying the fuzzy controller to a TRC labmate mobile platform are given in the paper.Ministerio de Ciencia y TecnologĆ­a TAP95-0307Ministerio de Ciencia y TecnologĆ­a TAP96-884C

    Gaussian process based model predictive control : a thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering, School of Engineering and Advanced Technology, Massey University, New Zealand

    Get PDF
    The performance of using Model Predictive Control (MPC) techniques is highly dependent on a model that is able to accurately represent the dynamical system. The datadriven modelling techniques are usually used as an alternative approach to obtain such a model when first principle techniques are not applicable. However, it is not easy to assess the quality of learnt models when using the traditional data-driven models, such as Artificial Neural Network (ANN) and Fuzzy Model (FM). This issue is addressed in this thesis by using probabilistic Gaussian Process (GP) models. One key issue of using the GP models is accurately learning the hyperparameters. The Conjugate Gradient (CG) algorithms are conventionally used in the problem of maximizing the Log-Likelihood (LL) function to obtain these hyperparameters. In this thesis, we proposed a hybrid Particle Swarm Optimization (PSO) algorithm to cope with the problem of learning hyperparameters. In addition, we also explored using the Mean Squared Error (MSE) of outputs as the fitness function in the optimization problem. This will provide us a quality indication of intermediate solutions. The GP based MPC approaches for unknown systems have been studied in the past decade. However, most of them are not generally formulated. In addition, the optimization solutions in existing GP based MPC algorithms are not clearly given or are computationally demanding. In this thesis, we first study the use of GP based MPC approaches in the unconstrained problems. Compared to the existing works, the proposed approach is generally formulated and the corresponding optimization problem is eff- ciently solved by using the analytical gradients of GP models w.r.t. outputs and control inputs. The GPMPC1 and GPMPC2 algorithms are subsequently proposed to handle the general constrained problems. In addition, through using the proposed basic and extended GP based local dynamical models, the constrained MPC problem is effectively solved in the GPMPC1 and GPMPC2 algorithms. The proposed algorithms are verified in the trajectory tracking problem of the quadrotor. The issue of closed-loop stability in the proposed GPMPC algorithm is addressed by means of the terminal cost and constraint technique in this thesis. The stability guaranteed GPMPC algorithm is subsequently proposed for the constrained problem. By using the extended GP based local dynamical model, the corresponding MPC problem is effectively solved

    Application of Computational Intelligence Techniques to Process Industry Problems

    Get PDF
    In the last two decades there has been a large progress in the computational intelligence research field. The fruits of the effort spent on the research in the discussed field are powerful techniques for pattern recognition, data mining, data modelling, etc. These techniques achieve high performance on traditional data sets like the UCI machine learning database. Unfortunately, this kind of data sources usually represent clean data without any problems like data outliers, missing values, feature co-linearity, etc. common to real-life industrial data. The presence of faulty data samples can have very harmful effects on the models, for example if presented during the training of the models, it can either cause sub-optimal performance of the trained model or in the worst case destroy the so far learnt knowledge of the model. For these reasons the application of present modelling techniques to industrial problems has developed into a research field on its own. Based on the discussion of the properties and issues of the data and the state-of-the-art modelling techniques in the process industry, in this paper a novel unified approach to the development of predictive models in the process industry is presented

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work
    • ā€¦
    corecore