

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Gaussian Process based Model Predictive Control

Gang Cao

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

> in Engineering

School of Engineering and Advanced Technology Massey University New Zealand

February 17, 2017

Abstract

The performance of using Model Predictive Control (MPC) techniques is highly dependent on a model that is able to accurately represent the dynamical system. The datadriven modelling techniques are usually used as an alternative approach to obtain such a model when first principle techniques are not applicable. However, it is not easy to assess the quality of learnt models when using the traditional data-driven models, such as Artificial Neural Network (ANN) and Fuzzy Model (FM). This issue is addressed in this thesis by using probabilistic Gaussian Process (GP) models.

One key issue of using the GP models is accurately learning the hyperparameters. The Conjugate Gradient (CG) algorithms are conventionally used in the problem of maximizing the Log-Likelihood (LL) function to obtain these hyperparameters. In this thesis, we proposed a hybrid Particle Swarm Optimization (PSO) algorithm to cope with the problem of learning hyperparameters. In addition, we also explored using the Mean Squared Error (MSE) of outputs as the fitness function in the optimization problem. This will provide us a quality indication of intermediate solutions.

The GP based MPC approaches for unknown systems have been studied in the past decade. However, most of them are not generally formulated. In addition, the optimization solutions in existing GP based MPC algorithms are not clearly given or are computationally demanding. In this thesis, we first study the use of GP based MPC approaches in the unconstrained problems. Compared to the existing works, the proposed approach is generally formulated and the corresponding optimization problem is efficiently solved by using the analytical gradients of GP models w.r.t. outputs and control inputs. The GPMPC1 and GPMPC2 algorithms are subsequently proposed to handle the general constrained problems. In addition, through using the proposed basic and extended GP based local dynamical models, the constrained MPC problem is effectively solved in the GPMPC1 and GPMPC2 algorithms. The proposed algorithms are verified in the trajectory tracking problem of the quadrotor.

The issue of closed-loop stability in the proposed GPMPC algorithm is addressed by means of the terminal cost and constraint technique in this thesis. The stability guaranteed GPMPC algorithm is subsequently proposed for the constrained problem. By using the extended GP based local dynamical model, the corresponding MPC problem is effectively solved.

Acknowledgements

I am deeply grateful to my co-supervisor Professor Edmund M-K Lai at Auckland University of Technology who was my primary supervisor during my first three years of Ph.D study at Massey University. His supervision is great and I am always inspired by the valuable discussions with him. He spent a lot of time on my academic writing and helped me attend several international and local academic conferences. I would not be successful in my Ph.D study without his longstanding support.

I am sincerely appreciative of Dr. Fakhrul Alam who is my primary supervisor in my last year at Massey University for his sharing of ideas and inspiration on possible applications. He helped a lot when I was preparing my thesis draft.

I wish to thank the administrators and technicians of SEAT in Massey University's Albany Campus for their countless help.

Finally, I want to thank my family for their love and support.

Contents

	Abstract				
	Acknowledgements				
	Lis	t of Fi	igures	ix	
	Lis	t of Ta	ables	xii	
	Lis	t of A	bbreviations	XV	
1	Intr	oducti	ion	1	
	1.1	Backg	round and Motivations	1	
	1.2	Resear	rch Scope and Objectives	4	
	1.3	Origin	al Contributions	5	
	1.4	Thesis	Outline	6	
2	Lite	erature	Review	7	
2	Lite 2.1	e rature Data-o	e Review driven Modelling	7 7	
2	Lite 2.1	erature Data-c 2.1.1	e Review driven Modelling	7 7 8	
2	Lite 2.1	erature Data-c 2.1.1 2.1.2	e Review driven Modelling	7 7 8 9	
2	Lite 2.1 2.2	Data-o 2.1.1 2.1.2 Gaussi	e Review driven Modelling Classical Regression Bayesian Regression ian Process Models	7 7 8 9 11	
2	Lite 2.1 2.2	erature Data-c 2.1.1 2.1.2 Gaussi 2.2.1	e Review driven Modelling	7 7 8 9 11 11	
2	Lite 2.1 2.2	Prature Data-o 2.1.1 2.1.2 Gaussi 2.2.1 2.2.2	e Review driven Modelling	7 7 8 9 11 11 13	
2	Lite 2.1 2.2 2.3	Prature Data-o 2.1.1 2.1.2 Gauss: 2.2.1 2.2.2 Hyper	Review driven Modelling Classical Regression Bayesian Regression ian Process Models Standard Gaussian Process Models GP models for Multiple Outputs parameter Learning	7 7 8 9 11 11 13 19	
2	Lite 2.1 2.2 2.3 2.4	Prature Data-o 2.1.1 2.1.2 Gauss 2.2.1 2.2.2 Hyper Applic	e Review driven Modelling Classical Regression Bayesian Regression ian Process Models Standard Gaussian Process Models GP models for Multiple Outputs parameter Learning eations of GP Models	7 7 8 9 11 11 13 19 21	
2	Lite 2.1 2.2 2.3 2.4	erature Data-o 2.1.1 2.1.2 Gaussi 2.2.1 2.2.2 Hyper Applic 2.4.1	e Review driven Modelling	7 7 8 9 11 11 13 19 21 21	

		2.5.1	Inverse Dynamics Control
		2.5.2	Adaptive Control
		2.5.3	Model Predictive Control
3	Hyl	orid P	SO for Hyperparameters Learning 25
	3.1	Log-L	ikelihood and MSE Fitness Functions
	3.2	Enhar	nced PSOs for Hyperparameter Learning
		3.2.1	Standard PSO
		3.2.2	Multi-Start PSO
		3.2.3	Gradient-based PSO 31
		3.2.4	Hybrid PSO
	3.3	Simula	ation Results
		3.3.1	Standard PSO with MSE Fitness
		3.3.2	Two-output Modelling
		3.3.3	Enhanced PSO Algorithms
	3.4	Concl	usion
4	Uno	constra	ained Model Predictive Control Using Gaussian Process Mod-
	\mathbf{els}		47
	4.1	Uncor	nstrained MPC based on GP Models
		4.1.1	Unknown Dynamical System Modelling using GP
		4.1.2	Uncertainty propagation
		4.1.3	GP based MPC
		4.1.4	Gradient Based Optimization
	4.2	Simula	ation Results
		4.2.1	Numerical Simulations of LTV System
		4.2.2	"Lorenz" Trajectory Tracking 56
		4.2.3	Numerical Simulations of NLTV System
		4.2.4	"Lorenz" Trajectory 60

5	Cor	nstrain	ed Model Predictive Control Using Gaussian Process Models	65
	5.1	GP Ba	ased Local Dynamical Models	66
		5.1.1	Basic GP based Local Model	66
		5.1.2	Extended GP based Local Model	67
	5.2	GPMI	PC1 Algorithm	68
		5.2.1	MPC Trajectory Tracking Problem Formulation	68
		5.2.2	Problem Reformulation based on GP	69
		5.2.3	Nonlinear Optimization Solution	70
		5.2.4	Application to GPMPC1	72
	5.3	GPMI	PC2 Algorithm	74
		5.3.1	Problem Reformulation using Extended GP Local Model $\ . \ . \ .$	75
		5.3.2	Quadratic Programming Solution	77
	5.4	Stabili	ity Analysis	81
	5.5	Simula	ation Results	82
		5.5.1	Nonlinear Numerical Example	83
		5.5.2	Unknown System Learning Results	84
		5.5.3	Unknown System Control Results	86
	5.6	Conclu	usion	87
6	Qua	adroto	r Control using GPMPC	89
	6.1	Quadr	otor Dynamical Equations	89
	6.2	Quadr	cotor Control using GPMPC	93
		6.2.1	Overall Control Scheme	93
		6.2.2	GP Learning of Quadrotor Dynamic Equations	94
		6.2.3	GPMPC2 for Quadrotor Trajectory Tracking Control	94
	6.3	Simula	ation Results	95
		6.3.1	Modelling Results	96
		6.3.2	Control Results	97
	6.4	Conclu	usion	98

7	Sta	tability Guaranteed GPMPC 10		
	7.1	Stabili	ity Guaranteed GPMPC Algorithm	104
		7.1.1	Terminal Cost and Constraints	104
		7.1.2	Problem Formulation	105
		7.1.3	Solution	106
		7.1.4	Stability Analysis	109
	7.2	Conclu	usions	110
8	Cor	nclusio	ns and Future Works	113
	8.1	Conclu	usions	113
	8.2	Future	e Works	115
\mathbf{A}	ppen	dix A	Mean and Variance at uncertain inputs	117
\mathbf{A}	ppen	dix B	Cross-covariance between GP States and Outputs	119
$\mathbf{A}_{]}$	ppen	dix C	GP Derivatives	121
\mathbf{A}	ppen	dix D	Cost Function using GP	123
$\mathbf{A}_{]}$	ppen miz	dix E ation l	Karush-Kuhn-Tucker (KKT) Conditions for Convex Opt Problem	i- 125
$\mathbf{A}_{]}$	ppen	dix F	List of Publications	127
R	References 129			

List of Figures

1.1	Model-based Predictive Control Strategy	2
2.1	Example showing the predicted outputs of IGP modelling	13
2.2	Structure of a Dependent Gaussian Process Model	15
3.1	Obtained MAE in the single-output dynamical system modelling over 50 runs	36
3.2	Predicted outputs in the single-output simulations	37
3.3	MIMO dynamical system modelling results: MAE and 2 standard errors (divided by 0.01) over 50 runs	38
3.4	Convergence behaviour of the four PSO algorithms in modelling the LTV system	40
3.5	Reference PFDL inputs and outputs for the two trajectories	42
3.6	Convergence behaviour of the four PSO algorithms with LL fitness in modelling the NLTV system	43
3.7	Convergence behaviour of the four PSO algorithms with MSE fitness in modelling the NLTV system	44
4.1	GP Modelling results of unknown Linear Time-Varying (LTV) system in the "Duffing" trajectory tracking problem	54
4.2	Simulation results of using GP based MPC in the "Duffing" trajectory tracking problem	55
4.3	GP Modelling results of unknown LTV system in the "Lorenz" trajectory tracking problem	57
4.4	Simulation results of using GP based MPC in the "Lorenz" trajectory tracking problem	57

4.5	Uncertainty propagation over the sampling time in the trajectory tracking problems of the LTV system	58
4.6	GP Modelling results of unknown Nonlinear Time-Varying (NLTV) system in the "Curve" trajectory tracking problem	59
4.7	Simulation results of using GP based MPC in the "Curve" trajectory track- ing problem	60
4.8	GP Modelling results of unknown NLTV system in the "Lorenz" trajectory tracking problem	61
4.9	Simulation results of using GP based MPC in the "Lorenz" trajectory tracking problem	62
4.10	Uncertainty propagation over the sampling time in the trajectory tracking problems of the NLTV system	62
5.1	Training errors over the sampling time in the trajectory tracking simulations	84
5.2	Simulation result of tracking the "Step" trajectory using the proposed algorithms	85
5.3	Simulation result of tracking the "Lorenz" trajectory using the proposed algorithms	85
5.4	Simulation result of tracking the "Duffing" trajectory using the proposed algorithms	86
5.5	Integral Absolute Errors (IAE) over the sampling time in the trajectory tracking simulations	87
6.1	Quadrotor Body-Inertial Frame	90
6.2	Schematic diagram of quadrotor movements. Where Ω denotes the speed of propellers, and $\Delta\Omega$ represents the increment on Ω .	91
6.3	The Overall Control Scheme for Quadrotors	94
6.4	Modelling results of using GP modelling technique in the "Elliptical" tra- jectory tracking problem	97
6.5	Modelling results of using GP modelling technique in the "Lorenz" trajec- tory tracking problem	98
6.6	Simulation results of tracking the "Elliptical" trajectory using the GPMPC2 based approach	99
6.7	Simulation results of tracking the "Lorenz" trajectory using the GPMPC2 based approach	100

6.8	"Elliptical" and "Lorenz" trajectory tracking results of using the G	PMPC2	
	based approach		101

List of Tables

3.1	NLL and MSE values of two Convolved Gaussian Process (CGP) models of system described by (3.2).	27
3.2	Parameters used in the simulations	34
3.3	Comparison of two PSOs with different population sizes	36
3.4	Results of Linear Relationship	37
3.5	Results of Nonlinear Relationship	37
3.6	CGP model accuracies over 50 runs for the LTV system	40
3.7	CGP model accuracies over 50 runs for the NLTV system. \ldots	43
3.8	Effects of training data size on model error and hybrid PSO runtime	44
5.1	Simulation Results of learning the unknown nonlinear system by using GP models	84
5.2	Runtime required to compute 189 control inputs by using the proposed algorithms in the trajectory tracking simulations	87
6.1	Modelling MSE values of the translational and rotational subsystems using the GP models in the trajectory tracking problems	97

List of Abbreviations

ANN Artificial Neural Network
${\bf BFGS}$ Broyden-Fletcher-Goldfarb-Shanno
\mathbf{CG} Conjugate Gradient
CGP Convolved Gaussian Process
DGP Dependent Gaussian Process
DMC Dynamic Matrix Control
DOF Degree-of-Freedom
\mathbf{FM} Fuzzy Model
FP-SQP Feasibility-Perturbed Sequential Quadratic Programming
\mathbf{GA} Genetic Algorithm
\mathbf{GMV} Generalized Minimum Variance
GP Gaussian Process
GPC Generalized Predictive Control
GPDM Gaussian Process Dynamical Model
IAE Integral Absolute Error
IDC Inverse Dynamics Control
\mathbf{IGP} Independent Gaussian Process
KKT Karush-Kahn-Tucker
LGP Local Gaussian Process
LL Log-Likelihood

LMC Linear Model of Coregionalization LMI Linear Matrix Inequality LQR Linear-Quadratic Regulator **LTV** Linear Time-Varying **GP-LVM** Gaussian Latent Variable Model **MAE** Mean Absolute Error **MAP** Maximizing A Posterior MCMC Markov Chain Monte Carlo MFAC Model-Free Adaptive Control MIMO Multiple-Input Multiple-Output MISO Multiple-Input Single-Output **ML** Machine learning MLE Maximum Likelihood Estimation MPC Model Predictive Control mp-QP Multi-Parametric Quadratic Programs **MSE** Mean Squared Error **NLL** Negative value of Log-Likelihood **NLTV** Nonlinear Time-Varying **NMPC** Nonlinear Model Predictive Control **PCA** Principal Component Analysis **PFC** Predictive Functional Control **PFDL** Partial Form Dynamic Linearization **PSO** Particle Swarm Optimization **QP** Quadratic Programming **RBFN** Radial Basis Function Network **SMPC** Stochastic Model Predictive Control **SQP** Sequential Quadratic Programming **UAV** Unmanned Aerial Vehicle