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Abstract: This paper presents a way of implementing a Model Based Predictive 
Controller (MBPC) for mobile robot path-tracking. The method uses a non-linear 
model of mobile robot dynamics and thus allows an accurate prediction of the 
future trajectories. Constraints on the maximum attainable angular velocity is also 
considered by the algorithm. A fuzzy approach is used to implement the MBPC. The 
fuzzy controller has been trained using a lookup-table scheme, where the database 
of fuzzy-rules has been obtained automatically from a set of input-output training 
patterns, computed with the predictive controller. Experimental results obtained 
when applying the fuzzy controller to a TRC labmate mobile platform are given 
in the paper. 
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1. INTRODUCTION 

One of the most important fields in the design of 
autonomous mobile robots for indoor navigation 
in a partially structured environment is the path
tracking problem (PTP) . It can be defined as the 
ability of a vehicle to follow precisely a predefined 
desired path. 

This reference path is usually precomputed using 
an off-line path-planning algorithm, which makes 
use of the knowledge of the objects placed in the 
environment in order to generate a free colision 
reference path. 

Many approaches can be found in the literature 
for the PTP. In Nelson and Cox (1990), a pro
portional control strategy is applied, where the 
angular velocity of the driving wheels and the 
orientation of the steering wheel is computed as a 
weighted sum of a set of tracking errors. 

The PTP, also can be considered from a geomet
rical point of view. In this approach, the control 
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actions drive the robot in such a way that the 
vehicle's curvature is the same, at each sampling 
instant, as the curvature of a geometric function , 
y = lex, P) , where P is a parameter vector. This 
vector is computed applying the problem geomet
rical constraints, that is , considering the initial 
coordinates and curvature of the function to be 
the same as the robot position and curvature, and 
the final point and curvature of the function to be 
the same as the goal point coordinates and curva
ture. In Amidi (1990) and Shin and Singh (1990) 
this technique is applied, using a quintic polino
mial function. A similar approach is presented 
in Nelson (1989) using splines functions. Another 
geometric approach, proposed by Amidi (1990) , 
is known as pure pursuit. This technique uses the 
curvature of the circunference traced between the 
mobile robot position and the goal position as the 
reference curvature for the controller. 

The approach presented in this paper is based on 
optimal control techniques. The problem that is 
raised here is that of driving a mobile robot to 
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follow a previously calculated desired path. As the 
desired future reference is known, it would seem 
that a predictive control technique is a suitable 
approach for these problem. 

Model-based predictive control (MBPC) methods 
are a family of optimal control techniques that are 
characterized by the following common elements: 
a) previous knowledge of future references; b) ex
plicit use of a system model for future system out
put prediction; c) minimization of a cost function 
to obtain the control law; d) a receding-horizon 
strategy. 

The use of MBPC strategies for solving the path 
tracking and the navigation problems in a par
tially structured environment has been referenced 
in the literature (Papageorgiou and Steinkogler, 
1993), (G6mez Ortega and Camacho, 1994) and 
(G6mez Ortega and Camacho, 1996) where a 
neural-network approach was formulated. 

In this paper, a predictive strategy is used for 
the path-tracking module. A nonlinear model 
of the robot kinematics is used. Constraints in 
the control variables are also considered and a 
quadratic cost function is proposed for computing 
the control signals. A fuzzy scheme is presented 
for the implementation of this complex predictive 
controller to achieve real-time performance. The 
fuzzy controller will be trained using a lookup
table scheme, with a set of training patterns ob
tained from an off-line simulation of a predictive 
controller, computed with a numerical optimiza
tion algorithm. 

2. MBPC TECHNIQUES FOR MOBILE 
ROBOT PATH-TRACKING 

2.1 MBPC strategy 

The MBPC algorithm consists of applying a con
trol sequence that minimizes a multistage cost 
function of the form: 

N2 

J(NI ,N2,Nu) = L JL(i)[y(k+ilk)-Yd(k+iW 

Nu 

+ L A(i)[~u(k + i - ll kW 
i=l 

where N = N2 - Nl is the prediction horizon and 
Nu is the control horizon. 

The notation x(k + ilk) indicates that x(k + i) is 
calculated with the data known in sample time k. 
JL(i) and A(i) are penalty factors , which are usu
ally chosen to be constant along the time. The fu
ture system outputs, Y(k+ilk) for i = N l , ... , N2 , 
are predicted from a model of the process, from 
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the inputs and outputs before instant k, and from 
the control actions foreseen for the future, u(k + 
ilk) for i=O, ... ,N u - 1, which are the unknown 
variables. In this way, J can be expressed as a 
function of only the future control actions. It 
is usual to suppose that the control actions are 
constant after a predefined time instant. 

The objective of predictive control is to obtain 
a future control action sequence (u(k),u(k + 
Ilk) , ... , u(k + Nu - Ilk)) in such a way that the 
future predicted outputs Y(k + ilk) will be as 
close as possible to the desired references Yd(k+i) 
over the prediction horizon. This is accomplished 
by the minimization of J with respect to the 
control variables. After this sequence is obtained, 
a receding horizon approach is considered. This 
consists of applying only the first control action 
u(k) calculated. This process is repeated at every 
sampling interval in such a way that the calculated 
open loop control law is applied in a closed-loop 
manner. 

The problem raised in this paper is that of driving 
a mobile robot to follow a reference path gener
ated on-line by a global planner. This path can 
be the preplanned global path or, if an obstacle is 
encountered, a modified one. A predictive control 
technique is used as the robot path-tracking mod
ule, being the robot's angular velocity the control 
variable. 

The cost function used here is: 

N2 

J(Nl' N 2, Nu) = L [Y(k + ilk) - Yd(k + iW 
Nu 

+ LAI B2(k+i-l) 
i=1 

where Y(k + ilk) = {x(k + ilk),y(k + ilk)} is 
an i-step prediction of the robot position made 
at instant k, B is the robot's angular velocity, 
which is the control variable, and Al is a constant 
weighting factor . For the i-step predictions, a non
linear model of the robot 's kinematics has been 
used. 

In J, the first term penalizes the position error 
and the second term penalizes the robot's angu
lar velocity. This last term ensure smooth robot 
guidance. An error in the robot heading could be 
considered in J , but it has been noticed that this 
is not necessary when the control horizon Nu is 
sufficiently large. A block diagram of the system 
is shown in Fig. l. 

In what follows, NI and N2 will be considered to 
be NI = d + 1 and N2 = N , and Nu will be given 
a value of N2 - d, where d is the dead time of 
the system. In this formulation it is assumed that 
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Fig. 1. The predictive controller scheme. 

after the control horizon Nu , further increments 
in control are zero. So the controller has only one 
free parameter, N. 

The predictive problem, formulated under these 
circumstances, has to be solved using numerical 
optimization methods, which are not acceptable 
for real-time control. The controller proposed in 
this work will be implemented using a fuzzy pre
dictive scheme, which allows real-time implemen
tation. 

2.2 Prediction model 

For an MBPC formulation, a dynamic model of 
the mobile platform is needed to predict the future 
positions and headings of the robot. As a testbed 
for the experiments, a TRC LABMATE mobile 
robot has been used (Fig. 2). 

Fig. 2. The LABMATE mobile robot. 

A model of the LABMATE mobile robot which 
takes account of low-level servocontrol dynamics, 
as well as the dead time produced by communi
cations with the host computer, was obtained by 
using kinematic equations and identification tests. 
A more detailed model can be found in (G6mez 
Ortega, 1994). 

The following kinematic model (which corre
sponds to a differential-drive vehicle) is used for 
computing the predictions: 
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O(k + 1) = O(k) + O(k - l)T 
V . 

x(k + 1) = x(k) + . {sin(O(k) + O(k - l)T) 
O(k - 1) 

- sinO(k)} 
V . 

y(k + 1) = y(k) - . . {cos(O(k) + O(k - l)T) 
O(k - 1) 

- cosO(k)} 

O(k _ 1) = R wr(k - 1) - wI(k - 1) 
2W 

V = R wr(k - 1) + wI(k - 1) 
2 

where x, y , 0 are the position and heading of 
the robot in a fixed reference frame (see Fig. 
3) , T is the sample interval and W is the half
distance between the wheels , which value has been 
estimated to be 168 mm (Fig. 3). V is the linear 
velocity of the mobile robot, which is considered 
to be constant, 0 is the steering speed, and wr(k-
1) , WI (k - 1) and R are the right and left wheel 
angular velocities (which are considered to be 
constant for each sample interval) and the wheel 
radius, respectively. These equations are valid in 
the case of a steering speed 8(k -1) =I- O. In the 
case of a linear trajectory, the equations of motion 
are given by: 

Y, 

y 

8(k + 1) = 8(k) 

x(k + 1) = x(k) + VT cos 8(k) 

y(k + 1) = y(k) + VT sin O(k) 

x 

Fig. 3. Reference frame 

x , 

Using the maximum acceleration value, the ve
locities of both wheels have been considered to be 
constant for each sample period. 

2.3 Desired path parametrization 

The reference path is given to the MBPC fuzzy 
controller as a set of straight lines and circular 
arcs. The MBPC approach needs the desired po
sitions and headings of the mobile platform at 



the next N time instants. So, given the current 
position and heading of the robot, it is necessary 
to parametrize the desired path for the next N 
periods of time, in order to calculate the N future 
path points desired. As is shown in Fig. 4, the 
desired point for the current instant (xd(k), Yd(k)) 
is obtained first. It is located at the intersection 
between the desired path and its perpendicular, 
traced from the actual robot position (x(k), y(k)). 
The next N points are spaced equally along the 
path, with a separation between them of l:l.S, 
which is a design parameter. By using this ap
proach, no approximation trajectory is needed 
when the robot position is not located on the 
desired path. 

Fig. 4. Desired path parametrization. 

3. THE FUZZY PREDICTIVE APPROACH 

As was mentioned before, the minimization of the 
cost function J has to be carried out by a numeri
cal optimization method which requires too much 
computation time to be used in real time. A fuzzy 
predictive solution is proposed, which guarantees 
real time for the robot control. Once the training 
stage is over, the fuzzy controller can reproduce 
the behaviour of the predictive controller in real
time. 

The training stage of the fuzzy controller is carried 
out using a lookup-table scheme. The database of 
rules needed for the fuzzy controller is calculated 
automatically from a set of training patterns ob
tained with a predictive controller, computed off
line with a numerical optimization algorithm. The 
key idea of this method, proposed in Wang (1994), 
is to generate fuzzy rules from input-output pairs, 
collect the generated rules into a common fuzzy 
rule base, and construct a final fuzzy logic con
troller based on this combined fuzzy rule base. 

The modules of the control scheme used in this 
work (see Fig. 5) are: 

Fuzzy controller. The controller has four inputs. 
The first one corresponds to the previous angular 
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Fig. 5. Fuzzy predictive scheme for mobile robot 
path-tracking. 

velocity of the robot. The last three inputs are 
associated with the parametrization of the de
sired trajectory over the prediction horizon. The 
parameters given to the fuzzy controller are the 
distance d from the robot guide point to the path, 
the angle ~ between the robot heading and the 
path orientation, and an average of the inverse of 
the curvature of the future desired points (c = 
1/ p) (see Fig. 4). The output is the robot angular 
velocity for the next sampling interval. 

Input-Output vector-generation modules. The main 
function of the first module is to compute the 
values for the input layer of the controller from dif
ferent sources (the local reference path-generation 
module and the past control actions). Also, a 
symmetry analysis is made here in order to reduce 
the number of training patterns needed to provide 
good performance of the fuzzy controller. The 
objective of the second module is to perform the 
inverse symmetry transformation, when required. 

Reference-path coordinate transformation module. 
The desired path coordinates are transformed 
from a global reference system to a local reference 
system, attached to the mobile robot. This avoids 
the use of additional fuzzy controller inputs for the 
robot position and heading, which are implicitly 
given to the controller in the reference path. 

Past control actions. These are needed for the 
fuzzy controller to consider the delay time of the 
robot system. 

3.1 Fuzzy Rule Base generation 

The set of training items is composed of 3500 pat
terns, each one with four desired inputs and one 
desired output. These patterns have been com
puted automatically with an off-line predictive 
controller for different combinations of the four 
inputs over their ranges of values. Now, the task 



Input Region Limits 

L2 -19.5 -4.5 
Ll -9 0 

iJ(k - 1) (rad/s) C -4.5 4.5 
RI 0 9 
R2 4.5 19.5 
L -0.2625 -0.0375 

d(k) (m) C -0.15 0 
R -0.0375 0.0375 
Ll -67.5 -4 .5 
L2 -36 0 

5(k) (deg) C -4.5 4.5 
RI 0 36 
R2 4.5 67.5 
L2 -2.25 -0.75 
Ll -1.5 0 

c(k) (m- l ) C -0.75 0.75 
RI 0 1.5 
R2 0.75 2.25 

Table 1. FUzzy regions definition. 

is to generate a set of fuzzy IF-THEN rules from 
this desired input-output patterns, and use these 
fuzzy rules to determine a fuzzy logic controller 

f : (8(k - 1), d(k) , 8(k) , c(k)) ~ O(k) 

The algorithm for obtaining the fuzzy rule base 
from the set of training patterns is divided in five 
steps (Wang, 1994): 

Step 1.- Division of the input and output spaces 
into fuzzy regions. The range of each input vari
able is divided into ni fuzzy regions, where i = 
1, .. ,4. The shape of each fuzzy region is trian
gular, and the maximum value of the membership 
function, J.L( x), is equal to one for the center of the 
region. In Table 1, the fuzzy regions limits defined 
for the inputs of the fuzzy predictive controller are 
shown. The limits for the output fuzzy regions are 
the same as the limits for the input O(k - 1) . 

Step 2.- Generation of fuzzy rules from given 
training patterns set. First, for all the training pat
terns , the membership degree of each component 
of each pattern to different fuzzy regions are calcu
lated. Second, each training pattern component is 
assigned to the region with maximum membership 
degree. 

Step 3.- Assign a degree to each fuzzy rule. As 
the number of training patterns is great , it is 
probable that the rules generated from two or 
more different patterns have the same IF part 
but different THEN part. In order to resolve this 
conflict, a degree will be assigned to each rule 
and only the rule with maximum degree will be 
considered as a component of the combined fuzzy 
rule base. 
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The degree assigned to each rule is the product 
of the membership degrees of each component of 
the pattern to the fuzzy regions chosen in step 2 
(that is, the regions whith maximum membership 
degree). 

Step 4.- Create a combined fuzzy rule base. The 
fuzzy rule base is created as follows. For each 
possible combination of different fuzzy regions, for 
all the input vector component, an output fuzzy 
region is assigned, which is the fuzzy region of the 
output component of the rule with given inputs 
regions and with a maximum assigned fuzzy rule
degree. 

Step 5.- Determine a defuzzification mapping 
based on the fuzzy rule. The following defuzzifi
cation strategy is used to determine the output 
control. First, the antecedents of the ith fuzzy rule 
for given inputs (O(k-1) , d(k) , 8(k) , c(k)) are com
bined using a product operation to determine the 
degree, J.L~i' of the output control corresponding 
to (O(k - 1), d(k), 8(k) , c(k)): 

where Oi is the output region of rule i, and IJ is 
the input region of rule i for the jth component. 

Finally, a center average defuzzification mapping 
is used to determine the control output: 

where 'it is the center of value of region Oi. This 
will give less control effort. M is the number of 
fuzzy rules in the combined fuzzy rule base. 

4. RESULTS 

The proposed control structure has been tested 
by experimental tests when applying the fuzzy 
predictive controller to the Labmate mobile robot. 

The controller was trained in a lookup-table man
ner, as described previously. The value of N cho
sen for the MBPC was experimentally made equal 
to seven; thus NI, N2 and Nu were given the 
values 2, 7 and 6, respectively, and the weighting 
factor was given the value: .AI = 5. The maximum 
and minimum angular velocity were given the 
following values respectively: -20 0/ s and 20 0/ s. 
For Lls, a value of 0.15 m was chosen, which leads 
to a linear robot velocity of 0.25 m/so 

Figure 6 shows two experiments carried out with 
the LABMATE, where the behaviour of the fuzzy 
predictive controller is tested. In the figure , the 



dashed-lines show the desired trajectories and the 
solid lines show the real trajectories followed by 
the mobile robot. In the first one, the mobile robot 
moves through a narrow corridor and a door. As 
can be seen, the mobile robot follows the desired 
trajectory in spite of being in an initial position 
separated about 400 mm from the desired path. 
In the second test , a reference path with shorter 
curvature radii is given to the controller. 
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Fig. 6. Fuzzy predictive controller behaviour. 

As expected, the fuzzy predictive controller re
produces the behaviour of the MBPC quite well 
and takes only a small fraction of the computa
tion time required for solving the MBPC which 
has to be solved using a numerical optimization 
algorithm. 

5. CONCLUSIONS 

A fuzzy predictive path tracking controller for 
mobile robots has been presented. The fuzzy 
controller has been trained using a lookup-table 
scheme. The desired fuzzy output was computed 
off line by a predictive controller. Control signal 
saturations and non linearities of the model were 
considered in order to obtain accurate predictions 
of the robot trajectories. The computation time 
required to solve this MBPC problem under these 
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circumstances would be prohibitive for real time. 
The fuzzy predictive approach has proved to be 
an effective way of implementing the path tracking 
predictive algorithm as shown by the experimental 
results. 
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