1,673 research outputs found

    Regression Modelling for Precipitation Prediction Using Genetic Algorithms

    Get PDF
    This paper discusses the formation of an appropriate regression model in precipitation prediction. Precipitation prediction has a major influence to multiply the agricultural production of potatoes in Tengger, East Java, Indonesia. Periodically, the precipitation has non-linear patterns. By using a non-linear approach, the prediction of precipitation produces more accurate results. Genetic algorithm (GA) functioning chooses precipitation period which forms the best model. To prevent early convergence, testing the best combination value of crossover rate and mutation rate is done. To test the accuracy of the predicted results are used Root Mean Square Error (RMSE) as a benchmark. Based on the RMSE value of each method on every location, prediction using GA-Non-Linear Regression is better than Fuzzy Tsukamoto for each location. Compared to Generalized Space-Time Autoregressive-Seemingly Unrelated Regression (GSTAR-SUR), precipitation prediction using GA is better. This has been proved that for 3 locations GA is superior and on 1 location, GA has the least value of deviation level

    The predictability of UK drought using European weather patterns

    Get PDF
    PhD thesisThis thesis explores the use of a 167-year daily weather pattern (WP) classification (MO-30) in UK meteorological drought prediction. As MO-30 was recently introduced, necessary analyses as a precursor to building a forecast model are conducted. First, an exploratory analysis of MO30’s fundamental characteristics and its relation to UK precipitation and drought climatology is carried out. Second, two novel methods to find weekly to seasonal persistence in MO-30 are used in order to assess if there is any inherent predictability within MO-30. Third, a statistical model based on historical analogues for predicting 30-day periods of WPs is constructed, from which precipitation forecasts are derived. Finally, a dynamical ensemble prediction system is applied to forecast WPs, with resultant precipitation estimated in the same way as for the statistical method. MO-30 is shown to be suitable for precipitation-based analyses in the UK. Furthermore, intraWP precipitation variability, defined by the interquartile range, is lower in MO-30 compared to another commonly used WP classification. Six WPs are associated with nationwide drought, with several other WPs linked to regional drought. Results from the persistence analysis show that there are multi-month periods when small sets of four to six WPs dominate, and some of these periods coincide with notable meteorological events, including droughts and storms. Some WPs also behave as ‘attractors’, showing increased probability of reoccurrence despite other WPs occurring in-between. The statistical method for WP and precipitation forecasts is no more skilful than climatology, suggesting that the model did not adequately exploit the persistence identified previously. However, WPs are shown to be potentially useful for drought forecasting, as an idealised, perfect prognostic model (with WP observations as inputs rather than predictions) substantially improves skill, with a skill score of almost 0.5 (out of one) for north-eastern regions. Using a dynamical model to predict WPs, while keeping the precipitation estimation procedure the same as for the purely statistical method, yields overall higher skill compared to a benchmark statistical method for predicting droughts. The model also outperforms direct (modelled) dynamical precipitation forecasts for lead-times greater than 16 days during winter and autumn, with the greatest skill advantage for western regions. This is despite the relatively modest skill scores of all forecast models (rarely above 0.4). Again, high skill scores, of almost 0.8 on occasions, are achieved by the perfect prognostic model, demonstrating the potential for incorporating WPs into precipitation and drought forecast systems

    Probabilistic and artificial intelligence modelling of drought and agricultural crop yield in Pakistan

    Get PDF
    Pakistan is a drought-prone, agricultural nation with hydro-meteorological imbalances that increase the scarcity of water resources, thus, constraining water availability and leading major risks to the agricultural productivity sector and food security. Rainfall and drought are imperative matters of consideration, both for hydrological and agricultural applications. The aim of this doctoral thesis is to advance new knowledge in designing hybridized probabilistic and artificial intelligence forecasts models for rainfall, drought and crop yield within the agricultural hubs in Pakistan. The choice of these study regions is a strategic decision, to focus on precision agriculture given the importance of rainfall and drought events on agricultural crops in socioeconomic activities of Pakistan. The outcomes of this PhD contribute to efficient modelling of seasonal rainfall, drought and crop yield to assist farmers and other stakeholders to promote more strategic decisions for better management of climate risk for agriculturalreliant nations

    The Forecasting of Humanitarian Supplies Demand Based on Gray Relational Analysis and BP Neural Network

    Get PDF
    This paper analyzes the characteristics of humanitarian supplies demand in the context of flood and discusses the disasters associated factors which influence the demand of humanitarian supplies. Then we choose the severe flooding whose grades is more than fifty year return period between 2004 and 2016 as the analysis objects,which is illustrated by the example of the Red Cross Society of China whose demand of relief tent in the flood. Finally, we set up gray relational analysis and BP neural network

    Fuzzy Clustering-Based Ensemble Approach to Predicting Indian Monsoon

    Get PDF
    Indian monsoon is an important climatic phenomenon and a global climatic marker. Both statistical and numerical prediction schemes for Indian monsoon have been widely studied in literature. Statistical schemes are mainly based on regression or neural networks. However, the variability of monsoon is significant over the years and a single model is often inadequate. Meteorologists revise their models on different years based on prevailing global climatic incidents like El-Niño. These indices often have degree of severity associated with them. In this paper, we cluster the monsoon years based on their fuzzy degree of associativity to these climatic event patterns. Next, we develop individual prediction models for the year clusters. A weighted ensemble of these individual models is used to obtain the final forecast. The proposed method performs competitively with existing forecast models

    Statistical/climatic models to predict and project extreme precipitation events dominated by large-scale atmospheric circulation over the central-eastern China

    Get PDF
    Global warming has posed non-negligible effects on regional extreme precipitation changes and increased the uncertainties when meteorologists predict such extremes. More importantly, floods, landslides, and waterlogging caused by extreme precipitation have had catastrophic societal impacts and led to steep economic damages across the world, in particular over central-eastern China (CEC), where heavy precipitation due to the Meiyu-front and typhoon activities often causes flood disaster. There is mounting evidence that the anomaly atmospheric circulation systems and water vapor transport have a dominant role in triggering and maintaining the processes of regional extreme precipitation. Both understanding and accurately predicting extreme precipitation events based on these anomalous signals are hot issues in the field of hydrological research. In this thesis, the self-organizing map (SOM) and event synchronization were used to cluster the large-scale atmospheric circulation reflected by geopotential height at 500 hPa and to quantify the level of synchronization between the identified circulation patterns with extreme precipitation over CEC. With the understanding of which patterns were associated with extreme precipitation events, and corresponding water vapor transport fields, a hybrid deep learning model of multilayer perceptron and convolutional neural networks (MLP-CNN) was proposed to achieve the binary predictions of extreme precipitation. The inputs to MLP-CNN were the anomalous fields of GP at 500 hPa and vertically integrated water vapor transport (IVT). Compared with the original MLP, CNN, and two other machine learning models (random forest and support vector machine), MLP-CNN showed the best performance. Additionally, since the coarse spatial resolution of global circulation models and its large biases in extremes precipitation estimations, a new precipitation downscaling framework that combination of ensemble-learning and nonhomogeneous hidden Markov model (Ensemble-NHMM) was developed, to improve the reliabilities of GCMs in historical simulations and future projection. The performances of downscaled precipitation from reanalysis and GCM datasets were validated against the gauge observations and also compared with the results of traditional NHMM. Finally, the Ensemble-NHMM downscaling model was applied to future scenario data of GCM. On the projections of change trends in precipitation over CEC in the early-, medium- and late- 21st centuries under different emission scenarios, the possible causes were discussed in term of both thermodynamic and dynamic factors. Main results are enumerated as follows. (1) The large-scale atmospheric circulation patterns and associated water vapor transport fields synchronized with extreme precipitation events over CEC were quantitatively identified, as well as the contribution of circulation pattern changes to extreme precipitation changes and their teleconnection with the interdecadal modes of the ocean. Firstly, based on the nonparametric Pettitt test, it was found that 23% of rain gauges had significant abrupt changes in the annual extreme precipitation from 1960 to 2015. The average change point in the annual extreme precipitation frequency and amount occurred near 1989. Complex network analysis showed that the rain gauges highly synchronized on extreme precipitation events can be clustered into four clusters based on modularity information. Secondly, the dominant circulation patterns over CEC were robustly identified based on the SOM. From the period 1960–1989 to 1990–2015, the categories of identified circulation patterns generally remain almost unchanged. Among these, the circulation patterns characterized by obvious positive anomalies of 500 hPa geopotential height over the Eastern Eurasia continent and negative values over the surrounding oceans are highly synchronized with extreme precipitation events. An obvious water vapor channel originating from the northern Indian Ocean driven by the southwesterly airflow was observed for the representative circulation patterns (synchronized with extreme precipitation). Finally, the circulation pattern changes produced an increase in extreme precipitation frequency from 1960–1989 to 1990–2015. Empirical mode decomposition of the annual frequency variation signals in the representative circulation pattern showed that the 2–4 yr oscillation in the annual frequency was closely related to the phase of El Niño and Southern Oscillation (ENSO); while the 20–25 yr and 42–50 yr periodic oscillations were responses to the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation. (2) A regional extreme precipitation prediction model was constructed. Two deep learning models-MLP and CNN were linearly stacked and used two atmospheric variables associated with extreme precipitation, that is, geopotential height at 500 hPa and IVT. The hybrid model can learn both the local-scale information with MLP and large-scale circulation information with CNN. Validation results showed that the MLP-CNN model can predict extreme or non-extreme precipitation days with an overall accuracy of 86%. The MLP-CNN also showed excellent seasonal transferability with an 81% accuracy on the testing set from different seasons of the training set. MLP-CNN significantly outperformed over other machine learning models, including MLP, CNN, random forest, and support vector machine. Additionally, the MLP-CNN can be used to produce precursor signals by 1 to 2 days, though the accuracy drops quickly as the number of precursor days increases. (3) The GCM seriously underestimated extreme precipitation over CEC but showed convincing results for reproducing large-scale atmospheric circulation patterns. The accuracies of 10 GCMs in extreme precipitation and large-scale atmospheric circulation simulations were evaluated. First, five indices were selected to measure the characteristics of extreme precipitation and the performances of GCMs were compared to the gauge-based daily precipitation analysis dataset over the Chinese mainland. The results showed that except for FGOALS-g3, most GCMs can reproduce the spatial distribution characteristics of the average precipitation from 1960 to 2015. However, all GCMs failed to accurately estimate the extreme precipitation with large underestimation (relative bias exceeds 85%). In addition, using the circulation patterns identified by the fifth-generation reanalysis data (ERA5) as benchmarks, GCMs can reproduce most CP types for the periods 1960–1989 and 1990–2015. In terms of the spatial similarity of the identified CPs, MPI-ESM1-2-HR was superior. (4) To improve the reliabilities of precipitation simulations and future projections from GCMs, a new statistical downscaling framework was proposed. This framework comprises two models, ensemble learning and NHMM. First, the extreme gradient boosting (XGBoost) and random forest (RF) were selected as the basic- and meta- classifiers for constructing the ensemble learning model. Based on the top 50 principal components of GP at 500 hPa and IVT, this model was trained to predict the occurrence probabilities for the different levels of daily precipitation (no rain, very light, light, moderate, and heavy precipitation) aggregated by multi-sites. Confusion matrix results showed that the ensemble learning model had sufficient accuracy (>88%) in classifying no rain or rain days and (>83%) predicting moderate precipitation events. Subsequently, precipitation downscaling was done using the probability sequences of daily precipitation as large-scale predictors to NHMM. Statistical metrics showed that the Ensemble-NHMM downscaled results matched best to the gauge observations in precipitation variabilities and extreme precipitation simulations, compared with the result from the one that directly used circulation variables as predictors. Finally, the downscaling model also performed well in the historical simulations of MPI-ESM1-2-HR, which reproduced the change trends of annual precipitation and the means of total extreme precipitation index. (5) Three climate scenarios with different Shared Socioeconomic Pathways and Representative Concentration Pathways (SSPs) were selected to project the future precipitation change trends. The Ensemble-NHMM downscaling model was applied to the scenario data from MPI-ESM1-2-HR. Projection results showed that the CEC would receive more precipitation in the future by ~30% through the 2075–2100 period. Compared to the recent 26-year epoch (1990–2015), the frequency and magnitude of extreme precipitation would increase by 21.9–48.1% and 12.3–38.3% respectively under the worst emission scenario (SSP585). In particular, the south CEC region is projected to receive more extreme precipitation than the north. Investigations of thermodynamic and dynamic factors showed that climate warming would increase the probability of stronger water vapor convergence over CEC. More wet weather states due to the enhanced water vapor transport, as well as the increased favoring large-scale atmospheric circulation and the strengthen pressure gradient would be the factors for the increased precipitation

    Development of procedures for land use assessment at the regional scale

    Get PDF
    Multi-criteria land evaluation is an important process required for sustainable resource management. During the process of land evaluation, various factors related to land and corresponding resources need to be addressed. Availability of simple, ready to use procedures is particularly valuable for land evaluation. In this thesis approaches and tools aimed at the evaluation of land use change processes and land suitability for rural tourism, as well as sensitivity analysis procedure for land evaluation models are presented

    MULTIVARIATE MULTISITE STATISTICAL DOWNSCALING OF ATMOSPHERE-OCEAN GENERAL CIRCULATION MODEL OUTPUTS OVER THE CANADIAN PRAIRIE PROVINCES

    Get PDF
    Atmosphere-Ocean General Circulation Models (AOGCMs) are the primary tool for modelling global climate change in the future. However, their coarse spatial resolution does not permit direct application for local scale impact studies. Therefore, either dynamical or statistical downscaling techniques are used for translating AOGCM outputs to local scale climatic variables. The main goal of this study was to improve our understanding of the historical and future climate change at local-scale in the Canadian Prairie Provinces (CPPs) of Alberta, Saskatchewan and Manitoba, comprising 47 diverse watersheds. Given the vast nature of the study area and paucity of recorded data, a novel approach for identifying homogeneous regions for regionalization of precipitation characteristics for the CPPs was proposed. This approach incorporated information about predictors ― large-scale atmospheric covariates from the National Center for Environmental Prediction (NCEP) Reanalysis-I, teleconnection indices and geographical site attributes that impact spatial patterns of precipitation in order to delineate homogeneous precipitation regions using a combination of multivariate approaches. This resulted in the delimitation of five homogeneous climatic regions which were validated independently for homogeneity using statistics computed from observations recorded at 120 stations across the CPPs. For multisite multivariate statistical downscaling, an approach based on the Generalized Linear Model (GLM) framework was developed to downscale daily observations of precipitation and minimum and maximum temperatures from 120 sites located across the CPPs. First, the aforementioned predictors and observed daily precipitation and temperature records were used to calibrate GLMs for the 1971–2000 period. Then the calibrated GLMs were used to generate daily sequences of precipitation and temperatures for the 1962–2005 historical (conditioned on NCEP predictors), and future period (2006–2100) using outputs from six CMIP5 (Coupled Model Intercomparison Project Phase-5) AOGCMs corresponding to Representative Concentration Pathway (RCP): RCP2.6, RCP4.5, and RCP8.5 scenarios. The results indicated that the fitted GLMs were able to capture spatiotemporal characteristics of observed climatic fields. According to the downscaled future climate, mean precipitation is projected to increase in summer and decrease in winter while minimum temperature is expected to warm faster than the maximum temperature. Climate extremes are projected to intensify with increased radiative forcing
    corecore