15 research outputs found

    Predicate Invention in Inductive Logic Programming

    Get PDF
    The ability to recognise new concepts and incorporate them into our knowledge is an essential part of learning. From new scientific concepts to the words that are used in everyday conversation, they all must have at some point in the past, been invented and their definition defined. In this position paper, we discuss how a general framework for predicate invention could be made, by reasoning about the problem at the meta-level using an appropriate notion of top theory in inductive logic programming

    On Cognitive Preferences and the Plausibility of Rule-based Models

    Get PDF
    It is conventional wisdom in machine learning and data mining that logical models such as rule sets are more interpretable than other models, and that among such rule-based models, simpler models are more interpretable than more complex ones. In this position paper, we question this latter assumption by focusing on one particular aspect of interpretability, namely the plausibility of models. Roughly speaking, we equate the plausibility of a model with the likeliness that a user accepts it as an explanation for a prediction. In particular, we argue that, all other things being equal, longer explanations may be more convincing than shorter ones, and that the predominant bias for shorter models, which is typically necessary for learning powerful discriminative models, may not be suitable when it comes to user acceptance of the learned models. To that end, we first recapitulate evidence for and against this postulate, and then report the results of an evaluation in a crowd-sourcing study based on about 3.000 judgments. The results do not reveal a strong preference for simple rules, whereas we can observe a weak preference for longer rules in some domains. We then relate these results to well-known cognitive biases such as the conjunction fallacy, the representative heuristic, or the recogition heuristic, and investigate their relation to rule length and plausibility.Comment: V4: Another rewrite of section on interpretability to clarify focus on plausibility and relation to interpretability, comprehensibility, and justifiabilit

    Making sense of sensory input

    Get PDF
    This paper attempts to answer a central question in unsupervised learning: what does it mean to "make sense" of a sensory sequence? In our formalization, making sense involves constructing a symbolic causal theory that both explains the sensory sequence and also satisfies a set of unity conditions. The unity conditions insist that the constituents of the causal theory -- objects, properties, and laws -- must be integrated into a coherent whole. On our account, making sense of sensory input is a type of program synthesis, but it is unsupervised program synthesis. Our second contribution is a computer implementation, the Apperception Engine, that was designed to satisfy the above requirements. Our system is able to produce interpretable human-readable causal theories from very small amounts of data, because of the strong inductive bias provided by the unity conditions. A causal theory produced by our system is able to predict future sensor readings, as well as retrodict earlier readings, and impute (fill in the blanks of) missing sensory readings, in any combination. We tested the engine in a diverse variety of domains, including cellular automata, rhythms and simple nursery tunes, multi-modal binding problems, occlusion tasks, and sequence induction intelligence tests. In each domain, we test our engine's ability to predict future sensor values, retrodict earlier sensor values, and impute missing sensory data. The engine performs well in all these domains, significantly out-performing neural net baselines. We note in particular that in the sequence induction intelligence tests, our system achieved human-level performance. This is notable because our system is not a bespoke system designed specifically to solve intelligence tests, but a general-purpose system that was designed to make sense of any sensory sequence

    Learning, Probability and Logic: Toward a Unified Approach for Content-Based Music Information Retrieval

    Get PDF
    Within the last 15 years, the field of Music Information Retrieval (MIR) has made tremendous progress in the development of algorithms for organizing and analyzing the ever-increasing large and varied amount of music and music-related data available digitally. However, the development of content-based methods to enable or ameliorate multimedia retrieval still remains a central challenge. In this perspective paper, we critically look at the problem of automatic chord estimation from audio recordings as a case study of content-based algorithms, and point out several bottlenecks in current approaches: expressiveness and flexibility are obtained to the expense of robustness and vice versa; available multimodal sources of information are little exploited; modeling multi-faceted and strongly interrelated musical information is limited with current architectures; models are typically restricted to short-term analysis that does not account for the hierarchical temporal structure of musical signals. Dealing with music data requires the ability to tackle both uncertainty and complex relational structure at multiple levels of representation. Traditional approaches have generally treated these two aspects separately, probability and learning being the usual way to represent uncertainty in knowledge, while logical representation being the usual way to represent knowledge and complex relational information. We advocate that the identified hurdles of current approaches could be overcome by recent developments in the area of Statistical Relational Artificial Intelligence (StarAI) that unifies probability, logic and (deep) learning. We show that existing approaches used in MIR find powerful extensions and unifications in StarAI, and we explain why we think it is time to consider the new perspectives offered by this promising research field

    Inductive logic programming using bounded hypothesis space

    Get PDF
    Inductive Logic Programming (ILP) systems apply inductive learning to an inductive learning task by deriving a hypothesis which explains the given examples. Applying ILP systems to real applications poses many challenges as they require large search space, noise is present in the learning task, and in domains such as software engineering hypotheses are required to satisfy domain specific syntactic constraints. ILP systems use language biases to define the hypothesis space, and learning can be seen as a search within the defined hypothesis space. Past systems apply search heuristics to traverse across a large hypothesis space. This is unsuitable for systems implemented using Answer Set Programming (ASP), for which scalability is a constraint as the hypothesis space will need to be grounded by the ASP solver prior to solving the learning task, making them unable to solve large learning tasks. This work explores how to learn using bounded hypothesis spaces and iterative refinement. Hypotheses that explain all examples are learnt by refining smaller partial hypotheses. This improves the scalability of ASP based systems as the learning task is split into multiple smaller manageable refinement tasks. The thesis presents how syntactic integrity constraints on the hypothesis space can be used to strengthen hypothesis selection criteria, removing hypotheses with undesirable structure. The notion of constraint-driven bias is introduced, where hypotheses are required to be acceptable with respect to the given meta-level integrity constraints. Building upon the ILP system ASPAL, the system RASPAL which learns through iterative hypothesis refinement is implemented. RASPAL's algorithm is proven, under certain assumptions, to be complete and consistent. Both systems have been applied to a case study in learning user's behaviours from data collected from their mobile usage. This demonstrates their capability for learning with noise, and the difference in their efficiency. Constraint-driven bias has been implemented for both systems, and applied to a task in specification revision, and in learning stratified programs.Open Acces

    Robotika in umetna inteligenca

    Get PDF
    corecore