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Abstract
The ability to recognise new concepts and incorporate them into our knowledge is an essential part
of learning. From new scientific concepts to the words that are used in everyday conversation,
they all must have at some point in the past, been invented and their definition defined. In
this position paper, we discuss how a general framework for predicate invention could be made,
by reasoning about the problem at the meta-level using an appropriate notion of top theory in
inductive logic programming.
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1 Predicate Invention

In Inductive Logic Programming (ILP) a hypothesis H (a set of rules) is learned from some
background knowledge B and a set of observed positive and negative examples E = E+∪E−,
using mode declarations as bias for the syntax of the rules. The learned hypothesis should
be the most general one that will make the positive examples derivable once the hypothesis
is added to the background knowledge (B ∪H � E+) and is consistent with the negative
examples (∀e− ∈ E− : B ∪H 2 e−).

Mode declarations contains the schema for the allowed literals in the rule, and can be of the
form modeh(s) or modeb(s) for the head or body of the rule respectively. The schema s is a
grounded literal with placemarkers of the form ‘+type′, ‘−type′, or ‘#type′, with type corres-
ponding to the type of the literal’s argument. The symbols ‘+′, ‘−′, and ‘#′ indicates whether
the argument should be a variable in the head of the rule or one from previous body literals
in the rule (input variable), a new fresh variable (output variable), or a constant respectively.
Thus, the mode declarations modeh(fly(+bird)) and modeb(wings(+bird, #property,−int))
would allow a rule such as fly(X)← wings(X, has_flight_feathers, Y ) to be constructed,
where X is a bird and Y is an integer, with has_flight_feathers being a property of the
bird’s wings.

Predicate Invention is when the hypothesis includes a predicate that was neither within
the background knowledge nor the examples. There are two reasons why a new predicate
may be invented:
1. Reformulation: To identify interesting concepts not directly related to the learning goal

that could be used to restructure the program. For example, if the background knowledge
contains the rules:
pigeon(X)← beak(X), feathers(X), wings(X), f ly(X).
penguin(X)← beak(X), feathers(X), wings(X),¬fly(X).
These rules share many conditions which could be factored out by inventing a new
predicate bird/1, with the definition of bird(X) ← beak(X), feathers(X), wings(X).
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16 Predicate Invention in Inductive Logic Programming

The new predicate can then be used to replace all occurrences of the shared conditions
within the background knowledge:
pigeon(X)← bird(X), f ly(X).
penguin(X)← bird(X),¬fly(X).
bird(X)← beak(X), feathers(X), wings(X).

2. Bias Shift: To specialise an overgeneral hypothesis and make it consistent with the
examples. This is when the vocabulary available to the learner is not sufficient for
constructing a consistent hypothesis. Therefore a new predicate is needed for specialising
the overgeneral hypothesis such that it would no longer cover negative examples. Consider
the following ILP problem:

B = { bird(alex). E+ = { fly(alex). }
bird(bob). } E− = { fly(bob). }

M = { modeh(fly(+bird)). }
The current vocabulary is not strong enough to construct a consistent hypothesis. The
mode declaration only allows the rule fly(X), which is not sufficient for discriminating the
negative example fly(bob) from the positive one. Furthermore, no other conditions can
be added to solve this problem given the current mode declaration. Thus, a new predicate
p and the fact p(alex) need to be added so that the consistent rule fly(X)← p(X) can
be learned.

There are three main difficulties [13] that need to be considered when inventing new predicates:
1. When to invent new predicate

There needs to be a criteria for deciding when a new predicate is necessary, as we would
not like to add useless predicates to the background knowledge that would only hinder
the learner in future tasks.

2. How to invent new predicate
What structure should the new predicate have and how can its definition be found?
Would a recursive call to the ILP algorithm in use be sufficient, or would a separate
algorithm be required for learning the new predicate’s definition?

3. How to control the search space of the new predicate
The search space for the new predicate could potentially be infinitely large, and the mode
declarations for the original learning problem may no longer applies for learning the new
predicate. There needs to be a way of limiting or directing the search space for the new
predicate.

In this position paper, we discuss how a general framework for predicate invention,
which is able to accommodate both cases of of theory reformulation and bias shift, could
be developed. This takes advantage of recently proposed meta-level abductive approach
to inductive logic programming, whereby inductive tasks are transformed into equivalent
abductive task, reducing the computation to the search of equivalent abductive explanations.
After a brief summary of the current state of art of the field, we show how a predicate
invention task can be formulated as a meta-level search problem, that can compute new
predicates for compacting the given background knowledge as well as specialising hypothesis.

2 Related Work

Past systems have concentrated on one of either reformulation or bias shift when inventing
new predicates. DIALOGS [5], SIRIES [14] and CHAMP [12] all invents new predicate for
bias shift, while INDEX [4] invents new predicates for reformulating the theory. Although in
Cigol [11] the main goal is to find new rules for reformulation, its new predicates are only
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invented when negative examples are confirmed by the oracle, the same situation as bias shift.
There are also methods such as Statistical Predicate Invention (SPI) [9] and matrix sorting
[8] that do not follow the framework of ILP, but are also able to introduce new predicates
into existing theories. These methods find new predicates by identifying trends within the
theory then grouping objects together, and the new predicates are introduced to restructure
the theory according to those trends and groupings.

While each system’s exact method is different from one another, they use the same
strategy for inventing a new predicate. They start by identifying the appropriate structure of
the new predicate then use it as an input to a learning algorithm, often the main inductive
learning algorithm, to learn the definition of the new predicate. For instance, CHAMP invents
its predicate by finding the smallest set of arguments that would completely discriminate the
positive and negative examples, while Cigol finds the predicate’s arguments by identifying
non-unifiable arguments when generalising its examples. Having identified the structure,
both systems then use it in a recursive call to their main learning algorithm.

The way each system controls the search space for the new predicate is more varied.
Both DIALOGS and SIRIES prioritise some hypothesis structures over others, giving lower
priorities to those that are more complicated or with new predicates. CHAMP and Cigol
prefer a hypothesis that will achieve the most compression of their theory. While INDEX,
SPI and matrix sorting uses some scoring mechanism for the most appropriate representation
of their data.

3 Predicate invention at meta-level

Our framework is general enough for both bias shift and reformulation. Abstracting the
problem to the meta-level would be suitable for inventing new predicates, as past methods
have shown that meta-knowledge is often needed for deciding the new predicate’s structure
regardless of its purpose. ILP systems already have some means for reasoning about the
language of its hypotheses by using the top theory, a theory on the encoding of the hypothesis
as allowed by the mode declaration. Furthermore, the top theory should be flexible enough
for importing any heuristics for inventing predicates.

Firstly, we briefly describe an existing ILP system called ASPAL that performs standard
ILP tasks using meta-level abduction. We use this system to automate our framework as
ASP uses sophisticated mechanisms for optimising search.

3.1 ASPAL

ASPAL (ASP Abductive Learning) is the Answer Set Programming (ASP), declarative
programming based on stable model semantics [7], implementation of TAL. TAL (Top-
directed Abductive Learning) [1, 2] is a top-down nonmonotonic ILP algorithm implemented
in Prolog, using abductive learning to find the correct hypothesis. It solves an inductive
problem by converting it into an abductive one. The hypothesis of the problem is found
using a top theory, the theory concerning the construction of the hypothesis according to the
mode declarations of the inductive problem. By reasoning with the top theory, TAL and
ASPAL abstract the problem to the meta-level of the hypothesis’ encoding.

M = { modeh(fly(+bird)).
modeb(pigeon(+bird)).}

For example, using the mode declarations above, the corresponding top theory in ASPAL
is as follows:

ICCSW’12
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TASP AL = { fly(X)← bird(X), $rule(r((fly, c, v))).
f ly(X)← bird(X), pigeon(X),

$rule(r((fly, c, v), (pigeon, c, v(1)))). }
The top theory matches the head of its clauses to examples of the ILP problem, testing
conditions for those clauses and abducing the rule encoding $rule/1 should no negative
example satisfies the clause. Each tuple in $rule/1 corresponds to a mode declaration (using
fly or pigeon for identification). The constants c and v are used to represents empty lists
[] of constants and variables, while v(1) represents the list [1] with a single index linking
to the first variable in the rule. The constant list is used when the literal has constants in
its arguments, while the variable list links variables in the rule together using their indexes.
Using the top theory above with the background and examples:

B = { bird(alex). E+ = { fly(alex). }
bird(bob). E− = { fly(bob). }
pigeon(alex). }

The examples are used to construct an integrity constraint in the ASP program, such
that all answer sets in the solution must include all positive examples and none of the
negative ones. The first clause in TASP AL prevents the rule fly(X) from being added
to the hypothesis as the negative example fly(bob) would also satisfy the clause. Thus
$rule(r((fly, c, v))), the encoding for fly(X), would not be included in the answer set.
However, as the condition pigeon(bob) is not satisfiable by the rule fly(X)← pigeon(X), its
representation $rule(r((fly, c, v), (pigeon, c, v(1)))) can be abduced.

ASPAL was used rather than TAL as the ASP solver is extremely efficient when solving
a grounded program, ASPAL’s current implementation avoids costly computation of the
ASP grounder by using a preprocessor for constructing an ASP program with all possible
grounded hypotheses. These advantages allow for many number of mode declarations to be
used without high increase in computational time.

3.2 Predicate invention using meta-level abduction
In [10], a simple method for introducing new predicates through the mode declarations was
shown by using placeholders. Placeholders are mode declarations of new predicates that were
neither within the problem’s example, its background knowledge, nor its mode declarations.
For example, suppose we have the following problem:

B = { alpha(a). E+ = { q(a, d), q(a, c). }
alpha(b). E− = { q(c, d). }
alpha(c). M = { modeh(q(+alpha, +alpha)). }
alpha(d). }

To solve this using placeholders, we can add new mode declarations modeh(new(#alpha,

#alpha)) and modeb(new(+alpha, +alpha) to the problem, such that rules and facts such
as p(X, Y ) ← new(X, X) and new(a, a) can be learned. Running the problem in ASPAL
takes only 0.01 seconds to solve. Should we want to add other seventeen alternative mode
declarations for modeb(new(+alpha, +alpha) (with negation and different combinations of
constants, input and output variables), and limiting to maximum of one body literal per rule
and two rules per hypothesis, ASPAL will solve the problem in 0.078 seconds and output 20
hypotheses. Many of the hypotheses subsumes each other, for instance:

H1 = {p(X, Y )← new(X, Z). H2 = {p(X, Y )← new(X, X). H3 = {p(X, Y )← new(a, a).
new(a, a).} new(a, a).} new(a, a).}

From the hypotheses above, simply selecting the shortest one is not sufficient as they
all have the same length. Instead, we could lower the number of hypotheses by discarding
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hypotheses that are subsumed by others. In the case above, H2 and H3 can be discarded as
they are both subsumed by H1, making H1 the most general hypotheses out of the three
hypotheses.

For reformulating a theory, [3] has shown how an ILP system can be used to revise
theories by transforming the revisable section of the background knowledge and learning
revision operators. Each revisable rule ri ← ci,1, . . . , ci,n can be transformed to:

ri ← try(i, 1, ci,1), . . . , try(i, n, ci,n), ext(i, ri).
try(i, 1, ci,1)← ci,1, use(i, 1).
try(i, 1, ci,2)← not use(i, 2).
. . .
use(i, j)← not del(i, j).

Each try/3 clause is used to test if a condition j in a rule i is not used in the rule. Due to
the definition of use/2, the condition ci,j is removed from the theory when the corresponding
del(i, j) is learned. The literal ext/2 is used for learning additional conditions to be added
to the body in the rule. For instance, ext(i, ri)← p(a) indicates that the rule ri should be
extended with the literal p(a).

We have applied this method to reformulate the clauses:
grandfather(X, Y )← male(X), parent(Z, Y ), parent(X, Z).
grandmother(X, Y )← female(X), parent(Z, Y ), parent(X, Z).

As well as the mode declarations needed for revising the clauses, additional mode declarations
were included such that the rule new(X, Y ) ← parent(Z, Y ), parent(X, Z) can be learnt.
This is so the learner can find a solution that would reformulate the rules to:

grandfather(X, Y )← male(X), new(X, Y ).
grandmother(X, Y )← female(X), new(X, Y ).
new(X, Y )← parent(Z, Y ), parent(X, Z).

While we were able to acquire the above solution, the learner outputs many more solutions,
with most not decreasing the size of the theory. This is because the search is only guided by
the examples given, not by how much each hypothesis could compact the theory. Thus, to
the learner, the following solution would be as good as the previous one:

grandfather(X, Y )← male(X), parent(Z, Y ), new(X, Z).
grandmother(X, Y )← female(X), parent(Z, Y ), new(X, Z).
new(X, Y )← parent(X, Y ).
While comparing the literal count could help us identify the best revision, another simple

solution is by using the optimisation feature of iClingo [6], the ASP solver used by ASPAL.
As del/2 instances indicated removal of clauses, by asking the solver the find the maximum
number of del/2 instances possible, we can then use it to find only solutions that will most
reduce the size of the background knowledge. Similarly, finding the minimum number of new
clauses added to the background knowledge can also help to find the solutions that will least
increase the size of the background knowledge.

In conclusion, as well as the general ILP task, our framework is also capable performing
the following tasks with predicate invention:
1. A bias shift task 〈E, B, M〉, where E is a set of examples, B is the background knowledge,

and M is the set of mode declarations. A set of rules, a hypothesis HB , is a solution to
the task 〈E, B, M〉 if HB is compatible with M extended by a new predicate p, HB ∪B

is consistent with E, and HB the predicate p such that p /∈ B, p /∈ E, and p /∈M .
2. A reformulation task 〈BN , BR, M〉, where BN is the non-revisable background knowledge,

BR is the revisable background knowledge, and M is the set of mode declarations. A
solution to the task 〈BN , BR, M〉 is tuple HR = 〈HN , HO〉, where HN (possibly empty)
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is a set of new rules, and HO is a sequence of revision operations, these include adding
conditions to existing rules and deleting conditions or rules in BR. HR is a valid solution
to 〈BN , BR, M〉 if HN is compatible with M extended by a new predicate p, and for
o1, . . . , on ∈ HO: BR⊗{o1, . . . , on}∪BN∪HN to have the same answer sets with BN∪BR

for their shared predicates, and HR may contain the predicate p such that p /∈ BN ∪BR,
and p /∈M .

3. By combining the previous two tasks, predicates can also be invented for correcting
erroneous knowledge. Expanding the theory revision task to give a task 〈E, BN , BR, M〉,
where E is a set of examples, BN is the non-revisable background knowledge, BR is the
revisable background knowledge, M is the set of mode declarations, and BN ∪ BR is
inconsistent with E. A solution to the task 〈E, BN , BR, M〉 is a tuple HT = 〈HN , HO〉,
where HN is a set of new rules and HO is a sequence of revision operations. HT is a valid
solution to 〈E, BN , BR, M〉 if HN is compatible with M extended by a new predicate
p, and for o1, . . . , on ∈ HO: BR ⊗ {o1, . . . , on} ∪BN ∪HN is consistent with E, and HT

contains a new predicate p such that p /∈ BN ∪BR, p /∈ E, and p /∈M .

4 Future Work

The objective of our research is a general ILP framework with capacity for an efficient way of
inventing new predicates, able to invent new predicates for both reformulation and bias shift.

The simple approach of generating all placeholders seems to be able to handle all issues
we outlined in Section 1: (i) placeholders can be added to the ASP program when the original
learning problem fails to produce a hypothesis, (ii) use all possible placeholders, starting from
one argument and increasing the number of its arguments until solutions are found, and rely
on the learning algorithm of ASPAL to compute the hypotheses, (iii) search can be controlled
by limiting the number of rules within the hypothesis and increasing it until the minimum
number of rules is found. However, we still need to test it on larger problems to ensure that
high number of mode declarations does not lead to a great increase in computational time or
the number of solutions. If so, then we will need to find a way to limit the number of mode
declarations that are considered for each time new predicates are needed.

For theory reformulation, we still need to determine when should the theory be refor-
mulated, and how to control the search. A way to control the search is by associating each
revision operator with a measure of its effect on the program size, so that the learner can
use it to discard hypothesis that do not reduce the theory’s size.

ASPAL already has some preliminary work done on hypothesis refinement, which could
be used after the learner has gone through the search space from the given mode declarations.
We plan to complete this hypothesis refinement framework of ASPAL, as this will help with
determining when to invent new predicates for bias shift. It will allow us to invent new
predicates only when demanded, similar to systems such as CHAMP and SIRIES.
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