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Abstract

Inductive Logic Programming (ILP) systems apply inductive learning to an inductive learning

task by deriving a hypothesis which explains the given examples. Applying ILP systems to real

applications poses many challenges as they require large search space, noise is present in the

learning task, and in domains such as software engineering hypotheses are required to satisfy

domain specific syntactic constraints. ILP systems use language biases to define the hypothesis

space, and learning can be seen as a search within the defined hypothesis space. Past systems

apply search heuristics to traverse across a large hypothesis space. This is unsuitable for systems

implemented using Answer Set Programming (ASP), for which scalability is a constraint as the

hypothesis space will need to be grounded by the ASP solver prior to solving the learning task,

making them unable to solve large learning tasks.

This work explores how to learn using bounded hypothesis spaces and iterative refinement.

Hypotheses that explain all examples are learnt by refining smaller partial hypotheses. This

improves the scalability of ASP based systems as the learning task is split into multiple smaller

manageable refinement tasks.

The thesis presents how syntactic integrity constraints on the hypothesis space can be used to

strengthen hypothesis selection criteria, removing hypotheses with undesirable structure. The

notion of constraint-driven bias is introduced, where hypotheses are required to be acceptable

with respect to the given meta-level integrity constraints.

Building upon the ILP system ASPAL, the system RASPAL which learns through iterative hy-

pothesis refinement is implemented. RASPAL’s algorithm is proven, under certain assumptions,

to be complete and consistent. Both systems have been applied to a case study in learning

user’s behaviours from data collected from their mobile usage. This demonstrates their ca-

pability for learning with noise, and the difference in their efficiency. Constraint-driven bias

has been implemented for both systems, and applied to a task in specification revision, and in

learning stratified programs.
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Chapter 1

Introduction

Within the field of psychology learning is described in [Mye99] as “A relative permanent change

in an organism’s behaviour due to experience”. Learning is a crucial ability that allows living

organisms to adapt to their environments by acquiring and applying knowledge from past

experiences, making it a fascination to many fields including philosophy, psychology, and biology

(neuroscience). Machine learning [Mit97] is the study of the automation of learning, with

computer programs in place of organisms as the learner. Instead of a typical program whose

purpose is to tell a machine what actions it should take, a learning program attempts to learn

new information from the supplied examples. The examples act as new experiences for the

program, and the learnt information is how the program adapts to them.

Induction is a form of reasoning which generates new knowledge by generalising observed ex-

amples, thus generating the concept that supports the observations. Within machine learning

Inductive Logic Programming (ILP) [MD94] is a field that combines the expressive represen-

tation of logic programming with inductive reasoning. ILP systems learn new concepts from

positively and negatively labelled examples. More specifically, learning through ILP involves

supplying the learner with an inductive learning task composed of the observed examples, a set

of grounded terms, of the concept being learnt, a background knowledge, and a language bias

which is a specification of what clauses, called rules, can be included in the hypotheses, a set

of rules that are output by the system as possible explanations for the examples. The solution
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2 Chapter 1. Introduction

output by the learner is a hypothesis which, together with the background knowledge, logically

implies the examples. Essentially, learning in ILP systems can be viewed as a search problem

for the solution within the space of all hypotheses called the hypothesis space.

Example 1. Consider the background knowledge:

B =



even(0).

num(0).

num(s(0)).

num(s(s(0))).

num(s(s(s(0)))).

num(s(s(s(s(0))))).

succ(X, s(X))← num(X), num(s(X)).


B contains existing knowledge about some numbers, the successor relationship between them,

and that 0 is an even number. Now suppose B is to be used for learning the concept for even

and odd numbers from the following positive examples E+ and negative examples E−:

E+ =

 even(s(s(s(s(0))))).

odd(s(s(s(s(s(0)))))).

 E− =



even(s(0)).

even(s(s(s(0)))).

odd(0).

odd(s(s(s(s(0))))).


The solution to the learning task can be found by searching through the hypothesis space P(RM):

P(RM) =


{odd(X). even(X). }

{even(X)← succ(Y,X). odd(X)← succ(Y,X), even(X). }

{odd(X)← not even(X). even(X)← succ(Y,X), succ(Z, Y ), even(Z). }


The combination of B and any hypothesis in P(RM) would make all positive examples true.

Note that “not” in {even(X) ← succ(Y,X), succ(Z, Y ), even(Z).; odd(X) ← not even(X).}

represents negation as failure (will be covered in Section 2.4). Of the three hypotheses in P(RM)

only {even(X) ← succ(Y,X), succ(Z, Y ), even(Z).; odd(X) ← not even(X).} would not imply

any of the negative examples making it the solution of the learning task.
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There have been recent works in ILP which address the problem of how to compute the solution

of a learning task; in particular systems such as XHAIL [Ray09] and TAL [CRL10] (and ASPAL

[CRL11]) have contributed in extending ILP systems to learning inductive tasks with non-

monotonic logic. That is, a logic paradigm where adding new knowledge to an existing theory

may invalidate previously implied outcomes. Of the mentioned systems XHAIL and ASPAL

have been implemented in Answer Set Programming (ASP). ASP is a form of declarative

programming based on stable model semantics [GL88], with the focus of generating stable

models called answer sets, a set of ground atoms, corresponding to models of the logic program.

The idea behind stable model semantics is that a set of atoms S can be seen as a partial

evaluation of a logic program P , and can be used to simplify P . The simplification process

creates a program P S referred to as the reduct of P . S is a stable model of P if and only if it

is the least Hebrand model [vEK76] of P S.

Example 2. Consider the program:

P =

{
a← not b.

}

Suppose S1 = {a}, then the reduct is {a.} since b is not in S1, so the condition not b must hold.

The least Hebrand model of the reduct is {a}, making S1 a stable model of P .

Suppose S2 = {b}, then the reduct is ∅ since b is in S2. The least Hebrand model of the reduct

is ∅, and S2 is not a stable model of P .

Answer sets of ASP programs are typically computed using grounder and solver programs. The

grounder takes the given program and replaces all variables in the program with all possible

constants that can be used in its place, creating a grounded program. The solver then uses the

grounded program to find its answer sets. The exact technique used for solving the grounded

program is different from system to system with many ASP solvers using Boolean constraint

solving techniques [GKNS07]. What makes ASP an appealing platform for implementing non-

monotonic learning systems is that, not only does it has a stable model semantics designed for

non-monotonic reasoning, but also that, unlike SLD-resolution (Selective Linear Definite clause
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resolution) based approaches such as Prolog [Bra01], rules ordering and recursion (for a finite

domain) are inconsequential in ASP. For instance, the program {a← not a.} is not satisfiable

in ASP as it has no answer sets, but in Prolog the query ← a cannot finitely terminate as

a ← not a will loop upon itself. For ILP systems being able to ignore loops within the learnt

theory makes it simpler to learn theories with recursion, as rules with or without recursive

definitions can be treated in the same manner.

1.1 Motivation

Past works in ASP based ILP systems, ILP systems implemented using ASP, have focused on

formalising learning algorithms that are complete and sound, and gave little consideration to

making their approaches practical for real world applications. This work presents methods for

tackling obstacles that are encountered when applying ILP systems. The obstacles that we

will focus on are (i) the scalability issue of ASP based ILP systems as a result of the grounder

having to ground the entire hypothesis space; (ii) adapting non-monotonic ILP systems to solve

learning tasks with noise within the observed examples; and (iii) giving users more control over

the hypothesis search so that it is not directed purely by the systems’ internal search heuristics.

As pointed out above, ASP programs are grounded before they are solved. This creates a scal-

ability issue for ASP based systems as not only could the background knowledge be large, but

the high combinatorial complexity of the hypotheses could also lead to an immense hypothesis

space, all of which will need to be grounded. This grounding process has a major effect on the

efficiency of the ILP systems, and at times could turn a theoretically solvable learning task into

an unsolvable one. The grounding problem is especially relevant to non-monotonic learning as

all examples will need to be taken into account. The entire hypothesis space will need to be

grounded, as opposed to only the hypothesis spaces relevant to subsets of examples, and the

larger hypothesis space leads to larger grounding of the ASP program. Using iterative learning,

this work tackle the problem of handling large ASP grounding by breaking the learning process

into a sequence of smaller programs.
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In [Cor11] it has been suggested that the problem of non-monotonic learner’s scalability could

be mitigated for ASPAL by allowing the system to learn only rules with very small size, and

then iteratively increasing the rule size until a solution is found. Although this iterative method

does ensure that the solution is found using the smallest possible hypothesis space, this method

does not address the scenario where that smallest possible hypothesis space is still too large

for the ILP system to handle. In addition to this, noise also makes it difficult to apply ILP

systems to real world applications. There has been past work in making ILP systems able to

handle learning tasks with noise, such as Aleph [Sri07] and HYPER/N [OB10] that both use

noise threshold to allow hypotheses that cover some noisy examples to be used as solutions to

the learning task. However, both systems are for monotonic ILP and not non-monotonic ILP.

When searching through the hypothesis space, ILP systems prefer a systematic search over a

naive one as it makes the search more efficient. The systematic search is often carried out

by the use of a scoring function which assigns a numerical score to a hypothesis, and the

learner is directed towards hypotheses with the best score. For instance, when Occam’s Razor

is incorporated into the search heuristics, the size of the hypothesis is included in the score

and the learner will give higher preference to hypotheses with smaller size. However, in some

application domains the score directed search may not find the most appropriate hypothesis,

as the user’s hypothesis selection criteria is not reflected by the scoring function. ILP systems

such as DIALOGS [Fle97], Metagol [ML13], and SERIES [WO91] have all demonstrated that

the structure of the hypothesis can be exploited for directing the search for the hypothesis.

In addition to this, there have been several recent works in ILP which incorporate meta-level

information as a part of their learning algorithm. Examples of such meta-level information

used in ILP systems include the clausal graph in SOLAR [IFKN10], the meta-interpreter of

Metagol [ML13], and the rule encoding of TAL [CRL10] and ASPAL [CRL11]. The use of

meta-level information as the core mechanism for learning makes it easy for the users of the

ILP systems to have direct interaction with the syntactic information of the hypothesis, creating

an opportunity for the users to enhance the selection criteria of the systems with their expertise

in the learning domain.

Example 3. Consider Example 1. Since even and odd are related concepts, it would be rea-
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sonable for the user to expect a solution to have the following form:

even(X)← odd(Y ), P (X, Y ).

odd(X)← even(Y ), P (X, Y ).

where P (X, Y ) is a place-holder for a relation on X and Y . If the above template is given as

part of the learning task, it can act as a guide for the learner so that rules within the hypothesis

space that do not have similar structure to one of the template’s rules can be dismissed.

This thesis aims to show how learning using bounded hypothesis space could address the scal-

ability problem described above, and control the search with additional domain specific infor-

mation. The thesis presents two methods for binding the hypothesis space. The first method

is a learning algorithm that combines existing ILP techniques with hypothesis refinement for

solving inductive learning tasks. Hypothesis refinement is used as the core mechanism for the

algorithm, and a solution to the learning task is found by iteratively refining a hypothesis while

keeping a low maximum rule size. This makes it possible for a large solution to be found by

searching through multiple smaller hypothesis spaces than what would be required should it

be learnt without using hypothesis refinement. The algorithm makes ASP based ILP systems

more efficient as the learning task can be solved using smaller ASP programs, resulting in the

ASP grounder producing smaller grounded programs.

Example 4. Let h be the hypothesis:

even(X)← succ(Y,X), succ(Z, Y ), even(Z).

odd(X)← not even(X).

from Example 1. The hypothesis space that contains h will also contain other hypotheses that

have rules with 3 or fewer body literals. By using hypothesis refinement h could potentially be

found by first finding {even(X).; odd(X).}, then iteratively adding one or two body literals to

them by search through a hypothesis space where rules have at most two body literals. More

specifically, {even(X).; odd(X).} could be improved to {even(X) ← succ(Y,X).; odd(X) ←
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not even(X).}, which can then be improved to {even(X) ← succ(Y,X), succ(Z, Y ), even(Z).;

odd(X)← not even(X).} Using this iterative learning method, the maximum size of the hypoth-

esis space require to solve the task can be reduced, consequently resulting in smaller grounded

ASP programs.

This algorithm will be presented for both learning tasks in both cases of not noisy and noisy

examples.

The second method for binding the hypothesis space presented in the thesis is a general frame-

work for incorporating meta-level integrity constraints into ILP systems. This is introduced

through the notion of constraint-driven bias, where the inductive task is extended to include the

constraints defined using syntactic meta-level information of the hypothesis and the background

knowledge. These constraints act as additional criteria for solutions to the learning task, as

not only must the solution explain the examples, but it must also satisfy the constraints. Such

constraints give an additional avenue for users to control the hypothesis search.

1.2 Contributions

The thesis has two main contributions:

Learning through hypothesis refinement. We introduce a novel learning algorithm that

combines state of the art ASP based ILP techniques ASPAL [CRL11] with theory revision

[Wro96]. The learning approach includes a method for selecting the best partial hypothesis

and refinements using a scoring function. This algorithm is implemented as the ILP system

RASPAL, and is shown to be complete for noiseless learning tasks without empty hypotheses.

A modified version of the RASPAL algorithm is also presented, demonstrating how a noise

threshold can be imposed as the termination condition for the algorithm, enabling it to handle

learning tasks with noise.

RASPAL is evaluated through comparison against ASPAL and HYPER [Bra99], another ILP

system which uses hypothesis refinement, and by its performance when used with different
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ASP solvers. The evaluation of RASPAL against HYPER and ASPAL was conducted using

three examples that highlight the strength and weakness of each system. The three examples

that were used were monotonic learning tasks as HYPER is a monotonic ILP system. The

result shows that RASPAL can solve a wider range of learning tasks compared to HYPER and

ASPAL, both of which cannot solve one of the learning tasks. The capacity of RASPAL in

learning with noise is evaluated alongside a modified version of ASPAL using a case study of

learning user’s mobile behaviour, which shows that to solve the same task ASPAL would have

to use a grounded ASP program five times the size of RASPAL’s grounded ASP programs.

Details of both evaluations can be found in Section 7.1.

Constraint-driven bias. We present a framework for defining integrity constraints over the

hypothesis space as a mechanism for controlling the search for the hypothesis. A set of abstract

primitives for defining these constraints, together with their interpretation and formal semantics

is defined, giving the user the ability to specify both the desirable and undesirable hypothesis

structures. The thesis shows how the constraints can be implemented in ASPAL and RASPAL,

and application of constraint-driven bias is demonstrated through two case studies; a learning

task for stratified normal programs, and learning task in the automated revision of software

specifications. In the first case study we recorded the number of solutions that were output

when the constraints was applied compared to when there were no constraints. The time taken

to compute all solutions with and without constraints were also recorded. The results show

that in some cases, the time taken to solve the task can be reduced by more than half using the

constraints. The second case study shows how the constraints can be used in an application

for selecting the most appropriate solution that would otherwise be considered non-optimal.

1.3 Publications

The following publications are drawn from the work presented in this thesis:

[ACBR13] Duangtida Athakravi, Dalal Alrajeh, Krysia Broda, Alessandra Russo, and

Ken Satoh. Inductive Learning using Constraint-driven Bias. In Proceedings of the 24th
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International Conference on Inductive Logic Programming, ILP 2014, Nancy, France,

September 14-16, 2014.

The paper describes the constraint-driven bias framework and its implementation in AS-

PAL, and is the basis for Chapter 5 and Chapter 6.

[AAB+14] Duangtida Athakravi, Domenico Corapi, Krysia Broda, and Alessandra Russo.

Learning Through Hypothesis Refinement Using Answer Set Programming. In Proceed-

ings of the 23rd International Conference, ILP 2013, Rio de Janeiro, Brazil, August 28-30,

2013.

The paper presents the hypothesis refinement learning approach, and Chapter 4 delves

into this work in more detail.

The foundation for some of the work in thesis prior to the PhD is from the following publication:

[ACR+12] Duangtida Athakravi, Domenico Corapi, Alessandra Russo, Marina De Vos,

Julian A. Padget, and Ken Satoh. Handling Change in Normative Specifications. In

Proceedings of the 10th International Workshop on Declarative Agent Languages and

Technologies, DALT 2012, Valencia, Spain, June 4, 2012, Revised Selected Papers.

In this work an ASP program is used for generating relevant literals, which are literals

whose truth values are used for determining whether some hypotheses should be accepted

or rejected.

1.4 Structure

The remainder of the thesis is organised as follows:

Chapter 2 summaries the notation and preliminary background on logic programming that

are used throughout the thesis.
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Chapter 3 describes the different approaches in ILP, and discusses in detail the ILP systems

that are most relevant to the thesis. The chapter also discusses how a theory revision task can

be translated into an inductive learning task.

Chapter 4 discusses the limitation of ASPAL, and presents our learning algorithm, RASPAL,

based on hypothesis refinement. The chapter also contains the proof for the completeness of the

algorithm, describes how to adapt RASPAL to learning tasks with noise, and discusses other

works that are related to RASPAL.

Chapter 5 presents the constraint-driven bias framework, the set of primitives LC, and gives

the formal definition for their interpretation. The chapter also discusses other works related to

constraint-driven bias.

Chapter 6 describes how constraint-driven bias can be implemented in ASPAL and RASPAL.

The chapter gives a translation for primitives in LC into ASP constraints, and proves the

correctness of the translation.

Chapter 7 evaluates RASPAL through comparison against ASPAL and HYPER, as well as

its performance with different ASP solvers, and presents two case studies for the applications

of constraint-driven bias.

Chapter 8 concludes the work by summarising the thesis and discusses possible directions for

future work.

Appendix A contains the full description of the inductive learning tasks that are used in

Chapter 7.



Chapter 2

Background

This chapter summaries the notation used throughout the thesis and gives the required back-

ground knowledge on first-order logic and logic programming.

2.1 Notations

The notation {e1, . . . , en} denotes a set of n objects where n ≥ 1, and {e|exp(e)} is a set

composed of objects that satisfy the expression exp(e). The symbol ∅ denotes an empty set.

Let S be a set, its cardinality is represented by |S|, and its power set is represented by P(S).

A tuple with n ≥ 1 elements is expressed as 〈e1, . . . , en〉 or as (e1, . . . , en). A list with n ≥ 1

elements is represented by [e1, . . . , en] or e1, . . . , en.

2.2 First-order logic

Syntax

Firstly we define the symbols that make up the language L.

Definition 2.1 (Language L). The symbols in language L comprise of:

11
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• Logical symbols: ‘∀’ (all), ‘∃’ (exists), ‘¬’ (negation), ‘∧’ (and), ‘∨’ (or), ‘←’ (implies),

‘↔’ (equal), ‘>’ (true), ‘⊥’ (false)

• Punctuation symbols: ‘,’, ‘(’, ‘)’

• Variable symbols: ‘X’, ‘Y ’, ‘Rid’, ‘Lh’, ‘Lb’, . . .

• Predicate symbols: ‘p’, ‘q’, ‘extension’, ‘del’, ‘is rule’, ‘in rule’, . . .

• Function symbols: ‘f ’

The logical symbols have a fixed meaning for each symbol, while the other symbols can be used

to form structures as follows:

• Term: A variable X or a constant c (a term with arity 0) or a function f(t1, . . . , tn) where

its arity n ≥ 0 and t1, . . . , tn are terms

• Atom: A predicate p(t1, . . . , tn) with arity ≥ 0 and t1, . . . , tn are terms

• Formula: An atom, truth > and falsity ⊥. If F and G are formulae then (∀X)F (univer-

sal), (∃X)F (existential), ¬F (negation), (F ∧ G) (conjunction), (F ∨ G) (disjunction),

(F ← G) (implication), and (F ↔ G) (equivalence) are also formulae.

• Literal : An atom α or its negation ¬α

For readability, standard binding conventions will be used so that brackets can be removed from

unambiguous formulae. The order of the binding precedence from the highest to the lowest is:

∀, ∃, ¬, ∧, ∨, ←, ↔.

The formulae (∀X)F and (∃X)F denote that each occurrence of the variable X is bound in F

as it is under the scope of the quantifier ∀ or ∃. Occurrences of variables not under the scope of

any quantifier are referred to as unbound or free variables. Formulae with only bound variables

are closed, while others with one or more free variables are open.

A substitution is a transformation of variables to terms and is denoted by a set of bindings

θ = {X1/t1, . . . , Xn/tn, } where each Xi are distinct variables and ti is different from Xi. The
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application of a substitution θ to a formula F is denoted by Fθ, and is obtained by replacing

all free occurrences of Xi by the corresponding ti. F
′ is an instance of F if it can be obtained

from F via some substitution θ (F ′ = Fθ).

The notation p/n will be used to denote a predicate p with n arity (and similarly f/m for a

function with m arity). In this thesis some predicates such as rule/1, delete/2 and extension/2

will be used with specific meanings: the encoding of a rule, the deletion of a literal within a

theory, and the extension of a formula with the theory by one or more literals respectively.

2.2.1 Semantics

The meaning of a first-order logic formula is given by relating it to some domain D. This is

achieved through the use of an assignment function h which relates each variable symbol to

an element of D, and a mapping I that relates each constant c, function f/m and predicate

symbol p/n of L to a corresponding constant cI in D, function f I from Dn → D or predicate

pI representing some relationship in Dn respectively.

Definition 2.2 (Evaluating a term). The value of a term υI,h(t) under I and h is defined as

follows:

• For a constant c: υI,h(c) = cI

• For a variable X: υI,h(X) = h(X)

• For a function f/m: υI,h(f(t1, . . . , tm)) = f I(υI,h(t1), . . . , υI,h(tm))

Definition 2.3 (Evaluating a formula). Formula F (and G) can be evaluated to a truth value

as follows:

• I �h >

• I �h p(t1, . . . , tn) if and only if pI(υI,h(t1), . . . , υI,h(tn)) ∈ Dn

• I �h (∀X)F if and only if I �h F{X/e} for all e ∈ D
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• I �h (∃X)F if and only if I �h F{X/e} for some e ∈ D

• I �h ¬F if and only if I 2h F

• I �h F ∧G if and only if I �h F and I �h G

• I �h F ∨G if and only if I �h F or I �h G

• I �h F ← G if and only if I �h F or I 2h G

• I �h F ↔ G if and only if I �h F ∧G or I �h ¬F ∧ ¬G

If F is true under I for all possible assignments by h, then I is a model of F , denoted by I � F ,

and F is a consequence of I. A formula is satisfiable if it has at least one model. Similarly,

a theory T (a set of formulae) is satisfiable if there exists an interpretation M in which all

formulae in the theory is satisfiable.

2.3 Logic Programming

Logic Programming handles the computation of logical formulae by deriving a logical conclusion

from some given assertions or query. A logic program is made up of the following types of clauses

(also called rules) where variables in clauses are implicitly universally quantified.:

1. Clause: Formula of the form A ∨ ¬B1 ∨ · · · ∨ ¬Bn, where n ≥ 1 and A, B1, . . . , Bn are

atoms. It is denoted as a definite rule A← B1, . . . , Bn. The left hand side of the rule A

is called the head of the rule, while the right hand side B1, . . . , Bn is called the body of

the rule.

2. Fact: A rule without any body written as A.

3. Query or goal: Formula of the form ¬A1 ∨ · · · ∨ ¬An, where n ≥ 1, and is also written as

⊥ ← A1, . . . , An.
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A set of a such clauses makes up a logic program, and to remove ambiguity, clauses are separated

by a full stop ‘.’ Given a rule r = A ← B1, . . . , Bn we will use head(r) to refer to the head of

the rule, and body(r) to refer to the list of all of its body conditions.

To infer whether an atom A is true within the context of a given program P (P � A) in a top

down manner is done through resolution [Rob65]. This is an inference rule where contrasting

literals in different clauses implies a new clause (for example A∨B and ¬A∨C implies B∨C).

In Prolog, the technique used is SLD-resolution (Selective Linear Definite clause resolution)

where in order to determine if P � A1∧· · ·∧An for some atoms A1∧· · ·∧An, they are negated

(¬A1 ∨ · · · ∨ ¬An) and used with P in a chain of unifications and resolutions to find the empty

clause (⊥) which shows that P � A1 ∧ · · · ∧ An holds.

Example 5. Suppose P contain the clauses:

fly(X)← pigeon(X).

pigeon(alex).

To determine if P � fly(alex), firstly fly(alex) is negated. By unifying X in the rule fly(X)←

pigeon(X) for alex, it can be resolved with the ¬fly(alex) to give ¬pigeon(alex), which con-

tradicts with pigeon(alex) in P , and would derive ⊥.

2.4 Negation as Failure and Non-monotonic Logic Pro-

gramming

In monotonic logic, the theory can be freely extended while still preserving all of the implications

of the original theory. Hence, for a theory T and a formulae F and G, if T � F then T∪{G} � F .

While monotonic logic is suitable for reasoning when complete information of the domain is

available, it is often impossible or infeasible to have complete knowledge of a domain or a

situation. Negation as failure (NAF) [Cla77] is useful for reasoning with incomplete information,

and complete information is assumed through closed world assumption. With classical negation

¬A, where A is an atom, conveys that A is known to be false, whereas with NAF not A expresses
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A is assumed to be false if it is not known to be true. Under NAF, an atom is assumed to be

false if it is not a derivable implication of a theory. This means that should T 2 A, for some

theory T and literal A, then not A is assumed to be true in T , and similarly if T 2 ¬A then

not ¬A is assumed to be true. Note that ‘not’ is used instead of ‘¬’ to distinguish NAF from

classical negation. Using NAF, negative information does not have to be explicitly stated in

the theory.

Example 6. Consider a small domain consisting of three people: Allen, Beth and Clive, and

that the complete knowledge of the parent relationship between them is:

T =


parent(allen, beth). ¬parent(beth, beth). ¬parent(clive, beth).

¬parent(allen, allen). ¬parent(beth, allen). ¬parent(clive, allen).

¬parent(allen, clive). parent(beth, clive). ¬parent(clive, clive).


Using negation as failure we can assume that someone is not the parent of another person if it

is not explicitly stated that they are. Under negation as failure, the theory T can be reduced to:

T ′ =

{
parent(allen, beth). parent(beth, clive).

}

Any other instances of the parent relationship in T ′ are assumed to be false under NAF (for

example T ′ � not parent(allen, allen)).

With NAF, the logic is no longer monotonic as addition of information can invalidate previously

implied information.

Example 7. Consider the following theory:

T =


like(john,X)← food(X), not spicy(X).

food(curry).

food(stew).


The rule for like/2 in T states that John likes all foods as long as they are not spicy. Therefore,

T � like(john, curry) and T � like(john, stew). However, if spicy(curry) is added to T then

T ∪ {spicy(curry)} 2 like(john, curry).
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Logic where consequences of a theory are not retained with the arrival of new information are

called non-monotonic logic, and a theory with negation as failure is called a non-monotonic

theory or a normal theory.

Non-monotonic Logic Programming (also referred to as normal logic programming) is an ex-

tension of definite logic programming, where negation as failure can be used as part of the

program. Thus, normal form rule A← B1, . . . , Bi, not C1, . . . , not Cj, where A,B1, . . . , Bi, C1,

. . . , Cj are all atoms, is used in place of definite rule.

2.5 Answer Set Programming

Answer Set Programming is a form of declarative programming aimed to be used for repre-

sentation and reasoning tasks based on stable model semantics [GL88] designed for handling

non-monotonic programs. Problems are solved by grounding the program, and then solving the

grounded program to find its minimal models. Solving the grounded program involves finding

its stable models, which are also referred to as answer sets, and are the outputs of ASP systems.

Definition 2.4 (Stable Model). Given a grounded normal logic program P , and a set of atoms

X. The definite program PX called the reduct is obtained from P by the following steps:

1. Removing all rules in the P with not B in its body where B ∈ X

2. Removing all negated body literals not B in the remaining rules in P

As PX is a definite program, a program without any negative literals, it must have a minimal

model. If X coincides with any minimal model of PX then it is a stable model of P .

Definition 2.5 (Entailment in answer set semantics). Given a program P and a literal L, L

is entailed by P (P � L) if and only if for all stable model S of P : L ∈ S. Similarly, if there

exists a stable model S of P : L /∈ S, then P 2 L. If it is neither the case that P � L nor

P 2 L, then L is unknown with respect to P .
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The language used in ASP is called AnsProlog [Bar03] (Answer Set Programming in Logic).

Definition 2.6 (AnsProlog Program). An AnsProlog program is a finite set of rules of the

form:

L0 ∨ · · · ∨ Lk ← Lk+1, . . . , Lm, not Lm+1, . . . , not Ln.

where Li are literals (or ⊥ if k = 0), and n ≥ m ≥ k ≥ 0.

AnsProlog rules can therefore take the forms of (where each Li is a literal):

Rule L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln.

Fact L0.

Integrity Constraint ⊥ ← L1, . . . , Lm, not Lm+1, . . . , not Ln.

The first form corresponds to the logic rule A← L1∧· · ·∧Ln, while the second is a rule without

any body literals. Lastly, the integrity is a rule with ⊥ as its head, thus L1 ∧ · · · ∧ Ln must be

false for the constraint to hold.

Choice rule is a common feature in ASP systems. In [Bar03] it is described that selecting only

one element from a set using AnsProlog can be achieved by the rules:

not chosen(X)← chosen(Y ), X 6= Y.

chosen(X)← can choose(X), not not chosen(X).

In many ASP systems the same effect can be achieved using aggregates. Aggregates are con-

straints for stating that elements from a given set can be included in the computed answer set.

Aggregates can be in the head or the body of a rule and usually specified as:

m {L1 : C1, . . . , Lk : Cn} n

where Li are literals, Ci are (possibly empty) type conditions for variables in the literal, k ≥ 0,

m ≥ 0, and n ≥ 01. When used in the head of a rule, the aggregate indicates that, should all

1In the ASP system Clingo [GKK+11] if m or n is omitted then it is assumed that to be the lower or upper
bound respectively.
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of the rule’s body conditions be in the answer set, then the answer set will contain at least m

number of elements in {L1, . . . , Lk} but no more than n. When used in the body of a rule it

represents a body condition that will be satisfied if the number of elements in {L1, . . . , Lk} that

are in the answer set of at least m but not more than n. For example, the aggregate 1{a, b, c}3

when used as the head of a rule such as 1{a, b, c}3← d indicates that if d holds then a ∨ b ∨ c

holds, whereas if it was used in the body as d ← 1{a, b, c}3 would mean that should a ∨ b ∨ c

hold then d also holds. Similarly 2{a, b, c}3 ← d indicates that if d holds then either one of

a ∧ (b ∨ c), b ∧ (a ∨ c), or c ∧ (a ∨ b) holds, whereas d ← 2{a, b, c}3 indicate that should at

least 2 of a, b and c hold then d also holds. Lastly, 3{a, b, c}3 ← d indicates that if d holds

then a, b and c must all hold, and d ← 3{a, b, c}3 indicates that if all of a, b, and b hold then

d also holds. Note that the earlier AnsProlog choice rule can be represented by the aggregate

1 {chosen(X) : can choose(X)} 1.

Depending on the ASP system used to solve the program, an ASP program may contain other

expressions as well. In the following section we will describe the system-dependent features

that are relevant to this work.

2.5.1 Clingo

Clingo [GKK+11] is an ASP system containing both the grounder and solver (as opposed to

using separate programs for the two tasks). Clingo is the system that we have used to implement

our ILP system. Note that this thesis uses Clingo 3, from which the description of its features

will be based.

Clingo allows for optimisation statements in ASP programs for defining the criteria of the

optimal answer set. It is specified as:

opt[L1 = w1@p1, . . . , Ln = wn@pn].

where opt can be either #maximise or #minimise, each Li is a literal, n ≥ 1, and each wi

and pi are integers. The statement indicates that each literal Li has an associated weight wi
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and priority pi, with higher priority given to literals or rules with higher value of pi. When

more than one optimisation statement is used, Clingo automatically gives the nth optimisation

statement priority n (all literals in nth statements are given priority n if they are not explicitly

given). Thus, later optimisation statements will have higher priority than the earlier ones. Note

that both the weight and priority can be omitted. The weight of 1 will be assumed for any

omitted weight, and literals with omitted priorities will be given priority according to the order

of the statement it is in. The optimisation statement sum the weight for the literals L1, . . . , Ln

that are in the answer set, and if it is a maximisation statement it will consider the answer set

with the highest sum the optimal answer set (or the one with the lowest sum for the minimal).

When there are multiple priorities, literals with higher priorities are optimised before those

with lower priorities.

Example 8. Consider the following ASP program:

P =

 {a, b, c, d, e, f} 4.

#maximise[a = 3@1, b = 2@2, c = 1@3, d = 4@3, e = 5@2, f = 6@1].


Clingo will search for answer sets that maximise the weighted sum of c and d, as they have the

highest priority, in this case this will be all answer sets that include both c and d. From the

answer sets that maximise c and d, Clingo will then search for those that would also maximise

the weighted sum of b and e, which will be the answer set {b, c, d, e}. Lastly, from the answer

sets that maximise the weighted sum of b, c, d, and e Clingo will search for those that would

also maximise a and f , however since b, c, d, and e only have one answer set that optimise

them, {b, c, d, e} will be returned as the optimal answer set.

Consider another program.

P ′ =

 {a, b, c, d, e, f} 4.

#maximise[a = 3, b = 2, c = 1, d = 4, e = 5, f = 6].


The maximisation statement is the first optimisation statement in the program, so all literals

in it are assigned equal priority of 1. Clingo will attempt to find the answer set that optimise

the weighted sum of all literals in the statement and will return the answer set {a, d, e, f}.
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2.5.2 DLV

DLV [LPF+06] is a knowledge representation and reasoning system which supports answer sets

that we use as part of our evaluation in Chapter 7. In this section we will note some of the

differences between DLV’s features and those mentioned in Section 2.5 and Section 2.5.1.

DLV’s programs can have disjunctive rules; however, exactly one literal in the disjunctive rule

will be in an answer set. For example, the rule p(1)∨ p(2)∨ p(3) will always return exactly one

of the three literals. Simulating disjunction that allows more than one literal to be true in DLV

can be achieved by adding in fresh predicates to represent >, and adding a constraint that not

all of these new predicates can be true. For instance the DLV rules:

p(1) ∨ t(1).

p(2) ∨ t(2).

p(3) ∨ t(3).

⊥ ← t(1), t(2), t(3).

where t/1 is a completely new predicate in the program, would allow for p(1), p(2), and p(3)

to be included in same answer set.

DLV also allows aggregates to be used but they are different to aggregates previously described

in Section 2.5. In DLV aggregates are used exclusively in the body of a rule and are accompanied

by aggregate functions #count, #sum, #times, #min, and #max. All of the aggregate

functions operate over a given set to return a numerical value. For example, the following DLV

rule:

⊥ ← #count{X : p(X)} > 3.

expresses that at most 2 instance of p/1 can be in the answer set.

Optimisation can be expressed in DLV using weak constraints. Unlike typical integrity con-

straints, weak constraints tells the solver that the constraint should be satisfied if possible.



22 Chapter 2. Background

Optimal answer sets are ones that violate the least amount of weak constraints. Weak con-

straints are defined as

:∼ L0, . . . , Ln.[w : p]

where Li are literals, w is the weight of the constraint and p is the priority of the constraint

(both weight and priority can be omitted). For instance the DLV rule:

:∼ p(X).

would convey that an optimal answer set contains the fewest instances of p/1.

2.6 Abductive Logic Programming

Abduction was first formally introduced by Charles S. Pierce, and is the inference of a plau-

sible explanation for some observation such that the presence of the explanation implies the

observation. To take into account the multiple possible solutions, abductive logic programming

is better associated with Gilbert Harman’s definition of “The inference to the best explanation

for some observed events”.

Example 9. Suppose we know the following:

sneeze← pollen allergy.

sneeze← cold.

winter.

⊥ ← winter, pollen allergy.

Suppose we want to find the explanation for sneeze (what will be required to make it true). While

both pollen allergy and having a cold are plausible explanations for the observation of someone

sneezing, only having a cold satisfies the constraint that pollen allergy is not had during winter.
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In [KKT92], abduction in logic can be described as a task involving a background theory T ,

and an observation G. To solve the task a set of clauses ∆ is found such that T ∪∆ � G and

T ∪∆ is consistent, with ∆ being limited to a set of predefined set of atoms called abducibles.

Definition 2.7 (Abductive Task). An abductive task is a tuple 〈T,A,G〉, where T is the normal

background theory, A is a set of all grounded instances of the abducible atoms, and G is the

goal of the task. The solution to an abductive task is a set of the abducible atoms ∆ such that

∆ ⊆ A, and T ∪∆ � G. Integrity constraint IC can be added to the task such that the abduced

solution is consistent with the integrity constraint T ∪∆ ∪ IC 2 ⊥.

Using the above definition, Example 9 can be expressed as an abductive task 〈T,A,G〉 where

T =


sneeze← pollen allergy.

sneeze← cold.

winter.


A =

 pollen allergy,

cold


G =

{
sneeze.

}
The task also has an integrity constraint

IC =

{
⊥ ← winter, pollen allergy.

}
As discussed previously, the the solution of the task is ∆ = {cold}.

Abductive Logic Programming is an extension of logic programming where a logic program is

given an abductive task as input, and the purpose of the program is to compute the solution

to the abductive task.

2.6.1 Abduction in Answer Set Programming

An abductive task can be encoded into an ASP program by expressing the goal of the task as an

integrity constraint, and the abducibles as an aggregate [IS00]. For instance, we can solve the
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task from Example 9 using an ASP program. The goal of the task (of finding an explanation

of the sneeze) can be converted into the integrity constraint:

⊥ ← not sneeze.

which will force all answer sets to contain sneeze. The abducibles are converted into the

aggregate:

0 {pollen allergy, cold} 2.

which conveys that any subset of {pollen allergy, cold} can be in the answer set. The back-

ground theory and integrity constraints of the original task remain the same. The full task

from Example 9 can be encoded as the following ASP program:

P =



sneeze← pollen allergy.

sneeze← cold.

winter.

⊥ ← winter, pollen allergy.

⊥ ← not sneeze.

0 {pollen allergy, cold} 2.


By solving P , the answer set S = {winter, cold, sneeze} can be found, the solution to the

abductive task is found by taking the intersection of S and the abducibles {pollen allergy, cold}

which will result in {cold}.

Definition 2.8 (Abductive Task in ASP). Given an abductive task 〈T,A,G〉 where T is the

normal background theory, A is a set of all grounded instances of the abducible atoms, and G

is the goal of the task. It can be solved using an ASP program P = T ∪G′ ∪A′ where G′ is the

constraint {⊥ ← not goal.; goal ← G.} and A′ is an aggregate {0 {a|a ∈ A} |A|.}. Let S be

an answer set of P , the solution to the abductive task is acquired from intersection of S and A

(S ∩ A).

Non-monotonic ILP systems such as XHAIL and ASPAL, both of which will be discussed in the

next chapter, use abduction as an integral part of their learning algorithm in order to handle
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learning with negation as failure, and for learning from all examples in the learning task in a

single computation.



Chapter 3

Inductive Logic Programming

This chapter presents the background information on Inductive Logic Programming (ILP). An

overview of types of ILP systems is given, focusing on those that are most relevant to the thesis.

ILP is a field in machine learning that combines formal knowledge representation with induc-

tive reasoning. It involves learning logical rules which will explain some given examples by

extending the known background knowledge. An inductive learning task typically consists of

three ingredients: the background knowledge of the learning domain; observed examples of the

learning objective; and the language bias which defines the language for constructing hypothe-

ses. The aim is to find a solution to the inductive learning task from the hypothesis space

defined by the language bias. The solution is a hypothesis which together with the background

knowledge entails the examples. Table 3.1 gives an example of some ILP systems and how they

would be categorised according to the type and monotonicity of their learning approach. Of

these systems TAL, HYPER and Metagol will be discussed in more detail later in this chapter

as they are the most relevant systems for this work.

There are many types of language bias that ILP systems use such as production field in CF-

Induction [Ino04] and mode declaration, which was first introduced in [Mug95]. For this work

we will be using TAL [CRL10] and ASPAL’s [CRL11] mode declarations which are defined as

follows.

26
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Learning Approach Monotonic Non-monotonic

Bottom-up Progol 5 [Mug95] XHAIL [Ray09]

Imparo [KBR09]

HAIL [RBR03]

Top-down Hyper [Bra99] ICN [MV95]

TopLog [MSTn08]

FOIL [QCj95]

Meta-level Causal graph [IFKN10] TAL [CRL10]

Metagol [ML13]

Table 3.1: Past ILP systems grouped by the learning approach they use, and whether they are
monotonic or non-monotonic

Definition 3.1 (Mode declaration). A mode declaration can either be a head mode declaration

modeh(s) or a body mode declaration modeb(s). It takes a predicate schema s as its only

argument, where the schema is a ground atom with +t1 input variable, −t2 output variable, and

#t3 constant placemarkers of some type t1, t2 or t3 as its arguments.

Definition 3.2 (Compatibility with mode declarations). A rule is said to be compatible with

a set of mode declarations M if and only if:

• Its head literal has the same predicate as a schema s for some modeh(s) in M , and its

arguments matches the placemarkers in the matched schema (with respect to their types

and whether they should be constants or variables).

• Each of its body literal has as predicate a schema s for some modeb(s) in M , and all

arguments are correctly typed and satisfy the following conditions:

– All input variables in a body literal appear as input or output variables in literals

preceding it

– All output variables in a body literal have not appeared in literals preceding it

– All variables with the same name are of the same type

Consequently, a hypothesis is said to be compatible with a set of mode declarations M if all of

its rules are compatible with M .
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Example 10. Given the following mode declarations:

M =


modeh(grandparent(+person,+person)).

modeb(parent(+person,+person)).

modeb(parent(+person,−person)).


The following rules are compatible with M :

• grandparent(X, Y ). The rule is compatible with the head mode declaration

modeh(grandparent(+person,+person)) with appropriate variable arguments.

• grandparent(X, Y ) ← parent(X, Y ). The body literal has the same predicate as the

schema of mode declaration modeb(parent(+person,+person)), and its arguments are

correctly linked to variables of type person in the head literal.

• grandparent(X, Y ) ← parent(X,Z), parent(Z, Y ). The first body literal parent(X,Z)

is compatible with the mode declarations modeb(parent(+person,−person)), and the

arguments are correctly linked as variable Z has not appeared in any literals preced-

ing it. The second body literal parent(Z, Y ) is compatible with the mode declaration

modeb(parent(+person,+person)).

The following rules are not compatible with M :

• parent(X, Y ). There is no head mode declaration with predicate parent/2 as schema.

• grandparent(X, Y ) ← parent(Z, Y ). There is no body mode declaration for parent/2

where the first argument is an output variable placemarker.

In Inductive Logic Programming [MD94] a set of rules, called the hypothesis H, is learned from

a set of rules called background knowledge B, a set of observed positive and negative examples

E+ and E−, represented by a set of grounded facts, and some language bias M such as mode

declarations. The learned hypothesis is a set of rules compatible with the language bias such

that the positive examples become derivable once the hypothesis is added to the background

knowledge (3.1), while the negative examples are not derivable (3.2).
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B ∪H �
∧

e∈E+

e (3.1)

∀e ∈ E− : B ∪H 2 e (3.2)

We say that a hypothesis H covers an example e if B ∪H � e, and a solution to an inductive

learning task is a hypothesis that covers all positive examples and none of the negative examples.

The full definitions of an inductive task will be given throughout the chapter as their definitions

differ depending on the setting such as whether it is a monotonic inductive task (Definition

3.3) or a brave (non-monotonic) one (Definition 3.9). A variation of the inductive task that

incoporates meta-level information as the means for solving the task (Definition 3.6) will also

be given. In later chapters we will also discuss our extensions of the inductive task; inductive

task with noise (Definition 4.10), and inductive task with constraint-driven bias (Definition

5.4).

3.1 Monotonic Inductive Logic Programming

Early ILP systems such as CIGOL [MB88] focus on learning monotonic theories from the

positive examples. Taking advantage of this, rules in the solution are typically are learnt one

by one from a selected positive example and then their union forms a solution to the learning

task. Negative examples are used in a post-process to check that none of them is covered by each

learnt rule before it is added to the accumulating solution. This has become the characteristic

of most monotonic ILP systems such as Aleph [Sri07], and Progol [Mug95]. The monotonic

inductive task is more formally defined as follows.

Definition 3.3 (Monotonic Inductive Task). An inductive task is a tuple 〈E+, E−, B,M〉,

where E+ and E− are sets of ground atoms representing positive and negative examples re-

spectively, B is a definite program called the background knowledge, and M is a set of mode

declarations. A solution to an inductive task is a set of definite rules, a hypothesis H, such that

(i) H is compatible with M ; (ii) B ∪H �
∧

e∈E+ e; and (iii) ∀e ∈ E− : B ∪H 2 e.
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Example 11. Given the following ILP task:

B =



person(jim).

person(ivan).

person(kim).

parent(jim, ivan).

parent(ivan, kim).


M =


modeh(grandparent(+person,+person)).

modeb(parent(+person,+person)).

modeb(parent(+person,−person)).



E+ =

{
grandparent(jim, kim).

}
E− =

 grandparent(jim, ivan).

grandparent(ivan, kim).


A solution is the rule grandparent(X, Y ) ← parent(X,Z), parent(Z, Y ) as adding it to B

would make it cover all positive examples and none of the negative ones.

In addition to monotonicity, ILP systems can be categorised according to their learning ap-

proaches and how they search for the hypothesis. For this they can be divided into three

different categories bottom-up, top-down, and meta-level learning. Bottom-up ILP systems use

inverse entailment, generating a hypothesis that is the most specific explanation to the ex-

amples and then generalising it to acquire its solution. Top-down ILP systems search in the

reverse direction and generate an overly general hypothesis that explains all positive examples,

and possibly some negative examples, and then specialise it to remove the negative examples

covered. Lastly, meta-level ILP systems is a subcategory of both bottom-up and top-down

approaches that reasons at the meta-level instead of the object level.

Bottom-up monotonic ILP

Bottom up monotonic ILP systems compute hypotheses by finding the bottom set, generalising

it, and then adding it to the learning task’s hypothesis. This idea was proposed in Progol

[Mug95] and is defined for learning tasks where examples can be definite clauses. As a result

of this, Skolemisation is applied to examples to ground them. For learning tasks with only

grounded examples, Skolemisation is not needed. The observation made in [Mug95] is based on

the requirement of the inductive task that all positive examples are covered by the hypothesis
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B ∪H � E+. Thus it must also be the case that B ∪ E+ � ¬H, where E+ is the complement

of E+, a (possibly Skolemised) disjunction of literals acquired by negating each clause in E+

and Skolemising its variables.

Definition 3.4 (Bottom Set). Given background knowledge B and a positive example e ∈ E+.

The bottom set ¬L is a set of ground atoms such that B ∪ e � ¬L where e is the complement

of e.

The bottom set aids the search by restricting the search space to include only clauses that

generalise it. The notion of generality used by ILP systems is θ-subsumption [NdW97].

Definition 3.5 (θ-subsumption). For two clauses A and B, A θ-subsumes B if and only if

there exists a substitution θ such that Aθ ⊆ B.

The bottom set used to derive a set of clauses h such that h subsumes L, contain no Skolem

constants (if ungrounded examples are used), and does not cover any negative examples. As

the hypothesis being learnt is monotonic, this process can be repeated for each positive example

to find a clause that covers it. All such clauses are then unified to produce a solution to the

learning task.

Top-down monotonic ILP

Top-down monotonic ILP systems, for example TopLog [MSTn08], compute hypotheses by

searching from the general to specific. They use the language bias to constrain the search space

of the hypothesis as a declarative theory, then search through it to find the best hypothesis that

explains the given examples. In TopLog this is done through the top theory >, a theory from

which the hypothesis is derived. Similarly to bottom-up monotonic ILP, the search is carried

out by learning clauses h, each of which explains one or more examples e ∈ E+ such that

B ∪ h � e and > � h. The solution to the learning task is then found by combining all such

clauses. Note that TopLog’s top theory contains a set of ”non-terminal” predicate symbols

which are used to link body predicates together. For example, the clause p(X) ← q(X) is

entailed by the clauses:
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p(X)← $body(X).

$body(X).

$body(X)← q(X).

in the top theory, with non-terminal predicate body/1. The clause p(X)← q(X) would be learnt

by searching top theory, and learning h> = {p(X) ← $body(X).; $body(X) ← q(X).}. These

clauses in h> are then reordered to remove the non-terminal predicate $body(X), resulting in

{p(X)← q(X).}

Meta-level monotonic ILP

ILP systems that use meta-level learning approaches abstract an ILP task into some form of

meta-level representation. An additional meta-theory is often used to represent the hypothesis

space or to help with interpreting its meta-level information.

Definition 3.6 (Meta-level inductive task). Given an inductive task 〈E+, E−, B,M〉, some

transformations τ1, τ2, and τ3 are applied to the task, converting it into a meta level-representation.

With some additional meta theory TM , the solution H to the task is found by finding τ1(H)

such that τ2(B) ∪ TM ∪ τ1(H) covers all elements of τ3(E+) and no elements from τ3(E−). To

acquire H the inverse transformation τ−1
1 /1 is applied, giving H = τ−1

1 (τ1(H)).

Definition 3.6 is the most general form of a meta-level ILP task and contain separate transforma-

tion functions (τ1/1, τ2/1 and τ3/1). In practice, most systems apply the same transformation

to the background knowledge, hypothesis, and examples of the inductive learning task. For

example, DIALOGS [Fle97] transform the inductive learning task into second-order logic and

then use clause templates to synthesise its solution. Similarly, Metagol [ML13] also transform

everything into second-order logic. Currently, meta-level ILP system use at most two different

transformations such as in TAL [CRL10] which use the identity transformation for its back-

ground knowledge and examples, and another transformation for its hypotheses. TAL will be

discussed in more detail in Section 3.2.
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Most meta-level ILP systems, such as Metagol, apply abductive reasoning to find the meta-level

representation of the solution, which is then transformed to its object level representation to

give the solution to the original task. On the other hand, DIALOGS use a combination of

inductive and abductive reasoning to find its solution. DIALOGS uses abduciton to generate

examples for uninstantiated predicates in its clause templates, and these are then generalised to

produce the definition of those predicates. For the rest of this section we will discuss Metagol

in more detail as its learning approach is most relevant for Chapter 5 of this work.

Metagol [ML13] is a monotonic system that fully transform its task into the meta-level repre-

sentation where each rule in the background knowledge is replaced by a predicate, for example

metaa, metab, etc., that describes its structure, and whose arguments are the original predicate

names and constants used in the original rule. For instance, the fact grandparent(jim, kim)

can be transformed into metaa(grandparent, jim, kim), whereas the rule grandparent(X, Y )

← parent(X,Z), parent(Z, Y ) can be transformed into metab(grandparent, parent, parent).

Note that if there is another rule with a different structure such as grandparent(X, Y ) ←

parent(Y, Z), parent(Z,X), it must be transformed into another meta predicate such as

metac(grandparent, parent, parent). Effectively each differently named meta represents a dif-

ferent rule structure. With respect to Definition 3.6, Metagol applies the same transformation

τ to its examples, background knowledge and hypothesis.

Metagol searches for a hypothesis using a meta-interpreter, a logic program that describes the

acceptable structure of the hypothesis. For example, for hypotheses where the predicates have

up to two arguments the following theory structure can be used:

P (a, b).

P (X, Y )← Q(X, Y ).

P (X, Y )← Q(X,Z), R(Z, Y ).

The above rules represent a theory where P , Q and R are predicate names, X, Y and Z are

variable arguments, and a and b are constant arguments. Let predicate2/1 be the type for

predicate names that have two arguments, and let object/1 be the type for constant argument.

The above theory can then be transformed into the following a meta-interpreter:
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1 : prove(P,X, Y )← meta1(P,X, Y ).

2 : prove(P,X, Y )← predicate2(Q),meta2(P,Q), prove(Q,X, Y ).

3 : prove(P,X, Y )← predicate2(Q), predicate2(R),meta3(P,Q,R), object(Z),

prove(Q,X,Z), prove(R,Z, Y ).

In the above theory meta1/3, meta2/2, and meta3/3 are used to represent the rule structures

from the meta-interpreter. meta1(p, a, b) represents a predicate p with two constant arguments

p(a, b), whilemeta2(p, q) represents a rule with the predicate p/2 in the head and q/2 in the body

p(X, Y ) ← q(X, Y ), and lastly meta3(p, q, r) represents the rule p(X, Y ) ← q(X,Z), r(Z, Y ).

Suppose we want to use the above meta-interpreter with Example 11, firstly the background

knowledge of the learning task is transformed into the following meta representation:

τ(B) =



object(jim).

object(ivan).

object(kim).

predicate2(parent).

meta1(parent, jim, ivan).

meta1(parent, ivan, kim).


The task is then solved as an abductive task 〈T,A,G〉 where the background theory T is the

union of the meta-interpreter and τ(B), the abducibles A are meta2/2 and meta3/3 atoms,

and the goal is the query ← prove(grandparent, jim, kim). Note that the negative exam-

ples are not used as part of the goal of the abductive task, but are instead used for checking

that the union of T and the abduced atoms does not entail any negative examples. When

solving the abductive task, line 1 of the meta-interpreter will fail as there does not exist

meta1(grandparent, jim, kim) in τ(B). Line 2 of the meta-interpreter could only learn the rule

meta2(grandparent, parent) representing the rule grandparent(X, Y ) ← parent(X, Y ) which

will not be learnt as it does not cover grandparent(jim, kim). The learner will solve the learning

task by applying line 3 of the meta-interpreter and abduce meta3(grandparent, parent, parent)

representing the rule grandparent(X, Y ) ← parent(X,Z), parent(Z, Y ). This succeeds as it
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would solve the query and not cover any negative examples, and would not be reject by a

post-process check for negative examples coverage.

3.2 Non-monotonic Inductive Logic Programming

Learning a non-monotonic theory and learning using a non-monotonic theory presents two

obstacles. The first obstacle is that the monotonic approach of iteratively learning from one

selected example can lead to incorrect solution as the consequences of a theory may change

as rules are added to it. The second obstacle is that there can be multiple models to a non-

monotonic theory and when the background is extended with the learned solution, the notion

of examples coverage or (not-)entailment of examples may have two different semantic mean-

ings, namely brave and cautious semantics [SI09]. Let us consider the first problem using the

following example.

Example 12. Given the following learning task:

B =



p(X)← q(X), not r(X).

s(c).

char(a).

char(b).

char(c).


M =


modeh(q(+char)).

modeh(r(+char)).

modeb(s(+char)).

 E+ =

 p(a).

r(c).



Using monotonic ILP learning convention, in order to find the solution of the inductive learning

task we would consider the first example p(a) and learn a hypothesis h1 that covers it. The

most concise h1 would be {q(X).}, which is added to the background knowledge. As h1 does

not cover the other example r(c), the next step is to learn another hypothesis h2 that covers

r(c), leading us to {r(X).}. Separately, h1 and h2 cover all positive examples, however adding

h2 to B ∪h1 makes it no longer covers the first example. Although the learning task is solvable

through the hypothesis {q(X).; r(X) ← s(X).} which can only be found if the learner learns

from all examples together, as opposed to learning from only a subset of the examples.

As all examples must be considered when the background is a normal logic program, it would be
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sensible for the positive E+ and negative E− examples of an ILP task to be combined together

as E = {e+
1 , . . . , e

+
n , not e

−
1 , . . . , not e

−
m}, where each e+

i ∈ E+ and e−i ∈ E−.

For the second obstacle, the presence of negation as failure in the background and hypothesis

means that the normal theory may have many models. For instance, consider the following

example from [SI09]:

Example 13. Given the following learning task:

B =



person(adam).

person(nancy).

person(bob).

person(jane).

sea(X)← not mountain(X),

person(X).

mountain(X)← not sea(X), person(X).

couple(adam, nancy).

couple(bob, jane).

⊥ ← couple(X, Y ), sea(X),mountain(Y ).

⊥ ← couple(X, Y ), sea(Y ),mountain(X).


E+ =

 tanned(adam).

tanned(nancy).

 E− =

 tanned(bob).

tanned(jane).



M =


modeh(tanned(+person)).

modeb(mountain(+person)).

modeb(not mountain(+person))

modeb(sea(+person)).

modeb(not sea(+person)).


The background knowledge B contains an integrity constraint to ensure that every couple can

exclusively go on holiday at the sea or the mountain. The constraints, and the normal rules in B,

creates four possible different consequences where both couples go to the same location, or where

one couple goes to the sea while the other goes to the mountain. For instance, even if adam

could go to the sea, it is not classically entailed by the background B 2 sea(adam). Thus, while

it is reasonable to consider the hypothesis H = {tanned(X)← sea(X), not mountain(X)} as a

solution to the task, not all models of B∪H will explain all positive examples B∪H 2
∧

e∈E+ e.

tanned(adam) and tanned(nancy) will only be true in the models in which they go to the sea,

and similarly tanned(bob) and tanned(jane) will not hold only if they go to the mountain
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instead.

To be able to meaningfully reason with a non-monotonic theory we will use the operator �B to

indicate brave entailment [SI09] and take into account the difference in example coverage.

Definition 3.7 (Cautious Entailment). A formula F is cautiously entailed by theory T (T �C

F ) if F holds in all models of T .

Definition 3.8 (Brave Entailment). A formula F is bravely entailed by theory T (T �B F ) if

F holds in at least one model of T .

Under brave entailment H = {tanned(X)← sea(X), not mountain(X)} can be considered as

a valid hypothesis of the learning task in Example 13 as there exists a model of B ∪H where

tanned(adam) and tanned(nancy) holds, and tanned(bob) and tanned(jane) do not.

The non-monotonicity requires a different notion of inductive task as the previously defined

coverage criteria (3.1) and (3.2) for monotonic ILP is not suitable for it. The coverage criteria

for non-monotonic inductive task is as follows:

B ∪H �B E (3.3)

Note that (3.3) is the example coverage criteria that we will be using in this work. Other

systems such as ILASP [LRB14] divides its positive and negative examples and use weaker

coverage criteria which requires each positive example to be covered by a model that are not

necessary the same one as models that cover other examples. So while ILASP requires for all

examples must be covered, each positive example can be covered by a different model.

The non-monotonicity also changes the input of the learning task so that instead of having

examples in separate set, they are combined into a single set with negation added for negative

examples. These examples and coverage criteria gives us the brave inductive learning task

following the definition given in [SI09]:

Definition 3.9 (Brave Inductive Learning Task). A brave inductive task is a tuple 〈E,B,M〉,

where E is the set of ground examples, B is the background knowledge expressed as a normal
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logic program, and M is a set of mode declarations. A solution to a brave inductive task is a

set of normal clauses, a hypothesis H compatible with M , where at least one model of B ∪ H

implies all examples in E (B ∪H �B E).

Similar to monotonic ILP, non-monotonic ILP can also be divided into the subcategories ac-

cording to their learning algorithm.

Bottom-up non-monotonic ILP

XHAIL [Ray09], an extension of HAIL [RBR03], is an ILP system that uses abductive learning

for computing its hypothesis. Rather than using the bottom set, XHAIL uses a kernel set, a

theory of the most specific rules for the hypothesis. It solves an ILP task using three separate

phases: (i) abductive phase; (ii) deductive phase; and (iii) inductive phase. All phases are

solved as an abductive task. The abductive phase finds all possible ground head literals for

rules in the hypothesis according to the given mode bias. The deductive phase finds the body

literals for the head learnt in the previous phase with respect to the given bias and linking

of the variables, creating a kernel set. This is transformed into a pseudo kernel set, where

ground terms are replaced by variables. In the last phase the hypothesis of the learning task

is computed from the pseudo kernel set such that only vital body literals for distinguishing

the negative examples from the positive examples are retained while other are discarded. The

output of the algorithm is the most compressed hypothesis that bravely covers the examples.

Top-down and meta-level non-monotonic ILP

TAL (Top-directed Abductive Learning) [CRL10] is an ILP system that solves an inductive

learning task by converting it into an equivalent abductive learning task (ALP). While it may

have been inspired by another top-down system TopLog [MSTn08], its approach of fully trans-

lating the learning task into an abductive one allows for normal theories to be used in both the

background knowledge and the learnt hypothesis, as well as for multiple clauses to be learnt.
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TAL’s transformation of an inductive task 〈E,B,M〉 into an abductive task relies upon two

features: (i) its hypothesis representation; and (ii) a theory called the top theory that encodes

the hypothesis space. For the hypothesis representation TAL labels each mode declaration

and uses this label and lists of variable argument index and constant variables for encoding

each hypothesis as an atom. For example consider the following mode declarations labelled by

{m1,m2,m3,m4}:

M =



m1 : modeh(grandparent(+person,+person)).

m2 : modeb(parent(+person,+person)).

m3 : modeb(parent(+person,−person)).

m4 : modeb(parent(#person,+person)).



Each mode declaration can then be represented by a tuple (L,Os, Is) where L is its la-

bel, Os is the list of constant arguments, and Is is the list of input variables according to

their order of appearance. A list of such tuples is used to represent a clause, and a set of

such list is then used to represent the hypothesis. For instance, from the above mode dec-

larations the hypothesis {grandparent(X, Y ) ← parent(X,Z), parent(Z, Y )} is represented

by the list [[(m1, [], []), (m3, [], [1]), (m2, [], [3, 2])]]. The first element of each tuple indicate

the mode declaration associated with the literal through its label. The second argument of

each tuple is a list of constant arguments in each literal. Thus hypotheses with constants

such as {grandparent(X, Y ) ← parent(ivan, Z)} will be represented by the list [[(m1, [], []),

(m4, [ivan], [])]]. Lastly, the third element of each tuple is a list of indexes indicating what

previously encountered variables the input variables of a literal is linked to. For instance in

(m3, [], [1]) the list [1] indicates that the input variable in modeb(parent(+person,−person)) is

linked to the first variable X of the rule, making the tuple represents the literal parent(X,Z).

Similarly, the list [3, 2] in (m2, [], [3, 2]) corresponds to the variable Z and Y respectively. Note

that the linking of variables are captured by the indexing of the variables according to the order

they appear in the rule. Thus head literals do not have any links as its variables do not appear

in any previous literals.
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The second component of TAL’s transformation is the top theory >. For a schema s in a mode

declaration, let s∗ be the schema s with variables replacing its placemarkers, types(s∗) be the

conjunction of type constraints of variables in s∗, id(s∗) be the label of mode declaration of

s∗, ground(s∗) be the list of constant arguments in s∗, inputs(s∗) be the list of input variables

in s∗, outputs(s∗) be the list of output variables in s∗, and link variables/3 be a function

that given the inputs variables of s∗ and the list of variables in previous literals will return the

index of literals unifiable with input variables in s∗. The top theory is derived from the mode

declarations as follows:

• For each modeh(s) ∈M the following clause is added to >:

s∗ ←types(s∗), prule(RId, [(id(s∗), ground(s∗), [])]), rule id(RId),

body(RId, inputs(s∗), [(id(s∗), ground(s∗), [])]).

• The following clause is in >:

body(RId, , Rule)← rule(RId,Rule).

• For each modeb(s) ∈M the following clause is added to >:

body(RId, Inputs, Rule)←types(s∗), s∗,

link variables(inputs(s∗), Inputs, Links),

append(Rule, [(id(s∗), ground(s∗), Links)], NewRule),

append(Inputs, outputs(s∗), Outputs),

prule(RId,NewRule),

body(RId,Outputs,NewRule).

Effectively the first clause starts the process of building a rule by encoding the head literal and

calling body/3 to search for possible body literals that can be added to it. The second rule is

the base case for body/3 which will return a rule through the abducible rule/2 once the goal of
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the abductive task is met. The third rule is the recursive case for body that adds a body literal

to the rule and collects output variables to pass onto subsequent body literals. The first and

third rule contains another abducible predicate prule/2 which abduces a partial rule that can

be used as part of a heuristic based search strategies.

For instance, consider Example 11. The top theory for this task is:

> =



grandparent(X,Y )← person(X), person(Y ), prule(RId, [(m1, [], [])]),

rule id(RId), body(Rid, [X,Y ], [(m1, [], [])]).

body(RId, , Rule)← rule(RId,Rule).

body(RId, Inputs,Rule)← person(X), person(Y ), parent(X,Y ),

link variables([X,Y ], Inputs, Links), append(Rule, [(m2, [], Links)], NewRule),

append(Inputs, [], Outputs), prule(RId,NewRule), body(RId,Outputs,NewRule).

body(RId, Inputs,Rule)← person(X), person(Y ), parent(X,Y ),

link variables([X], Inputs, Links), append(Rule, [(m3, [], Links)], NewRule),

append(Inputs, [Y ], Outputs), prule(RId,NewRule), body(RId,Outputs,NewRule).


The definition of the ALP task used by TAL is a modification from Definition 2.7, and has

been defined in [CRL10] as follows:

Definition 3.10 (TAL Abductive Task). An abductive learning task is defined as 〈g, T, A, I〉

where g is a grounded goal, T is a normal logic program, A is a set of abducible facts, and I is

the set of integrity constraints. The solution of the abductive task is ∆ ⊆ A such that T ∪∆ is

consistent, T ∪∆ �B g and T ∪∆ �B I.

Using the top theory >, given an inductive task 〈E,B,M〉, TAL will transform it to an abduc-

tive task 〈E,B ∪ >, A, ∅〉 where A is set of prule/2 and rule/2 instances, representing partial

rules and full rules. The solution of the original inductive task is acquired by transforming the

abduced rule/2 instances into its clausal representation. On the other hand, abduced prule/2

are not transformed back into clausal representation.

With respect to Example 11 and the above top theory, the solution for the abductive task is
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the following set:



rule(1, [(m1, [], []), (m3, [], [1]), (m2, [], [3, 2])]),

prule(1, [(m1, [], [])]),

prule(1, [(m1, [], []), (m3, [], [1])]),

prule(1, [(m1, [], []), (m3, [], [1]), (m2, [], [3, 2])])


The abduced prule(1, [(m1, [], [])]) corresponds to the partial rule grandparent(X, Y ), while

prule(1, [(m1, [], []), (m3, [], [1])]) corresponds to grandparent(X, Y ) ← parent(X,Z). Both

rule(1, [(m1, [], []), (m3, [], [1]), (m2, [], [3, 2])]) and prule(1, [(m1, [], []), (m3, [], [1]), (m2, [], [3, 2])])

corresponds to the rule grandparent(X, Y )← parent(X,Z), parent(Z, Y ) which is both a full

and partial rule, and is the solution to the learning task.

TAL can be considered as being a partial meta-level approach as although it uses meta-level

representation for its hypothesis, the reasoning is still conducted at the object level. Thus

with respect to Definition 3.6 both τ2 and τ3 are the identity transformation, τ1 is TAL’s

hypothesis representation, and the meta-theory TM is the top theory >. As TAL’s meta-theory

is automatically constructed from the mode declarations of the learning task, its inductive task

needs not be as specific as systems such as Metagol where explicit rule structures need to be

given.

3.3 ILP for Theory Revision

Theory revision involves taking an existing theory and improving it in some manner. As

described in [Wro96] this can be seen in two forms: (i) theory refinement where a theory is

revised to make it more complete or correct by modifying the existing rules to change its model;

and (ii) theory reconstruction where a theory is revised to make it more efficient or easier to

understand by rewriting it in a different way while preserving the same models. The type of

theory revision we are interested in is theory refinement where an existing theory is modified

in some way so that it covers some given examples.
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Revision of a task is done by applying some revision operations, for example extending or

deleting a rule, to the given theory, producing a revised version of it. Each theory revision

system has an associated set R of all revision operators it can use. A subset ρ ⊆ R is then

used for actual revision of a given task. We will use the symbol ⊗ to indicate the application

of ρ on a theory T as ρ⊗ T . Our definition of a theory revision task extends the one given in

[Wro96] to include non-revisable theory, and is as follows.

Definition 3.11 (Theory Revision Task). A theory revision task is a tuple 〈TN ∪ TR, E+, E−〉

where TN is the non-revisable definite theory and TR is the initial revisable definite theory and

E+ and E− is the set of positive and negative examples. Let R be a set of revision operators,

a solution to the revision task is a revised theory T ′R such that (i) T ′R = ρ ⊗ TR; (ii) TN ∪ T ′R

covers all positive examples: TN ∪ T ′R � E+; and (iii) TN ∪ T ′R does not cover any negative

examples: ∀e ∈ E− : T ′ 2 e.

Notice that the above requirement for the solution of the revision task is similar to that of an

monotonic ILP task in that they both require the coverage of all positive examples and none of

the negative examples. Examples of ILP system with theory revision includes HYPER [Bra99]

and the enhancement of FORTE [RM95] by the bottom set [DPZ09]. HYPER is a system that

iteratively modify its hypothesis, and we will describe in more detail later in this section as,

like our system RASPAL, it is a top-down ILP system that use hypothesis refinement.

For non-monotonic ILP the following generalised definition of a revision task [Wro96] can be

used where the examples are replaced by a set of integrity constraints to be satisfied by the

revised theory.

Definition 3.12 (Generalised Theory Revision Task). A theory revision task is a tuple 〈TN ∪

TR, IC〉, where TN is the non-revisable theory, TR is the initial theory and IC is the set of

integrity constraints such that TN ∪TR does not satisfy IC. The solution to the revision task is

the revised theory T ′R such that (i) T ′ is generated from the smallest set of revision operations;

and (ii) TN ∪ T ′R satisfies all integrity constraints in IC.

Note that the revision operations and the notion of the best revised theory may vary with the
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learning systems.

HYPER

HYPER (Hypothesis Refiner) [Bra99] is a monotonic ILP system that refines a hypothesis

until it covers all positive examples and none of the negated ones. This is achieved by first

generating an overly general hypothesis (a hypothesis that covers all positive examples) using

the given mode declarations, and then iteratively refine it so that it does not cover negative

examples. The over general hypotheses are ones that cover all positive examples, and any

hypotheses that do not cover all positive examples are discarded by the system. This is due to

how HYPER refines its hypothesis which will only remove any covered negative examples, but

not increase the coverage of positive examples. As it does not use integrity constraints to guide

its refinement, its revision task follows that of Definition 3.11, and the refinement operations

used by HYPER are as follows:

• Unifying two variables in a clause

• Refining a variable into a background term such as replacing a variable L with [H|B]

• Adding a body literal to a clause

At each iteration, the refined hypothesis H is evaluated using a scoring function which defines

its cost as: Cost(H) = w1∗Size(H)+w2∗NegCover(H) where w1 and w2 are weights, Size(H)

is the size of the hypothesis and NegCover(H) is the number of negative examples covered by

the hypothesis. The size of a hypothesis is calculated as: Size(H) = k1 ∗ #literal(H) + k2 ∗

#variables(H) where k1 and k2 are weights, #literal(H) is the number of literals in H, and

#variables(H) is the number of variables in H. The learner tries to minimise the overall cost

of the hypothesis, leading it to refine its hypotheses into the most compact hypothesis that

will cover the fewest negative examples. This makes HYPER favours its first two refinement

operations over the last one of adding a body literal, thus favouring the refinement that will

produce a theory most similar to its original theory.
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Example 14. Given the following learning task:

B =



person(grace).

person(helen).

person(ivan).

person(jim).

person(kim).

female(grace).

female(helen).

female(kim).

male(ivan).

male(jim).

parent(jim, ivan).

parent(grace, ivan).

parent(ivan, kim).

parent(helen, kim).


E+ =

 father(jim, ivan).

father(ivan, kim).

 E− =

 father(grace, ivan).

father(ivan, jim).



M =


modeh(parent(+person,+person)).

modeb(male(+person)).

modeb(female(+person)).


Let k1 = w2 = 10 and w1 = k2 = 1. The overgeneral hypothesis that explains all examples is

{father(X, Y ).} and its cost is 32. Consider HYPER’s three refinement operations. Applying

the first operation of variable unification to acquire {father(X,X)} will improve the score as

both negative examples will no longer be covered, however it would no longer cover any positive

examples, making it an inappropriate refinement operation. For the second operation there isn’t

a way to refine variables in father(X, Y ) into another term such that all positive examples are

still covered as there is only one instance of father(X, Y ) in the hypothesis, thus the operation

cannot be applied. This leaves only the third operation of adding a literal to the hypothesis. For

the third refinement operation the mode declarations parent/2 or male/1 can be used to extend

a rule. There are two extensions that would remove negative examples coverage and still retain

the positive examples coverage: (i) {father(X, Y ) ← male(X).} and (ii) {father(X, Y ) ←

parent(X, Y ).}. Each one of these refinements will remove one negative example coverage and

add a body literal, thus retaining the cost of 32. Further refinement of either of them will

result in finding the hypothesis {father(X, Y )← parent(X, Y ),male(X).} Note that HYPER



46 Chapter 3. Inductive Logic Programming

does not require that the refinement strictly improves the cost of the hypothesis and will also

consider refinements that retain the cost of the current hypothesis.

Suppose HYPER is applied to Example 11, then it would first generate the hypothesis

{grandparent(X, Y )} as this is the most general hypothesis that covers all the positive ex-

ample. However it would be stuck in the next iteration as both parent(X,Z) and parent(Z, Y )

are needed in order to remove any negative examples covered and improve its cost. However,

HYPER could only add one body literal to a clause it will not be able to improve the hypothesis.

3.4 ASPAL

ASPAL (ASP Abductive Learning) [CRL11], an Answer Set Programming (ASP) implementa-

tion of TAL, is the most relevant ILP system for this work. Recall that TAL is implemented in

Prolog and uses its list structure to iteratively build rules. However, ASP does not have such

a structure, and using list-like structure in ASP is inefficient and often impossible as the solver

completely grounds the program before solving it. Consider using TAL’s top theory in ASP; not

only would there be a lot of grounding needed for variable linkage alone, every possible body

literal link would also need to be grounded regardless of where it is a permutation of another

existing link. In contrast to each clause in the top theory corresponding to a mode declaration

schema, each clause in ASPAL’s top theory corresponds to a rule in the hypothesis space. Fur-

thermore the body literals can be ordered to remove redundancy. Note that this would work

best in the absence of output variables as they will make the ordering matter due to TAL’s hy-

pothesis representation. Consider the rule grandparent(X, Y ) ← parent(X,Z), parent(Z, Y ).

Using TAL’s hypothesis representation parent(X,Z) must have appeared in the rule before

parent(Z, Y ) as it takes the output variable Z as its input. Thus, while ordering can be used to

reduce the hypothesis space, in the presence of output variables literals with output will need

to be placed at the beginning of the rule, and multiple permutations of literals with outputs

may be required to represent the entire hypothesis space. For instance, consider the mode

declarations modeb(p(+int,−int)) and modeb(q(+int,−int)). If p/2 is placed before q/2, such
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as p(X, Y ), q(Y, Z), then in the hypothesis encoding q/2 can include a variable index pointing

to the output of p. However, as p/2 is in front of q/2 then in the encoding it cannot refer to

the output of q/2.

Similar to TAL, ASPAL also transforms an inductive task into an abductive one. However, the

two main components, the hypothesis representation and the top theory, have to be adapted

for ASP. For the hypothesis representation, as each clause in the top theory corresponds to a

rule, there is no longer a need to build up the rules in the hypothesis literal by literal.

Definition 3.13 (ASPAL rule encoding). Each rule r = h ← b1, . . . , bn in the hypothesis

space can be encoded enc(r) as rule(id(r), (C1, . . . , Cn)), where id(r) is a tuple of the form

(mh,m1, l1,1, . . . , l1,p1, . . . ,mn, ln,1, . . . , ln,pn), where mh is the label of the mode declaration h,

mi is the identifier of the mode declaration for body literal bi, and for each mi, the elements

li,1, . . . , li,pi are indexes denoting the variables in the rule, counting from start of the rule, which

the input variable of the literal bi are linked to. (C1, . . . , Cn) is the tuple of constant arguments

in r.

Note that when a rule has no constant arguments $e is used in place of (C1, . . . , Cn) to indicate

the empty tuple of constant.

For example, suppose we use the following mode declarations from Example 11.

m1 : modeh(grandparent(+person,+person)).

m2 : modeb(parent(+person,+person)).

m3 : modeb(parent(+person,−person)).

Then the encoding for the rule r = grandparent(X, Y ) ← parent(X,Z), parent(Z, Y ) will be

rule((m1,m3, 1,m2, 3, 2), $e) where id(r) is the tuple (m1,m3, 1,m2, 3, 2) and $e is the empty

tuple of constants.

Unlike TAL, ASPAL’s rules are not learnt recursively. Instead each clause in the top theory

acts like a “switch”. For each rule r = h← b1, . . . , bn in the hypothesis space the following rule

is in ASPAL’s top theory: h← b1, . . . , bn, enc(r). By abducing enc(r) a rule is “activated” and

is included in the hypothesis.
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Definition 3.14 (Encoding of Top-theory). Let RM be the set of rules that makes up the

hypothesis space constructed from the given mode declarations M of the learning task. For each

rule r = h← b1, . . . , bn in RM , the rule h← b1, . . . , bn, enc(r) is in ASPAL’s top-theory >.

We have already mentioned that the top theory of ASPAL has one clause per rule in the hy-

pothesis space. Note however that this correspondence is not one to one as constant arguments

are only instantiated when grounding the top theory. Secondly the variables in a predicate

head h do not link to any variable occurring before them in the rule so there is no sequence

l0,1, . . . , l0,p0 after m0 in the representation. The structure of rule/2 makes this translation

bijective, allowing automatic inverse translation of abduced atoms to related rule hypothesis.

With ASPAL’s top theory > and rule encoding [Cor11], given an inductive task 〈E,B,M〉,

ASPAL transforms it into an abductive task 〈g,B ∪ >, A>, ∅〉 where g is the set of clauses

{⊥ ← not examples.; examples←
∧
e ∈ E.} and A> is the set of rule/2 atoms. The solution

of the original inductive task is acquired by transforming the abduced rule/2 instances into its

clausal representation

Definition 3.15 (Decoding the Abducibles). Let RM be set rules that makes up the hypoth-

esis space of a learning task. The set A> = {rule(id(r), (C1, . . . , Cn)) | r ∈ RM} is called

abducibles. Given a subset ∆ ⊆ A>, for each rule(id(r), (c1, . . . , cn)) ∈ ∆ its inverse trans-

formation enc−1(rule(id(r), (c1, . . . , cn))) is the rule r = h ← b1, . . . , bm with each constant

variable of r being replaced by c ∈ (c1, . . . , cn) in order of their appearances.

Definition 3.16 (Learning Task Transformation). Given an ILP task 〈E,B,M〉, let > be

the top theory representing the rules RM in the hypothesis space of the task, A> be the set of

abducibles, and let g be the set of rules {examples ←
∧
e ∈ E.;⊥ ← not examples.}. The

original inductive task can be solved through an abductive task 〈∅, B∪>∪g, A, ∅〉. The solution

to the abductive task is ∆ ⊆ A> such that B ∪ > ∪ g ∪∆ has a stable model. The solution to

the original inductive learning task is the hypothesis H where H = {enc−1(d)|d ∈ ∆}.

Example 15. Given the following learning task:

E = {has cold(alice), not has cold(bob).}
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B =



person(alice).

person(bob).

condition(blister).

condition(sore throat).

symptom(alice, sore throat).

symptom(bob, blister).


M =

 m1 : modeh(has cold(+person)).

m2 : modeb(symptom(+person,#condition)).


The rules within the hypothesis space that have at most two body literals are:

RM =


has cold(X).

has cold(X)← symptom(X, Y ).

has cold(X)← symptom(X, Y ), symptom(X,Z).


These rules in RM would correspond to the top theory:

> =


has cold(X)← rule((m1), $e).

has cold(X)← symptom(X, Y ), rule((m1,m2, 1), (Y )).

has cold(X)← symptom(X, Y ), symptom(X,Z), rule((m1,m2, 1,m2, 1), (Y, Z)).


The minimal solution to the learning task is the subset ∆ = {rule((m1,m2, 1), (sore throat))}

corresponding to the rule has cold(X) ← symptom(X, sore throat). Although not minimal

∆′ = {rule((m1,m2, 1,m2, 1), (sore throat, sore throat))} which is the rule has cold(X) ←

symptom(X, sore throat), symptom(X, sore throat) and the union ∆∪∆′ would also cover all

examples.

3.4.1 ASPAL for Theory Revision

Previous work [CRV+11] has demonstrated how ASPAL can be applied to theory revision task.

This is achieved by transforming a revision task into an equivalent ILP task. We will use this

mechanism of performing theory revision through an inductive task in the next chapter to make

non-monotonic ILP systems able to learn iteratively.
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The revision operations ASPAL uses are as follows.

Definition 3.17 (Revision operation). The refinement operations that ASPAL can apply on a

partial hypothesis are: (i) adding a new rule; (ii) adding body literals to an existing rule; (iii)

deleting an existing rule; and (iv) deleting body literals from existing rules.

Given an initial theory T , ASPAL converts it into a revisable theory r(T ) using the following

transformation.

Definition 3.18 (Revisable theory). For each rule r given by hi ← bi,1, . . . , bi,n in a given

theory T , let vars(r) be the list of all variables in r and vars(bi,j) be the list of all variables in

a body literal bi,j. The following clauses are added to the revisable form r(T ):

• hi ← try(i, 1, vars(bi,1)), . . . , try(i, n, vars(bi,n)), extension(i, vars(ri))

• try(i, j, vars(bi,j))← bi,j, not delete(i, j), for each try(i, j, vars(bi,j))

• try(i, j, vars(bi,j))← delete(i, j), for each try(i, j, vars(bi,j))

The above revisable theory has three utility predicates try/3, extension/2 and delete/2. The

try/3 clauses test if a body literal bi,j in the ith clause is needed in the revised clause. If it is no

longer relevant, then the corresponding delete(i, j) is learnt, indicating that it can be removed.

The extension/2 literal added to each rule indicates whether a rule is retained in the refined

theory, and in the case where it is retained, whether additional body literals are added to the

rule.

The mode declaration M for the learning task consists of head mode declarations for new rules

and the utility predicates extensions/2 and delete/2. It also consists of body mode declarations

for any body literals that can be used to revise the given theory.

Definition 3.19 (Change Transaction). Let T be a theory. A change transaction C is a set

of revision operations, clauses with extension/2 as head literals and delete/2 facts, that can be

applied to a theory to refine it into a revised theory C ⊗ T = T ′.
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Definition 3.20 (Revision task in ILP). Given a theory revision task 〈TN ∪ TR, IC〉, it can

be solved through an ILP task 〈∅, TN ∪ r(TR) ∪ IC,M〉 where r(TR) is the revisable form of TR

and M is the set of mode declarations for revision operations applicable to r(TR). The solution

to the revision task is a revised theory T ′R = C ⊗ r(TR) and T ′R satisfies IC, where the change

transaction C is the solution to the inductive task that is compatible with M .

The change transactions that can be learnt is made up of a possibly empty set of delete/2 facts,

clauses with head predicate extension/2 and body literals using predicates from body mode

declarations in M , and other clauses compatible with M . They correspond to the revision

operators of ASPAL. The refined theory T ′ is generated from the original theory T and the

learned change transactions C by the following steps:

• Each clause rnew ∈ C that are not extension nor delete, with rnew /∈ T , rnew is added to

T ′.

• For each pair: ri ← b1, . . . , bn ∈ T and extension(ri, vars(ri)) ← bn+1, . . . , bm in C, the

clause ri ← b1, . . . , bn, bn+1, . . . , bm is added to T ′.

• Each clause in T that does not have a corresponding extension/2 clause in C is not added

to T ′.

• For each delete(i, j) in C, the body literal bi,j is removed from clause ri in T ′.

Example 16. Consider extending Example 14 with the following revisable theory:

TR =

{
father(X, Y )← female(Y ).

}
This can be transformed into a revisable rule represented by the following theory, and added

to the background knowledge of the inductive task, making the background comprise of a non-

revisable and a revisable part.

r(TR) =


father(X, Y )← try(1, 1, vars(Y )), extension(1, vars(X, Y )).

try(1, 1, vars(Y ))← female(Y ), notdelete(1, 1).

try(1, 1, vars(Y ))← delete(1, 1).
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The examples for the learning task can be expressed as ASPAL’s examples constraint, and used

as the integrity constraint for the revision task:

IC =


⊥ ← not examples.

examples← grandparent(jim, kim), not grandparent(jim, ivan),

not grandparent(ivan, kim).


For this example we want to show how the revisable theory r(T ) and delete/2 and extension/2

atoms are used to revise it. Thus, we will use the following mode declarations which only have

head declarations for delete/2 and extension/2 and so does not allow new rules to be learnt:

M =



modeh(extension(1, vars(+person,+person))).

modeh(delete(1, 1)).

modeb(male(+person)).

modeb(female(+person)).


There are many change transactions that could be learnt to refine this theory:

• C1 =

 extension(1, vars(X, Y )).

delete(1, 1).


• C2 =

 extension(1, vars(X, Y ))← male(X).

delete(1, 1).


• C3 =

 extension(1, vars(X, Y ))← parent(X, Y ).

delete(1, 1).



• C4 =


extension(1, vars(X, Y ))← parent(X, Y ).

extension(1, vars(X, Y ))← male(X).

delete(1, 1).


• C5 =

 extension(1, vars(X, Y ))← parent(X, Y ),male(X).

delete(1, 1).


Applying these change transactions will produce the following revised theories:
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• C1 ⊗ r(T ) =

{
father(X, Y ).

}

• C2 ⊗ r(T ) =

{
father(X, Y )← male(X).

}

• C3 ⊗ r(T ) =

{
father(X, Y )← parent(X, Y ).

}

• C4 ⊗ r(T ) =

 father(X, Y )← parent(X, Y ).

father(X, Y )← male(X).


• C5 ⊗ r(T ) =

{
father(X, Y )← parent(X, Y ),male(X).

}

In all change transactions delete(1, 1) will remove female(Y ) from father(X, Y )← female(Y ).

The change transaction C1 will only remove female(Y ), thus making the revised theory cover

all positive and negative examples. The change transaction C2 and C3 remove female(Y ) and

add, respectively, male(X) and parent(X, Y ), making the revised theory cover all positive exam-

ples but also one negative example in each case. The change transaction C4 produces a revised

theory with the same example coverage as C2 and C3, but shows that a change transaction can

include more than one way of revising a rule in r(T ) and applying the change transaction will

create two versions of revised rules. The change transaction C5 is the solution to the learning

task as its revised theory will satisfies the integrity constraint IC.

3.5 Discussion

This chapter gave an overview of differences in ILP systems in terms of their monotonicity and

learning approaches. In addition to this some systems were highlighted and described in detail

as they are relevant to subsequent chapters of this work. While recent works in non-monotonic

ILP systems have increased the class of inductive learning tasks ILP can be applied to, the

combinatorial complexity of the hypotheses often makes the learning inefficient. Prolog based

systems such as TAL can mitigate this problem as a hypothesis is built by gradually adding

head and body literals to it. However, for ASP based systems such as ASPAL this is a major
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problem as all hypotheses in the hypothesis space are considered at the same time. This means

that while in theory ASPAL is complete, in practical application there are learning tasks that it

cannot solve as the search space becomes too large to handle. In the Chapter 4 we will discuss

how theory revision method described in this chapter can be used for controlling the size of the

hypothesis space in order to make the learning of large learning tasks more scalable.



Chapter 4

Learning through Hypothesis

Refinement

Recall that ASPAL pre-processes the learning task to find all possible rule structures in its

hypothesis space to construct its top theory. This method of pre-constructing the rules is used

to remove utility predicates in order to reduce the grounding of its ASP program. Despite this,

ASPAL can still produce extremely large grounded programs when used on learning problems

of significant size. The size of the ungrounded program can be estimated using the upper bound

on the number of skeletal rules (ungrounded rules compatible with the mode declarations) in

the ASPAL top theory. In [CRL11] the formula for this upper bound was given as:

|>| < |Mh| × (|Mb| × (maxo × dmax)maxi)dmax (4.1)

where Mh is the number of head mode declarations in the learning task, Mb is the number of

body mode declarations, maxo and maxi is the largest number of output and input variables

in the body mode declarations respectively, and dmax is the maximum number of body literals

in a rule. A flaw in this formula is that if there is no output variables in the body mode

declarations this upper bound will be 0, a vast underestimation. In addition to this the above

formula only consider rules with exactly dmax number of conditions and disregard rules that

have fewer of body literals than the maximum. These observations made us update the formula

55
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to the following:

|>| ≤
dmax∑
d=0

|Mh| × (|Mb| × (maxhi +maxo × (d− 1))maxi)d (4.2)

where Mh is the number of head mode declarations in the learning task, Mb is the number of

body mode declarations, maxo and maxi is the largest number of output and input variables

in the body mode declarations respectively, dmax is the maximum number of body literals in

a rule, and maxhi is the largest number of input variables in all head mode declarations. The

updated formula sums the maximum number of rules for rules of different lengths up to those

with maximum number of body conditions. The parameter maxhi has been included as variables

in a body literal can either be from input variables in the head literal or output variables in

other body literals, giving maxhi + maxo × (d − 1) as the total number of variables that can

serve as a inputs to a body literal.

Even though this formula of the upper bound does not take into account body literals ordering,

the type constraints or variable linkage constraints of the mode declarations, it is still clear

that even for a small learning task, the size of > increases exponentially with an increase in the

maximum number of body literals in a rule dmax. Note that as this is the ungrounded rules, if

the learning task also has a large domain, the size of the grounded theory can easily become

large enough to be unsolvable, as the ASP solver runs out of memory.

In Equation 4 the parameter that affects the upper bound the most, as well as being the only

parameter not dependent on the learning task, is the maximum number of body literals in the

rule dmax. Using this observation we address the scalability problem of ASPAL by limiting

dmax, thus restricting the size of its top theory.

This chapter describes a learning approach that uses hypothesis refinement, an idea that was

raised in[Cor11] as response to the above scalability problem experienced by ASP based systems

such as ASPAL. The aim of learning through hypothesis refinement in ASP is to make such

systems more scalable by dividing the learning of a large hypothesis into smaller and more

manageable refinements. Thus, instead of learning a large hypothesis in a single computation,
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a partial hypothesis is learnt and iteratively refined until it becomes a solution to the learning

task.

RASPAL (Refinement ASP Abductive Learning) is the learning algorithm which given an

inductive learning task, and a limit on the maximum length of rules in the hypothesis, will find

a solution to the learning task using iterative theory refinement. Instead of directly learning

a solution to a learning task, RASPAL learns a partial hypothesis and then repeatedly refines

it until it becomes a solution to the task. In the remaining of this chapter we will present

how partial hypotheses can be learnt and the criteria for comparing them against one another.

We will also be extending ASPAL’s method for solving revision task, previously described in

Section 3.4.1, to make it applicable to refining partial hypotheses. The methods for learning

and refining partial hypotheses will be used in RASPAL’s algorithm, which will be presented

for learning tasks without noise, as well as a modified version for learning tasks with noise.

A partial hypothesis is a hypothesis that does not cover all positive examples, or covers some

negative examples.

Definition 4.1 (Partial hypothesis). A set of rules H is a partial hypothesis of an inductive

learning task 〈E,B,M〉 if it is compatible with M and B ∪H 2B E.

RASPAL’s learning method can be separated into two phases: (i) the initial learning phase

where an initial partial hypothesis is learnt; and (ii) the iterative refinement phase where the

partial hypothesis is improved until it becomes a solution.

4.1 Learning a partial hypothesis

Recall that in ASPAL the examples are used to create the following integrity constraint on the

answer sets such that only solutions to the learning task are found.

examples← e1, . . . , en, not en+1, . . . , not em.

⊥ ← not examples.
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This constraint prevents any partial hypotheses from being learnt. However, simply removing

it would not be beneficial as it would allow all hypotheses in the search space to be learnt. In

order to find a suitable hypothesis for refinement we need to be able to compare each hypothesis

in the search space with one another. To achieve this, we introduce a scoring scheme the partial

hypotheses for directing the search towards the optimal partial hypothesis.

Definition 4.2 (Scoring partial hypotheses). Let 〈E,B,M〉 be an ILP task and let H be a

partial hypothesis in the learning task’s hypothesis space P(RM). The score of H is the tuple

score(H) = 〈covere+(H), covere−(H), length(H)〉, where covere+(H) is the number of positive

examples covered by H, covere−(H) is the number of negative examples covered by H, and

length(H) is the total number of literals in H.

Definition 4.3 (Comparing partial hypotheses). Let 〈E,B,M〉 be an ILP task and let H and

H ′ be two (partial) hypotheses in the hypothesis space P(RM). H is better than H ′, denoted

score(H) > score(H ′) if and only if one of the following cases applies:

− covere+(H) > covere+(H ′),

− covere+(H) = covere+(H ′) ∧ covere−(H) < covere−(H ′),

− covere+(H) = covere+(H ′) ∧ covere−(H) = covere−(H ′) ∧ length(H) < length(H ′)

The scoring scheme is used to direct the search towards the optimal partial hypothesis.

Definition 4.4 (Optimal hypothesis). Given a hypothesis space P(RM), the hypothesis Hopt

is the optimal hypothesis of P(RM) if and only if for all other hypothesis H in P(RM):

score(Hopt) ≥ score(H).

The above scoring scheme differs from the more conventional scoring mechanisms used in ILP.

Our choice in scoring scheme is the result of an in-depth comparative analysis of what scoring

function would perform better. Specifically, we have considered two other scoring functions:

sc1 : 〈covere+(H)− covere−(H), length(H)〉 and sc2 : covere+(H)− covere−(H)− length(H).

The scoring scheme sc1 emphasises the coverage of examples over the hypothesis size. It has

an advantage of having smaller range of score values, from −|not e ∈ E| to |e ∈ E| as opposed
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to 0 to |e ∈ E| × |not e ∈ E| in our scoring scheme, which could help reduce the search for

the optimal hypothesis. However, it is too general and would result in learned revisions that

are indistinguishable from each other. For instance, suppose we have two partial hypotheses of

equal size s, one covers none of the positive nor negative examples, and the other covers one

positive and one negative example. Using the scoring scheme sc1 both hypotheses would have

the same score of 〈0, s〉; however with our scoring scheme, the former would have the score

〈0, 0, s〉, while the latter would have the score 〈1, 1, s〉. The difference between the two scores

makes our scoring scheme able to differentiate a wider range of hypotheses.

For the scoring scheme sc2, we found it to be unsuitable as it would give too much emphasis to

the hypothesis size, which is not the most relevant for discriminating among potential revisions

that are required to be solutions to the learning task. Consider the following example.

Example 17. Given the following noiseless background knowledge and examples:

B =



even(0). num(s(s(s(0)))).

num(0). num(s(s(s(s(0)))).

num(s(0)). num(s(s(s(s(s(0)))))).

num(s(s(0))). succ(X, s(X))← num(X), num(s(X)).


E =

 even(s(s(s(s(0))))), odd(s(s(s(s(s(0)))))), not odd(0),

not even(s(0)), not odd(s(s(s(s(0))))), not even(s(s(s(0)))).


Consider the following partial hypotheses:

• H1 = ∅

• H2 =

 even(X).

odd(X).


• H3 =

 even(X)← succ(Y,X).

odd(X)← succ(Y,X), not odd(Y ).
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Partial Hypothesis RASPAL scoring scheme sc1 sc2

H1 〈0, 0, 0〉 〈0, 0〉 0
H2 〈2, 4, 2〉 〈−2, 2〉 −4
H3 〈2, 2, 5〉 〈0, 5〉 −5
H4 〈2, 0, 6〉 〈2, 6〉 −4

Table 4.1: Score of partial hypotheses in Example 17 using RASPAL’s scoring scheme 〈
covere+(H), covere−(H), length(H) 〉, sc1 : 〈 covere+(H) − covere−(H), length(H) 〉 and sc2 :
covere+(H) − covere−(H) − length(H)

• H4 =

 even(X)← succ(Y,X), not even(Y ).

odd(X)← succ(Y,X), even(Y ).



Table 4.1 shows that our scoring scheme would be able to assign an unique score to all partial

hypotheses, giving a clear preference of H4 over H3, H3 over H2, and H2 over H1. For sc1,

which would maximise the first element of the tuple and minimise the second element, its

highest preference is still given to H4, but the empty hypothesis H1 is preferred over H2 and

H3. As we want to find a partial hypothesis for further refinements, we would want H2 and H3

to be preferred over H1. Lastly, for sc2, which aims at maximising its score, it is clear that the

length(H) would need to be scaled down to lessen its impact on the scoring scheme. However,

the exact weight assigned to it will be dependent on the learning task, making it not as general

as RASPAL’s scoring scheme.

This initial phase of RASPAL can be summarised as a learning task.

Definition 4.5 (Learning Initial Partial Hypothesis). Let 〈E,B,M〉 be an inductive task and

i a limit on rule length. A set of rules H is an optimal partial hypothesis to the learning task

if and only if (i) H is compatible with M ; (ii) for all rules r in H: length(r) ≤ i; (iii) for all

other partial hypothesis H ′ with rule length not exceeding i: score(H) ≥ score(H ′)
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4.2 Refining a partial hypothesis

At each iteration RASPAL tries to improve the partial hypothesis by learning a change trans-

action, a set of refinement operations that can be applied on the current partial hypothesis.

This is done through the revision task 〈B∪H, IC〉 where B is the background knowledge of the

original learning task, H is a partial hypothesis and IC is the goal {examples←
∧
e ∈ E.;⊥ ←

not examples.} constructed from the examples of the original learning task. However, unlike

the typical revision task, RASPAL does not require the revised hypothesis to be a solution, but

only to be the best improvement of the previous partial hypothesis. RASPAL’s revision task

uses its scoring mechanism and a weaker form of constraint in order to select the refinement

that would produce a revised hypothesis with the highest score. A length limit is placed on

the learned partial hypotheses and refinements, and the solution to the learning task is learnt

by either finding a solution within the length limit or by applying one or more refinements to

a partial hypothesis.

Definition 4.6 (RASPAL refinement task). Given an inductive learning task 〈E,B,M〉 and

a partial hypothesis H, an improved partial hypothesis H ′ can be found through a hypothesis

refinement task 〈B ∪H, IC〉 and a given rule length limit i. The constraint IC for the task is

that the score of the revised hypothesis H ′ must be better than the score for the current partial

hypothesis {⊥ ← score(H ′) ≤ score(H).} and that the learnt refinement cannot add more than

i body literals to a rule.

Definition 4.7 (RASPAL refinement task). RASPAL refinement task 〈B ∪ H, IC〉 for the

inductive task 〈E,B,M〉 can be solved through another ILP task 〈∅, B ∪ r(H) ∪ IC,M ∪M∆〉

where r(H) is the revisable form of H and M∆ is the set of mode declarations for revision

operations applicable to r(H). The solution to the inductive task is a change transaction C

such that (i) C is compatible with M ∪M∆; (ii) score(H ′) > score(H) where H ′ = C ⊗ r(H);

(iii) there does not exist another change transaction C ′ compatible with M ∪ M∆ such that

score(C ′ ⊗H) > score(H ′).

This revision task is applied iteratively to a partial hypothesis until it becomes a solution of

the original inductive task. In the cases where a partial hypothesis cannot be improved, as the
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algorithm is operating under the assumption that the given task does not have noise, RASPAL

is recalled with i incremented by 1. Note that as ASPAL is complete, i cannot be incremented

indefinitely as RASPAL’s initial iteration will eventually be the same as using ASPAL to solve

the initially given learning task.

Each refinement task of RASPAL uses the scoring scheme as selection criteria for the learnt

change transaction. The scoring scheme is dependent on the size of the refined hypothesis

which differs from the conventional selection criteria of revision tasks where preference is given

to the change transaction with the least number of revision operations. To reflect this, the

weight given to each revision operation in RASPAL’s top theory is the difference in the size

of the original partial hypothesis and the revised partial hypothesis as a result of applying the

revision operation. Each extension/2 clause in the top theory is given a weight equal to the

number of body literals it contains, and each delete/2 fact is given the weight -1.

The selection criteria based on the size of the revised hypothesis makes ASPAL’s revisable

theory in Definition 3.18 inappropriate for RASPAL’s refinement tasks. ASPAL’s revisable

theory allows delete/2 facts to be learnt for any revisable rule even if it is deleted from the

revised theory by the learnt change transaction. By giving each delete/2 fact a negative score

and trying to minimise the overall sum of these weight, the delete/2 facts in the top theory

become overvalued compared to other learnable revision operations. The revisable theory in

Definition 3.18 is modified as follows so that it can be used for RASPAL.

Definition 4.8 (RASPAL Revisable theory). For each rule r given by hi ← bi,1, . . . , bi,n in

a given theory T , let vars(r) be the list of all variables in r and vars(bi,j) be the list of all

variables in a body literal bi,j. The following clauses are added to the revisable form r(T ):

• hi ← try(i, 1, vars(bi,1)), . . . , try(i, n, vars(bi,n)), extension(i, vars(ri))

• try(i, j, vars(bi,j))← bi,j, not delete(i, j), for each try(i, j, vars(bi,j))

• try(i, j, vars(bi,j))← delete(i, j), for each try(i, j, vars(bi,j))

• ⊥ ← delete(i, j), not extension(i, vars(ri)), for each delete(i, j)
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Figure 4.1: RASPAL learning process

The above definition of revisable theory impose a constraint on each delete(i, j), such that it

can only be learnt if the corresponding extension(i, vars(ri)) is also learnt. This means that

delete facts are only learnt for rules that are retained in the revised theory.

Figure 4.1 shows how the two phases are used together in RASPAL. Both phases use a mod-

ified version of ASPAL to learn the optimal partial hypothesis, for finding the initial partial

hypothesis in the first phase and for finding the change transaction that would result in the

highest scoring refined partial hypothesis in the second phase. The algorithm assumes that

there exists a non-empty solution to the given learning task. Thus in both phases RASPAL can

call itself with rule length limit i increased by 1. In the first phase i will be incremented if the

optimal partial hypothesis is empty as the second phase would lack a partial hypothesis to use

for refinement. In the second phase RASPAL can recall itself should the refined hypothesis not

have a higher score than the previous one. Again, as the algorithm assumes that there exists

a non-empty solution, the lack of improvement from the refinement suggests that the current
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value of i is too restrictive to find the solution.

4.2.1 Algorithm

Algorithm 1 RASPAL(P, i)
Require: P = 〈E,B,M〉
Output: 〈Hypothesis, Score〉, a solution to P and its score

1: let 〈Hypothesis, Score〉 =FindOptimalHypothesis(P, i)
2: if Hypothesis == ∅ then . Empty hypothesis found
3: return RASPAL(P, i+ 1)

4: loop
5: if Score ≥ 〈|{e|e ∈ E}|, 0,+∞〉 then . Solution found
6: return 〈Hypothesis, Score〉
7: 〈Hypothesis, Scorenew〉 =RefineHypothesis(Hypothesis, P, i+ 1)
8: if Scorenew ≤ Score then . Score does not improve
9: return RASPAL(P, i+ 1)

10: Score = Scorenew

The RASPAL main learning algorithm is shown in Algorithm 1. It takes as input an inductive

learning task P and a limit i on the length of the rules that could be learnt at each iteration.

The function FindOptimalHypothesis is the modified ASPAL algorithm for finding the

optimal partial hypothesis with rule length limited to i. Note that while for this work we have

used ASPAL, the framework of RASPAL could be used with other learning algorithms. Lines

1-3 is the first phase of RASPAL where the inital partial hypothesis is found and checked to

ensure that it is not empty. If an empty hypothesis is found RASPAL recalls itself with i

incremented by 1.

The loop in lines 4-10 is the second phase of RASPAL where the algorithm checks if the partial

hypothesis is a solution to the learning task in which case it is returned to the user. Otherwise

the partial hypothesis is refined using the RefineHypothesis function. The new hypothesis

and its score is checked against the current hypothesis, and if the new score does not improve

RASPAL is recalled with i incremented by 1. Otherwise the score is updated and the algorithm

returns to the beginning of the loop where the new partial hypothesis is checked to see if it is

a solution to the learning task.
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Algorithm 2 RefineHypothesis(Hypothesis, P, i)
Require: P = 〈E,B,M〉
Output: 〈Hypothesisnew, Scorenew〉, a refinement of Hypothesis of and its score

1: P ′ = 〈∅, B ∪ r(Hypothesis),M ∪M∆〉 = MakeRevisionTask(P,Hypothesis)
2: 〈Changes, Scorenew〉 = FindOptimalHypothesis(P ′, i+ 1)
3: Hypothesisnew = ApplyRefinement(Hypothesis, Changes)
4: return 〈Hypothesisnew, Scorenew〉

Algorithm 2 shows the function RefineHypothesis. Given a partial Hypothesis, the ILP

task P , and the clause length limit i, the algorithm returns a refined Hypothesis and its score.

This is done by creating a theory revision task P ′ using MakeRevisionTask function which

transforms P and Hypothesis into another inductive learning task for hypothesis refinement P ′

as described in Definition 4.6. Specifically, the conversion is done by generating the revisable

hypothesis r(Hypothesis) from the given partial hypothesis. The set of mode declaration is

extended to include the revision operators M∆. The function FindOptimalHypothesis is

then used to learn the change transaction Changes, with associated score Scorenew, as solution

to the revision task. The change transaction is then applied to the current hypothesis using the

ApplyRefinement function. This results in the revised hypothesis Hypothesisnew which is

returned together with its score. Note that, at line 2 in Algorithm 2, the function FindOpti-

malHypothesis is called with i+ 1. The increase in i is because for RefineHypothesis to

extend a clause in the current hypothesis up to i literals, it must be able to learn an extension

clause with i body literals, thus having length i+ 1. Furthermore, the integrity constraint IC,

that the refined hypothesis is an improvement of the previous one, for the hypothesis refinement

task is not imposed in the learning program, but by the check in line 8 of Algorithm 1 that the

refined hypothesis does have better score than the previous partial hypothesis.

Example 18. Consider the following task of learning the concept of even and odd numbers:
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Figure 4.2: Using RASPAL to learn even and odd with 1 as initial value of i.

B =



even(0).

num(0).

num(s(0)).

num(s(s(0))).

num(s(s(s(0)))).

num(s(s(s(s(0)))).

num(s(s(s(s(s(0)))))).

succ(X, s(X))← num(X), num(s(X)).

M =



modeh(odd(+num)).

modeh(even(+num)).

modeb(not even(+num)).

modeb(even(+num)).

modeb(succ(−num,+num)).



E =


even(s(s(s(s(0))))),

odd(s(s(s(s(s(0)))))),

not odd(0),

not even(s(0)),

not odd(s(s(s(s(0))))),

not even(s(s(s(0))))



Figure 4.2 shows the partial hypotheses found by RASPAL when solving the learning task.

RASPAL is first called with i = 1. It manages to find the initial partial hypothesis {even(X).;

odd(X).} and refines it to produce {even(X).; odd(X)← succ(Y,X).}, removing one negative

example coverage. However, with i at 1 it cannot find further improvements for the partial

hypothesis. RASPAL is recalled with i increased to 2. The last hypothesis for the previous

i value is relearned, but this time it can be further revised, into {even(X) ← succ(Y,X),

not even(Y ).; odd(X) ← succ(Y,X), even(Y ).}, which is a solution to the learning task.
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4.2.2 Property

The following theorem shows the completeness of our RASPAL approach. The proof builds

upon the completeness of ASPAL’s rule encoding, which is used in FindOptimalHypothesis

and RefineHypothesis.

Theorem 4.1 (Completeness of RASPAL). Let P = 〈E,B,M〉 be an inductive task and let H

be a set of solutions of P such that H is a non-empty set containing no empty solution of P .

Then RASPAL(P, iinput) returns a tuple 〈H,S〉 for a lower bound on iinput > 0, where H is a

solution H ∈ H, and S is the score of H.

Proof. As H is not empty and contains no empty solution, let Imax be the maximum length

of all rules in all solutions in H, and let L be the maximum solution size in H. Using well

founded induction on Imax− i0 we show that for all i0 > 0, RASPAL(P, i0) will return a tuple

〈H,S〉 where H ∈ H and S is the score of H. Let i0 be the input of RASPAL’s initial call

RASPAL(P, i0).

Inductive hypothesis: For all j such that Imax − j < Imax − i0, RASPAL(P, j) will return

a tuple a tuple 〈H,S〉 for some H ∈ H and S is the score of H.

Case 1: (Imax − i0 ≤ 0). Since a solution with maximum rule length equal to Imax exists

and FindOptimalHypothesis is assumed to be complete, then at line 1 of Algorithm 1 the

function FindOptimalHypothesis will find a non-empty solution, making the condition in

line 2 fail. As a non-empty solution has been found, it will be returned by line 6 of Algorithm

1.

Case 2: (Imax − i0 > 0). RASPAL could find a solution through 3 different paths.

1. A non-empty solution with maximum rule length less than Imax is found at line 1 of

Algorithm 1. The same as for Case 1, this solution will be return by line 6 of Algorithm

1.

2. In line 1 of Algorithm 1 a non-empty partial hypothesis is found and either line 3 or line 9

of Algorithm 1 is executed, resulting in RASPAL(P, i0 + 1) being called. In this case the
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inductive hypothesis can be applied as Imax−(i0+1) < Imax−i0, thus RASPAL(P, i0+1)

will return a solution and its score.

3. In line 1 of Algorithm 1 a non-empty partial hypothesis is found and both line 3 and

line 9 of Algorithm 1 are not executed. This means that in the loop in lines 4-10 the

refinements for the partial hypothesis which improve its score are found. There can only

be a finite number of refinements applied to the partial hypothesis, after which a solution

will be found (and returned by line 6) thus the score can only improve a finite number of

times. For RefineHypothesis to be repeatedly called, each time it is called the score

of the revised hypothesis has to be better than the previous hypothesis. The score can

improve by increasing the the number of positive example covered, decreasing the number

of negative examples covered, or decreasing the size of the hypothesis without worsening

the examples coverage. This can continue until a solution is eventually found with score

〈|{e|e ∈ E}|, 0, K〉, where K ≥ L, at which point the loop in lines 4-10 will terminate

and a solution and its score will be returned.

As the completeness of RASPAL is dependent on the completeness of the internal learning

algorithm it uses, at its worst (i equal to the maximum number of body literals in a solution)

it would be as complete as the internal algorithm.

4.3 Learning with noise

Algorithm 1 assumes that a solution to the given learning task exists. However, noise is a

natural part of real world problems. Noise can be introduced into the learning tasks in many

ways, such as errors introduced when collecting or recording information, or outliers in the data

collected. For this work we are concerned with noise in the examples of the learning task. In

the presence of noise we take an approach similar to Aleph [Sri07] that the learner should aim

to find a hypothesis with example coverage within a certain noise threshold.
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Definition 4.9 (Noise Threshold). A noise threshold over a set of examples E is a pair of

positive integers 〈e+
min, e

−
max〉, where e+

min ≤ |{e|e ∈ E}| and e−max ≤ |{e|not e ∈ E}|.

A hypothesis will cover the examples within the noise threshold if it covers at least e+
min number

of positive examples and at most e−max number of negative examples. A threshold is used, as

opposed to trying to maximise or minimise respectively the number of positive and negative

examples, to avoid over-fitting the hypothesis to the noisy examples. The threshold can be

used to define a learning task with noise.

Definition 4.10. [Brave Inductive Task with Noise] A brave inductive learning task with noise

data is a tuple 〈E,B,M,N〉 where E is set of grounded examples, B is a background theory

expressed as a normal logic program, M is a set of mode declarations, and N = 〈e+
min, e

−
max〉 is a

noise threshold, represented as a pair of integers. A solution to the learning task is a hypothesis

H, a set of normal clauses, such that (i) H is compatible with M ; and (ii) for at least one

model of B ∪H the following conditions hold:

1. |{e | B ∪H �B e, e ∈ E }| ≥ e+
min

2. |{e | B ∪H �B e, not e ∈ E }| ≤ e−max

Using this definition of a learning task, tasks without noisy examples can be learnt by setting

N equal to 〈|{e|e ∈ E}|, 0〉, capturing the case where the hypothesis must covers all positive

examples and none of the negative examples.

Algorithm 3 RASPALN is an adaptation of Algorithm 1 that takes as its input a learning task

with noise. The terminate condition in line 5 is changed so that any partial hypothesis with a

score better or equal to 〈e+
min, e

−
max,+∞〉 is considered solution to the learning task. Consider

Example 18, the learner could solve the task with i = 1 and accept {even(X).; odd(X) ←

succ(Y,X)} as a solution to the task should the noise threshold be set to 〈2, 3〉 as it cover the

two positive examples and three negative examples. Note that since RefineHypothesis uses

FindOptimalHypothesis to find the best refinement for the given partial hypothesis, any

refined hypothesis used in the test in line 5 will be the best scoring hypothesis for the previous
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Algorithm 3 RASPALN(P, i)
Require: P = 〈E,B,M, 〈e+

min, e
−
max〉〉

Output: 〈Hypothesis, Score〉, a solution to P and its score

1: let 〈Hypothesis, Score〉 =FindOptimalHypothesis(P, i)
2: if Hypothesis == ∅ then . Empty hypothesis found
3: return RASPALN(P, i+ 1)

4: loop
5: if Score ≥ 〈e+

min, e
−
max,+∞〉 then . Solution found

6: return 〈Hypothesis, Score〉
7: 〈Hypothesis, Scorenew〉 =RefineHypothesis(Hypothesis, P, i+ 1)
8: if Scorenew ≤ Score then . Score does not improve
9: return RASPALN(P, i+ 1)

10: Score = Scorenew

iteration. Therefore the returned solution and score are not necessary the first hypothesis found

which satisfies the noise threshold, as better scoring hypothesis can be returned provided it can

be found in the same iteration of the loop in RASPALN .

4.4 Note on RASPAL Implementation

RASPAL’s hypothesis scoring scheme is implemented by removing the ASPAL’s constraint on

examples coverage and replacing it with the following Clingo’s optimisation statements:

#minimise[r1 = weight(r1), . . . , rk = weight(rk)].

#minimise[e1, . . . , en].

#maximise[en1 , . . . , em].

where r1, . . . , ek are all rules in set of rules RM compatible with the learning task’s mode

declarations, e, . . . , en are positive examples, e, . . . , em are negative examples, and weight(r)

is length(r) if the head of the rule is not a revision operation, length(r) − 1 if the rule is an

extension operation, or −1 if the rule is a deletion operation.

Clingo will output a list of pairs of answer set and its score from the least to the most optimised,

with one answer set per score (to find all answer sets for each score the option “--opt-all”

must be used when calling Clingo). In order to find the highest scoring partial hypothesis or
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change transaction, RASPAL finds the answer set with highest score and discard the other

answer sets output by Clingo.

4.5 Related Work and Discussion

There are three other works that are most relevant to RASPAL. They are ASPAL [CRL11],

HYPER [Bra99], and ILED [KAP14].

RASPAL’s learning algorithm uses ASPAL as a black box for solving an ILP task. However,

this could potentially be substituted by another ILP algorithm, as long as it is a non-monotonic

system. Although ASPAL has been shown in [CRV+11] to be able to solve revision tasks, theory

revision itself is not an integral part of the learning algorithm.

Both HYPER and RASPAL are ILP systems that use theory refinement as part of their learning

algorithm. However, unlike HYPER, RASPAL is a non-monotonic system and it uses different

revision operations. While Hyper only allows for one body literal to be added when refining a

hypothesis, RASPAL’s limit is more flexible as this is dependent on the value of i given. In addi-

tion to this RASPAL allows for completely new rules to be added to the partial hypothesis, and

for a rule to be revised in multiple ways by a change transaction. RASPAL does not explicitly

have variables unification or refinement as part of its revision operations as mode declarations

are general enough for specifying such changes if they are needed. For instance, suppose an

integer X in a body literal p(X) of a rule q(X, Y ) ← p(X) could be refined into by changing

it into s(Y ), then this effect can be achieved by having mode declarations modeb(p(+int))

and modeb(p(s(+int))). This would allow RASPAL to revise the rule by deleting p(X) and

extending it with p(s(Y )).

ILED is a recently proposed incremental learning system based on XHAIL [Ray09]. It has

been designed to address the scalability problem of learning from continuously collected real

life temporal data. Like our work it uses hypothesis refinement and abductive reasoning for

learning, and is capable of learning nonmonotonic clauses. However, unlike RASPAL, which

uses theory revision as its learning mechanism, ILED uses revision for processing new knowledge
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and incorporating it into previous learnt concepts. Most of ILED’s revision operations are the

same as RASPAL’S apart from body literals deletion which ILED does not use. Arguably,

the effect of deleting body literals can be achieved by learning a new rule to replace the old

one. This approach is not as suitable for RASPAL which attempts to learn large hypotheses

by limiting the maximum rule length, thus at each iteration it would not be possible to learn

a rule with length exceeding the limit.

There have not been a lot of work on using ILP for learning tasks with noise, and those that exist

are for monotonic ILP. We have briefly mentioned that Alpeh [Sri07] uses a noise threshold.

Another way Aleph could tolerate noise is by setting an upper bound on the search time. Other

examples include LIME [MS97] which used Bayesian heuristics for finding a hypothesis that is

a most probable solution, and HYPER/N [OB10], an ILP system based on HYPER, where the

user can specify an approximate number of examples that are noise thus changing the criteria

for terminating the search, as well as set the maximum number of iterations at which point the

search is forced to terminate and the current partial hypothesis returned to the user. All of the

approaches mentioned require that some estimate of noise be given to the system prior to the

search.

Another approach for handling noise in the examples by non-monotonic systems is by allowing it

to learn exceptions, which will effectively let the learner find a complete and consistent solution

by categorising which examples are exceptions to the solution. For instance, in Examples 18,

the following mode declarations:

modeh(even exp(#num)). modeb(not even exp(+num)).

modeh(odd exp(#num)). mode(not odd exp(+num)).

could be added to the learning task. These mode declarations would allow the learner to

solve the learning task by defining even/1 as even(X) ← not even exp(X), and odd/1 as

odd(X) ← not odd exp(X), as well as learning the exceptions to those rules as a collection of

even exp/1 and odd exp/1 facts. Changes to the scoring scheme will need to be made in order

to discourage the learner to output solutions with many even exp/1 and odd exp/1 facts. This

could be achieved by giving higher preference to solutions with lowest number of head literals,
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or minimal number of even exp/1 and odd exp/1 facts. However, this method may lead to the

learner over-fitting the hypothesis to the examples.

In Chapter 7, we will evaluate the performance of RASPAL compared to ASPAL when used

with a large learning task, as well as an example for using RASPAL for learning tasks with

noise.



Chapter 5

Constraint-Driven Bias

In Chapter 3 we have described how different ILP systems can be grouped into top-down and

bottom-up systems. Furthermore, within both of these categories there are meta-level systems

that solve the inductive task using meta-level information. Like in [EFLP03] where meta-

level information was used for reasoning about rules’ structures, meta-level ILP systems could

provide mechanisms for controlling the search over the hypothesis space. In this chapter we

propose a concept of learning using constraint-driven bias, whereby the constraints over the

meta-level representation of a hypothesis space could be specified, and used to direct the search

towards a specific class of hypotheses that would otherwise not be computed using conventional

ILP heuristics such as Occam’s razor. Specifically, in this chapter we present a general language

and primitive predicates that can be used to express constraints over language bias, and define

the type of declarative heuristics that we can capture with this language. Later, in Chapter 6,

we will demonstrate how this notion of constraint-driven bias can be integrated into both

ASPAL and our RASPAL learning approaches, thus extending the capabilities of meta-level

ILP systems with structured declarative bias.

Example 19. Consider the following learning task:

74
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E =



even(s(s(0))). not even(s(s(s(0)))).

odd(s(s(s(0)))). not odd(0).

odd(s(s(s(s(s(0)))))). not odd(s(s(s(s(0))))).

not even(s(0)).



B =



even(0). num(s(s(s(s(0)))).

num(0). num(s(s(s(s(s(0)))))).

num(s(0)). succ(X, s(X))←

num(s(s(0))). num(X), num(s(X)).

num(s(s(s(0)))).



M =


modeh(even(+num)), modeh(odd(+num)),

modeb(even(+num)), modeb(not even(+num)),

modeb(not odd(+num)), modeb(succ(−num,+num))


The most concise solution is the non-stratified (see Definition 7.1 for stratified programs) H1 =

{even(X) ← not odd(X).; odd(X) ← not even(X).} since there exists a model which satisfies

the examples. Hence, by Occam’s Razor other solutions such as H2 = {even(X)←succ(Y,X),

not even(Y ).; odd(X) ← succ(Y,X), even(Y ).}, which is more informative and satisfiable by

all models, will be less preferred to H1 as they are less compressed than H1. We would like to be

able to specify to the learner that certain hypotheses, for instance H1, should not be considered

as solutions to the given learning task despite being included in the hypothesis space, making

the learner direct the search towards solutions that are more preferred in the given problem

domain; hence outputting H2 as the most concise solution of the task in the above example.

5.1 Constraint-Driven Learning

To characterise the class of (preferred) hypothesis described in Example 19, we use the notion of

acceptable hypothesis adapted from acceptable revision in theory revision [GRR10]. Informally,

an acceptable hypothesis is a hypothesis that is not only compatible with the given language
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bias and covers the examples of a learning task, but it also satisfies domain-dependent integrity

constraints over the language bias, given by the user as part of the learning task. The type

of constraints which are of interest to us are syntactic constraints over the hypothesis space.

To convey this syntactic information we introduce a set LC of eight primitives for expressing

domain-dependent constraints. These primitives assume that there exists a labelling scheme

λ/1 for the mode declarations such that for each given mode declaration m has a label lm.

Whichever labelling scheme the system uses should be made known to the user. For a rule

h ← b1, . . . , bn in the hypothesis space we will use the notation λ(h) as a shorthand for the

label of head mode declaration that h is compatible with, and similarly λ(bi) as a shorthand

for the label of body mode declaration that bi is compatible with.

We assume in this chapter that the label for each mode declaration is the predicate name and

the constant arguments that appear in the mode declaration itself. If the literal is negated then

its label is prefixed with not , so not p(X) will have the label not p. For example, the mode

declaration modeh(has cold(+person)) does not include any constant argument and will have

the label has cold($e), where $e is a special constant to indicate the absence of place-holders

for constants. Whereas modeb(symptom(+person,#condition)) does have a constant and will

have the label symptom(X) where X is a place-holder variable for a constant of type condition.

5.1.1 Primitives of LC

All primitives in LC can have either variables (denoted by Lh and Lb) or constants (denoted

by lh, lb and m) as their arguments. A variable may be of type head label variable (Lh),

and may be unified with a label of a head literal in a compatible rule, or of type body label

variable (Lb) that unifies with a label of a body literal in a compatible rule. A constant is

either a label lh or lb, referring to a specific head or body literal label respectively, or an integer

m. For simplicity, we assume that constraints are pre-processed such that all variable labels

are partially grounded with all possible labels such that the predicate names in the labels are

grounded, but the constant arguments in the labels are left ungrounded, producing multiple

versions of the constraint. The grounded primitive in LC and their meanings are as follows:
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1. in some rule(lh, lb) – the solution must include a rule with head literal labelled lh and

body including the literal labelled lb

2. in all rule(lh, lb) – all rules in the solution with head literal labelled lh must have a body

literal labelled lb

3. in same rule(lh, lb1 , lb2) – if the solution contain a rule with head literal labelled lh and

body literal labelled lb1 (or lb2), then it must also contain a body literal labelled lb1 (or

lb2)

4. in diff rule(lh1 , lb1 , lh2 , lb2) – in the solution, body literals labelled lb1 and lb2 must appear

in two different rules, with heads labelled lh1 and lh2 respectively

5. max body(lh,m) – in the solution rules with head literal labelled lh have at most x body

literals

6. min body(lh,m) – in the solution rules with head literal labelled lh have at least x body

literals

7. max head(lh,m) – the solution must include at most x rules with head labelled lh

8. min head(lh,m) – the solution must include at least x rules with head labelled lh

Definition 5.1 (Domain-dependent Constraint). Let B be a background knowledge expressed

in a language LB and M a set of mode declarations. A domain-dependent constraint in LC is

⊥ ← C,CB where C is a primitive of LC or its negated form and CB is a conjunction of literals

from the language LB.

Example 20. Suppose we have a background knowledge of different animal species and prop-

erties of each one. To learn a rule for classifying amphibians, a constraint such as

⊥ ← not in some rule(amphibian, not exception), animal(X), not amphibian(X)

could be used to force the learned rules to include a negated exception if there are species in the

background that are not amphibians. On the other hand if all rules must include exceptions

then the constraint
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⊥ ← not in all rule(Lh, exception)

can be used. This will be interpreted by grounding the constraint with all possible values for Lh,

creating multiple versions of the constraint, such as ⊥ ← not in all rule(amphibian, exception)

and ⊥ ← not in all rule(mammal, exception), for each possible head literal label.

We use the notation [P(RM)]ic to denote the set of hypotheses in the hypothesis space P(RM)

that satisfies an integrity constraint ic. The following definition states what it means for

a hypothesis, compatible with a given mode declaration M , to satisfy a domain-dependent

constraint.

Definition 5.2 (Satisfiability of Domain-dependent Constraint). Let B be a background knowl-

edge, H a set of normal clauses, λ/1 be a labelling scheme, and ⊥ ← C,CB a domain-dependent

constraint ic. Then H satisfies ic, denoted H ∈ [P(RM)]ic, if and only if either B ∪H 6|= CB

or one of the following cases holds:

1. in some rule(lh, lb)

• C = not in some rule(lh, lb) and there exists r ∈ H such that lh = λ(head(r)) and

b ∈ body(r) and λ(b) = lb

• C = in some rule(lh, lb) and there does not exist r ∈ H such that lh = λ(head(r))

and b ∈ body(r) and λ(b) = lb

2. in all rule(lh, lb)

• C = not in all rule(lh, lb) and either there is no rule r ∈ H such that lh = λ(head(r))

or for all r ∈ H such that lh = λ(head(r)) it is the case that b ∈ body(r) and λ(b) = lb

• C = in all rule(lh, lb) and there exists r ∈ H such that lh = head(r) and does not

exist b ∈ body(r) such that λ(b) = lb

3. in same rule(lh, lb1 , lb2)

• C = not in same rule(lh, lb1 , lb2) and either there is no r ∈ H such that lh =

λ(head(r)) and does not exist b1 ∈ body(r) and lb1 = λ(b1) nor b2 ∈ body(r) and
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lb2 = λ(b2), or for all r ∈ H such that lh = λ(head(r)) if there exists b1 ∈ body(r)

where lb1 = λ(b1) then there exists b2 ∈ body(r) where lb2 = λ(b2) (or if there exists

b2 ∈ body(r) where lb2 = λ(b2) then there exists b1 ∈ body(r) where lb1 = λ(b1))

• C = in same rule(lh, lb1 , lb2) and there exists r ∈ H such that lh = head(r) and does

not exist b1, b2 ∈ body(r) where lb1 = λ(b1) and lb2 = λ(b2)

4. in diff rule(lh1 , lb1 , lh2 , lb2)

• C = not in diff rule(lh1 , lb1 , lh2 , lb2) and there exists r1 ∈ H such that lh1 = λ(head(r1))

and b1 ∈ body(r1) where λ(b1) = lb1, and there must also exists r2 ∈ H such that

r1 6= r2, lh2 = λ(head(r2)) and b2 ∈ body(r2) where λ(b2) = lb2.

• C = in diff rule(lh1 , lb1 , lh2 , lb2) and for all r1 ∈ H such that lh1 = λ(head(r1))

and b1 ∈ body(r1) where lb1 = λ(b1), does not exist r2 ∈ H such that r1 6= r2,

lh2 = λ(head(r2)), and b2 ∈ body(r2) where lb2 = λ(b2).

5. max body(lh,m)

• C = not max body(lh,m) and for all r ∈ H if lh = λ(head(r)) then |body(r)| ≤ m

• C = max body(lh,m) and there exists a rule r ∈ H with lh = λ(head(r)) such that

|body(r)| > m

6. min body(lh,m)

• C = not min body(lh,m) and for all r ∈ H if lh = λ(head(r)) then |body(r)| ≥ m

• C = min body(lh,m) and there exists a rule r ∈ H with lh = λ(head(r)) such that

|body(r)| < m

7. max head(lh,m)

• C = not max head(lh,m) and for R = {r|r ∈ H and lh = λ(head(r))} then |R| ≤ m

• C = max head(lh,m) and for R = {r|r ∈ H and lh = λ(head(r))} then |R| > m

8. min head(lh,m)
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• C = not min head(lh,m) and for R = {r|r ∈ H and lh = λ(head(r))} then |R| ≥ m

• C = min head(lh,m) and for R = {r|r ∈ H and lh = λ(head(r))} then |R| < m

In addition to what primitive is used in the constraint, the class of acceptable hypotheses is also

dependent on whether the arguments in those primitives are constant or variable labels. The

following are some examples of how having variable head and body labels effects the constants.

• ⊥ ← not in some rule(lh, Lb). The constraint is grounded, creating many versions of it

with different groundings for Lb. The constraint ensures that rules with head literal

labelled lh have appeared with all body literals, possibly in multiple rules.

• ⊥ ← in some rule(Lh, Lb). The grounding of this constraint creates an in some rule/2

constraint for each pair of head literal label and body literal label, resulting in no rules

being able to contain any body literal. Acceptable hypotheses for the constraint can only

contain facts.

• ⊥ ← not in all rule(lh, Lb). If a rule has the head literal labelled lh then it contain all

body literals, as Lb makes the constraint be grounded by all possible body literal label.

• ⊥ ← not in all rule(Lh, Lb). Every rule in the hypothesis must contain all body literals

as in all rule/2 is applied to all pairs of head literal label and body literal label, or there

are no rules in the hypothesis.

• ⊥ ← in all rule(lh, Lb). For every possible body literal label there exists at least one rule

with head literal labelled lh that does not contain its corresponding body literal.

• ⊥ ← not in same rule(lh, Lb1 , Lb2). Rules in the hypothesis with head literal labelled lh

either does not contain any body literals, or it contains all body literals.

• ⊥ ← not in diff rule(lh1 , Lb1 , lh2 , Lb2). Either rules with head literal labelled lh1 and lh2

do not have body literals, or their body literals are mutually exclusive to each other.
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Equivalences

The primitives that we have introduced are not all orthogonal to each other. In this section we

will show some equivalences that we have identified, as well as give counter examples for pairs

that are false equivalences. Firstly we will consider equivalent pair of constraints.

1. Opposing cardinality constraints such as ⊥ ← not max head(lh,m) and ⊥ ←

min head(lh,m+ 1).

• From its definition, for a hypothesis H to satisfy the constraint ⊥ ←

not max head(lh,m), it must be true that for R = {r|r ∈ H and lh = head(r)}

the |R| ≤ m. In other words, there can be at most m rules in the hypothesis with

head literal labelled lh.

• Similarly for a hypothesis H to satisfy the constraint ⊥ ← min head(lh,m + 1), it

must be true that for R = {r|r ∈ H and lh = head(r)} the |R| < m+ 1. This is the

same as quantifying that |R| ≤ m. Therefore there can be at most m rules in the

hypothesis with head literal labelled lh.

Conditions for hypothesis H to satisfy any one of the constraints are reducible to

R = {r|r ∈ H and lh = head(r)} and |R| ≤ m, showing that they are equivalent to

each other.

2. Equivalences between sets of constraints. For example {⊥ ← not in some rule(lh, lb);⊥ ←

not in all rule(lh, lb)} and {⊥ ← not min head(lh, 1);⊥ ← not in all rule(lh, lb)}.

Both of these constraints use not in all rule(lh, lb) for one of their constraint, which will

either produce solutions with no rules with head literal labelled lh, or it could produce

solutions where all rules with head literal labelled lh will also contain a body literal

labelled lb. The constraint ⊥ ← not in some rule(lh, lb) serves the same purpose as

⊥ ← not min head(lh, 1) as they force the solution to contain at least one rule with head

literal labelled lh. Combining either of these with not in all rule(lh, lb), any solution
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which does not contain any rule with head labelled lh is no longer an acceptable solution.

Therefore, the acceptable solutions for both sets of constraints are sets of rules which

contain at least one rule with head literal labelled lh and for all of these rule, they will

have at least one body literal labelled lb.

Lastly, we will give counter example for false equivalence of some pairs of primitives that might

intuitively appear to be equivalent to one another:

1. Pairs of primitives that seem to be opposite to each other such as ⊥ ←

not in some rule(lh, lb) and ⊥ ← in all rule(lh, lb).

The constraint ⊥ ← not in some rule(lh, lb) requires for the hypothesis to contain at least

one rule with head literal matching the label lh and for that rule to contain a body literal

that matches the label lb. The constraint ⊥ ← in all rule(lh, lb) requires for the hypothe-

sis to contain at least one rule with head literal matching the label lh and for at least one of

these rule to not contain any body literal that matches the label lb. While there are some

overlap between hypotheses for the two, the hypotheses such as {h← b} where λ(h) = lh

and λ(b) = lb will satisfy ⊥ ← not in some rule(lh, lb) but not ⊥ ← in all rule(lh, lb).

2. The pair ⊥ ← not in same rule(lh, lb1 , lb2) and ⊥ ← in diff rule(lh, lb1 , lh, lb2).

The constraint ⊥ ← not in same rule(lh, lb1 , lb2) requires acceptable hypothesis to not

only have rules with head labelled lh that does not have body literals labelled both lb1 or

lb2 . On the other hand ⊥ ← in diff rule(lh, lb1 , lh, lb2) requires the existence of a rule with

head labelled lh containing either body labelled lb1 (or lb2) but lacks another rule with the

same head label and containing body labelled lb2 (or lb1). Thus the empty hypothesis ∅

will satisfy the first constrain, but not the second one.

3. ⊥ ← not in all rule(Lh, Lb) and ⊥ ← not in same rule(Lh, Lb1 , Lb2)

• Consider ⊥ ← not in all rule(Lh, Lb), the definition for ⊥ ← not in all rule(lh, lb)

is that either there is no rule r ∈ H such that lh = λ(head(r)) or for all r ∈ H such

that lh = λ(head(r)) it is the case that b ∈ body(r) and λ(b) = lb. Replacing the
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arguments by the variables Lh and Lb makes it so that the constraints is satisfiable

by a hypothesis that:

– Contains no rules as Lh unifies with every possible head labels or;

– All rules in the hypothesis contain all possible body literals.

Thus either the hypothesis is completely empty, or every rules in the hypothesis

contain all body literals.

• Now consider ⊥ ← not in same rule(Lh, Lb1 , Lb2), the definition of ⊥ ←

not in same rule(lh, lb1 , lb2) is that either there are no r ∈ H with lh = λ(head(r))

and only one of b1 ∈ body(r) or lb2 = λ(b1) or b2 ∈ body(r) ∧ lb2 = λ(b2), or for all

r ∈ H such that lh = λ(head(r)) if b1 ∈ body(r) and lb2 = λ(b1), then b2 ∈ body(r)

and lb2 = λ(b2), and vice versa. Replacing the arguments by the variables Lh, Lb1

Lb2 makes it so that the constraints is satisfiable by a hypothesis that:

– Contains no rules or;

– For every rule r with head literal labelled lh, r is either a fact or it contains all

body literals.

This gives us the counter example hypothesis {h} which would satisfy ⊥ ←

not in same rule(Lh, Lb1 , Lb2) but not ⊥ ← not in all rule(Lh, Lb).

5.1.2 Constraint-Driven Learning Task

Having defined the condition for a hypothesis to satisfy a domain-dependent constraint, we can

now introduce the notion of hypothesis space that satisfies the constraints.

Definition 5.3 (Constraint Biased Search Space). The constraint biased search space for a

given set IC of domain-dependent constraints, denoted [P(RM)]IC, is the intersection of the

constraint biased search spaces with respect to each domain-dependent constraint in IC:

[P(RM)]IC =
⋂

ic∈IC

[P(RM)]ic
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We can now define our notion of learning task with constraint-driven bias and acceptable

solutions.

Definition 5.4 (Inductive Learning Task with Constraint-driven Bias). An inductive learning

task with constraint-driven bias is a tuple 〈B,M,E, IC〉 where B is background knowledge, M

is a set of mode declarations, E is a set of examples and IC is a set of domain-dependent

constraints. H is an acceptable solution if and only if (i) B ∪ H �B
∧

e∈E e; and (ii) H ∈

[P(RM)]IC.

Consider the even and odd example at the beginning of this chapter. The primitive in all rule/2

can be used to specify the domain-dependent constraint ⊥ ← not in all rule(Lh, succ($e)), re-

quiring that all rules in the hypothesis contains a body literal labelled succ($e). The constraint

will rule out the hypothesis H1 = {even(X)← not odd(X); odd(X)← not even(X)}, making

the hypothesis H2 = {even(X)← succ(Y,X), not even(Y ).; odd(X) ← succ(Y,X), even(Y ).}

become the more preferred solution in the absence of H1.

5.2 Related Work

The notion of meta-level top theory for reasoning about hypotheses and for expressing con-

straints on answer sets is related to the approach in [EFLP03] where meta-level information is

used to express constraints and preferences. Somewhat related to our approach is the work in

[IDN13] where knowledge is represented as causal graphs and constraints are added by specify-

ing impossible connections between nodes. Similarly to the work in [IDN13], Metagol [ML13]

handles the problem of learning through a meta-interpreter top theories by lifting the entire

learning task into a second-order representation and making use of a meta-interpreter – theory

of allowable rule formats – for restricting the hypothesis space. Our work differs from these two

approaches in that we generally use meta-level representation only to represent the hypothesis

space and constraints, rather than the entire background knowledge and examples.

More closely related to our work is the notion of production fields for enforcing constraints

on the hypothesis [Ino04]: a tuple 〈L,C〉 could be expressed where L is a literal and C is the
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condition to be satisfied for L to be included in the hypothesis. As far as we are aware, in

past works, the condition in a production field has mainly been used to specify conditions like

length of the clause or depth of a term. Our approach is able to enforce similar constraints for

body declarations using the primitives max body/2 and min body/2. Furthermore, as shown

in our case studies in Section 7.2 more complex constraints across different clauses can also

be imposed using our approach. Other more loosely related approaches that have made use of

enhanced language bias to apply additional constraints to the hypothesis space include [BR98]

and [BR14]. They both add a cardinality constraint to each mode declaration to specify the

minimal or maximal number of times the mode declaration can be used in the hypothesis. Past

work that use integrity constraints in ILP includes [JB96], which focuses on how to check for

constraint satisfiability, and with respect to meta-level information only uses arguments’ types.

This differs from our work which directly reasons on the structure of the hypothesis, and allows

for the constraints to be defined over relationships between different rules.



Chapter 6

Learning Systems with

Constraint-Driven Bias

The previous chapter has defined a language for expressing domain-dependent constraints for an

ILP task. In this chapter we present their implementation in ASPAL and RASPAL. There are

three main factors to consider when implementing constraint-driven bias: i) how to represent

meta-level information about rules; ii) how to generate the meta-level information when the

rules are learnt; and iii) how to use this information to represent constraints defined using

primitives from LC.

6.1 Meta-level information

ASPAL’s rule encoding already assigns a unique label for each mode declaration, and uses it to

condense all information about a rule into a single atom. However, these labels are unsuitable

for defining constraints as they are arbitrary constants internally supplied by the system to

uniquely identify each mode declaration, of which the user has no knowledge of. For users to

be able to use the constraints they must be able to refer to specific mode declarations in the

constraints, which requires that the user know the specific mode declaration. This requires for

the user to know the labelling scheme used by the system. Furthermore, this means scheme

86
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should be meaningful to the user, for instance that it should take into account the constant

arguments of the labelled literal.

In this chapter, we will still use Lh and Lb to denote variables representing the labels of head

and body literals, but to represent our labelling scheme more accurately lh(Ch) with v(Ch) and

lb(Cb) with v(Cb) will be used to represent specific head and body labels. Ch and Cb are vectors

of argument variables in the literals, and v(C) represents the vector of the types of the constant

arguments when there are place-holders for constant arguments in the label.

Example 21. Consider the following mode declarations used in Example 15

M =

 modeh(has cold(+person)).

modeb(symptom(+person,#condition)).


Suppose the following background is given:

B =



person(alex).

person(beth).

condition(cough).

condition(fever).

condition(blister).

symptom(alex, blister).

symptom(alex, cough).

symptom(beth, fever).

symptom(beth, cough).


The labels for this set of mode declarations are has cold($e), and symptom(X) with type

condition(X). By having the constant argument as part of the label, specific constraints such

as ⊥ ← not in all rule(has cold($e), symptom(fever)) can be defined by the user. This con-

straint will only allow solutions where all rules with the head literal has cold(P ) will have the

body literal symptom(P, fever). Should the labels only use predicate names, it would make

these constraints impossible to specify.
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We propose a set of fresh predicates for representing the meta-level information of rules. These

predicates are is rule(Rid, Lh), and in rule(Rid, Lh, Lb, I) where Rid is a unique identifier, Lh

is the label of the rule’s head literal, Lb is the label of a body of the rule, and I is the index of

the body literal’s position in the rule. The unique identifier Rid of each rule is the predicate

rid(k, C) where k is an automatically generated number to uniquely representing each rule

template in ASPAL’s top theory, and C is the tuple of constant arguments in the rule.

The predicates is rule/2 is used to indicate that a rule with head literal labelled Lh is in

the solution, and in rule/4 indicates that a rule with head literal labelled Lh, body lit-

eral labelled Lb at position I is in the solution. Hence, given a rule in the hypothesis r =

h ← b1, . . . , bn that contains c constants, and has the unique number k, the associated meta-

level information µ(r) is the set of ground instances {in rule(rid(k, c), lh(ch), lb1(cb1), 1), . . .,

in rule(rid(k, c), lh(ch), lbn(cbn), n), is rule(rid(k, c), lh(ch))}.

Definition 6.1. Given a hypothesis H, its meta-level information, denoted by meta(H), is the

union of the meta-level information of its rules meta(H) =
⋃
r∈H

µ(r).

6.2 Extending Learning Systems with Meta-information

ASPAL

As shown in [Cor11] and captured by Algorithm 4, at the highest level ASPAL’s algorithm

consists of three steps: i) constructing the top-theory from the given mode declarations; ii) ab-

ducing the rule encodings of the hypothesis; and iii) post-processing the encodings to turn them

into rules. To extend ASPAL’s top theory with meta-level information, we add an additional

two steps in Algorithm 4 before line 3. These create an extended theory >M to deduce the

meta-level information of hypotheses as they are learnt, and translate the domain dependent

constraints into ASP integrity constraints later discussed in Section 6.3. This modification is

shown in Algorithm 5, which uses Algorithm 6 for generating an extended top theory >M .
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Algorithm 4 ASPAL(E,B,M)
Require: E examples; B background theory; M mode declarations
Output: H hypothesis

1: 〈>, A>〉 =TOP-THEORY(B,M)
2: ε =EXAMPLE-PRE-PROCESS(E)
3: ∆ = ABDUCE(B ∪ > ∪ ε, A, ∅)
4: H =POST-PROCESS(∆,M)

Algorithm 5 ASPALC(E,B,M, IC)
Require: E examples; B background theory; M mode declarations; IC domain dependent
integrity constraints
Output: H hypothesis

1: 〈>, A>〉 =TOP-THEORY(B,M)
2: ε =EXAMPLE-PRE-PROCESS(E)
3: >M =META-PRE-PROCESS(>,M)
4: t(IC) =TRANSLATE(IC)
5: ∆ = ABDUCE(B ∪ >M ∪ ε, A>, t(IC))
6: H =POST-PROCESS(∆,M)

Algorithm 6 META-PRE-PROCESS(>,M)
Require: > ASPAL top theory; M mode declarations
Output: >M extended top theory

1: M = ∅
2: for each h← b1, . . . , bn, rule(id(h← b1, . . . , bn), C̄) ∈ > with identifier k do
3: M =M∪ {n+ 1 {is rule(rid(k, C̄), lh(C̄h)), in rule(rid(k, C̄), lh(C̄h), lb1(C̄b1), 1), . . . ,
4: in rule(rid(k, C̄), lh(C̄h), lbn(C̄bn), n)} n+ 1← rule(id(h← b1, . . . , bn), C̄).}
5: return > ∪M
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META-PRE-PROCESS derives >M from >∪M where > is the ASPAL top-theory and the

theory M includes for each rule h ← b1, . . . , bn, rule(id(h ← b1, . . . , bn), C̄) in >, the following

rule, which relates each rule compatible with the learning task’s mode declaration with its

meta-level information.

n+ 1 {is rule(rid(k, C̄), lh(C̄h)), in rule(rid(k, C̄), lh(C̄h), lb1(C̄b1), 1),

. . . , in rule(rid(k, C̄), lh(C̄h), lbn(C̄bn), n)} n+ 1← rule(id(h← b1, . . . , bn), C̄).

During the computation of a hypothesis, if the encoding rule(id(h ← b1, . . . , bn), C̄) of a rule r

is abduced, then the above rule in M will enforce that the associated meta-level information

of r to be also inferred if r satisfies the domain-dependent constraints.

Example 22. Consider the following rules in the hypothesis space and top theory in Example

15.

RM =


has cold(X).

has cold(X)← symptom(X, Y ).

has cold(X)← symptom(X, Y ), symptom(X,Z).



> =


has cold(X)← rule((m1), $e).

has cold(X)← symptom(X, Y ), rule((m1,m2, 1), (Y )).

has cold(X)← symptom(X, Y ), symptom(X,Z), rule((m1,m2, 1,m2, 1), (Y, Z)).


The theory M corresponding to the above rules in the hypothesis space is:

M =



1{is rule(rid(1, ($e)), has cold($e))}1← rule((m1), $e).

2{is rule(rid(2, (Y )), has cold($e)),

in rule(rid(2, (Y )), has cold($e), symptom(Y ), 1)}2← rule((m1,m2, 1), (Y )).

3{is rule(rid(3, (Y, Z)), has cold($e)),

in rule(rid(3, (Y, Z)), has cold($e), symptom(Y ), 1),

in rule(rid(3, (Y, Z)), has cold($e), symptom(Z), 2)}3

← rule((m1,m2, 1,m2, 1), (Y, Z)).
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We can show that the meta-level information derived byM for each set of ASPAL rule encoding

∆ is unique. As a consequence of this, and with a labelling scheme that is able to differentiate

all the mode declarations, the meta-representation of a hypothesis can be used to identify each

individual literal in the hypothesis.

Lemma 1. Given a learning task with constraint-driven bias 〈B,M,E, IC〉, let >M = >∪M

be its extended top theory where > is ASPAL’s top theory for the learning task 〈B,M,E〉, and

M is the theory for deriving meta-level information of rules in the hypothesis space. For each

hypothesis H compatible with M , let ∆ be ASPAL’s encoding of H. Then, M∪∆ has a unique

answer set which is the set ∆ ∪meta(H).

Proof. Let P be the grounded program of M∪∆. For a set X of grounded atoms, the reduct

PX is the following program.

PX =



d. (for each d ∈ ∆)

n+ 1 {is rule(rid(k, c̄), lh(c̄h)), in rule(rid(k, c̄), lh(c̄h), lb1(c̄b1), 1), . . . ,

in rule(rid(k, c̄), lh(c̄h), lbn(c̄bn), n) } n+ 1 ← rule(id(h← b1, . . . , bn), c̄).

(for each rule(id(h← b1, . . . , bn), c̄))


Consider the aggregate:

n+ 1 {is rule(rid(k, c̄), lh(c̄h)), in rule(rid(k, c̄), lh(c̄h), lb1(c̄b1), 1),

. . . , in rule(rid(k, c̄), lh(c̄h), lbn(c̄bn), n)} n+ 1← rule(id(h← b1, . . . , bn), c̄).

which is defined over a set of exactly n+ 1 elements. The aggregate’s limits cause all elements

in the set to be in the answer set should rule(id(h ← b1, . . . , bn), c̄) be in the answer set. The

above aggregate can be expanded into the following definite clauses.

is rule(rid(k, c̄), lh(c̄h))← rule(id(h← b1, . . . , bn), c̄).

in rule(rid(k, c̄), lh(c̄h), lb1(c̄b1), 1)← rule(id(h← b1, . . . , bn), c̄).

. . .

in rule(rid(k, c̄), lh(c̄h), lbn(c̄bn), n)← rule(id(h← b1, . . . , bn), c̄).
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The above rules show that for any rule encoding enc(r) = rule(id(h← b1, . . . , bn), c̄), if enc(r)

is in the model of PX , then its meta-level representation µ(r) must also be included the model.

Each d ∈ ∆ is a grounded rule/2 atom, and is used with its corresponding aggregate in PX to

derive µ(r). Since the model of PX must include ∆, and each enc(r) ∈ ∆ requires that µ(r)

is also part of the model, the minimal model of PX is ∆ ∪
⋃

enc(r)∈∆

µ(r) which is equivalent to

∆ ∪meta(H).

Suppose there is another answer set S ofM∪∆ such that S 6= ∆∪meta(H). As ∆ is a set of

ground atoms, and M deduces meta-level information as a set, S = ∆ ∪Q where Q is a set of

meta-level representations made up from µ(r) for some rule r such that r is compatible to M .

If Q 6= meta(H) then there must exists a rule r such that µ(r) ⊆ Q but µ(r) * meta(H), or

µ(r) * Q but µ(r) ⊆ meta(H). meta(H) contains all meta-level information derived from ∆,

so Q must contain all of its elements meta(H) ⊂ Q, and there does not exist a rule r such that

µ(r) * Q but µ(r) ⊆ meta(H). If µ(r) is a subset of Q that is not also a subset of meta(H),

then there must also be enc(r) in S, and more specifically in ∆ as Q does not contain any

ASPAL rule encoding. However, all elements of ∆ are in ∆∪meta(H), so enc(r) must also be

in ∆ ∪meta(H), and the answer set S cannot exist.

RASPAL

ASPAL’s representation of meta-level information can also be used in RASPAL. Furthermore,

its method for generating meta-level information can also be used for newly learned rules using

the original learning task’s mode declarations. However, additional consideration is needed

when generating meta-level information of the revisable partial hypothesis and revision op-

erators in RASPAL. As the revisable hypothesis and revision operators are used together to

represent the revised rules, their meta-level information should be linked together. This means

that meta-level information of a revisable rule should be generated only when it is included

in the revised hypothesis, and what meta-level is added or removed from it depends on the

revision operations applied to the revisable hypothesis.

To make RASPAL generate meta-level information of a rule at the same time it is learnt, we
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need to consider the following three revision operations it uses:

1. Learn a new rule: The meta-level information can be generated using the same method

as ASPAL.

2. Extend an existing rule with new body literals : The extension operation learnt should

have the same head label as the rule it is extending in its meta-level representation. No

meta-level information should be generated for its head literal representing the operation

(extension/2), and all body literals should be linked to the head literal of the revisable

rule. The meta-level information of the revisable hypothesis should be generated alongside

the meta-level information of the extension operation.

3. Delete an existing body literal from a rule: All extension of the same revisable rule should

not include meta-level information of the deleted body literal.

4. Delete an existing rule: No meta-level information of the revisable rule should be gener-

ated.

Example 23. Given the revisable rules:

r(T ) =



father(X, Y )← try(1, 1, vars(Y )), extension(1, vars(X, Y )).

try(1, 1, vars(Y ))← female(Y ), not delete(1, 1).

try(1, 1, vars(Y ))← delete(1, 1).

⊥ ← delete(1, 1), 0{extension(1, vars(X, Y ))}0.


Suppose the following three alternative change transactions can be learnt:

• C1 =

{
extension(1, vars(X, Y ))← parent(X, Y ).

}

• C2 =

 extension(1, vars(X, Y )).

delete(1, 1).


• C3 = ∅

Let i and j be the unique identifiers of revision operations. The meta-level information that

should be generated with each change transaction is:
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• meta(C1) =


is rule(rid(i, ($e)), father($e)),

in rule(rid(i, ($e)), father($e), female($e), p1),

in rule(rid(i, ($e)), father($e), parent($e), 1)


Meta-level information of the revisable rule are generated as no deletions are learnt.

Information of the additional body literal is added as in rule(rid(i, ($e)), father($e),

parent($e), 1). The identifier i of the extension is used as identifier in all meta-level

information, indicating that they all represent the same revised rule. The index p1 is

used as the index of the old body literal to differentiate it from the ones added by the

extension.

• meta(C2) = {is rule(rid(j, ($e)), father($e))}

The head meta-level information is generated but the information for the body literal

female(Y ) is not as it has been deleted by the change transaction.

• meta(C3) = ∅

No meta-level information for the revisable rule is generated.

To tie the meta-level information of a revisable rule to its revision operations we will use an

auxiliary predicate partial meta(RID, i, lh(Ch)) whose arguments are the identifier RID of an

extension operation, the index i of the revisable rule, a label lh of the head literal of the revisable

rule, and the list Ch of the constant arguments in that head literal. The revisable theory needs

to be redefined to take meta-level information into account.

Definition 6.2 (Revisable theory with meta-level information). For each clause hi ← bi,1, . . . , bi,n

in a given theory T , let vars(r) be the list of all variables in a rule r and vars(b) be the list of

all variables in a body literal b. The following clauses are in its revisable form rM(T ):

• hi ← try(i, 1, vars(bi,1)), . . . , try(i, n, vars(bi,n)), extension(i, vars(ri)).

• is rule(RID, lhi
(C̄hi

))← partial meta(RID, i, lhi
(C̄hi

)), extension(i, vars(ri)).

• try(i, j, vars(bi,j))← bi,j, not delete(i, j). (for each try(i, j, vars(bi,j)))
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• try(i, j, vars(bi,j))← delete(i, j). (for each try(i, j, vars(bi,j)))

• ⊥ ← delete(i, j), {extension(i, vars(ri))}0. (for each delete(i, j))

• in rule(RID, lhi
(C̄hi

), lbi,j(
¯Cbi,j), pj)← partial meta(RID, i, lhi

(C̄hi
)),

extension(i, vars(ri)), not delete(i, j). (for each delete(i, j))

where pj is the index j prefixed by p.

The difference between r(T ) and rM(T ) is that rM(T ) will generate is rule/2 for its revisable

rule should the corresponding partial meta/3 be generated and extension/2 be learnt. Should

multiple extensions of a rule be learnt then it can still generate is rule/2 with different RID

as the different extensions would generate partial meta/3 with different identifications. rM(T )

will also generate in rule/4 for each body literal in a revisable rule should the corresponding

partial meta/3 be generated, extension/2 for the rule be learnt, and no delete/2 for that literal

be learnt. Again, the use of partial meta/3 makes it possible for the in rule/4 to be generated for

multiple revised rules. The function MakeRevisionTask used in Algorithm 2 is refined into

MakeRevisionTaskR which can generate meta-level information of the revisable hypothesis.

The meta-level information of both extension and delete rules in the top theory > cannot be

generated using the same method as the one used for generating meta-level information of

newly learnt rules in >. The theory M from Section 6.2 needs to be modified so that revi-

sion operations are taken into account. Each rule with head literal delete(i, j) in > does not

generate any meta-level information, so M should not generate any meta-level information

for each delete operation’s rule encoding. Let extension(i, vars(ri)) be an extension opera-

tion on the revisable rule r = h ← b1, . . . , bn. For each extension(i, vars(r)) ← b1, . . . , bn,

rule(id(extension(i, vars(r)) ← b1, . . . , bn), C̄) in >, the following rule is automatically added

to M.

n+ 1{partial meta(rid(k, C̄), i, lh(C̄h)), in rule(rid(k, C̄), lh(C̄h), lb1(C̄b1), 1),

. . . , in rule(rid(k, C̄), lh(C̄h), lbn(C̄bn), n)}n+ 1

← rule(id(extension(i, vars(r))← b1, . . . , bn), C̄).
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The theoryM is used in Algorithm 7, defined below, which is variant of Algorithm 6 such that

meta-level information of revision operations can be added, and will used to make ASPAL able

to generate different meta-level information for rules that are extension operations.

Algorithm 7 META-PRE-PROCESSR(>,M)
Require: > ASPAL top theory; M mode declarations
Output: >M extended top theory

1: M = ∅
2: for each h ← b1, . . . , bn, rule(id(h ← b1, . . . , bn), C̄) ∈ > with identifier k and h is not a

revision operation do
3: M =M∪ {n+ 1{is rule(rid(k, C̄), lh(C̄h)), in rule(rid(k, C̄), lh(C̄h), lb1(C̄b1), 1), . . . ,
4: in rule(rid(k, C̄), lh(C̄h), lbn(C̄bn), n)}n+ 1← rule(id(h← b1, . . . , bn), C̄)}
5: for each extension(i, vars(r)) ← b1, . . . , bn, rule(id(extension(i, vars(r)) ←
b1, . . . , bn), C̄) ∈ > with corresponding revisable rule h ← bp1, . . . , bpm and identifier
k do

6: M =M∪{n+ 1{partial meta(rid(k, C̄), i, lh(C̄h)), in rule(i(C̄), lh(C̄h), lb1(C̄b1), 1), . . . ,
7: in rule(i(C̄), lh(C̄h), lbn(C̄bn), n)}n + 1 ← rule(id(extension(i, vars(r)) ←
b1, . . . , bn), C̄)}

8: return > ∪M

Example 24. Given the partial hypothesis H = {father(X, Y )← female(Y ).}. Its revisable

representation with meta-level information is:

rM(H) =



father(X, Y )← try(1, 1, vars(Y )), extension(1, vars(X, Y )).

is rule(ID, father($e))← partial meta(ID, 1, father($e)),

extension(1, vars(X, Y )).

try(1, 1, vars(Y ))← female(Y ), not delete(1, 1).

try(1, 1, vars(Y ))← delete(1, 1).

⊥ ← delete(1, 1), 0{extension(1, vars(X, Y ))}0.

in rule(ID, father($e), female($), p1)← partial meta(ID, 1, father($e)),

extension(1, vars(X, Y )), not delete(1, 1).


Suppose this is used in RASPAL’s refinement step with the following mode declarations:
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rM(H) =



m1 : modeh(father(+person,+person)).

m2 : modeb(male(+person)).

m3 : modeb(female(+person)).

m4 : modeb(parent(+person,+person)).

m5 : modeh(extension(1, vars(+person,+person))).

m6 : modeb(delete(1, 1)).


The top theory > would contain the rules:

> =



. . .

father(X, Y )← male(X), rule((m1,m2, 1), $e).

. . .

extension(1, vars(X, Y ))← parent(X, Y ), rule((m5,m4), $e).

. . .

delete(1, 2)← rule((m6), $e).

. . .


Let i, j and k be identifiers, then M for the top theory would contain the rules:

M =



. . .

2{is rule(rid(i, ($e)), father($e)), in rule(rid(i, ($e)), father($e),male($e))}2

← rule((m1,m2, 1), $e).

. . .

2{partial meta(rid(j, ($e)), 1, father($e)), in rule(rid(j, ($e)), father($e),

parent($e))}2← rule((m5,m4), $e).

. . .


Algorithm 7 is in turns used in Algorithm 8 which, in addition to using

META-PRE-PROCESSR and its extended M, will convert IC into tRASPAL(IC), which

is added to the background theory of the abductive task. tRASPAL(IC) converts each integrity

constraint in IC into its ASP representation, but will convert all ASP constraints into rules.

tRASPAL(IC) is defined in Definition 6.3 below.

Definition 6.3. The set of clauses tRASPAL(IC) is constructed from the set of domain-dependent
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Algorithm 8 ASPALCR(E,B,M, IC)
Require: E examples; B background theory; M mode declarations; IC domain dependent
integrity constraints
Output: H hypothesis

1: 〈>, A>〉 =TOP-THEORY(B,M)
2: ε =EXAMPLE-PRE-PROCESS(E)
3: >M =META-PRE-PROCESSR(>,M)
4: t(IC) =TRANSLATE(IC)
5: ∆ = ABDUCE(B ∪ >M ∪ ε ∪ tRASPAL(IC), A>, ∅)
6: H =POST-PROCESS(∆,M)

constraints IC as follows.

• For each ici ∈ IC, let t(ici) be its ASP representation, and for each clause c in t(ici):

– If head(c) 6= ⊥ then c is in tRASPAL(IC);

– If head(c) = ⊥ then cdb ici ← body(c) is in tRASPAL(IC);

Effectively, each cdb ici represents a constraint that is violated as its inclusion in an answer set

means that the body literals of an integrity constraint are also in the answer set. This makes

it possible to find out the number of violated constraints from the answer set of the abductive

task, and incorporate it into RASPAL’s scoring scheme.

Definition 6.4 (Scoring partial hypotheses with constraints). Let 〈E,B,M, IC〉 be an ILP task

with constraint-driven bias and let H be a partial hypothesis in its hypothesis space P(RM).

The score of H is the tuple score(H) = 〈covere+(H), covere−(H), ic(H), length(H)〉, where

covere+(H) is the number of positive examples covered by H, covere−(H) is the number of

negative examples covered by H, ic(H) is the number of constraints in IC violated by H, and

length(H) is the total number of literals in H.

Definition 6.5 (Comparing partial hypotheses with constraints). Let 〈E,B,M, IC〉 be an ILP

task with constraint-driven bias and let H and H ′ be two (partial) hypotheses in P(RM). H is

better than H ′, denoted score(H) > score(H ′) if and only if one of the following cases applies:

− covere+(H) > covere+(H ′),

− covere+(H) = covere+(H ′) ∧ covere−(H) < covere−(H ′),
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− covere+(H) = covere+(H ′) ∧ covere−(H) = covere−(H ′) ∧ ic(H) < ic(H ′),

− covere+(H) = covere+(H ′) ∧ covere−(H) = covere−(H ′) ∧ ic(H) = ic(H ′) ∧ length(H) <

length(H ′)

The modified scoring scheme and Algorithm 8 are used to modify RASPAL’s learning algorithm

(Algorithm 1), and its hypothesis refinement algorithm (Algorithm 2)

Algorithm 9 RASPALC(P, i)
Require: P = 〈E,B,M, IC〉
Output: 〈Hypothesis, Score〉, a solution to P and its score

1: let 〈Hypothesis, Score〉 =FindOptimalHypothesisC(P, i)
2: if Hypothesis == ∅ then . Empty hypothesis found
3: return RASPALC(P, i+ 1)

4: loop
5: if Score ≥ 〈|{e|e ∈ E}|, 0, 0,+∞〉 then . Solution found
6: return 〈Hypothesis, Score〉
7: 〈Hypothesis, Scorenew〉 =RefineHypothesisC(Hypothesis, P, i+ 1)
8: if Scorenew ≤ Score then . Score does not improve
9: return RASPALC(P, i+ 1)

10: Score = Scorenew

Algorithm 10 RefineHypothesisC(Hypothesis, P, i)
Require: P = 〈E,B,M, IC〉
Output: 〈Hypothesisnew, Scorenew〉, a refinement of Hypothesis of and its score

1: P ′ = 〈∅, B ∪ rM(Hypothesis),M ∪M∆〉 = MakeRevisionTask(P,Hypothesis)
2: 〈Changes, Scorenew〉 = FindOptimalHypothesisC(P ′, i+ 1)
3: Hypothesisnew = ApplyRefinement(Hypothesis, Changes)
4: return 〈Hypothesisnew, Scorenew〉

Both Algorithms 9 and 10 use the function FindOptimalHypothesisC rather than Find-

OptimalHypothesis. FindOptimalHypothesisC uses the abductive task in Algorithm 8.

FindOptimalHypothesisC also use the following optimisation statements so that ASPAL

will search for the optimal hypothesis with respect to Definition 6.5, and another element is

added to RASPAL’s score as Defined in 6.4.

#minimise[r1 = weight(r1), . . . , rk = weight(rk)].

#minimise[cdb ic1, . . . , cdb icp].

#minimise[e1, . . . , en].
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#maximise[en1 , . . . , em].

where r1, . . . , ek are all rules in the set of rules RM compatible with the learning task’s mode dec-

larations, e, . . . , en are positive examples, e, . . . , em are negative examples, cdb ic1, . . . , cdb icp

are the constants that represent constraints ic1, . . . , icp in IC, and weight(r) is length(r)

if the head of the rule is not a revision operation, length(r) − 1 if the rule is an exten-

sion operation, or −1 if the rule is a deletion operation. The added optimisation statement

#minimise[cdb ic1, . . . , cdb icp] will prioritise the minimisation of the violated constraint below

the examples coverage, and above the minimisation of the hypothesis size.

Algorithm 9 takes as its input a learning task with constraint-driven bias instead of a typical

inductive learning task, and uses the scoring scheme from Definition 6.4. Its termination

condition on line 5 reflects the score comparison from Definition 6.5, making it returns only

hypotheses that satisfies all constraints in IC. Algorithm 10 has also been modified so that

rM/1 is used in place of r/1, in order to generate the meta-level information of any extended

revisable rules.

Similar to ASPAL, we can show the modified M will derive a unique set of meta-level rep-

resentations for solutions learnt by RASPAL. To do this we first reason about the meta-level

information of each revised partial hypothesis in the RASPAL refinement loop.

Lemma 2. Given a RASPAL refinement task expressed as an ILP task 〈E,B∪rM(H),M∪M∆〉,

where E are grounded examples, B is the background knowledge, rM(H) is the revisable form of

partial hypothesis H, M are the mode declarations of the original learning task, and M∆ are the

mode declarations for the refinement operations. Let >M = > ∪M be its extended top theory,

∆ be the ASPAL encoding corresponding to the change transaction C that is the solution of the

task, then M∪∆∪ rM(H)∪C has a unique answer set S such that ∆∪meta(C⊗ rM(H)) ⊂ S

and any is rule/2 and in rule/4 that are not in meta(C ⊗ rM(H)) are not in S.

Proof. The theory rM(H) can be partitioned into two programs r1
M(H) and r2

M(H), such that

r1
M(H) are parts of rM(H) with meta-level information and r2

M(H) are parts of rM(H) without

any meta-level information. Specifically, r1
M(H) contains only rules of the forms:
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• is rule(RID, lhi
(C̄hi

))← partial meta(RID, i, lhi
(C̄hi

)), extension(i, vars(ri)).

• in rule(RID, lhi
(C̄hi

), lbi,j(
¯Cbi,j), pj)← partial meta(RID, i, lhi

(C̄hi
)),

extension(i, vars(ri)), not delete(i, j). (for each delete(i, j))

We will use r1
M(H) for this proof as we are only concerned about the meta-level information in

rM(H). Furthermore, we will use the set C of change transaction derived from >∪∆ in place

of > ∪∆ to make the proof more readable.

Let P be the grounded program of M∪ r1
M(H) ∪∆ ∪ C. For a set X of grounded atoms, the

reduct PX is the following program.

PX =



1: d. (for each d ∈ ∆)

2: c. (for each c ∈ C)

3: is rule(rid, lhi
(chi

))← partial meta(rid, i, lhi
(chi

), extension(i, vars(ri)).

(for each pair of rid and lhi
(chi

), and its corresponding ri)

4: in rule(rid, lhi
((̄chi

)), lbi,j((̄cbi,j)), pj)← partial meta(rid, i, lhi
((̄chi

)),

extension(i, vars(ri)). (for each pair of rid and lhi
(chi

), and its corresponding

ri such that delete(i, j) is not in C)

5: n+ 1 {is rule(rid(k, c̄), lh(c̄h)), in rule(rid(k, c̄), lh(c̄h), lb1(c̄b1), 1), . . . ,

in rule(rid(k, c̄), lh(c̄h), lbn(c̄bn), n) } n+ 1 ← rule(id(h← b1, . . . , bn), c̄).

(for each h← b1, . . . , bn compatible with M)

6: n+ 1{partial meta(rid(k, c̄), i, lh(c̄h)), in rule(rid(k, c̄), lh(c̄h), lb1(c̄b1), 1), . . . ,

in rule(rid(k, c̄), lh(c̄h), lbn(c̄bn), n)}n+ 1

← rule(id(extension(i, vars(r))← b1, . . . , bn), c̄)

(for each ex← b1, . . . , bn where ex is an extension operator)


The two aggregates in lines 5 and 6 of PX specify that all elements of the set should be in

the model when the rule encoding in their respective body condition is in the model. The

minimal model of PX must include ∆∪C. As it contains C, From line 6 of PX , its model will

contain meta-level information for all body predicates in the extension operation. Line 6 also

makes an instance of partial meta/3 be included in the answer set for each extension operation.
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Each instance of partial meta/3, when combined with rules 3 and 4, will make the meta-level

representation of the head and (not deleted) body literals of the revisable rule be included in the

model of PX . In summary, the combination of lines 3, 4 and 5 of PX , an extension and deletion

operations of the same revisable rule will result in µ(r) ∪ {partial meta(rid(k, c, i, lh(ch))} be

included in the model where r is the revised rule with index i in the revisable hypothesis

such that its head literal is labelled lh, it has ch constant arguments, and k is identifier of the

extension rule.

Line 5 of PX is the same aggregate that was used for ASPAL’s meta-level representation which

we have shown in the proof of Lemma 1 that it will derive the unique meta-level representation

for newly learnt rules. The minimal model of PX is ∆ ∪ C ∪
⋃

enc(r)∈∆M

µ(r) ∪
⋃

enc(c)∈∆M

µ(c ⊗

r(H)) ∪ Q where r is a newly learnt rule, c is a learnt revision operation, and Q is the set of

partial meta/3 instances. The combination of
⋃

enc(r)∈∆M

µ(r)∪
⋃

enc(c)∈∆M

µ(c⊗ r(H)) corresponds

to the meta-level representation of the revise rules meta(C⊗rM(H)), thus ∆∪meta(C⊗rM(H))

must be a subset of the model. All is rule/2 and in rule/4 instances in the minimal model of PX

can only be in
⋃

enc(r)∈∆M

µ(r)∪
⋃

enc(c)∈∆M

µ(c⊗r(H)), and as this corresponds to meta(C⊗rM(H)),

then is rule/2 and in rule/4 that do not describe the refined hypothesis cannot be in the minimal

model of PX .

Lemma 3. Given a learning task with constraint-driven bias 〈E,B,M, IC〉. Let H be a hypoth-

esis that can be generated by RASPALC, then meta(H) will also be generated by RASPALC.

Proof. The hypothesis H can be generated by either Algorithm 8 as RASPAL’s initial partial

hypothesis, or by the refinement loop in RASPALC . For the former, there is no revisable

partial hypothesis in the background knowledge nor any extension rules that can be learnt,

reducing M to be the same as ASPAL’s version. By Lemma 1 we know that meta(H) must

have been generated alongside H. For the latter, if H is the product of RASPALC ’s refinement

loop, then we can apply Lemma 2 that meta(H) must have been generated alongside H.



6.3. Translation of LC 103

6.3 Translation of LC

Using the meta-level predicates we can translate constraints in IC defined using primitives

of LC into an ASP representation. This translation is given in Table 6.1 for each constraint

← Pi, CBi ∈ IC. The translation in Table 6.1 introduce the new predicate ic condi into the

translation of most constraints, and is used as a mechanism for negating multiple literals, and

negating literals with unbounded variables. Each ic condi represents a predicate name that is

used solely for the corresponding← Pi, CBi, making the translation of different constraints not

overlap when they are in the same program. Note that we assume the labels to all be grounded

before their encoding.

Primitive predicate ← Pi, CBi Declarative semantics of ← Pi, CBi

⊥ ← not in some rule(lh(Ch), lb(Cb)), ic condi ← in rule(Rid, lh(Ch), lb(Cb), I),

v(Ch), v(Cb), CBi. v(Ch), v(Cb).

⊥ ← not ic condi, CBi.

⊥ ← in some rule(lh(Ch), lb(Cb)), ic condi ← in rule(Rid, lh(Ch), lb(Cb), I),

v(Ch), v(Cb), CBi. v(Ch), v(Cb).

← ic condi, CBi.

⊥ ← not in all rule(lh(Ch), lb(Cb)), ⊥ ← is rule(Rid, lh(Ch)), v(Ch),

v(Ch), v(Cb), CBi. not ic condi(Rid, lh(Ch)), CBi.

ic condi(Rid, lh(Ch))← v(Ch), v(Cb),

in rule(Rid, lh(Ch), lb(Cb), I).

⊥ ← in all rule(lh(Ch), lb(Cb)), ic condi,1 ← is rule(Rid, lh(Ch)), v(Ch),

v(Ch), v(Cb), CBi. not ic condi,2(Rid, lh(Ch)), v(Cb).

ic condi,2(Rid, lh(Ch))← v(Ch), v(Cb),

in rule(Rid, lh(Ch), lb(Cb), I).

⊥ ← not ic condi,1, CBi.

⊥ ← not in same rule(lh(Ch), lb1(Cb1), lb2(Cb2)), ic condi,1(Rid, lh(Ch))← v(Ch), v(Cb1),

v(Ch), v(Cb1), v(Cb2), CBi. in rule(Rid, lh(Ch), lb1(Cb1), I1).

ic condi,2(Rid, lh(Ch))← v(Ch), v(Cb2),

in rule(Rid, lh(Ch), lb2(Cb2), I2).
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⊥ ← ic condi,1(Rid, lh(Ch)),

not ic condi,2(Rid, lh(Ch)),

v(Ch), CBi.

⊥ ← not ic condi,1(Rid, lh(Ch)),

ic condi,2(Rid, lh(Ch)),

v(Ch), CBi.

⊥ ← in same rule(lh(Ch), lb1(Cb1), lb2(Cb2)), ic condi,1(Rid, lh(Ch))← v(Ch), v(Cb1),

v(Ch), v(Cb1), v(Cb2), CBi. in rule(Rid, lh(Ch), lb1(Cb1), I1).

ic condi,2(Rid, lh(Ch))← v(Ch), v(Cb2),

in rule(Rid, lh(Ch), lb2(Cb2), I2).

⊥ ← ic condi,1(Rid, lh(Ch)), v(Ch),

ic condi,2(Rid, lh(Ch)), CBi.

⊥ ← not in diff rule(lh1(Ch1), lb1(Cb1), ic condi ← v(Ch1), v(Ch2), v(Cb1), v(Cb2),

lh2(Ch2), lb2(Cb2)), in rule(Rid1, lh1(Ch1), lb1(Cb1), I1),

v(Ch1), v(Ch2), v(Cb1), v(Cb2), CBi. in rule(Rid2, lh2(Ch2), lb1(Cb2), I2),

Rid1 6= Rid2.

⊥ ← not ic condi, CBi.

⊥ ← in diff rule(lh1(Ch1), lb1(Cb1), ic condi,1(Rid)← v(Ch1), v(Cb1),

lh2(Ch2), lb2(Cb2)), in rule(Rid, lh1(Ch1), lb1(Cb1), I1).

v(Ch1), v(Ch2), v(Cb1), v(Cb2), CBi. ic condi,2(Rid)← v(Ch2), v(Cb2),

in rule(Rid, lh2(Ch2), lb2(Cb2), I2).

⊥ ← ic condi,1(Rid1), ic condi,2(Rid2),

Rid1 6= Rid2, CBi.

⊥ ← not max body(lh(Ch), x), v(Ch), CBi. ⊥ ← is rule(Rid, lh(Ch)), v(Ch),

x + 1{in rule(Rid, lh(Ch), Lb, I)}, CBi.

⊥ ← max body(lh(Ch), x), v(Ch), CBi. ic condi ← is rule(Rid, lh(Ch)), v(Ch),

x + 1{in rule(Rid, lh(Ch), Lb, I)}.

⊥ ← not ic condi, CBi.

⊥ ← not min body(lh(Ch), x), v(Ch), CBi. ⊥ ← is rule(Rid, lh(Ch)), v(Ch),

0{in rule(Rid, lh(Ch), Lb, I)}x− 1, CBi.

⊥ ← min body(lh(Ch), x), v(Ch), CBi. ic condi ← is rule(Rid, lh(Ch)), v(Ch),
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0{in rule(Rid, lh(Ch), Lb, I)}x− 1.

⊥ ← not ic condi, CBi.

⊥ ← not max head(lh(Ch), x), v(Ch), CBi. ⊥ ← x + 1{is rule(Rid, lh(Ch))}, v(Ch), CBi.

⊥ ← max head(lh(Ch), x), CBi. ic condi ← x + 1{is rule(Rid, lh(Ch))}, v(Ch), .

⊥ ← not ic condi, CBi.

⊥ ← not min head(lh(Ch), x), CBi. ⊥ ← 0{is rule(Rid, lh(Ch))}x− 1, v(Ch), CBi.

⊥ ← min head(lh(Ch), x), CBi. ic condi ← 0{is rule(Rid, lh(Ch))}x− 1, v(Ch).

⊥ ← not ic condi, CBi.

Table 6.1: Declarative semantics of primitives of LC

To show the correctness of the translation, we first reason that the set of all hypotheses gen-

erated by a learning task with constraint-driven bias is a subset of those generated by the

equivalent learning task without the constraints. This ensures that the addition of the meta-

constraints will not effect the learnt hypothesis’ coverage of the examples. We can then reason

translation by translation that the learnt hypothesis satisfies the meta-constraints with respect

to Definition 5.2.

Proposition 1. Given a learning task with constraint-driven bias LT1 = 〈B,M,E, IC〉. Let

LT2 = 〈B,M,E〉 be an equivalent learning task without constraints. If a hypothesis H is an

solution to LT1 generated by ASPALc , then it is also a solution to LT2 generated by ASPAL.

Proof. Consider Algorithm 4, the ASP program used to solve the abductive task is Π1 = B∪>∪ε

with abducible A>, where ε is the integrity constraint from the examples E. Similarly for

Algorithm 5, the ASP program is Π2 = B ∪ >M ∪ ε ∪ t(IC) with abducible A>. The only

differences between them would be >M and IC. M derives the meta-representation of H,

represented by is rule/2 and in rule/4 which are used as body literals in t(IC) but are in no

other parts of the ASP program excluding M and t(IC). If IC = ∅ then t(IC) = ∅. In such

case, for every answer set A1 of Π1, corresponding to hypothesis H of LT1, there is an set

A2 = A1 ∪meta(H) which is an answer set of Π2. Thus, LT1 have at most as many hypotheses

as LT2. When IC 6= ∅, some of these hypotheses can be ruled out by the constraints, but
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neither M nor IC can generate additional hypotheses. This is because both programs shares

the same set of abducibles A> thus can only generate at most the same number of hypotheses,

and limited by the same constraint from examples ε.

The next proposition shows that the ASP encoding of an hypothesis from a given constraint

biased search space satisfies the ASP encoding of the given domain-dependent constraints.

While the following proposition if for ASPALc the same reasoning is applicable for RASPALc

as satisfying a domain dependent constraint in ASPALc requires that the corresponding ASP

constraints be satisfiable, meaning that the body of the constraint is not satisfiable, where for

RASPALc the corresponding cdb ici must be unsatisfied which also requires for the same body

to not be satisfied.

Proposition 2. Given a learning task with constraint-driven bias 〈B,M,E, IC〉, let ε be the

integrity constraint constructed from its examples. Let Π = B ∪ >M ∪ ε ∪ t(IC) be the ASP

program in ASPALc abduction step with abducibles A>, and h(S) = {enc−1(s)|s ∈ S}. For

each solution H of the learning task, there exists a corresponding answer set A of Π such that

∆ ∪meta(H) = A \B \ > \ ε \ t(IC) and h(∆) = H.

Proof. There are two conditions H must satisfy if it is to be a solution of 〈B,M,E, IC〉:

1. B ∪H �B E

2. H ∈ [P(RM)]IC

The first condition is given by Proposition 1 as H must also be a solution of 〈B,M,E〉. By

Definition 5.3 for the second condition to be satisfied, then it is required that H ∈ [P(RM)]ic

for all ic ∈ IC and for each meta-constraint ic = ⊥ ← C,CB. As defined in Definition 5.2,

H ∈ [P(RM)]ic holds if:

1. B ∪H 6|= CB

2. The constraint ⊥ ← C holds
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In Table 6.1, CB is always conjoined to the transformed constraint in denial form, thus for all

answer set A of Π, CB /∈ A which satisfies the first condition. For the second condition we’ll

need consider the different ways that ⊥ ← C can be satisfied. Note that we will use rid, rid1

and rid2 to indicate some grounded rule identification, i, i1 and i2 for some ground body literal

index, and will write lh(Ch) = λ(h) to indicate that for some θ, θlh(Ch) = λ(h).

• C = not in some rule(lh(Ch), lb(Cb)): by Definition 5.2 H ∈ [P(RM)]ic if and only if there

exists r ∈ H such that lh(Ch) = λ(head(r)) and b ∈ body(r) and λ(b) = lb(Cb). Consider

t(C), for A to be an answer set of Π then in rule(rid, lh(Ch), lb(Cb), i) must be in A for some

rid and i. By Lemma 1, it must be the case that h(∆) has at least a rule with head literal

h, and contains body literal b such that lh(Ch) = λ(h) and lb(Cb) = λ(b).

• C = not in all rule(lh(Ch), lb(Cb)): by Definition 5.2 H ∈ [P(RM)]ic if and only if either there

is no rule r ∈ H such that lh(Ch) = λ(head(r)) or for all r ∈ H such that lh(Ch) = λ(head(r))

it is the case that b ∈ body(r) and λ(b) = lb(Cb). Consider t(C), then if is rule(rid, lh(Ch)) ∈

A then it must be true that in rule(rid, lh(Ch), lb(Cb), i) ∈ A. By Lemma 1, it must be the

case that if h(∆) has at a rule with head literal h such that lh(Ch) = λ(h) then at least one

of its body literal is b such that lb(Cb) = λ(b).

• C = not in same rule(lh(Ch), lb1(Cb1), lb2(Cb2)): by Definition 5.2 H ∈ [P(RM)]ic if and only

if either there are no r ∈ H with lh(Ch) = λ(head(r)) and b1 ∈ body(r) and lb1(Cb1) = λ(b1)

nor b2 ∈ body(r) and lb2(Cb2) = λ(b2), or for all r ∈ H such that lh(Ch) = λ(head(r)) if

b1 ∈ body(r) and lb1(Cb1) = λ(b1) then b2 ∈ body(r) and lb2(Cb2) = λ(b2), and vice versa.

The translation t(C) ensures that if in rule(rid, lh(Ch), lb1(Cb1), i1) ∈ A, then in rule(rid,

lh(Ch), lb2(Cb2), i2) ∈ A and vice versa. This means that by Lemma 1, if h(∆) has a rule with

head literal h such that lh(Ch) = λ(h) and has body literal b1 where lb1(Cb1) = λ(b1), then it

must also has another body literal b2 such that lb2(Cb2) = λ(b2), and similarly for the reverse.

The translation is also satisfiable by having neither any in rule(rid, lh(Ch), lb1(Cb1), i1), nor

in rule(rid, lh(Ch), lb2(Cb2), i2) in A, covering the case when neither body literals are in the

hypothesis.

• C = not in diff rule(lh1(Ch1), lb1(Cb1), lh2(Ch2), lb2(Cb2)): by Definition 5.2 H ∈ [P(RM)]ic if
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and only if there exists r1 ∈ H such that lh1(Ch1) = λ(head(r1)) and b1(Cb1) ∈ body(r1) where

λ(b1) = lb1(Cb1), and there must also exists r2 ∈ H such that r1 6= r2, lh2(Ch2) = λ(head(r2))

and b2(Cb2) ∈ body(r2) where λ(b2) = lb2(Cb2). For the ASP translation, the constraint is

satisfiable if ic cond ∈ A, and this can only be the case if in rule(rid1, lh1(Ch1), lb1(Cb1), i1) ∈

A and in rule(rid2, lh2(Ch2), lb2(Cb2), i2) ∈ A. By Lemma 1, h(∆) has a rule with head literal

h1, such that lh1(Ch1) = λ(h1), and has a body literal labelled lb1 , such that lb1(Cb1) = λ(b1),

as well as another rule with head literal h2, such that lh2(Ch2) = λ(h2), and body literal b2,

such that lb2(Cb2) = λ(b2).

• C = not max body(lh(Ch),m): by Definition 5.2 H ∈ [P(RM)]ic if and only if for all r ∈

H if lh(Ch) = λ(head(r)) then |body(r)| ≤ m. Consider t(C), the number of grounded

in rule(Rid, lh(Ch), Lb, I) atom in A cannot be greater than m + 1. Thus by Lemma 1, all

rules in h(∆) with head literal h and lh(Ch) = λ(h) cannot have more than m number of

body literals.

• C = not min body(lh(Ch),m): by Definition 5.2 H ∈ [P(RM)]ic if and only if for all r ∈

H if lh(Ch) = λ(head(r)) then |body(r)| ≥ m. Consider t(C), the number of grounded

in rule(Rid, lh(Ch), Lb, I) atom in A cannot be from 0 to m− 1. Thus by Lemma 1, all rules

in h(∆) with head h and lh(Ch) = λ(h) must have at least m number of body literals.

• C = not max head(lh(Ch),m): by Definition 5.2 H ∈ [P(RM)]ic if and only if for R =

{r|r ∈ H and lh(Ch) = λ(head(r))} then |R| ≤ m. Consider t(C), the number of grounded

in rule(Rid, lh(Ch), Lb, I) atoms in A cannot be greater than x + 1. By Lemma 1, all the

number of rules in h(∆) with head h and lh(Ch) = λ(h) cannot be over m.

• C = not min head(lh(Ch),m): by Definition 5.2 H ∈ [P(RM)]ic if and only if for R =

{r|r ∈ H and lh(Ch) = λ(head(r))} then |R| ≥ m. Consider t(C), the number of grounded

in rule(Rid, lh(Ch), Lb, I) atoms in A cannot be m − 1 or fewer. By Lemma 1, there is at

least m number of number of rules in h(∆) with head literal h such that lh(Ch) = λ(h).

• C = in some rule(lh(Ch), lb(Cb)): by Definition 5.2 H ∈ [P(RM)]ic if and only if there does

not exists r ∈ H such that lh(Ch) = λ(head(r)) and b ∈ body(R) and λ(b) = lb(Cb). For the
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translation t(C) to satisfy the constraint it must be that ic cond /∈ A, and consequently for

all Rid and I, in rule(Rid, lh(Ch), lb(Cb), I) /∈ A. By Lemma 1, h(∆) does not have any rule

with head h and contains body literal b such that lh(Ch) = λ(h) and lb(Cb) = λ(b).

• C = in all rule(lh(Ch), lb(Cb)): by Definition 5.2 H ∈ [P(RM)]ic if and only if there ex-

ists r ∈ H such that lh(Ch) = λ(head(r)) and for all b /∈ body(r), λ(b) 6= lb(Cb). For

the translation t(C), to satisfy the constraint ic cond1 must be in A, which means that

there exists in rule(Rid, lh(Ch)) ∈ A such that ic cond2(Rid, lh(Ch)) /∈ A and consequently

in rule(Rid, lh(Ch), lb(Cb), I) /∈ A for all I. By Lemma 1, h(∆) has a rule with head literal h

that does not have any body literal b such that lh(Ch) = λ(h) and lb(Cb) = λ(b).

• C = in same rule(lh(Ch), lb1(Cb1), lb2(Cb2)): by Definition 5.2 H ∈ [P(RM)]ic if and only

if there exists r ∈ H with lh(Ch) = head(r) that does not have both b1 ∈ body(r) such

that λ(b1) = lb1(Cb1) and b2 ∈ body(r) such that λ(b2) = lb2(Cb2). Consider t(C), both

ic cond1(Rid, lh(Ch)) and iccond2(Rid, lh(Ch)) must not be in A for all Rid. This can only be

the case if both in rule(Rid, lh(Ch), lb1(Cb1), I1) /∈ A and in rule(Rid, lh(Ch), lb2(Cb2), I1) /∈ A

for all Rid, I1 and I2. By Lemma 1, h(∆) cannot have a rule with head literal h, such that

labelled lh(Ch) = λ(h), which have body literals b1 and b2 such that lb1(Cb1) = λ(b1) and

lb2(Cb2) = λ(b2).

• C = in diff rule(lh1(Ch1), lb1(Cb1), lh2(Ch2), lb2(Cb2)): by Definition 5.2 H ∈ [P(RM)]ic if

and only if for all r1 ∈ H such that lh1(Ch1) = λ(head(r1)) and b1 ∈ body(r1) where

lb1(Cb1) = λ(b1), does not exist r2 ∈ H such that r1 6= r2, lh2(Ch2) = λ(head(r2)), and

b2 ∈ body(r2) where lb2(Cb2) = λ(b2). From the translation t(C), for all different Rid1

and Rid2, ic cond1(Rid1) /∈ A and ic cond2(Rid1) /∈ A. This can only be true if both

in rule(Rid1, lh1(Ch1), lb1(Cb1), I1) and in rule(Rid2, lh2(Ch2), lb2(Cb2), I2) are not in A for all

I1 and I2. By Lemma 1, h(∆) cannot have a pair of different rules such that one has the

head literal h1 and body literal b1, such that lh1(Ch1) = λ(h1) and lb1(Cb1) = λ(b1), and the

other has head literal h2 and body literal b2 such that lh2(Ch2) = λ(h2) and lb2(Cb2) = λ(b2).

• C = max body(lh(Ch),m): by Definition 5.2 H ∈ [P(RM)]ic if and only if for all r ∈ H if

lh(Ch) = λ(head(r)) then |body(r)| > m. Consider t(C), to satisfy the constraint ic cond



110 Chapter 6. Learning Systems with Constraint-Driven Bias

must be in A. There are at least m+ 1 number of grounded in rule(Rid, lh(Ch), Lb, I) atom

in A. By Lemma 1, h(∆) contains a rule with head literal h and lh(Ch) = λ(h) with more

than m number of body literals.

• C = min body(lh(Ch),m): by Definition 5.2 H ∈ [P(RM)]ic if and only if for all r ∈ H if

lh(Ch) = head(r) then |body(r)| < m. Consider t(C), to satisfy the constraint ic cond must

be in A. There are m − 1 or fewer grounded in rule(Rid, lh(Ch), Lb, I) atom A. By Lemma

1, h(∆) contains has a rule with head literal h and lh(Ch) = λ(h) with less than m number

of body literals.

• C = max head(lh(Ch),m): by Definition 5.2 H ∈ [P(RM)]ic if and only if for R = {r|r ∈

H and lh(Ch) = head(r)} then |R| > m. Consider t(C), to satisfy the constraint ic cond

must be in A. There are at least m + 1 number of grounded is rule(Rid, lh(Ch)) atom in

A. By Lemma 1, h(∆) contains more than m number of rules with head literal h such that

lh(Ch) = λ(h).

• C = min head(lh(Ch),m): by Definition 5.2 H ∈ [P(RM)]ic if and only if for R = {r|r ∈

H and lh(Ch) = head(r)} then |R| < m. Consider t(C), to satisfy the constraint ic cond must

be in A. For this to be the case, there must be m− 1 or fewer grounded is rule(Rid, lh(Ch))

atom in A. By Lemma 1, h(∆) contains less than m number of rules with head literal h and

lh(Ch) = λ(h).

This concludes how constraint-driven bias can be implemented in ASPAL and RASPAL. In

Section 7.2 we will describe some examples of learning tasks, and provide the solution learnt

using constraint-driven bias.



Chapter 7

Application and Evaluation

This chapter presents the evaluation and application of RASPAL and learning with constraint-

driven bias. The RASPAL evaluation is shown in terms of its performance with respect to

HYPER, another ILP system that learns by hypothesis refinement, and ASPAL, the ILP system

whose scalability issue was the motivation of RASPAL. All three systems are compared using

learning tasks that highlight the differences between them. In addition, ASPAL and RASPAL

are compared on a task for learning a user’s behaviour on a mobile phone from data collected

from a real user. The mobile example is constructed from data gathered by our research group

as the ILP community currently lacks datasets of non-monotonic learning tasks. Two versions

of this task are used; the first is a learning task without noise to show the difference in the

maximum size of the learning programs of ASPAL and RASPAL, the second is a learning task

to show how ASPAL and RASPAL react to noise in the examples. For this version, ASPAL

has been modified so that noise threshold can be used as part of its terminating condition. In

addition to this, we have also evaluated the performance of ASPAL and RASPAL with respect

to two different ASP systems in order to show that the scalability problem is independent to the

ASP systems’ implementation, making it essential that there are other directions for making

learning systems more scalable in ASP.

The second part of this chapter shows applications for learning with constraint-driven bias. The

first of these applies constraint-driven bias to learning stratified programs, and shows how the

111
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domain-dependent constraints can help reduce the number of solutions to a such a learning task.

The second learning task tackles an open problem in software engineering, namely revision of

a goal model. This application shows that minimality of the scoring function, when computing

a revised model, is not sufficient for learning the desired solutions. Thus domain-dependent

constraints can be used as additional criteria for the solution.

Note that the full description of the learning tasks used in this chapter can be found in Appendix

A.

7.1 RASPAL evaluation

Comparison against ASPAL and HYPER on Simple Examples

We first present the comparison of RASPAL against ASPAL and HYPER [Bra99] using simple

synthesised examples. ASPAL has been chosen as the scalability issue in ASP based systems

was the motivation for RASPAL. The objective is to confirm that RASPAL does manage to

solve learning tasks that are unsolvable by ASPAL. HYPER has been chosen for comparison

as, like RASPAL, it uses hypothesis refinement as part if its learning algorithm.

As mentioned in Section 3.3, HYPER is a top down ILP system that learns through hypothesis

refinement. However, as it is a monotonic system the learning tasks that we have used for this

comparison neither have negation in the background knowledge nor in the solution in order to

ensure that they are expressible in all three systems. For the same reason, all learning tasks

did not include list structure. Note that all experiments were run on a 3.40GHz Intel Core i7

PC. The HYPER code was run on Sicstus Prolog. The HYPER implementation used was from

Chapter 19 of [Bra01] and can be found at http://www.pearsoned.co.uk/highereducation/

resources/bratkoprologprogrammingforartificialintelligence3e/. The weights used in

HYPER’s scoring were k1 = w2 = 10 and w1 = k2 = 1.

Table 7.1 shows the time taken by the three systems to find the solution of each task. For

HYPER and RASPAL the number of refinements taken to find the solution was recorded. The

http://www.pearsoned.co.uk/highereducation/resources/bratkoprologprogrammingforartificialintelligence3e/
http://www.pearsoned.co.uk/highereducation/resources/bratkoprologprogrammingforartificialintelligence3e/
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ILP Task System Time (s) Refinements Rules generated

mother HYPER 0 2 20

RASPAL 8× 10−3 2 1, 18, 19

ASPAL 6× 10−3 37

nonealike HYPER 0.610 168 9325

RASPAL 9.142 4 1, 102, 103, 104, 105

ASPAL − − −
highroll HYPER − − −

RASPAL 3.6× 10−2 1 1, 10, 5, 38

ASPAL 1.4× 10−2 19

Table 7.1: Some experimental results of running HYPER, ASPAL and RASPAL.

last column of the table records the number of rules generated by each system. For HYPER

this is the number of rules it has generated while searching for the solution, and for RASPAL

and ASPAL this is the number of rule templates in the top theory. Note that for RASPAL the

number of rules per refinement step is also recorded. This number increases during iterative

revisions within the same value of i, and when i is incremented by RASPAL the number will

decrease as the Algorithm 1 is restarted. For some tasks such as the highroll learning task,

RASPAL has longer computation time than ASPAL as it has the additional overhead from the

revision. This includes the extra revisable theory within the background knowledge and the

additional mode declarations for the revision operators, which in turn cause an increase in the

rule space. This explains the high increase in the number of rules in RASPAL between the

first two iterations. However, further iterations, such as in the mother and nonealike learning

tasks, often have much smaller increase in rules once the mode declarations for expansions have

already been added and i has not been increased.

In the mother learning task, the number of rules in RASPAL is smaller than the number in AS-

PAL. For the nonealike experiment, where the expected solution is the rule nonealike(A,B,C,D,E)

← diff(A,B), diff(B,C), diff(C,D), diff(D,E) the ASPAL search space becomes very big as

there are many ways to link the variables using the diff/2 predicate. ASPAL eventually hits

the memory bound while grounding the program, and no solution is computed. RASPAL (ex-

ecuted with i = 1) avoids this problem as the top theory is more compact as learned changes
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never have more than one body literal. As for HYPER, many more refinements are computed

than RASPAL. This is due to HYPER’s scoring function. For instance, if the number of literals

and negative examples are weighted equally, a solution that covers one negative example and

has three literals has the same score as another that covers three negative examples and has

one literal only, assuming they have the same number of variables. Our score schema separates

these components avoiding such problems.

In the highroll learning task, HYPER cannot learn the solution. This is due to HYPER’s

refinement operator only adding one body literal per each refinement step. The solution to

this learning task is highroll(A,B) ← add(A,B,C), greaterThan(C, 7), which requires both

add(A,B,C) and greaterThan(C, 7) to be added at the same time in order to reduce the

negative examples coverage. As adding just one of add(A,B,C) or greaterThan(C, 7) will

increase the size of the hypothesis without improving its score, HYPER rejects such a solution

a priori.

The results of the three learning tasks show that although RASPAL sometimes takes longer to

compute a solution compared to the other two systems, it is the only system that is capable of

solving all three learning tasks.

Comparison against ASPAL on real example

Next we compare RASPAL against ASPAL using a real life learning task larger than the toy

learning tasks in the previous section. In this task, a mobile user’s past behaviours were

recorded by an application installed on their phone. The aim of the learning task is to use the

recorded behaviour to learn the circumstances in which the user will accept an incoming call.

Calls that are accepted have a minimal duration otherwise they are assumed to be rejected by

the user. Noise therefore occur in the way calls have been grouped between accepted (positive

examples) and rejected (negative examples).

The recorded information includes the time and date a call was received, the length of time

the user talked to the caller, the application used by the user when the call was received, and
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System M ax program size M ax grounding size

ASPAL (d = 3) 540kB 1580MB

RASPAL (i = 1) 35kB 296MB

Table 7.2: Maximum size of the grounded programs when learning the task using ASPAL and
RASPAL.

information on the status of the phone such as the battery level or whether the screen was

on and active. With the large amount of information gathered, there are many possible mode

declarations that could be used to learn the concept, amounting to large hypothesis space. The

meta-theory of ASPAL easily becomes so large that the solver could not successfully solve the

task before it runs out of memory.

The learning task that we used included information of a user’s mobile usage pattern from one

week of his or her activity. For the first part of this comparison some examples were omitted

so that the learning task is without noise. The following is an example solution of the learning

task:

H =



accept(A,B,C,D,E, F,G,H, I)←

user is using app(A,B, googletalk), not is charging(I),

screen on(G).

accept(A,B,C,D,E, F,G,H, I)←

high battery(F ), afternoon(B).

accept(A,B,C,D,E, F,G,H, I)←

user is using app(A,B, googletalk), high volume(D),

not low battery(F ).


The maximum size of the grounded programs produced by Gringo (the grounder used in Clingo)

using the ASP program generated by ASPAL and RASPAL is shown in the Table 7.2. AS-

PAL’s grounded program is roughly five times of that of RASPAL, as should be expected when

RASPAL can solve the task with i limited to 1 while ASPAL will require all rules with lengths

matching those in the solution to be included within its meta theory.

Figure 7.1 shows the maximum size of the grounded program produced by ASPAL and RASPAL
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Figure 7.1: Maximum grounding size of ASP programs produced by ASPAL and RASPAL. The squares
around the two points in the graph indicate the actual number of body literals required to solve the task by
each system.

respectively for the noiseless mobile example with different maximum number of body literals in

their top theories. As we have previously mentioned, RASPAL has the additional overhead of

mode declarations for its refinement operators. While the graph might suggest that RASPAL

produces larger ASP programs to solve the same task, that is not the case. Recall that for

this example the task can be solved by RASPAL with just 1 body literal, while ASPAL would

require 3 body literals. The advantage of RASPAL is that even if ASPAL need to use a high

number of body literals to solve a learning task, RASPAL can solve those tasks with much

lower number of body literals.

As the upper bound of the size of the top theory (Equation 4) is more affected by the number of

body literals as opposed to the number of mode declarations. RASPAL’s theory refinement has

led to an increase in the size of top theory due to the increase in the head mode declarations, this

is a linear increase. However, what RASPAL achieved by using theory refinement is reducing

the increase in the number of body literals, which is responsible for the exponential increase in

the size of the top theory.
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To apply RASPAL and ASPAL to the learning task without any examples omitted we have

modified ASPAL’s termination condition so that the noise constraint is included. Recall that

ASPAL defines a constraint over the examples to ensure that the abduced solutions cover all

the examples. We want to relax this constraint so that the learner can also abduce hypotheses

within the noise threshold. This can be achived by replacing its constraint from the examples,

{⊥ ← not examples.; examples←
∧
e ∈ E.}, with two constraints constructed from the noise

threshold 〈e+
min, e

−
max〉, and negative examples E:

⊥ ← 0 {e | e ∈ E} e+
min − 1.

⊥ ← e−max + 1 {e | not e ∈ E} |{e | not e ∈ E}|.

These constraints use the ASP choice rule to specify that the solution to the task cannot cover

less than e+
min number of positive examples, and that the number of negative examples covered

cannot be more than e−max.

The mode declarations for the learning task were also changed so that the learner is not learning

general rules for all calls, but instead will learn different rules for each different caller. The

following is an example of a solution for the learning task where the third argument of each

rule is an identification number of an incoming number.

H =


accept(A,B, 3, C,D,E, F,G,H)← low battery(E), screen on(F ).

accept(A,B, 4, C,D,E, F,G,H)← not low battery(E).

accept(A,B, 8, C,D,E, F,G,H).


We have conducted a leave-one-out cross validation for both ASPAL and RASPAL, with the

cross-validation performed for various different noise thresholds: 10%, 30%, 60% and 80%

positive examples coverage, which correspond respectively to different percentage values of

e+
min, and 20%, 40%, 60% and 80% negative examples coverage, which correspond to different

percentage values of e−max. For RASPAL we have also considered the cases of 0% and 100% for

negative example and 100% for positive examples coverage.

For each noise threshold and for each system we have calculated the sensitivity and specificity

of the learner. The sensitivity is the number of correctly classified positive examples divided by
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Figure 7.2: ASPAL sensitivity
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Figure 7.3: RASPAL sensitivity

the total number of positive examples, and the specificity is the number of correctly classified

negative examples divided by the total number of negative examples. Figures 7.2 and 7.3 show

the sensitivity of ASPAL and RASPAL. Figure 7.2 shows that changing the noise threshold has

no effect to the sensitivity of ASPAL, as no positive examples were noisy, so by prioritising the

coverage of positive examples ASPAL was able to find a solution that cover all of them for all

noise thresholds. Figure 7.3 shows that RASPAL’s sensitivity increases as the percentage value

of e+
min increases (more positive examples covered), or as the e−max decreases. This is because

RASPAL performes iterations of learning, with limited rule length at each iteration, and will

iteratively improve a low scoring partial hypothesis, bringing it closer to the desired threshold

at each iteration. With low positive and high negative examples coverage it can return the

smallest rule that satisfies the noise threshold. In this most extreme case the solution may be a

single rule with a head but no body literals, so that any positive examples needing a different

head literal would be wrongly classified (see lowest dark corner of the graph in Figure 7.3).

Higher positive examples coverage (higher e+
min) will often lead to an increase in the number of

iterations needed by the algorithm to find the optimal solution, thus increasing the sensitivity of

the solutions learned. Similarly, lowering the negative examples coverage (lower e−max), directs

the learner to compute solutions that cover less negative examples, and therefore may cause

further refinements of partial hypothesis, thus increasing the number of iterations and the

sensitivity of the optimal solution. Figures 7.4 and 7.5 show the specificity of ASPAL and

RASPAL. In both cases, the specificity decreases as the threshold on the positive examples
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Figure 7.5: RASPAL specificity

coverage increases. This is to be expected due to the learner trying to over fit the solution to

the positive examples. In the case of RASPAL, the specificity decreases also at the end of small

value of e+
min (number of positive examples required to be covered is small). This is because,

due to the low threshold, the learner can return the hypothesis found in the early iteration

without having to refine it, thus generating solutions with low scores and specificity. To this

end, ASPAL’s specificity does not change for the same reason as pointed out above for constant

sensitivity value.

Lastly, we have selected some of the toy examples and the mobile example to compare the largest

ASP program produced by RASPAL and ASPAL for each task when run on two different ASP

solvers Clingo [GKK+11] and DLV [LPF+06]. This has been done to check the compatibility

between the solver and the RASPAL top theory, and to show that the grounding problem of

the learning program is not exclusive to a specific solver.

Learning Task ASPAL RASPAL

DLV Clingo |>| DLV Clingo |>|+ r(H)

odd/even 17.0kB 11.3kB 23 172.9kB 159.2kB 65+5=70

nonealike - - 251176 35.7MB 40.5MB 105+10=115

train 932.8kB 518.0kB 118 126.4MB 131.0MB 238+20=258

mobile - 11.2GB 1200 - 1.9GB 85+18=103

Table 7.3: Maximum size of the ground program when solving a problem using RASPAL and
ASPAL, and the number of ungrounded clauses in their top theories. For RASPAL r(H) is the
number of clauses in the revisable hypothesis added to the background.
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ASPAL and RASPAL already generate ASP programs compatible to Clingo, and the DLV

compatible version has been created by modifying these programs by: (i) replacing Clingo’s

aggregate rules by DLV’s disjunctive rules that allows for more than one of the disjunctive

element to be true as described in Section 2.5.2; (ii) using aggregate functions instead of the

limits on a choice rule for limiting the number of rules in the solution, and defining the constraint

on the abducible delete/2 literals; and (iii) replacing optimisation statements over examples

coverage by soft constraints. While both solvers return the same answer set, when solving

a learning task by RASPAL on DLV, additional post-processing is required to find the most

optimal partial hypothesis. To compare the sizes of the ground programs in Table 7.3, their

sizes were found by making the solvers ground the program but not solve it. Notice that for

the mobile learning task, the size of the ground programs are noticeably larger than those

in Table 7.2. This difference is due to DLV not having the opting for obtaining its internal

representation of the grounded program, the results in Table 7.3 are the two systems’ “readable”

grounded programs (the option “-instantiate” for DLV, and “-t” for Clingo) as opposed to

the internal representation in Table 7.2 from applying Clingo’s grounder (Gringo 3 [GKKS11])

on the learning task.

Regarding DLV and Clingo, the results in Table 7.3 show that for smaller learning tasks there is

not much difference in the size of the ground programs produced by the solvers. When Clingo

cannot ground the program for the nonealike task, neither could DLV. Moreover for large

problems that can still be ground by Clingo such as the mobile task, DLV can neither solve

nor ground the ASP programs. For this reason and easier processing due to the optimisation

statements in Clingo, we find Clingo to be more suitable for solving our ASP programs.

Regarding the number of ungrounded clauses in the top theory of each learning task, note that

for RASPAL the value r(H) denotes the number of clauses of the revisable hypothesis added

to the background knowledge. For the learning tasks odd/even and train both the number of

clauses in the top theory and the size of the ground programs of RASPAL are much larger than

those of ASPAL. This is because RASPAL has an overhead from the revisable theory and the

additional mode declarations used to learn the revision operations, making it less efficient than

ASPAL for solving smaller learning tasks. For the nonealike learning task, the top theory of
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ASPAL is very large as there are many permutations of the variables in the learnable clauses.

Similarly, the mobile learning tasks also have large ASPAL’s top theories and have much large

domain knowledge than other tasks. For both of these tasks RASPAL’s hypothesis refinement

can significantly reduce the size of the program’s grounding. This reduction by RASPAL is

due to the difference in the maximum clause size of the solution and the minimum value of

i required to learn it. In the learning tasks odd/even and train, which have maximum clause

sizes of, respectively, 3 and 4, the minimum values of i required to learn these tasks are 2

and 3 respectively. This is because their solutions’ body literals are highly dependent on one

another, thus smaller values for i cannot be used. This makes the overhead of refining the

partial hypotheses greater than the advantage of reducing the top theory’s maximum clause

size. On the other hand, for the nonealike and mobile learning tasks with maximum clause sizes

of 5 and 4 respectively, there are less dependencies between the body literals in their solutions,

and for both tasks RASPAL was able to find a solution using i = 1. The bigger difference

between i and maximum clause size allows the learning task to be solved by a much smaller

top theory compared to ASPAL.

7.2 Constraint-Driven Bias

We will first demonstrate how constraint-driven bias can be used by applying it for learning

stratified programs. This shows how additional meta-level information can be added to the

learning task and incorporated into the constraints. The second learning task in this section is

for learning revision of a goal model. This gives an example application for constraint-driven

bias.

Stratified Programs

Stratified programs are a class of logic programs where restrictions are placed on using negated

predicates recursively, thus ensuring that the program has a unique minimal model. Stratified

programs are defined in [ABW88] as follows:
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Definition 7.1 (Stratified Program). A program P is stratified if there exists a partition

P = P1, . . . , Pn such that for 1 ≤ i ≤ n all the following conditions hold:

1. If a positive body literal p occurs in Pi then its definition, that is all of the body literals

in clauses with head literal p, is contained within
⋃

j≤i Pj.

2. If a negative body literal q occurs in Pi then its definition is contained within
⋃

j<i Pj.

P1 can be empty.

Each of these partitions P1, . . . , Pn is referred to as a stratum of P . For a predicate to be used as

a body literal in a stratum it must either be defined in previous strata, or if used positively its

definition can also be contained in the same stratum. Note that a literal without any definition

can always be used in any strata.

The problem of learning stratified programs appears to be scarcely explored with [Che94] being

the only work we know of. In [Che94] the full algorithm for learning stratified programs was not

presented, and from the method described the stratified program is generated from a definite

program, with negation introduced in order to minimise the size of the learnt solution. Using

constraint-driven bias gives a more general method for learning stratified programs, with the

constraints being based on the definition of stratified programs. We assume that the given

learning task’s background knowledge is stratified and we want to compute a solution such

that the union of the solution and given background knowledge is stratified and proves the

examples.

At the highest level the domain-dependent constraints for guiding the search to stratified pro-

grams are as follows:

⊥ ← in some rule(H,B), is positive(B), stratum(H,L), not defined(B,L).

⊥ ← in some rule(H,B), is negative(B), stratum(H,L), not predefined(B,L).

⊥ ← not min head(H, 1), stratum(H,L), L 6= 1.

The first constraint checks that positively occurring body literals are defined within the same or

lower stratum than the head stratum. The second constraint checks that negatively occurring
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body literals are defined in a lower stratum than the head stratum, and the third constraint

ensures that literals exclusively used in the body (i.e. are not used in any head) are in the lowest

stratum (stratum 1). Auxiliary predicates can be defined to help reasoning about basic concepts

related to stratification. These include facts about labels of positive literals using a predicate

is positive/1, labels of negative literals using a predicate is negative/1, and facts for linking

the pair of positive and negative labels of literals using the predicate negative positive pair/2.

A notion of strata can be expressed using the ASP choice rule to ensure that each literal in

the hypothesis is assigned a unique stratum; the predicate level asserts an integer limit on the

number of strata allowed in a hypothesis, and the number of levels needed is at most equal to

the number of predicates that can appear in the hypothesis:

1{stratum(H,L) : level(L)}1←is positive(H).

⊥ ←stratum(H,L1), stratum(H,L2), L1 6= L2.

Other key auxiliary predicates are defined below. Predicates defined and predefined are used

to check that positive and negative body literals are appropriately defined in a lower or equal

stratum to where they are used:

defined(B,L1)←level(L1), stratum(B,L2), L2 ≤ L1.

predefined(NegB,L1)←level(L1), negative positive pair(NegB,B),

stratum(B,L2), L2 < L1.

We have considered two learning tasks1 of this kind. The first one has no examples given, and

the background included only the definition of the auxiliary predicates, described above, and

1Clingo’s option --project was used when running the ASP programs for solving the examples using the
constraints to ensure that each solution is output only once regardless of the number of ways it could be
stratified.
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Task Head declaration Body declaration
1 modeh(p(+arg,+arg)). modeb(q(+arg,+arg)).

modeh(q(+arg,+arg)). modeb(not q(+arg,+arg)).
modeb(p(+arg,+arg)).
modeb(not p(+arg,+arg)).

2 modeh(p(+arg,+arg)). modeb(q(+arg,+arg)).
modeh(q(+arg,+arg)). modeb(not q(+arg,+arg)).
modeh(a(+arg,+arg)). modeb(p(+arg,+arg)).

modeb(not p(+arg,+arg)).
modeb(a(+arg,+arg)).
modeb(not a(+arg,+arg)).

Table 7.4: Mode declarations used in the two learning tasks for testing the stratification con-
straints. All tasks were run to find solutions with at most two clauses and maximum two body
literals per clause.

the mode declaration were defined as shown in Table 7.4. Each learning task was solved for a

different range of allowable values for variables of type int, from 1 to 5, 1 to 10, and 1 to 20.

Table 7.5 shows the number of unique solutions computed in each instance, with and without

the constraints. In Table 7.5 are the recorded results of the case study2. For both tasks the

time taken to find all solutions using the constraints is smaller than the learning task without

constraints. We can conclude that for these experiments that domain-specific constraints help

improving the efficiency of the task of learning stratified programs. More importantly, for the

non-constrained tasks, the solutions produced are not all stratified, thus further parsing of the

results is required to find only the stratified solutions.

The second type of problem we have considered is when we want to learn programs that the

union of the program with an existing background knowledge will be stratified. The stratifi-

cation constraints now have to apply to the union of the given background and a computed

solution. To achieve this we extend the meta-level information in the background so that

is positive/2 and is negative/2 include an additional argument to take into account how our

labelling convention can produce more than one label per predicate if the same predicate can

contain different number of constant arguments (from its scheme being used in multiple mode

declarations). Our learning task only handles constraints with constant free rules, but the

2All tasks were run using the ASP solver Clingo 3 [GKK+11] on a 2.13GHz laptop computer with 4GB
memory
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Task Range for arg Without constraints With constraints
No. of solutions Time (s) No. of solutions Time (s)

1-5 3.588 1.716
1 1-10 25126 9.282 8614 4.820

1-15 34.788 14.960
1-5 219.306 198.433

2 1-10 302860 1494.942 158482 1082.694
1-15 4640.889 2346.723

Table 7.5: Number of solution learnt with and without using the constraints, and the time
taken to learn all solutions for when the argument of the rules can be integer within the ranges
1 to 5, 1 to 10 and 1 to 15.

constraint is still applicable to rules with constants.

Consider the following example for learning the concept of even and odd.

B =



even(0).

num(0).

num(s(0)).

num(s(s(0))).

num(s(s(s(0)))).

num(s(s(s(s(0)))).

num(s(s(s(s(s(0)))))).

succ(X, s(X))←

num(X), num(s(X)).



E =



even(s(s(0))),

odd(s(s(s(0)))),

odd(s(s(s(s(s(0))))))

not even(s(0)),

not even(s(s(s(0)))),

not odd(0),

not odd(s(s(s(s(0))))).



M =


modeh(even(+num)).

modeh(odd(+num)).

modeb(even(+num)).


modeb(not even(+num)).

modeb(not odd(+num)).

modeb(succ(−num,+num)).


This example already has a rule for even(0) in the background knowledge. Suppose we can

“mark” part of the background knowledge so that its meta-level information will also be taken

into account when solving the learning task. Then meta-level information of this could be

added to the learning task as {is rule(rid, even(0))} for some unique rule identification number

rid. However, this means that there are two labels for even, one with the constant argument

and other one without it. To handle this the predicates is positive/2 and is negative/2 can be
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extended as follows:

is positive(succ, succ($e)). is negative(not even, not even($e)).

is positive(even, even($e)). is negative(not odd, not odd($e)).

is positive(even, even(X))← num(X). is positive(odd, odd($e)).

The original domain-dependent constraints are in this case:

IC =



← in some rule(H,B label), is positive(B name,B label),

stratum(H,L), not defined(B name, L).

← in some rule(H,B label), is negative(B name,B label),

stratum(H,L), not predefined(B name, L).


Solving for solutions containing at most two rules and at most three body literals, a total of

ten solutions can be found including the following: odd(A)← succ(B,A), succ(C,B), not even(C).

even(A)← succ(B,A), succ(C,B), even(C).


 even(A)← succ(B,A), succ(C,B), even(C).

odd(A)← succ(B,A), even(B).


 even(A)← succ(B,A), succ(C,B), even(C).

odd(A)← not even(A).


In order to find only the more succinct solutions, additional constraints could be used. For

instance, the constraint ⊥ ← not max body(odd, 2) states that rules defining the concept of

odd/1 should have a maximum of two body literals. From the three solutions above, the

constraint would rule out the following hypothesis. odd(A)← succ(B,A), succ(C,B), not even(C).

even(A)← succ(B,A), succ(C,B), even(C).


While the following solutions would remain acceptable by the constraint. even(A)← succ(B,A), succ(C,B), even(C).

odd(A)← succ(B,A), even(B).
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Figure 7.6: Goal model of Flight Control System.

 even(A)← succ(B,A), succ(C,B), even(C).

odd(A)← not even(A).


Requirements Engineering

For this learning task we show that while ILP systems typically use language bias and heuristics,

such as minimal or most compressed solutions [Mug95, Bra99] to search for suitable hypotheses,

this may not find the solution that the user desires. In such situations constraint-driven bias

can be used to supply additional criteria to the learning task.

In the area of requirements engineering, goal models are directed acyclic graphs for representing

links between objectives the software system is expected to meet. Each node in the graph is

a goal which can be satisfied by satisfying all of its sub-goals (children nodes). This graph of

goal patterns can be expressed in propositional temporal logic [MP92], and their refinement

semantics are given in [DvL96]. For example, consider a simplified model of a Flight Control

System (FCS):

Figure 7.6 shows how the FCS can be modelled expressing that at all time points if an aeroplane

is on the runway then its engine’s reverse thrust must be enabled at the next time point. This

is then satisfiable by the sub-goal c1 that if the plane is on the runway then the plane’s wheels

must be turning which means that in the next instance its reverse thrust is enabled3.

The problem with such a model is that if it is incorrect or too weak, it will need to be revised

until a complete and correct specification is produced. Consider a case where the runway surface

3The symbol 2 means always,© means at the next time point,→ is for logical implication, and OnRunway,
ThrustEnabled and WheelsTurning are propositional atoms.
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is wet, the plane is moving on the runway, but the wheels are not turning, hence violating the

sub-goal the wheels are always turning on the runway. The model shown in Figure 7.6 then

needs to be revised to avoid any potential system failures. This is not a trivial task as changes

made to one goal will potentially need to be propagated to other related sub-goals or the parent-

goal. Using an Event Calculus formalism [KS86], similar to the one presented in [AKvL+12],

the sub-goals in the model can be represented by the following theory where the predicates

a holds/3 and c holds/3 represent the notion that the antecedent and consequent, respectively,

of the goal holds at a time point in a scenario.

a holds(c1, T, S)← holds at(onRunway, T, S).

c holds(c1, T, S)← holds at(wheelsTurning, T, S).

a holds(c2, T, S)← holds at(wheelsTurning, T, S).

c holds(c2, T, S)← holds at(thrustEnabled, T, S).

Violating scenarios are included in the background knowledge as a series of facts. For example,

the scenario s1 where the aeroplane lands while it is raining, and switching on the wheels,

enabling the reverse thrust in the next time instance would add the following facts to the

background knowledge.

B =


happens(rain, 0, s1). happens(landP lane, 1, s1).

happens(switchPulseOn, 1, s1). happens(enableReverseThrust, 2, s1).

...


The aim of the learning task in this case is to revise the goals by replacing all occurrences of

WheelsTurning with WheelsPulseOn. However, if ASPAL were used to solve this task with-

out domain-dependent constraints, it would generate the following most compressed solution

R′1, which is also shown in Figure 7.7.

R′1 =



a holds(c1, T, S)← holds at(onRunway, T, S).

c holds(c1, T, S).

a holds(c2, T, S)← holds at(wheelsPulseOn, T, S).

c holds(c2, T, S)← holds at(thrustEnabled, T, S).


This does not preserve the refinement semantics of the goal model where the assertion which
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Figure 7.7: Revised model learnt from using ASPAL without constraint

appears in the antecedent of c2 must also appear in the consequent of c1, and that parent goal

holds only if the conjunction of its children holds.

Constraint-driven bias can be applied to learn acceptable revisions of the goal models. An

example constraint is that literals appearing in the body of a rule with head literal labelled

a holds(C) must also appear in the body of a rule with head literal label c holds(C). The

constraint is as follows.

IC =



⊥ ← in diff rule(a holds(C1), BL1, c holds(C2), BL2),

right child of(G,C1), left child of(G,C2), BL1 6= BL2, C1 6= C2.

⊥ ← in diff rule(c holds(C1), BL1, a holds(C2), BL2),

left child of(G,C1), right child of(G,C2), BL1 6= BL2, C1 6= C2.

⊥ ← not min body(a holds(C), 1).

⊥ ← not min body(c holds(C), 1).


The solution for the learning task with constraint is the following revised theory R′2 and shown

in Figure 7.8, which ensure that the change is propagated throughout the model.

R′2 =



a holds(c1, T, S)← holds at(onRunway, T, S).

c holds(c1, T, S)← holds at(wheelsPulseOn, T, S).

a holds(c2, T, S)← holds at(wheelsPulseOn, T, S).

c holds(c2, T, S)← holds at(thrustEnabled, T, S).


The example have shown how constraint-driven bias can be applied for maintaining consistency

of a model in the refinement process as syntactic constraints on the solution.
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Figure 7.8: Revised model learnt from using ASPAL with constraint.

7.3 Discussion

The learning tasks which we have run shows that HYPER, ASPAL and RASPAL all have

tasks which they are more suitable for than the other systems. HYPER is the fastest solver

for learning tasks that it could solve, and the learner would apply higher number of alterna-

tive refinements compared to RASPAL. However, RASPAL can solve learning tasks that are

unsolvable to HYPER. RASPAL’s scoring scheme which has three different components can

differentiate hypotheses more clearly than HYPER, whose scoring scheme is a single sum. This

and the ability to backtrack by deleting rules and literals and add new rules and literal to

its partial hypothesis makes it unnecessary for RASPAL to apply more refinements at each

iteration.

For ASPAL and RASPAL, the learning tasks show that for smaller tasks ASPAL is the more

suitable learner as it does not have RASPAL’s overhead from the addition of the revisable partial

hypothesis and mode declarations for the revision operators. However, RASPAL’s learning

algorithm does make a difference in some learning tasks as RASPAL could solve the nonealike

learning task which ASPAL could not, and it significantly reduce the size of the grounded

program for the mobile learning task. From this we can conclude that while ASPAL perform

better for smaller leaning tasks, RASPAL is more suitable than ASPAL for larger learning

tasks provided that they can be learnt by hypothesis refinement. For learning tasks with noise,

ASPAL’s sensitivity and specificity tends to level off. For RASPAL, should the threshold be

too high or too low compared to the number of noisy examples, then its iterative learning tends

to over-fit the solution to the examples.

In conclusion, the comparisons show that RASPAL can handle a wider range of learning tasks
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than HYPER and ASPAL. It should be noted, however, that RASPAL’s learning approach will

only be beneficial if the the literals in the solution are not highly dependent on each other.

For instance, suppose the longest rule in the solution is r = h← b1, b2, b3, and to improve the

examples coverage of the partial hypothesis h all body literals b1, b2 and b3 must be added to

it. RASPAL can only successfully refine this rule if it is executed with the rule length limit i

set to 3, which will eventually call ASPAL with maximum number of conditions per rule dmax

set to 3. However, as r is the longest rule in the solution, it can be solved by simply running

normal ASPAL with dmax set to 3. RASPAL will perform worse than ASPAL, even if they both

result in ASPAL being called with the same value for dmax, as RASPAL will have the overhead

from the revisable theory and additional mode declarations. Thus, while hypothesis refinement

can be used to reduce the hypothesis space of many inductive tasks, there is a class of learning

tasks where this approach is not applicable.

Comparison of the different ASP solvers shows that overall Clingo is the more suitable choice of

ASP system to use with ASPAL and RASPAL as it could solve more of ASPAL and RASPAL’s

ASP programs than DLV. Furthermore, the size of the ground programs produced by Clingo is

nearly always smaller than the ones produced by DLV.

Through two different applications we have shown how constraint-driven bias could be applied.

In addition to this, the stratification learning task also showed that the constraint could help

prevent many non-stratified hypotheses from being output as solutions, as well as discussing

how additional meta-level information could be added to handle multiple labels for the same

predicate. The software engineering learning task presents a problem for which minimality

constraint cannot be used to successfully solve the task as the minimal revision will not retain

the model’s structure. Constraint-driven bias is applied so that the revised goal model retains

its balanced tree structure. Note that the labelling scheme used in this work does not take

function symbols into account as we have not considered applying constraint-driven bias to any

learning task which has function symbols in its mode declaration.
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Conclusion

This thesis presented two new learning approaches in the context of Inductive Logic Program-

ming (ILP) based on the reduction of the hypothesis space. The first of theses is Learning

though Hypothesis Refinement which combines theory revision and abductive learning in An-

swer Set Programming (ASP). It has been designed for addressing the scalability problem of

ASP based ILP systems, by dividing the learning task into smaller and more scalable hypoth-

esis refinement tasks. The learning approach has been implemented as the system RASPAL,

which combines hypothesis refinement with the ILP system ASPAL, whose completeness has

been shown to follow the completeness of RASPAL. Despite ASPAL being the system used

for this work, it could be replaced by other ASP based ILP systems. The transformation of

revision into an inductive task is general enough that other non-monotonic ILP systems can be

used instead of ASPAL. Overall the evaluations conducted in Chapter 7 show that RASPAL is

able to take advantage of hypothesis refinement, applying to large learning tasks to make the

computation more scalable.

Using RASPAL’s scoring scheme, we have shown how RASPAL (and ASPAL) can be adapted

to solve learning tasks with noise by using a noise threshold. We have evaluated both systems

on a real life application with noise. The result have shown how the noise threshold affects

the number of iterations refinement RASPAL performs, which could also be used as a way for

finding approximate hypotheses rather than solutions in situations where performance is valued

132
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over complete accuracy.

The second approach for reducing the side of the hypothesis space is Constraint-driven Bias. In

this approach, the inductive learning task is extend by a set of domain-dependent constraints,

which are designed to be constraints over the bias, and consequently the hypothesis space.

A set of abstract predicates is introduced and the formalisation of each predicate is given in

Chapter 5. In Chapter 6 we have show how domain-dependent constraints can be translated

into ASP constraints and implemented in ASPAL and RASPAL, and provide the correctness

of the translation.

8.1 Future Work

With respect to the goal of improving the scalability of ASP based ILP systems without compro-

mising their completeness, RASPAL could be combined with techniques from other works that

also tackled the ASP grounding problem. A possibility is [RIB13] where a modular approach to

ASP is proposed for reducing the search space of ASP programs by dividing them into linked

modules, and using meta-knowledge to manage how the modules will be combined together.

The application of this would be for dividing learning tasks that contains large background

knowledge, by dividing the background knowledge into modules of closely related concepts.

The learner can then fetches only modules that are related to the concept that it is learning.

Note that dividing the hypothesis space itself into multiple modules would be a difficult task

and could lead to making learning tasks unsolvable. For instance, if different rules in the hy-

pothesis space are learnt using different modules, then it is possible that solutions containing

rules that are dependent on one another cannot be learnt.

RASPAL currently uses ASPAL as its core solver, and further improvements to ASPAL will

also be of benefit to RASPAL. For instance, parallelising ASPAL will make each iteration of

RASPAL more efficient. RASPAL itself could potentially be parallelised for a more through

search of the hypothesis space. Recall that RASPAL currently only selects one highest scoring

partial hypothesis per iteration. However, there could be many partial hypotheses with the same
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score as the one selected. Multiple instances of RASPAL could be run for each of such partial

hypotheses as some of them may require less refinement to find the solution of the learning

task. In addition to this, RASPAL itself is a wrapper around ASPAL. Further investigation

into its learning approach could be carried out by using different ASP-based ILP systems,

such as XHAIL, as RASPAL’s core learner to see if RASPAL would be able to mitigate their

grounding problem.

The constraint-driven bias approach presented in this thesis only allows one primitive of LC to be

used in a domain-dependent constraint. Exploring how multiple primitives interact in a single

constraint could allow for more expressive constraints to be specified. Further applications of

constraint-driven bias could be explored to extend those already given in this thesis.

Other possible direction for future work is Predicate Invention [Kra95]. Predicate Invention is

the problem of learning a concept that was not in the background knowledge and examples of the

inductive learning task. The purpose of learning new predicates can either be for restructuring

the knowledge [Fla93], called reformulation, or for finding missing concepts that would make

previously unsolvable learning task become solvable [MB88], called bias shift. A requirement of

predicate invention is that predicates should only be invented when they are needed so that the

accumulated knowledge will not be filled with useless concepts. In [Sta96] it has been identified

that the type of predicates necessary for bias shift are those which have recursive definitions

(and facts) as other predicates can be unfolded. Recursive definitions are challenging to learn

for many ILP systems and systems in the past have built-in checks specifically for ensuring

that recursive rules will terminate (for instance, CHILLIN [ZMK94] will force recursive rules

to have a term in its body that is a reduction of a term in the rule’s head). As we have noted

in Chapter 1, ASP is a great platform for learning recursive rules as cycles in programs do

not effect its computation. In [LZB08] a method for inventing predicates called placeholders is

used. Placeholders are mode declarations containing the schema of the new concept, making

its definition be included in the hypothesis space. The problem with this approach is that

prior knowledge of the new concept is required. A way of avoiding this problem is to give the

learner multiple schemas for the new concept, however, this would unnecessarily increase the

hypothesis space. RASPAL’s iterative learning could be used to determine when it would be



8.1. Future Work 135

appropriate to invent new predicates, that is when it fails to find a solution due to it not being

able to refine a partial hypothesis, as well as help mitigate the increase in the hypothesis space

due to the addition of placeholders.
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Learning Tasks

A.1 mother

Given some background on the parenthood (child(C,P ) indicates that C is the child of P ) and

gender of a group of people, learn the relationship mother(X, Y ), where X is the mother of Y .

E+ =

 mother(m1, s1).

mother(m1,m2)

 E− =


mother(s1,m3). mother(s1, s3)

mother(m2,m4). mother(s2, s3)

mother(m1,m3).



B =



person(s1)., . . . , person(s5). person(m1)., . . . , person(m5).

male(s1)., . . . ,male(s5). female(m1)., . . . , female(m5).

child(s1,m1). child(m5,m4).

child(s2,m1). child(m3, s1).

child(m2,m1). child(s3, s1).


M =

 modeb(male(+person)). modeh(mother(+person,+person)).

modeb(female(+person)). modeb(child(+person,+person)).


This task’s objective is to learn the rule mother(X, Y ) ← child(Y,X), female(X). RASPAL

and ASPAL were able to output this as their only correct solution.

136
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A.2 nonealike

Dice poker is an adaptation of poker but replacing the card with five die. In this game players

roll the five die to see who will have the highest hand and win the round. The objective of

the task below is to learn a check to confirm that none of the rolled die have a value on their

upside faces. We are assuming face values in nonealike/5 are always given sorted from the

lowest value to the highest.

E+ =

 nonealike(1, 2, 3, 4, 5).

nonealike(1, 3, 4, 5, 6).


E− =

 nonealike(2, 2, 3, 4, 5). nonealike(1, 3, 3, 4, 6).

nonealike(1, 2, 3, 3, 5). nonealike(2, 3, 4, 5, 5).



B =



face(1). face(4).

face(2). face(5).

face(3). face(6).

eq(X,X)← face(X).

diff(X,X)← face(X), face(Y ), X 6= Y.


M =

 modeh(nonealike(+face,+face,+face,+face,+face)).

modeb(eq(+face,+face)). modeb(diff(+face,+face)).


ASPAL was unable to solve the task while RASPAL returns the solution of:

nonealike(A,B,C,D,E)← diff(A,B), diff(B,C), diff(C,D), diff(D,E).

A.3 highroll

In the game High & Low, a player guesses whether the sum of two rolled die will be ‘high’ or

‘low’ value. A low roll occurs when the sum of the die is less than 7, while a high roll is when

the sum is more than 7.
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E+ =

{
high(3, 5). high(6, 3). high(6, 6).

}

E− =

{
high(1, 1). high(2, 3). high(4, 1). high(3, 3). high(5, 2).

}

B =



face(1). face(2). face(3).

face(4). face(5). face(6).

sum(2). sum(3). sum(4)

sum(5). sum(6). sum(7)

sum(8). sum(9). sum(10)

sum(11). sum(12).

add(X, Y, Z)← face(X), face(Y ), Z = X + Y, sum(Z).

greaterThan(X, Y )← sum(X), sum(Y ), X > Y.



M =


modeh(high(+face,+face)).

modeb(add(+face,+face,−sum)).

modeb(greaterThan(+sum,#sum)).


HYPER was unable to solve this task while both ASPAL and RASPAL were able to output

rule for the high roll high(X, Y )← add(X, Y, Z), greaterThan(Z, 7).

A.4 mobile without noise

This example is from work done by our research group where an application records a mobile

user’s phone usage behaviour. From this information we extracted a week-long information

regarding times when the user accepts or rejects an incoming call. These are used as examples

for the learning task.
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E+ =



accept((18, 3, 2011), (18), 3, 5, 2,−1, 1, 0, 0).

accept((19, 3, 2011), (11), 4, 7, 2, 52, 0, 0, 0).

accept((19, 3, 2011), (14), 4, 7, 2, 23, 0, 0, 0).

accept((19, 3, 2011), (16), 4, 7, 2, 57, 0, 1, 1).

accept((20, 3, 2011), (12), 4, 7, 2, 12, 1, 1, 1).

accept((20, 3, 2011), (15), 4, 7, 2, 71, 1, 1, 1).

accept((20, 3, 2011), (15), 8, 7, 2, 69, 0, 1, 1).



E− =



accept((20, 3, 2011), (13), 1, 7, 2, 37, 1, 1, 1).

accept((20, 3, 2011), (13), 1, 7, 2, 39, 1, 1, 1).

accept((20, 3, 2011), (14), 1, 7, 2, 44, 1, 1, 1).

accept((20, 3, 2011), (14), 1, 7, 2, 44, 1, 1, 1).

accept((20, 3, 2011), (14), 6, 7, 2, 46, 1, 1, 1).

accept((18, 3, 2011), (17),−1, 5, 2,−1, 1, 1, 1).

accept((20, 3, 2011), (13), 3, 7, 2, 34, 0, 1, 1).

accept((20, 3, 2011), (13), 3, 7, 2, 36, 1, 1, 1).

accept((20, 3, 2011), (14), 3, 7, 2, 42, 1, 1, 1).

accept((20, 3, 2011), (14), 3, 7, 2, 42, 1, 1, 1).

accept((20, 3, 2011), (14), 3, 7, 2, 44, 1, 1, 1).

accept((24, 3, 2011), (21), 3, 0, 0, 100, 1, 1, 1).

accept((20, 3, 2011), (14), 3, 7, 2, 46, 1, 1, 1).

accept((18, 3, 2011), (18), 3, 5, 2,−1, 0, 0, 0).

accept((20, 3, 2011), (12), 4, 7, 2, 10, 0, 0, 0).

accept((18, 3, 2011), (18), 7, 5, 2,−1, 1, 1, 1).



The background includes domain information for each argument of accept/9, and some addi-

tional rules. The background and the mode declarations are as follows:
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B =



time(0)., . . . , time(23). contact(−1)., . . . , contact(8).

volume(0)., . . . , volume(7). vibrator(0)., . . . , vibrator(2).

battery level(−1)., . . . , battery level(100).

screen brightness(0). screen brightness(1).

light level(0). light level(1).

battery charging(0). battery charging(1).

high volume(X)← volume(X), X > 5.

low battery(X)← battery level(X), X ≤ 10.

high battery(X)← battery level(X), X > 50.

screen on(1). is charging(1).

morning(H)← time(H), H < 12, H ≥ 0.

afternoon(H)← time(H), H ≥ 12, H < 18.

evening(H)← time(H), H ≥ 18.

app(googletalk). app(sms).

user is using app((18, 3, 2011), 18, sms).

user is using app((18, 3, 2011), 18, googletalk).

user is using app((18, 3, 2011), 17, googletalk).

user is using app((18, 3, 2011), 16, googletalk).

user is using app((18, 3, 2011), 15, googletalk).

user is using app((19, 3, 2011), 0, googletalk).

user is using app((19, 3, 2011), 1, googletalk).

user is using app((19, 3, 2011), 10, googletalk).

user is using app((19, 3, 2011), 11, googletalk).

user is using app((19, 3, 2011), 12, googletalk).

user is using app((19, 3, 2011), 14, googletalk).

user is using app((20, 3, 2011), 12, googletalk).

user is using app((24, 3, 2011), 21, googletalk).
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M =



modeh(accept(+date,+time,+contact,+volume,+vibrator,

+battery level,+screen brightness,+light level,+battery charging)).

modeb(not user is using app(+date,+time,#app)).

modeb(user is using app(+date,+time,#app)).

modeb(high volume(+volume)).

modeb(not high volume(+volume)).

modeb(lowbattery(+battery level)).

modeb(not lowbattery(+battery level)).

modeb(highbattery(+battery level)).

modeb(not high battery(+battery level)).

modeb(screen on(+screen brightness)).

modeb(not screen on(+screen brightness)).

modeb(is charging(+battery charging)).

modeb(not is charging(+battery charging)).

modeb(morning(+time)).

modeb(not morning(+time)).

modeb(afternoon(+time)).

modeb(not afternoon(+time)).

modeb(evening(+time)).

modeb(not evening(+time)).


The following is one of the possible solution for the learning task, describing three different

scenarios in which the user will accept an incoming call:

H =



accept(A,B,C,D,E, F,G,H, I)←

user is using app(A,B, googletalk), not is charging(I),

screen on(G).

accept(A,B,C,D,E, F,G,H, I)←

user is using app(A,B, googletalk), high volume(D),

not low battery(F ).

accept(A,B,C,D,E, F,G,H, I)←

high battery(F ), afternoon(B).
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A.5 mobile with noise

E+ =



accept((18, 3, 2011), (18), 3, 5, 2,−1, 1, 0, 0).

accept((19, 3, 2011), (11), 4, 7, 2, 52, 0, 0, 0).

accept((19, 3, 2011), (14), 4, 7, 2, 23, 0, 0, 0).

accept((19, 3, 2011), (16), 4, 7, 2, 57, 0, 1, 1).

accept((20, 3, 2011), (12), 4, 7, 2, 12, 1, 1, 1).

accept((20, 3, 2011), (15), 4, 7, 2, 71, 1, 1, 1).

accept((20, 3, 2011), (15), 8, 7, 2, 69, 0, 1, 1).



E− =



accept((20, 3, 2011), (13), 1, 7, 2, 37, 1, 1, 1).

accept((20, 3, 2011), (13), 1, 7, 2, 39, 1, 1, 1).

accept((20, 3, 2011), (14), 1, 7, 2, 44, 1, 1, 1).

accept((20, 3, 2011), (14), 1, 7, 2, 44, 1, 1, 1).

accept((19, 3, 2011), (12), 2, 7, 2, 47, 1, 0, 0).

accept((19, 3, 2011), (14), 5, 7, 2, 22, 0, 1, 1).

accept((20, 3, 2011), (14), 6, 7, 2, 46, 1, 1, 1).

accept((18, 3, 2011), (17),−1, 5, 2,−1, 1, 1, 1).

accept((20, 3, 2011), (12), 3, 7, 2, 13, 1, 1, 1)).

accept((20, 3, 2011), (13), 3, 7, 2, 34, 0, 1, 1)).

accept((20, 3, 2011), (13), 3, 7, 2, 36, 1, 1, 1)).

accept((20, 3, 2011), (14), 3, 7, 2, 42, 1, 1, 1)).

accept((20, 3, 2011), (14), 3, 7, 2, 44, 1, 1, 1)).

accept((24, 3, 2011), (21), 3, 0, 0, 100, 1, 1, 1)).

accept((20, 3, 2011), (14), 3, 7, 2, 46, 1, 1, 1)).

accept((18, 3, 2011), (18), 3, 5, 2,−1, 0, 0, 0)).

accept((20, 3, 2011), (12), 4, 7, 2, 10, 0, 0, 0)).

accept((18, 3, 2011), (18), 7, 5, 2,−1, 1, 1, 1)).


The background include domain information for each argument of accept/9, and some additional

rules. The background and the mode declarations are as follows:
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B =



time(0)., . . . , person(23). contact(−1)., . . . , contact(8).

volume(0)., . . . , volume(7). vibrator(0)., . . . , vibrator(2).

battery level(−1)., . . . , battery level(100).

screen brightness(0). screen brightness(1).

light level(0). light level(1).

battery charging(0). battery charging(1).

high volume(X)← volume(X), X > 5.

low battery(X)← battery level(X), X ≤ 10.

high battery(X)← battery level(X), X > 50.

screen on(1). is charging(1).

morning(H)← time(H), H < 12, H ≥ 0.

afternoon(H)← time(H), H ≥ 12, H < 18.

evening(H)← time(H), H ≥ 18.

app(googletalk). app(sms).

user is using app((18, 3, 2011), 18, sms).

user is using app((18, 3, 2011), 18, googletalk).

user is using app((18, 3, 2011), 17, googletalk).

user is using app((18, 3, 2011), 16, googletalk).

user is using app((18, 3, 2011), 15, googletalk).

user is using app((19, 3, 2011), 0, googletalk).

user is using app((19, 3, 2011), 1, googletalk).

user is using app((19, 3, 2011), 10, googletalk).

user is using app((19, 3, 2011), 11, googletalk).

user is using app((19, 3, 2011), 12, googletalk).

user is using app((19, 3, 2011), 14, googletalk).

user is using app((20, 3, 2011), 12, googletalk).

user is using app((24, 3, 2011), 21, googletalk).
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M =



modeh(accept(+date,+time,#contact,+volume,+vibrator,

+battery level,+screen brightness,+light level,+battery charging)).

modeb(user is using app(+date,+time,#app)).

modeb(not user is using app(+date,+time,#app)).

modeb(high volume(+volume)).

modeb(not high volume(+volume)).

modeb(low battery(+battery level)).

modeb(not low battery(+battery level)).

modeb(high battery(+battery level)).

modeb(not high battery(+battery level)).

modeb(screen on(+screen brightness)).

modeb(not screen on(+screen brightness)).

modeb(is charging(+battery charging)).

modeb(not is charging(+battery charging)).

modeb(morning(+time)).

modeb(not morning(+time)).

modeb(afternoon(+time)).

modeb(not afternoon(+time)).

modeb(evening(+time)).

modeb(not evening(+time)).



The following two solutions were learnt with noise threshold of 〈1, 3〉 in ASPAL, and 〈7, 0〉 in

ASPAL respectively:

H1 =

{
accept(A,B, 4, C,D,E, F,G,H)← afternoon(B), high volume(C).

}

H2 =


accept(A,B, 3, C,D,E, F,G,H)← low battery(E), screen on(F ).

accept(A,B, 4, C,D,E, F,G,H)← not low battery(E).

accept(A,B, 8, C,D,E, F,G,H).
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A.6 odd & even

Learn the concept of even and odd numbers using the following task:

E+ =


even(0). even(s(s(s(s(0))))).

even(s(s(0))).

odd(s(s(s(0)))). odd(s(s(s(s(s(0)))))).


E− =

 even(s(0)). even(s(s(s(0)))).

odd(0). odd(s(s(s(s(0))))).



B =



num(0). num(s(s(s(0)))).

num(s(0)). num(s(s(s(s(0))))).

num(s(s(0))). num(s(s(s(s(s(0)))))).

succ(X, s(X))← num(X), num(s(X)).



M =


modeh(even(+num)). modeh(even(#num)).

modeh(odd(+num)). modeb(even(+num)).

modeb(noteven(+num)). modeb(succ(−num,+num)).


The aim of this task is to learn the definition of even and odd in terms of even. Possible

solutions for this task include:

H1 =


even(0).

even(A)← succ(B,A), not even(B).

odd(A)← succ(B,A), not even(A).



H2 =


even(0).

even(A)← succ(B,A), not even(B).

odd(A)← succ(B,A), even(B).



H3 =


even(0).

even(A)← succ(B,A), not even(B).

odd(A)← not even(A).
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The ASPAL encoding will return all three of these solutions. For RASPAL with Clingo, if

the option “–opt-all“ is not used only H2 is returned. When using RASPAL with DLV, since

the same optimisation clause in Clingo cannot be used to only output one answer set per

optimisation level, all three solutions will be returned.

A.7 train

This is the train classification challenge set by Michalski. The original data set1 contains

information about ten trains, half of them eastbound train, and the other half are westbound

train. We used the following representation for describing each train2:

Representation Meaning

eastbound(X) Train X is an eastbound train

westbound(X) Train X is a westbound train

has car(X, Y ) Carriage Y is part of train X

short(X) Carriage X is a short carriage

long(X) Carriage X is a long carriage

shape(X, Y ) Carriage X is in shape Y

open car(X) Carriage X has no roof

closed(X) Carriage X has a roof

load(X, Y, Z) Carriage X has Z number of load with shape Y

wheels(X, Y ) Carriage X has Y number of wheels

The following mode declarations were used for this example:

1Obtained at http://ftp.ics.uci.edu/pub/machine-learning-databases/trains/
2Taken from examples at http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/

examples.zip

http://ftp.ics.uci.edu/pub/machine-learning-databases/trains/
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip
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M =



modeh(eastbound(+train id)). modeh(westbound(+train id)).

modeb(short(+car id)). modeb(has car(+train id,−car id)).

modeb(closed(+car id)). modeb(shape(+carid,#car shape)).

modeb(long(+car id)). modeb(noteastbound(+train id)).

modeb(open(+car id)). modeb(wheels(+carid,#num wheels)).

modeb(has load(+car id,#load shape,#num load)).


The objective of the task is to learn how to classify east and westbound trains. From the

examples, the shortest solution to the task is:

eastbound(X)← has car(X, Y ), short(Y ), closed(Y ).

westbound(X)← noteastbound(X).

Note that when running in the all output mode, ASPAL will also return the following subop-

timal solution:

1. eastbound(X)← has car(X, Y ), short(Y ), closed(Y ).

westbound(X)← not eastbound(X), has car(X, Y ).

2. eastbound(X)← has car(X, Y ), short(Y ), closed(Y ).

westbound(X)← noteastbound(X), has car(X, Y ), has car(X,Z).

3. eastbound(X)← has car(X, Y ), short(Y ), closed(Y ).

westbound(X)← noteastbound(X), has car(X, Y ), long(Y ).

A.8 Flight Control System

The aim of this example is to learn how to refine a model of a flight control system such that

the refined model retains the syntactic structure of the original model.

The background of the task can be divided into domain domain background D, event calculus

axioms Ae, domain pre-conditions and constraints Dc, goal axioms Ag, and scenarios S (B =

D ∪ Ae ∪Dc ∪ Ag ∪ S).
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M =


modeh(holds(#goal exp,+timepoint,+scenario)).

modeb(holds at(#usable fluent,+timepoint,+scenario)).

modeb(not holds at(#usable fluent,+timepoint,+scenario)).



D =



usable fluent(wheelsPulseOn). usable fluent(wheels out).

usable fluent(aqua planing). f luent(onRunway).

f luent(thrustEnabled). f luent(wheelsPulseOn).

f luent(wheelsTurning). f luent(aqua planing).

f luent(wet surface). f luent(wheels out).

f luent(wheels blocked). goal exp(g).

goal exp(c2). goal exp(c1).

event(land). event(takeOff).

event(park). event(switchOn).

event(switchOff). event(enable).

event(disable). event(turnWheels).

event(stopWheels). event(dry).

scenario(s1). scenario(s2).

timepoint(0). timepoint(1).

timepoint(2).

next(1, 0). . . . next(11, 10).
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A =



clipped(T1, F, T2, S)← T1 ≤ T, T < T2,

happens(E, T, S), terminates(E,F, T, S).

holds at(F, T2, S)← T1 < T2, happens(E, T1, S),

initiates(E,F, T, S), not clipped(T1, F, T2, S).

holds at(F, T2, S)← initially(F, S), not clipped(0, F, T2, S).

happens(E, T, S)← event(E), timepoint(T ), scenario(S),

executed(E, T, S), not impossible(E, T, S).

exists next timepoint(T1)← next(T2, T1).

initiates(enable, thrustEnabled, T, S).

terminates(disable, thrustEnabled, T, S).

initiates(switchOn,wheelsPulseOn, T, S).

terminates(switchOff,wheelsPulseOn, T, S).

initiates(land, onRunway, T, S).

terminates(park, onRunway, T, S).

terminates(takeOff, onRunway, T, S).

initiates(turnWheels, wheelsTurning, T, S).

terminates(stopWheels, wheelsTurning, T, S).

initiates(land, aqua planing, T, S)← holds at(wet surface, T, S).
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Dc =



impossible(enable, T, S)← holds at(thrustEnabled, T, S).

impossible(disable, T, S)← not holds at(thrustEnabled, T, S).

impossible(land, T, S)← holds at(onRunway, T, S).

impossible(park, T, S)← not holds at(onRunway, T, S).

impossible(takeOff, T, S)← not holds at(onRunway, T, S).

impossible(switchOn, T, S)← holds at(wheelsPulseOn, T, S).

impossible(switchOff, T, S)← not holds at(wheelsPulseOn, T, S).

impossible(turnWheels, T, S)← holds at(wheelsTurning, T, S).

impossible(stopWheels, T, S)← not holds at(wheelsTurning, T, S).

← holds at(wheelsTurning, T, S), holds at(aqua planing, T, S).

← holds at(wheelsTurning, T, S), holds at(wheels outocked, T, S).

← holds at(wheelsTurning, T, S), not holds at(wheels out, T, S).

← not holds at(F, T1, S), holds at(F, T1, S).

← happens(E, T, S), impossible(E, T, S).

← goal exp(G), not holds(G,T, S).

← child of(G,C), holds(G,T, S), not holds(C, T, S).

← goal exp(G), child of(G,G).

← goal exp(G), holds non vacuously(G,T, S), holds vacuously(G,T, S).

← child of(G,C), holds non vacuously(G,T, S), holds vacuously(C, T, S).
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G =



holds(G,T, S)← holds non vacuously(G,T, S).

holds(G,T, S)← holds vacuously(G,T, S).

holds(G,T, S)← holds at end of time(G,T, S).

holds vacuously(G,T1, S)← not antecedent holds(G,T1, S).

root goal(g).

antecedent holds(g, T1, S)← holds at(onRunway, T1, S).

consequent holds(g, T2, S)← holds at(thrustEnabled, T2, S).

holds non vacuously(g, T1, S)← antecedent holds(g, T1, S), next(T2, T1),

consequent holds(g, T2, S).

holds at end of time(g, T1, S)← antecedent holds(g, T1, S),

not exists next timepoint(T1).

child of(g, c1).

child of(g, c2).

left child of(g, c1).

right child of(g, c2).

holds non vacuously(c2, T1, S)← antecedent holds(c2, T1, S), next(T2, T1),

consequent holds(c2, T2, S).

holds at end of time(c2, T1, S)← antecedent holds(c2, T1, S),

not exists next timepoint(T1).



S =



initially(wet surface, 0, s1). initially(wheels out, s1).

initially(wheels out, s2).

happens(land, 0, s1). happens(switchOn, 0, s1).

happens(enable, 1, s1). happens(land, 0, s2).

happens(turnWheels, 0, s2). happens(switchOn, 0, s2).

happens(enable, 1, s2). happens(park, 1, s2).



The examples are that all the goals holds within the given scenarios, and there are no negative

examples.
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E+ =



holds(g, 1, s1). holds(c1, 1, s1).

holds(c2, 1, s1).

holds(g, 2, s2). holds(c1, 2, s2).

holds(c2, 2, s2).


The revisable rules consist are antecedent holds/3 and consequent holds/3 rules that express

if a sub-goal is true at certain time and scenario.

R =



revisable((antecedent holds(c1, T1, S)← holds at(onRunway, T1, S)),

antecedent holds(c1)).

revisable((consequent holds(c1, T1, S)← holds at(wheelsTurning, T1, S)),

consequent holds(c1)).

revisable((antecedent holds(c2, T1, S)← holds at(wheelsTurning, T1, S)),

antecedent holds(c2)).

revisable((consequent holds(c2, T1, S)← holds at(thrustEnabled, T1, S)),

consequent holds(c2)).


IC =

 ← in rule(antecedent holds(C1), Body), right child of(G,C1),

left child of(G,C2), C1 6= C2, not in rule(consequent holds(C2), Body).


The aim of the task is to revise the the rules in R into R′, replacing the conditions of

consequent holds(c1, T1, S) and antecedent holds(c2, T1, S).

R′ =



antecedent holds(c1, T1, S)← holds at(onRunway, T1, S).

consequent holds(c1, T1, S)← holds at(wheelsPulseOn, T1, S).

antecedent holds(c2, T1, S)← holds at(wheelsPulseOn, T1, S).

consequent holds(c2, T1, S)← holds at(thrustEnabled, T1, S).
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Programming: 13th International Conference, ILP 2003, Szeged, Hungary, Septem-

ber 29-October 1, 2003, Proceedings, volume 2835 of Lecture Notes in Computer

Science, pages 311–328. Springer, 2003.

[RIB13] Tony Ribeiro, Katsumi Inoue, and Gauvain Bourgne. Combining answer set pro-

grams for adaptive and reactive reasoning. TPLP, 13(4-5-Online-Supplement),

2013.

[RM95] Bradley L. Richards and Raymond J. Mooney. Automated refinement of first-order

horn-clause domain theories. Machine Learning, 19(2):95–131, 1995.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution principle.

J. ACM, 12(1):23–41, 1965.

[SI09] Chiaki Sakama and Katsumi Inoue. Brave induction: a logical framework for

learning from incomplete information. Machine Learning, 67(1):3–35, 2009.

[Sri07] Ashwin Srinivasan. The aleph manual, 2007.

[Sta96] Irene Stahl. Predicate Invention in Inductive Logic Programming. In Luc De Raedt,

editor, Advances in Inductive Logic Programming, pages 34–47. IOS Press, 1996.



160 BIBLIOGRAPHY

[vEK76] Maarten H. van Emden and Robert A. Kowalski. The semantics of predicate logic

as a programming language. J. ACM, 23(4):733–742, 1976.

[WO91] Ruediger Wirth and Paul O’Rorke. Constraints on predicate invention. In

Stephen H Muggleton, editor, Proceedings of the Eighth International Workshop

on Machine Learning, pages 457–461. Morgan Kaufmann, 1991.

[Wro96] Stefan Wrobel. First order theory refinement. Advances in inductive logic program-

ming, 32:14–33, 1996.

[ZMK94] John M. Zelle, Raymond J. Mooney, and Joshua B. Konvisser. Combining top-

down and bottom-up techniques in inductive logic programming. In in Proceedings

of the Eleventh International Conference on Machine Learning ML-94, Morgan-

Kaufmann, pages 343–351. Morgan Kaufmann, 1994.


	Introduction
	Motivation
	Contributions
	Publications
	Structure
	Background
	Notations
	First-order logic
	Semantics

	Logic Programming
	Negation as Failure and Non-monotonic Logic Programming
	Answer Set Programming
	Clingo
	DLV

	Abductive Logic Programming
	Abduction in Answer Set Programming


	Inductive Logic Programming
	Monotonic Inductive Logic Programming
	Non-monotonic Inductive Logic Programming
	ILP for Theory Revision
	ASPAL
	ASPAL for Theory Revision

	Discussion

	Learning through Hypothesis Refinement
	Learning a partial hypothesis
	Refining a partial hypothesis
	Algorithm
	Property

	Learning with noise
	Note on RASPAL Implementation
	Related Work and Discussion

	Constraint-Driven Bias
	Constraint-Driven Learning
	Primitives of LC
	Constraint-Driven Learning Task

	Related Work

	Learning Systems with Constraint-Driven Bias
	Meta-level information
	Extending Learning Systems with Meta-information
	Translation of LC

	Application and Evaluation
	RASPAL evaluation
	Constraint-Driven Bias
	Discussion

	Conclusion
	Future Work

	Learning Tasks
	mother
	nonealike
	highroll
	mobile without noise
	mobile with noise
	odd & even
	train
	Flight Control System
	Bibliography



