14 research outputs found

    Precise detection of rearrangement breakpoints in mammalian chromosomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomes undergo large structural changes that alter their organisation. The chromosomal regions affected by these rearrangements are called breakpoints, while those which have not been rearranged are called synteny blocks. We developed a method to precisely delimit rearrangement breakpoints on a genome by comparison with the genome of a related species. Contrary to current methods which search for synteny blocks and simply return what remains in the genome as breakpoints, we propose to go further and to investigate the breakpoints themselves in order to refine them.</p> <p>Results</p> <p>Given some reliable and non overlapping synteny blocks, the core of the method consists in refining the regions that are not contained in them. By aligning each breakpoint sequence against its specific orthologous sequences in the other species, we can look for weak similarities inside the breakpoint, thus extending the synteny blocks and narrowing the breakpoints. The identification of the narrowed breakpoints relies on a segmentation algorithm and is statistically assessed. Since this method requires as input synteny blocks with some properties which, though they appear natural, are not verified by current methods for detecting such blocks, we further give a formal definition and provide an algorithm to compute them.</p> <p>The whole method is applied to delimit breakpoints on the human genome when compared to the mouse and dog genomes. Among the 355 human-mouse and 240 human-dog breakpoints, 168 and 146 respectively span less than 50 Kb. We compared the resulting breakpoints with some publicly available ones and show that we achieve a better resolution. Furthermore, we suggest that breakpoints are rarely reduced to a point, and instead consist in often large regions that can be distinguished from the sequences around in terms of segmental duplications, similarity with related species, and transposable elements.</p> <p>Conclusion</p> <p>Our method leads to smaller breakpoints than already published ones and allows for a better description of their internal structure. In the majority of cases, our refined regions of breakpoint exhibit specific biological properties (no similarity, presence of segmental duplications and of transposable elements). We hope that this new result may provide some insight into the mechanism and evolutionary properties of chromosomal rearrangements.</p

    Cassis: detection of genomic rearrangement breakpoints

    Get PDF
    Summary: Genomes undergo large structural changes that alter their organization. The chromosomal regions affected by these rearrangements are called breakpoints, while those which have not been rearranged are called synteny blocks. Lemaitre et al. presented a new method to precisely delimit rearrangement breakpoints in a genome by comparison with the genome of a related species. Receiving as input a list of one2one orthologous genes found in the genomes of two species, the method builds a set of reliable and non-overlapping synteny blocks and refines the regions that are not contained into them. Through the alignment of each breakpoint sequence against its specific orthologous sequences in the other species, we can look for weak similarities inside the breakpoint, thus extending the synteny blocks and narrowing the breakpoints. The identification of the narrowed breakpoints relies on a segmentation algorithm and is statistically assessed. Here, we present the package Cassis that implements this method of precise detection of genomic rearrangement breakpoints

    Detection of gene expression changes at chromosomal rearrangement breakpoints in evolution

    Get PDF
    BACKGROUND: We study the relation between genome rearrangements, breakpoints and gene expression. Genome rearrangement research has been concerned with the creation of breakpoints and their position in the chromosome, but the functional consequences of individual breakpoints remain virtually unknown, and there are no direct genome-wide studies of breakpoints from this point of view. A question arises of what the biological consequences of breakpoint creation are, rather than just their structural aspects. The question is whether proximity to the site of a breakpoint event changes the activity of a gene. RESULTS: We investigate this by comparing the distribution of distances to the nearest breakpoint of genes that are differentially expressed with the distribution of the same distances for the entire gene complement. We study this in data on whole blood tissue in human versus macaque, and in cerebral cortex tissue in human versus chimpanzee. We find in both data sets that the distribution of distances to the nearest breakpoint of "changed expression genes" differs little from this distance calculated for the rest of the gene complement. In focusing on the changed expression genes closest to the breakpoints, however, we discover that several of these have previously been implicated in the literature as being connected to the evolutionary divergence of humans from other primates. CONCLUSIONS: We conjecture that chromosomal rearrangements occasionally interrupt the regulatory configurations of genes close to the breakpoint, leading to changes in expression

    Open chromatin encoded in DNA sequence is the signature of ‘master’ replication origins in human cells

    Get PDF
    For years, progress in elucidating the mechanisms underlying replication initiation and its coupling to transcriptional activities and to local chromatin structure has been hampered by the small number (approximately 30) of well-established origins in the human genome and more generally in mammalian genomes. Recent in silico studies of compositional strand asymmetries revealed a high level of organization of human genes around 1000 putative replication origins. Here, by comparing with recently experimentally identified replication origins, we provide further support that these putative origins are active in vivo. We show that regions ∌300-kb wide surrounding most of these putative replication origins that replicate early in the S phase are hypersensitive to DNase I cleavage, hypomethylated and present a significant enrichment in genomic energy barriers that impair nucleosome formation (nucleosome-free regions). This suggests that these putative replication origins are specified by an open chromatin structure favored by the DNA sequence. We discuss how this distinctive attribute makes these origins, further qualified as ‘master’ replication origins, priviledged loci for future research to decipher the human spatio-temporal replication program. Finally, we argue that these ‘master’ origins are likely to play a key role in genome dynamics during evolution and in pathological situations

    Positional orthology: putting genomic evolutionary relationships into context

    Get PDF
    Orthology is a powerful refinement of homology that allows us to describe more precisely the evolution of genomes and understand the function of the genes they contain. However, because orthology is not concerned with genomic position, it is limited in its ability to describe genes that are likely to have equivalent roles in different genomes. Because of this limitation, the concept of ‘positional orthology’ has emerged, which describes the relation between orthologous genes that retain their ancestral genomic positions. In this review, we formally define this concept, for which we introduce the shorter term ‘toporthology’, with respect to the evolutionary events experienced by a gene’s ancestors. Through a discussion of recent studies on the role of genomic context in gene evolution, we show that the distinction between orthology and toporthology is biologically significant. We then review a number of orthology prediction methods that take genomic context into account and thus that may be used to infer the important relation of toporthology

    Close 3D proximity of evolutionary breakpoints argues for the notion of spatial synteny

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Folding and intermingling of chromosomes has the potential of bringing close to each other loci that are very distant genomically or even on different chromosomes. On the other hand, genomic rearrangements also play a major role in the reorganisation of loci proximities. Whether the same loci are involved in both mechanisms has been studied in the case of somatic rearrangements, but never from an evolutionary standpoint.</p> <p>Results</p> <p>In this paper, we analysed the correlation between two datasets: (i) whole-genome chromatin contact data obtained in human cells using the Hi-C protocol; and (ii) a set of breakpoint regions resulting from evolutionary rearrangements which occurred since the split of the human and mouse lineages. Surprisingly, we found that two loci distant in the human genome but adjacent in the mouse genome are significantly more often observed in close proximity in the human nucleus than expected. Importantly, we show that this result holds for loci located on the same chromosome regardless of the genomic distance separating them, and the signal is stronger in gene-rich and open-chromatin regions.</p> <p>Conclusions</p> <p>These findings strongly suggest that part of the 3D organisation of chromosomes may be conserved across very large evolutionary distances. To characterise this phenomenon, we propose to use the notion of spatial synteny which generalises the notion of genomic synteny to the 3D case.</p

    Footprints of Inversions at Present and Past Pseudoautosomal Boundaries in Human Sex Chromosomes

    Get PDF
    The human sex chromosomes have stopped recombining gradually, which has left five evolutionary strata on the X chromosome. Y inversions are thought to have suppressed X–Y recombination but clear evidence is missing. Here, we looked for such evidence by focusing on a region—the X-added region (XAR)—that includes the pseudoautosomal region and the most recent strata 3 to 5. We estimated and analyzed the whole set of parsimonious scenarios of Y inversions given the gene order in XAR and its Y homolog. Comparing these to scenarios for simulated sequences suggests that the strata 4 and 5 were formed by Y inversions. By comparing the X and Y DNA sequences, we found clear evidence of two Y inversions associated with duplications that coincide with the boundaries of strata 4 and 5. Divergence between duplicates is in agreement with the timing of strata 4 and 5 formation. These duplicates show a complex pattern of gene conversion that resembles the pattern previously found for AMELXY, a stratum 3 locus. This suggests that this locus—despite AMELY being unbroken—was possibly involved in a Y inversion that formed stratum 3. However, no clear evidence supporting the formation of stratum 3 by a Y inversion was found, probably because this stratum is too old for such an inversion to be detectable. Our results strongly support the view that the most recent human strata have arisen by Y inversions and suggest that inversions have played a major role in the differentiation of our sex chromosomes

    Analysis of fine-scale mammalian evolutionary breakpoints provides new insight into their relation to genome organisation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Intergenic Breakage Model, which is the current model of structural genome evolution, considers that evolutionary rearrangement breakages happen with a uniform propensity along the genome but are selected against in genes, their regulatory regions and in-between. However, a growing body of evidence shows that there exists regions along mammalian genomes that present a high susceptibility to breakage. We reconsidered this question taking advantage of a recently published methodology for the precise detection of rearrangement breakpoints based on pairwise genome comparisons.</p> <p>Results</p> <p>We applied this methodology between the genome of human and those of five sequenced eutherian mammals which allowed us to delineate evolutionary breakpoint regions along the human genome with a finer resolution (median size 26.6 kb) than obtained before. We investigated the distribution of these breakpoints with respect to genome organisation into domains of different activity. In agreement with the Intergenic Breakage Model, we observed that breakpoints are under-represented in genes. Surprisingly however, the density of breakpoints in small intergenes (1 per Mb) appears significantly higher than in gene deserts (0.1 per Mb).</p> <p>More generally, we found a heterogeneous distribution of breakpoints that follows the organisation of the genome into isochores (breakpoints are more frequent in GC-rich regions). We then discuss the hypothesis that regions with an enhanced susceptibility to breakage correspond to regions of high transcriptional activity and replication initiation.</p> <p>Conclusion</p> <p>We propose a model to describe the heterogeneous distribution of evolutionary breakpoints along human chromosomes that combines natural selection and a mutational bias linked to local open chromatin state.</p

    The rise and fall of breakpoint reuse depending on genome resolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During evolution, large-scale genome rearrangements of chromosomes shuffle the order of homologous genome sequences ("synteny blocks") across species. Some years ago, a controversy erupted in genome rearrangement studies over whether rearrangements recur, causing breakpoints to be reused.</p> <p>Methods</p> <p>We investigate this controversial issue using the synteny block's for human-mouse-rat reported by Bourque <it>et al</it>. and a series of synteny blocks we generated using Mauve at resolutions ranging from coarse to very fine-scale. We conducted analyses to test how resolution affects the traditional measure of the breakpoint reuse rate<it>.</it></p> <p>Results</p> <p>We found that the inversion-based breakpoint reuse rate is low at fine-scale synteny block resolution and that it rises and eventually falls as synteny block resolution decreases. By analyzing the cycle structure of the breakpoint graph of human-mouse-rat synteny blocks for human-mouse and comparing with theoretically derived distributions for random genome rearrangements, we showed that the implied genome rearrangements at each level of resolution become more “random” as synteny block resolution diminishes. At highest synteny block resolutions the Hannenhalli-Pevzner inversion distance deviates from the Double Cut and Join distance, possibly due to small-scale transpositions or simply due to inclusion of erroneous synteny blocks. At synteny block resolutions as coarse as the Bourque <it>et al</it>. blocks, we show the breakpoint graph cycle structure has already converged to the pattern expected for a random distribution of synteny blocks.</p> <p>Conclusions</p> <p>The inferred breakpoint reuse rate depends on synteny block resolution in human-mouse genome comparisons. At fine-scale resolution, the cycle structure for the transformation appears less random compared to that for coarse resolution. Small synteny blocks may contain critical information for accurate reconstruction of genome rearrangement history and parameters.</p

    Improving Comparative Genomic Studies:Definitions and Algorithms for Syntenic Blocks

    Get PDF
    Comparative genomics aims to understand the structure of genomes and the function of various genomic fragments, by transferring knowledge gained from well studied genomes, to the new object of study. Rapid and inexpensive high-throughput sequencing is making available more and more complete genome sequences. Despite the significant scientific advance, we still lack good models for the evolution of the genomic architecture, therefore analyzing these genomes presents formidable challenges. Early approaches used pairwise comparisons, but today researchers are attempting to leverage the larger potential of multiway comparisons. Current approaches are based on the identification of so called syntenic blocks: blocks of sequence that exhibit conserved features across the genomes under study. Syntenic blocks are in many ways analogous to genesĂą -in many cases, the markers are used to constructing them are genes. Like genes they can exist in multiple copies, in which case we could define analogs of orthology and paralogy. However, whereas genes are studied at the sequence level, syntenic blocks are too large for that level of detail - it is their structure and function as a unit that makes them valuable for genome level comparative studies. Syntenic blocks are required for complex computations to scale to the billions of nucleotides present in many genomes; they enable comparisons across broad ranges of genomes because they filter outmuch of the individual variability; they highlight candidate regions for in-depth studies; and they facilitate whole-genome comparisons through visualization tools. The identification of such blocks is the first step in comparative studies, yet its effect on final results has not been well studied, nor has any formalization of syntenic blocks been proposed. Tools for the identification of syntenic blocks yield quite different results, thereby preventing a systematic assessment of the next steps in an analysis. Current tools do not include measurable quality objectives and thus cannot be benchmarked against themselves. Comparisons among tools have also been neglected - what few results are given use superficial measures unrelated to quality or consistency. In this thesis we address two major challenges, and present: (i) a theoretical model as well as an experimental basis for comparing syntenic blocks and thus also for improving the design of tools for the identification of syntenic blocks; (ii) a prototype model that serves as a basis for implementing effective synteny mining tools. We offer an overview of the milestones present in literature, on the development of concepts and tool related to synteny; we illustrate the application of the model and the measures by applying them to syntenic blocks produced by different contemporary tools on publicly available data sets. We have taken the first step towards a formal approach to the construction of syntenic blocks by developing a simple quality criterion based on sound evolutionary principles. Our experiments demonstrate widely divergent results among these tools, throwing into question the robustness of the basic approach in comparative genomics. Our findings highlight the need for a well founded, systematic approach to the decomposition of genomes into syntenic blocks and motivate the second part of the work - starting from the proposed model, we extend the concept with data dependent features and constraints, in order to test the concept on cases of interest
    corecore