7,968 research outputs found

    Brain rhythms of pain

    Get PDF
    Pain is an integrative phenomenon that results from dynamic interactions between sensory and contextual (i.e., cognitive, emotional, and motivational) processes. In the brain the experience of pain is associated with neuronal oscillations and synchrony at different frequencies. However, an overarching framework for the significance of oscillations for pain remains lacking. Recent concepts relate oscillations at different frequencies to the routing of information flow in the brain and the signaling of predictions and prediction errors. The application of these concepts to pain promises insights into how flexible routing of information flow coordinates diverse processes that merge into the experience of pain. Such insights might have implications for the understanding and treatment of chronic pain

    Subjective pain perception mediated by alpha rhythms

    Get PDF
    Suppression of spontaneous alpha oscillatory activities, interpreted as cortical excitability, was observed in response to both transient and tonic painful stimuli. The changes of alpha rhythms induced by pain could be modulated by painful sensory inputs, experimental tasks, and top-down cognitive regulations such as attention. The temporal and spatial characteristics, as well as neural functions of pain induced alpha responses, depend much on how these factors contribute to the observed alpha event-related desynchronization/synchronization (ERD/ERS). How sensory-, task-, and cognitive-related changes of alpha oscillatory activities interact in pain perception process is reviewed in the current study, and the following conclusions are made: (1) the functional inhibition hypothesis that has been proposed in auditory and visual modalities could be applied also in pain modality; (2) the neural functions of pain induced alpha ERD/ERS were highly dependent on the cortical regions where it is observed, e.g., somatosensory cortex alpha ERD/ERS in pain perception for painful stimulus processing; (3) the attention modulation of pain perception, i.e., influences on the sensory and affective dimensions of pain experience, could be mediated by changes of alpha rhythms. Finally, we propose a model regarding the determinants of pain related alpha oscillatory activity, i.e., sensory-discriminative, affective-motivational, and cognitive-modulative aspects of pain experience, would affect and determine pain related alpha oscillatory activities in an integrated way within the distributed alpha system. Copyright © 2015 Elsevier B.V. All rights reserved.postprin

    Event-related alpha suppression in response to facial motion

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.While biological motion refers to both face and body movements, little is known about the visual perception of facial motion. We therefore examined alpha wave suppression as a reduction in power is thought to reflect visual activity, in addition to attentional reorienting and memory processes. Nineteen neurologically healthy adults were tested on their ability to discriminate between successive facial motion captures. These animations exhibited both rigid and non-rigid facial motion, as well as speech expressions. The structural and surface appearance of these facial animations did not differ, thus participants decisions were based solely on differences in facial movements. Upright, orientation-inverted and luminance-inverted facial stimuli were compared. At occipital and parieto-occipital regions, upright facial motion evoked a transient increase in alpha which was then followed by a significant reduction. This finding is discussed in terms of neural efficiency, gating mechanisms and neural synchronization. Moreover, there was no difference in the amount of alpha suppression evoked by each facial stimulus at occipital regions, suggesting early visual processing remains unaffected by manipulation paradigms. However, upright facial motion evoked greater suppression at parieto-occipital sites, and did so in the shortest latency. Increased activity within this region may reflect higher attentional reorienting to natural facial motion but also involvement of areas associated with the visual control of body effectors. © 2014 Girges et al

    Analytical methods and experimental approaches for electrophysiological studies of brain oscillations

    Get PDF
    Brain oscillations are increasingly the subject of electrophysiological studies probing their role in the functioning and dysfunction of the human brain. In recent years this research area has seen rapid and significant changes in the experimental approaches and analysis methods. This article reviews these developments and provides a structured overview of experimental approaches, spectral analysis techniques and methods to establish relationships between brain oscillations and behaviour

    Prefrontal gamma oscillations encode tonic pain in humans

    Get PDF
    Under physiological conditions, momentary pain serves vital protective functions. Ongoing pain in chronic pain states, on the other hand, is a pathological condition that causes widespread suffering and whose treatment remains unsatisfactory. The brain mechanisms of ongoing pain are largely unknown. In this study, we applied tonic painful heat stimuli of varying degree to healthy human subjects, obtained continuous pain ratings, and recorded electroencephalograms to relate ongoing pain to brain activity. Our results reveal that the subjective perception of tonic pain is selectively encoded by gamma oscillations in the medial prefrontal cortex. We further observed that the encoding of subjective pain intensity experienced by the participants differs fundamentally from that of objective stimulus intensity and from that of brief pain stimuli. These observations point to a role for gamma oscillations in the medial prefrontal cortex in ongoing, tonic pain and thereby extend current concepts of the brain mechanisms of pain to the clinically relevant state of ongoing pain. Furthermore, our approach might help to identify a brain marker of ongoing pain, which may prove useful for the diagnosis and therapy of chronic pain

    The effect of voluntary modulation of the sensory-motor rhythm during different mental tasks on H reflex

    Get PDF
    Objectives: The aim of this study was to explore the possibility of the short-term modulation of the soleus H reflex through self-induced modulation of the sensory-motor rhythm (SMR) as measured by electroencephalography (EEG) at Cz. Methods: Sixteen healthy participants took part in one session of neuromodulation. Motor imagery and mental math were strategies for decreasing SMR, while neurofeedback was used to increase SMR. H reflex of the soleus muscle was elicited by stimulating tibial nerve when SMR reached a pre-defined threshold and was averaged over 5 trials. Results: Neurofeedback and mental math both resulted in the statistically significant increase of H reflex (p = 1.04·10− 6 and p = 5.47·10− 5 respectively) while motor imagery produced the inconsistent direction of H reflex modulation (p = 0.57). The average relative increase of H reflex amplitude was for neurofeedback 19.0 ± 5.4%, mental math 11.1 ± 3.6% and motor imagery 2.6 ± 1.0%. A significant negative correlation existed between SMR amplitude and H reflex for all tasks at Cz and C4. Conclusions: It is possible to achieve a short-term modulation of H reflex through short-term modulation of SMR. Various mental tasks dominantly facilitate H reflex irrespective of direction of SMR modulation. Significance: Improving understanding of the influence of sensory-motor cortex on the monosynaptic reflex through the self-induced modulation of cortical activity

    Cerebral processing and cortical plasticity during tonic and phasic painful stimulation

    Get PDF

    Resting-state modulation of alpha rhythms by interference with angular gyrus activity

    Get PDF
    The default mode network is active during restful wakefulness and suppressed during goal-driven behavior. We hypothesize that inhibitory interference with spontaneous ongoing, that is, not task-driven, activity in the angular gyrus (AG), one of the core regions of the default mode network, will enhance the dominant idling EEG alpha rhythms observed in the resting state. Fifteen right-handed healthy adult volunteers underwent to this study. Compared with sham stimulation, magnetic stimulation (1 Hz for 1 min) over both left and right AG, but not over FEF or intraparietal sulcus, core regions of the dorsal attention network, enhanced the dominant alpha power density (8-10 Hz) in occipitoparietal cortex. Furthermore, right AG-rTMS enhanced intrahemispheric alpha coherence (8-10 Hz). These results suggest that AG plays a causal role in the modulation of dominant low-frequency alpha rhythms in the resting-state condition
    corecore