15 research outputs found

    Power series approximations for two-class generalized processor sharing systems

    Get PDF
    We develop power series approximations for a discrete-time queueing system with two parallel queues and one processor. If both queues are nonempty, a customer of queue 1 is served with probability beta, and a customer of queue 2 is served with probability 1-beta. If one of the queues is empty, a customer of the other queue is served with probability 1. We first describe the generating function U(z (1),z (2)) of the stationary queue lengths in terms of a functional equation, and show how to solve this using the theory of boundary value problems. Then, we propose to use the same functional equation to obtain a power series for U(z (1),z (2)) in beta. The first coefficient of this power series corresponds to the priority case beta=0, which allows for an explicit solution. All higher coefficients are expressed in terms of the priority case. Accurate approximations for the mean stationary queue lengths are obtained from combining truncated power series and Pad, approximation

    Performance analysis of a discrete-time queueing system with customer deadlines

    Get PDF
    This paper studies a discrete-time queueing system where each customer has a maximum allowed sojourn time in the system, referred to as the "deadline" of the customer. Deadlines of consecutive customers are modelled as independent and geometrically distributed random variables. The arrival process of new customers, furthermore, is assumed to be general and independent, while service times of the customers are deterministically equal to one slot each. For this queueing model, we are able to obtain exact formulas for quantities as the mean system content, the mean customer delay, and the deadline-expiration ratio. These formulas, however, contain infinite sums and infinite products, which implies that truncations are required to actually compute numerical values. Therefore, we also derive some easy-to-evaluate approximate results for the main performance measures. These approximate results are quite accurate, as we show in some numerical examples. Possible applications of this type of queueing model are numerous: the (variable) deadlines could model, for instance, the fact that customers may become impatient and leave the queue unserved if they have to wait too long in line, but they could also reflect the fact that the service of a customer is not useful anymore if it cannot be delivered soon enough, etc

    An approximate analysis of a bernoulli alternating service model

    No full text
    We consider a discrete-time queueing system with one server and two types of customers, say type-1 and type-2 customers. The server serves customers of either type alternately according to a Bernoulli pro- cess. The service times of the customers are deterministically equal to 1 time slot. For this queueing system, we derive a functional equation for the joint probability generating function of the number of type-1 and type-2 customers. The functional equation contains two unknown partial generating functions which complicates the analysis. We investigate the dominant singularity of these two unknown functions and propose an approximation for the coefficients of the Maclaurin series expansion of these functions. This approximation provides a fast method to compute approximations of various performance measures of interest

    Extinction probabilities for a distylous plant population modeled by an inhomogeneous random walk on the positive quadrant

    Get PDF
    In this paper, we study a flower population in which self-reproduction is not permitted. Individuals are diploid, {that is, each cell contains two sets of chromosomes}, and {distylous, that is, two alleles, A and a, can be found at the considered locus S}. Pollen and ovules of flowers with the same genotype at locus S cannot mate. This prevents the pollen of a given flower to fecundate its {own} stigmata. Only genotypes AA and Aa can be maintained in the population, so that the latter can be described by a random walk in the positive quadrant whose components are the number of individuals of each genotype. This random walk is not homogeneous and its transitions depend on the location of the process. We are interested in the computation of the extinction probabilities, {as} extinction happens when one of the axis is reached by the process. These extinction probabilities, which depend on the initial condition, satisfy a doubly-indexed recurrence equation that cannot be solved directly. {Our contribution is twofold : on the one hand, we obtain an explicit, though intricate, solution through the study of the PDE solved by the associated generating function. On the other hand, we provide numerical results comparing stochastic and deterministic approximations of the extinction probabilities.Comment: 23 page

    Analysis of a two-class single-server discrete-time FCFS queue : the effect of interclass correlation

    Get PDF
    In this paper, we study a discrete-time queueing system with one server and two classes of customers. Customers enter the system according to a general independent arrival process. The classes of consecutive customers, however, are correlated in a Markovian way. The system uses a global FCFS service discipline, i.e., all arriving customers are accommodated in one single FCFS queue, regardless of their classes. The service-time distribution of the customers is general but class-dependent, and therefore, the exact order in which the customers of both classes succeed each other in the arrival stream is important, which is reflected by the complexity of the system content and waiting time analysis presented in this paper. In particular, a detailed waiting time analysis of this kind of multi-class system has not yet been published, and is considered to be one of the main novelties by the authors. In addition to that, a major aim of the paper is to estimate the impact of interclass correlation in the arrival stream on the total number of customers in the system, and the customer delay. The results reveal that the system can exhibit two different classes of stochastic equilibrium: a strong equilibrium where both customer classes give rise to stable behavior individually, and a compensated equilibrium where one customer type creates overload
    corecore