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Abstract

In this paper we study a discrete-time queueing system with one server and two classes
of customers. Customers enter the system according to a general independent arrival
process. The classes of consecutive customers, however, are correlated in a Markovian
way. The system uses a “global FCFS” service discipline, i.e., all arriving customers are
accommodated in one single FCFS queue, regardless of their classes. The service-time
distribution of the customers is general but class-dependent, and therefore, the exact
order in which the customers of both classes succeed each other in the arrival stream is
important, which is reflected by the complexity of the system content and waiting time
analysis presented in this paper. In particular, a detailed waiting time analysis of this
kind of multiclass system has not yet been published, and is considered to be one of the
main novelties by the authors.

In addition to that, a major aim of the paper is to estimate the impact of interclass
correlation in the arrival stream on the total number of customers in the system, and the
customer delay. The results reveal that the system can exhibit two different classes of
stochastic equilibrium: a “strong” equilibrium where both customer classes give rise to
stable behavior individually, and a “compensated” equilibrium where one customer type
creates overload.

Key words: discrete-time queueing; multi-class; waiting time; interclass correlation;
global FCFS; general service times
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1 Introduction

Multi-class queueing systems arise when multiple classes (or classes) of customers compete for
the use of the same resources. A vast literature on multi-class queueing systems exists, both
in a continuous-time setting and in a discrete-time setting [41, 2, 42, 18]. Various classes of
scheduling disciplines (i.e., rules that determine the order of service for the customers of different
classes) have been investigated. We mention, among others, priority scheduling [16, 35, 25, 48,
19, 43, 45, 32, 44, 49, 2, 42], weighted fair queueing (WFQ) [14, 47, 40, 21], random order of
service (ROS) [28, 5], generalized processor sharing (GPS) [46, 37, 5, 27, 36, 26, 30]. Strangely
enough, only few results have been derived for multi-class first-come-first-served (global FCFS )
systems, i.e., queueing systems in which the customers of different classes are accommodated
in one single queue and served in their order of arrival, irrespective of the classes they belong
to (two recent papers are [16, 17]). The present paper presents the analysis of a discrete-time
model that fits in this category.

In multi-class queueing models, it is often assumed that the various customer classes occur
randomly and independently in the overall arrival process. (see [16, 17]). In the current
paper, however, we explicitly aim at examining the effect of interclass correlation (or class
clustering) in the arrival process, when the queueing discipline is global FCFS. In other words,
we want to investigate how the performance of a (global FCFS) queueing system depends on
the order in which the customers of different classes arrive and are being served. In particular,
we are interested to know whether or not the degree to which customers of the same class
have the tendency to be served closely together (i.e., back-to-back) has a substantial impact
on the performance of a global-FCFS queueing system. Therefore, we superimpose a two-
state Markovian model with interclass correlation (and arbitrary transition probabilities for
the classes of the consecutive customers in the arrival stream) on top of a regular general
independent arrival process model for the numbers of arrivals from slot to slot. Service-time
distributions are general and class-dependent. For this model, we present an extensive analysis
of the system content and customer waiting time. Whereas the system content analysis is partly
based on the conference paper [9], the customer waiting time analysis is new.

Interclass correlation between consecutive customer classes can be viewed as a form of
dependence between the lengths of consecutive customer service times. In this sense there is
some resemblance between our model and the so-called Markovian Service Process (MSP) that
has been dealt with in a number of earlier papers [1, 38, 4, 23]. Our model is different from the
service models used in these papers, in several respects. First of all, our model is a discrete-
time model, whereas [1, 38, 4, 23] consider time as a continuous quantity. Next, although both
in MSPs and our model the service process is controlled by a Markovian background state,
there is a fundamental difference. In our model, the background state is associated with a
customer, i.e., it basically represents its class, and can only change from customer to customer.
In other words, a next state in our model corresponds to another customer and thus goes along
with a service completion. In an MSP on the other hand, the background state is associated
with time and can even change during the service of a customer. Ozawa [38] presents a generic
matrix-based analysis of a queue where the service process is governed by a background Markov
chain having two classes of states (for empty queue and non-empty queue, respectively). In
our view, the major contribution of this paper is the derivation of a matrix-class stochastic
factorization for the vector generating function of the queue content. Banik et al’s paper [4]
considers a service process where the consecutive customers are served in batches of random
sizes, the consecutive batch sizes (rather than the service times) being correlated. Finally,
Gupta et al analyze a model where the service times (or job sizes, as they call them) have a
hyperexponential (instead of general) distribution, and the main emphasis is on the behavior
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of various non-FCFS scheduling policies.
The current paper is related to a series of papers we published the last couple of years on

dual-class global FCFS-queues with interclass correlation in the arrival process [12, 13, 15, 33,
34, 39, 9]. In our conference paper [12] and its extended version [13], we study a system with two
dedicated servers, i.e., where each server can only serve one class of customers, whereas there is
only one server in the current model. In addition, it is assumed in [12, 13] that both customer
classes are equiprobable, i.e., both customer classes account for half of the load, whereas this
restriction is relaxed in this paper. Also, [12] and [13] consider single-slot service times for
both customer classes whereas general service times that may be different for each class are
included here. Moreover, the current paper puts a substantial focus on the concepts of global,
strong and compensated stability, which are not discussed in [12] and [13]. [15] describes the
application of the results from [12] and [13] to the evaluation of in-order processing systems.
In [33, 34], a system similar to [12] and [13] is studied though in continuous time instead of
discrete time. In [39], a system similar to the one in the current paper is studied, i.e., there are
two different classes of customers, the service is granted according to the global FCFS rule, but
the service times of the consecutive customers are determined by the equality or non-equality
of the classes these customers belong to, rather than by their actual classes. In fact, the current
paper is a thoroughly extended version of our conference paper [9]. The main extensions are a
more complete discussion of earlier relevant work, a larger number of numerical examples and,
especially, the waiting time analysis, and a careful investigation of the system behavior in case
of strong positive interclass correlation in section 7, which we believe is a key contribution of
this paper as well.

For the current model, we first derive the steady-state probability generating function (pgf)
of the total number of customers in the system, at customer departure times. From this result,
we then obtain the corresponding pgf valid at arbitrary slot boundaries. Various performance
measures of practical use, such as the mean system content (and, from Little’s result, the
mean customer waiting time and delay), can be easily derived from these pgf’s. In addition, we
present an extensive analysis that leads to an expression for the steady-state pgf of the customer
waiting time. We would like to emphasize that contributions which consider the customer
waiting time analysis (other than the mean value) in multiclass systems where customers with
class-dependent service times are accommodated by a common queue, are scarce, and to the
best of our knowledge, only [1, 17] consider such results. Our mathematical derivations follow a
completely different, and in our view novel, approach, and we therefore consider this particular
waiting time analysis as another main contribution of the paper.

In addition to that, we show that a close investigation of the resulting mathematical for-
mulas and a number of numerical examples reveals that the system under study can exhibit
two classes of stochastic equilibrium, depending on the values of the system parameters: a
“strong” regime in which both customer classes individually generate less work than the sys-
tem can handle (during periods where only such customers arrive), and a “compensated” class
of regime whereby one customer class creates overload situations which are compensated by
strong underload periods generated by the other customer class. In the latter case, our results
clearly demonstrate the crucial importance of the amount of interclass correlation on the usual
performance parameters of the system.

Applications of the model are numerous: the two customer classes could model, for instance,
two classes of road traffic at a traffic light (see [13] for additional explanation), two classes of
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digital information (data, voice, video) in routers of a communication network, two classes of
files to be handled by a public servant, etc. One particular application that the authors have
encountered in a truck manufacturing plant, is the modeling of the the preassembly process of
axles next to the final assembly line of trucks, which is one of the main bottlenecks in the overall
production process. Axles of several types are required, corresponding to several types of trucks
scheduled in the main assembly production line. Following the just-in-time manufacturing
principle, axles therefore have to be preassembled in the order they are needed at the main
assembly line, which relates to the global FCFS service order in the model. In addition, the
product characteristics, such as whether or not an axle needs air suspension, greatly affects
the production time. Therefore, the production times of axles can differ significantly, which
is accounted for by the class-dependent service times in our model. In addition, clustering
of same-type axles occurs as well, due to the scheduling of the truck production on the main
assembly line, and production specifics such as the number of axles needed by the different types
of trucks. This clustering effect is captured by the correlation structure of successive types in
the model. Due to these features, we believe that the model presented hereafter provides a
workable framework for the performance assessment of such a production process.

2 Mathematical model

We consider a discrete-time queueing system with infinite waiting room, one server, and two
classes (classes) of customers, named A and B. The time axis is divided into fixed-length
intervals referred to as time slots, time units or, simply, slots, in the sequel. New customers may
enter the system at any given (continuous) point on the time axis, but services are synchronized
to (i.e., can only start and end at) slot boundaries. Customers are served in their order of
arrival, regardless of the class they belong to. We call this service discipline “global FCFS” in
this paper.

The arrival process of new customers in the system is characterized in two steps.
First, we model the total (aggregated) arrival stream of new customers by means of a

sequence of i.i.d. nonnegative discrete random variables with common probability mass function
(pmf) e(n) and common probability generating function (pgf) E(z). More specifically,

e(n) , Pr[ n arrivals in one slot ] , n ≥ 0 ,

E(z) ,
∞∑
n=0

e(n) zn .

The (total) mean number of arrivals per slot, in the sequel referred to as the (total) mean
arrival rate, is given by

λ = E ′(1) .

Next, we describe the occurrence of the two classes (A and B) in the sequence of the con-
secutively arriving customers. In this study, we assume that both classes of customers account
for part of the total load of the system, i.e., both customer classes are “mixed” in the arrival
stream, but there may be some degree of “class clustering” in the arrival process, i.e., customers
of any given class may (or may not) have a tendency to “arrive back-to-back”. Mathematically,
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fig1-eps-converted-to.pdf

Figure 1: Two-state Markov chain for the A resp. B customer class

this means that the classes of two consecutive customers may be non-independent. Specifically,
we assume a first-order Markovian class of correlation between the classes of two consecutive
customers, which basically means that the probability that the next customer belongs to a given
class depends on the class of the previous customer. Note that our arrival model is profoundly
different from classical (discrete-time) correlated arrival models, where the global numbers of
arrivals are correlated from slot to slot. This is not the case here, but, on the other hand, the
classes of consecutive customers in the arrival stream are correlated.

Let tk denote the class (i.e., A or B) of customer k. The transition probabilities of the
Markov chain that determines the classes of the consecutive customers are then defined as (see
Fig. 1)

Pr[tk+1 = A | tk = A] = α ; Pr[tk+1 = B | tk = A] = 1− α ,

Pr[tk+1 = A | tk = B] = 1− β ; Pr[tk+1 = B | tk = B] = β . (1)

It is well-known [8, 6] that for a two-state Markov chain of this class, the steady-state proba-
bilities tA and tB of finding the chain in state A or B respectively, are given by

tA , lim
k→∞

Pr[tk = A] =
1− β

2− α− β
,

tB , lim
k→∞

Pr[tk = B] =
1− α

2− α− β
. (2)

The quantities tA and tB can be interpreted as the fractions of class A and class B customers in
the arrival stream, respectively. The (steady-state) correlation coefficient of the Markov chain,
i.e., the amount of correlation between the classes of two consecutive customers in the arrival
stream (in the steady state), is given by

γ , lim
k→∞

E[TkTk+1]− E[Tk]E[Tk+1]√
var[Tk] var[Tk+1]

= α + β − 1 , (3)

where Tk is a numerical random variable corresponding with the non-numerical variable tk, e.g.
Tk = 1 ⇔ tk = A and Tk = 0 ⇔ tk = B. We will indicate the parameter γ (−1 ≤ γ ≤ +1) as
the interclass correlation in the sequel. Positive values of γ correspond to a situation whereby
the customers of any given class have a tendency to cluster, while negative values of γ refer to
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arrival streams in which the customers of classes A and B have a tendency to alternate, i.e., be
mixed more strongly. The case where γ = 0, of course, corresponds to the classical assumption
that classes of subsequent customers are independent.

The service process of the system is characterized by attaching to each customer a corre-
sponding service requirement or service time, which indicates the number of time slots required
to give complete service to the customer at hand. The service times of consecutive customers
arriving at the system are modeled as a sequence of independent positive discrete random
variables with a class-dependent distribution. More specifically, the pmf’s are given by

a(n) , Pr[ service time of class-A customer equals n slots ] , n ≥ 1 ,

b(n) , Pr[ service time of class-B customer equals n slots ] , n ≥ 1 ,

while the corresponding pgf’s are

A(z) ,
∞∑
n=1

a(n) zn , B(z) ,
∞∑
n=1

b(n) zn . (4)

The mean service times of class-A and class-B customers are given by

µA , A′(1) , µB , B′(1) . (5)

The structure of the rest of this paper is as follows. Section 3 first presents an analysis
of the total number of customers in the system at customer departure times: an expression is
derived for the pgf of this number and a method is described to determine the two remaining
unknowns in that expression; next, the steady-state pgf of the system content at random slot
boundaries is derived from this result. All these derivations are valid for arbitrary choices of
E(z), A(z), B(z), α and β. Section 4 focuses on the calculation of the steady-state pgf of the
customer waiting time. In order to do so, we first need to derive some results on the joint pgf
of the system content and the residual service time of the customer being served. Three special
cases, whereby the system basically reduces to a single-class model, are considered in Section
5. We discuss the general case, both conceptually and quantitatively, in Section 6. Section 7
focuses on the case of strong positive interclass correlation, i.e., the limit where γ → +1. Some
conclusions are drawn and directions for future work are given in Section 8.

3 System content analysis

The results in this section are based on the conference paper [9].

3.1 System equations at customer departure times

Let uk denote the total system content, i.e., the total number of customers present in the system
just after the service completion of the k-th customer, and, as before, let tk indicate the class
customer k belongs to. Then, as a consequence of all the model assumptions in section 2,
the couple (tk, uk) forms a Markovian state description of the system (at customer departure
times).
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fig2-eps-converted-to.pdf

Figure 2: Relationship between uk and uk+1 when uk > 0

The state transitions of the quantities {tk} are governed by the equations (1), whereas for
the quantities {uk}, the following recursive system equations can be established (see Figs. 2
and 3):

uk+1 = uk − 1 + gk+1 , if uk > 0 ,

uk+1 = hk+1 , if uk = 0 .
(6)

Here, the quantity gk+1 is defined as the number of arrivals in the system during the service
time of customer k + 1, while the quantity hk+1 is given by

hk+1 = gk+1 + fk+1 ,

where fk+1 indicates the number of arrivals in the arrival slot of customer k + 1 arriving after
customer k + 1 (when customer k + 1 arrives in an empty system).

It is easily seen that the pgf of fk+1 is given by the pgf of the number of additional arrivals
in a slot with at least one arrival, i.e.,

F (z) , E[zfk+1 ] =
E(z)− E(0)

z[1− E(0)]
, (7)
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fig3-eps-converted-to.pdf

Figure 3: Relationship between uk and uk+1 when uk = 0

regardless of the class of customer k + 1. The distributions of the quantities gk+1 and hk+1,
however, do depend on the class of customer k + 1. More specifically, we have

GA(z) , E[zgk+1 | tk+1 = A] = A(E(z)) , HA(z) , E[zhk+1 | tk+1 = A] = F (z)A(E(z)) ;

GB(z) , E[zgk+1 | tk+1 = B] = B(E(z)) , HB(z) , E[zhk+1 | tk+1 = B] = F (z)B(E(z)) .
(8)

3.2 System content at customer departure times

Let us assume that the queueing system at hand is stable, i.e., that the stability condition
[8, 3, 29] is fulfilled. Intuitively, it is not difficult to see that the system is stable if and only if
the average amount of work entering the system per slot is strictly less than 1, i.e., if and only
if

λ · C ′(1) < 1 ,

where C(z) denotes the pgf of the service time of an arbitrary customer given by

C(z) , tAA(z) + tBB(z) , (9)
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and C ′(1) its average value. Expressed in the basic parameters of our system, this is equivalent
to the condition

λ(tAµA + tBµB) < 1 , (10)

where, in the above expressions, the quantities tA and tB are the steady-state probabilities of
the arrival Markov chain, defined in equation (2). Let us also denote by ρ the total load of the
queueing system, defined as

ρ , λC ′(1) = λ[tAµA + tBµB] , (11)

and the stability condition requires that ρ < 1.
Assuming this condition is fulfilled, we define the joint steady-state probabilities of the

Markov chain {(tk, uk)} as

pA(i) , lim
k→∞

Pr[tk = A, uk = i] , pB(i) , lim
k→∞

Pr[tk = B, uk = i] , (12)

for all i ≥ 0. The corresponding partial pgf’s are given by

PA(z) ,
∞∑
i=0

pA(i)zi , PB(z) ,
∞∑
i=0

pB(i)zi , (13)

and the steady-state pgf of the total system content at customer departure times is equal to

P (z) = PA(z) + PB(z) . (14)

Then, if we take the z-transform of the balance equations for the Markov chain {(tk, uk)}
that follow from the two system equations in (6), we can establish two linear equations for the
partial pgf’s PA(z) and PB(z) (we refer to [9] for more details)

[z − αA(E(z))]PA(z)− (1− β)A(E(z))PB(z)

=
E(z)− 1

1− E(0)
[αPA(0) + (1− β)PB(0)]A(E(z)) , (15)

[z − βB(E(z))]PB(z)− (1− α)B(E(z))PA(z)

=
E(z)− 1

1− E(0)
[βPB(0) + (1− α)PA(0)]B(E(z)) . (16)

Explicit expressions for the two partial pgf’s PA(z) and PB(z) obviously can be found by solving
this set. Using these results in equation (14), we obtain the following expression for the pgf
P (z):
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Theorem 1 The pgf of the system content at customer departure times is given by

P (z) =
(1− ρ)[E(z)− 1]

λ

z[pAA(E(z)) + pBB(E(z))] + (1− α− β)A(E(z))B(E(z))

z2 − z[αA(E(z)) + βB(E(z))]− (1− α− β)A(E(z))B(E(z))
, (17)

The quantities pA and pB in the above expression denote the conditional probabilities that a
customer entering an empty system (in the steady state) belongs to class A or B, respectively.
As shown in [9], these quantities can be calculated from

pA ,
αPA(0) + (1− β)PB(0)

PA(0) + PB(0)
=
αA(E(ẑ))− (1− β)B(E(ẑ))− ẑ

A(E(ẑ))−B(E(ẑ))

pB ,
(1− α)PA(0) + βPB(0)

PA(0) + PB(0)
=
βB(E(ẑ))− (1− α)A(E(ẑ))− ẑ

B(E(ẑ))− A(E(ẑ))
,

(18)

where ẑ represents the zero inside the closed unit disk of the complex z-plane of the denominator
in expression (17) for P (z). Once the zero ẑ has been computed (numerically), pA and pB can
be derived from (18). Substitution of the obtained values in equation (17) then leads to a fully
determined expression of the steady-state pgf P (z) of the total system content at customer
departure times.

For further use, also note that the probability P (0) is given by

P (0) =
1− E(0)

λ
[1− λ(tAµA + tBµB)] =

1− E(0)

λ
(1− ρ) . (19)

3.3 System content at random slot boundaries

It has been shown in [8, 7] that in any discrete-time queueing system with one single server and
independent arrivals from slot to slot (with pgf E(z)), regardless of the precise characteristics
of the service process and the intra-slot details of the arrival process (the position of the arrival
instants within the slot, single arrivals or batch arrivals, etc.), the following simple relationship
is valid between the pgf S(z) of the system content at random slot boundaries and the pgf P (z)
valid at customer departure times:

P (z) =
E(z)− 1

λ(z − 1)
S(z) . (20)

Combining this general result with equation (17), we obtain the following result:

Theorem 2 The pgf of the system content at random slot boundaries equals

S(z) = (1− ρ)(z − 1)
z[pAA(E(z)) + pBB(E(z))] + (1− α− β)A(E(z))B(E(z))

z2 − z[αA(E(z)) + βB(E(z))]− (1− α− β)A(E(z))B(E(z))
. (21)
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From this expression, various performance measures of practical importance can be derived.
For instance, the mean system content at random slot marks can be found as E[s] = S ′(1).
After long and tedious calculations, we find

Theorem 3 The mean system content at customer departure times is given by

E[s] = ρ+
λ2C ′′(1) + E ′′(1)C ′(1)

2(1− ρ)
+
γtAtBλ

2(µA − µB)2

(1− γ)(1− ρ)
+
λ(pA − tA)(µA − µB)

1− γ
. (22)

In the above expression, tA and tB are given in equation (2), γ is the interclass correlation
defined in (3), C ′(1) and C ′′(1) are derivatives of the pgf C(z) of the service time of an arbitrary
customer, ρ is the load of the system calculated from (11), and pA and pB are the probabilities
given by the formulas (18).

The first term (ρ) in equation (22) corresponds to the mean number of customers in service,
the other three terms account for the mean queue content, i.e., the mean number of customers
that are actually waiting to be served.

Higher-order moments of the system-content distribution can be obtained by computing
higher-order derivatives of the pgf S(z). By applying (the discrete-time version of) Little’s
law [29, 8, 20], the mean delay (system time) of an arbitrary customer can be obtained as
E[d] = E[s]/λ. The mean waiting time of an arbitrary customer can be derived from this as
E[w] = E[d]− C ′(1) and is given by

E[w] =
λ2C ′′(1) + E ′′(1)C ′(1)

2λ(1− ρ)
+
γtAtBλ(µA − µB)2

(1− γ)(1− ρ)
+

(pA − tA)(µA − µB)

1− γ
. (23)

4 Customer waiting time analysis

Whereas a formula for the mean customer waiting time was given in the previous section, in
this section we derive the steady-state pgf of this random variable. As we will see in the next
subsection, this also leads to some new and interesting results on the joint pgf of the system
content at random slot boundaries and the residual service time as well.

4.1 System content and residual service time

In order to be able to do waiting time calculations, we first need to consider the system content
at random slot boundaries, and the residual service time of the customer being served (if any).
We do this step-by-step. To set our minds, let us first take a look at the system with only one
class of customers, for instance by setting A(z) = B(z) = C(z) (see Section 5 on some results
for the single-class system), implying that all customers have the same service time distribution.

Single− class system
Consider an arbitrarily selected customer C̃ and denote its arrival slot by R̃; hence slot R̃ is a
randomly selected slot as well. Let us also define ũ as the number of customers in the system
just after the service completion that precedes slot R̃. Note that u and ũ do not have the same
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distribution, since ũ = 0 implies that R̃ either falls within an idle period, or the first customer
service time of a busy period. However, if we denote, as before, by s (with pgf S(z)) the system
content at the beginning of a randomly chosen slot R̃, then conditioning on s > 0 implies that
R̃ falls within a (random) customer service time, and choosing a random slot then becomes
equivalent to choosing a random service completion. Therefore,

Pr[ũ = j|s > 0] = Pr[u = j] , j ≥ 0 . (24)

In order to confirm this result, consider j = 0, and let E[Id] and E[Bu] represent the average
length of an idle and busy period respectively. For the system under consideration, these
quantities satisfy (see [8])

E[Id] =
1

1− E(0)
; E[Bu] =

ρ

1− ρ
· 1

1− E(0)
.

Note that Pr[ũ = 0, s > 0] is equal to the probability that slot R̃ falls within the first customer
service time of a busy period, and hence, with Pr[s = 0] = S(0) = 1− ρ,

Pr[ũ = 0|s > 0] = ρ−1
µC

E[Id] + E[Bu]
=

1− ρ
λ
· (1− E(0)) , (25)

with µC the mean length of a (random) service time. This is indeed equal to Pr[u = 0] = P (0)
(see (29) further on).

Throughout this section, s > 0 represents the event where slot R̃ falls within a customer
service time, and let us define ca (cb), with pgf Ca(z) (Cb(z)) as the residual (elapsed) customer
service time that follows (precedes) slot R̃ (by convention, we assume that slot R̃ is included
in ca, but not in cb). For s = 0 we set ca = cb = 0, and in case of s > 0, a simple extension of
the standard residual waiting time calculation reveals that the joint pgf of these two random
variables satisfies

E[xcaycb ] = x
C(x)− C(y)

µC(x− y)
. (26)

By setting y = 1 (x = 1) in this expression, we obtain Ca(x) (Cb(y)). Some relevant quantities
that appear in the subsequent analysis are depicted in Fig. 4.

For s > 0, we can now express s in terms of ũ by means of the system equations

s =


f + 1 +

cb∑
i=1

ei , if ũ = 0

ũ+
cb∑
i=1

ei , if ũ > 0 ,
(27)

where f (with pgf F (z); see equation (7)) represents the number of additional arrivals in slot
with at least one arrival, and with ei the numer of customer arrivals during the i-th slot of
cb. If we translate these system equations into z-transforms, then by invoking (24) we find the
following relation

S(z) = 1− ρ+ ρCb(E(z)) · {P (z) + P (0)(zF (z)− 1)} . (28)
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Figure 4: arrival of C̃ in case s > 0: definitions

With P (z) satisfying (see [17])

P (z) =
1− ρ
λ
· C(E(z))(E(z)− 1)

z − C(E(z))
, (29)

and S(z) given by (46), it is easily verified that (28) indeed holds.
As a next step, let us consider the couple (s, ca) (we still focus on the system with one

customer class). We define its joint pgf as

Sa(z, x) , E[zsxca ] .

Since ũ refers to the service completion that precedes slot R̃, this random variable is independent
from ca and cb. Therefore, invoking system equation (27), and making use of (24) and (26)
while following the same approach as above, we find that

Sa(z, x) = 1− ρ+ ρx
C(x)− C(E(z))

C ′(1)(x− E(z))
· {P (z) + P (0)(zF (z)− 1)} .

13



With expression (29) for P (z), this becomes

Sa(z, x) = (1− ρ)

(
1 + xz

C(x)− C(E(z))

x− E(z)
· E(z)− 1

z − C(E(z))

)
.

The same result, by means of a direct analysis of the two-dimensional state description (s, ca),
was also obtained in [8].

Two− class system
Let us now focus on the system with two classes of customers, i.e. A(z) 6= B(z), and where
the class of consecutive customers is designated by the two-state Markov process described in
Section 2. In addition to the previous definitions, for s > 0, let us now define t̃ as the class
of customer being served during slot R̃. We first establish some preliminary results that will
be used later on. Since slot R̃ is selected by a random customer arrival, Pr

[
t̃ = A|s > 0

]
is

proportional to the relative frequency of class-A customers in the arrival process, as well as to
their average service time. Hence we can write, relying on a similar reasoning as in (24) and
with µC , tAµA + tBµB = ρ/λ

Pr
[
ũ = j, t̃ = A|s > 0

]
=
µA
µC

p̂A(j) ; Pr
[
ũ = j, t̃ = B|s > 0

]
=
µB
µC

p̂B(j) ,

with

p̂A(j) , lim
k→∞

Pr[uk = j, tk+1 = A] = αpA(j) + (1− β)pB(j)

p̂B(j) , lim
k→∞

Pr[uk = j, tk+1 = B] = (1− α)pA(j) + βpB(j) ,

and with corresponding partial pgfs P̂A(z) and P̂B(z) respectively. In addition, note that from
(15), it follows that

P̂A(z) + P̂A(0)(zF (z)− 1) = z
PA(z)

A(E(z))

P̂B(z) + P̂B(0)(zF (z)− 1) = z
PB(z)

B(E(z))
. (30)

Let us define the partial joint pgfs

S̃A(z, x) , E
[
zsxcaI{t̃=A}

∣∣ s > 0
]

; S̃B(z, x) , E
[
zsxcaI{t̃=B}

∣∣ s > 0
]
,

with I{X} the indicator function, which equals 1 if the event X is true, and 0 otherwise. If t̃ = A
(resp B), then ca and cb obviously represent the class-A (resp. B) residual customer service
times after and before slot R̃, and similar expressions as in (26) must be adopted accordingly
in the analysis. Therefore, if we again invoke system equation (27), which is still valid for the
2-class system, and further consider the two possible values of t̃, then with the above results,
we obtain the following expressions for these partial joint pgfs:

S̃A(z, x) = xz
PA(z)

A(E(z))

A(x)− A(E(z))

µC(x− E(z))

14



S̃B(z, x) = xz
PB(z)

B(E(z))

B(x)−B(E(z))

µC(x− E(z))
. (31)

Thus, finally, the joint pgf of the couple (s, ca) is given by

Sa(z, x) = 1− ρ+ ρ(S̃A(z, x) + S̃B(z, x)) . (32)

Remark
Let us verify these results by means of a small additional calculation. From (31) and (32), and
with P (z) = PA(z) + PB(z), we find for S(z) , Sa(z, 1)

S(z)

λ
=

(z − 1)P (z)

E(z)− 1
+

1− ρ
λ
− PA(z)

A(E(z))

z − A(E(z))

E(z)− 1
− PB(z)

B(E(z))

z −B(E(z))

E(z)− 1
.

On the other hand, note that if we divide (15) by A(E(z)) and (16) by B(E(z)), respectively,
then the sum of the two equations that we thus obtain yields

PA(z)

A(E(z))
(z − A(E(z)) +

PB(z)

B(E(z))
(z −B(E(z)) =

E(z)− 1

E(0)− 1
P (0) =

1− λ
ρ

(E(z)− 1) ,

where we have invoked (25), which is still valid for the 2-class system. Hence, from the two
above equations, we find the same relation between P (z) and S(z) as in (20), thereby confirm-
ing our derivations.

In our calculations of the next section, for s > 0, we require the joint partial pgf of (q, ca−1),
where q represents the queue content at the beginning of slot R̃, i.e., the number of customers
in the system, not including the one being served. Obviously, q = s− 1 for s > 0, and we find
in view of the previous results

Q̃(z, x) , E
[
zqxca−1

∣∣ s > 0
]

=
PA(z)

A(E(z))

A(x)− A(E(z))

µC(x− E(z))
+

PB(z)

B(E(z))

B(x)−B(E(z))

µC(x− E(z))
. (33)

4.2 Customer waiting time

We define the random variable w, with steady-state pgf W (z), as the waiting time of customer
C̃, which is equal to the number of slots between the end of slot R̃, and the beginning of the
slot during which C̃ ′s service time is initiated. Consider the case that s > 0. Under a FCFS
discipline, w is determined by the class of the customer being served during slot R̃, its residual
service time, and the number of class-A and B customers found in the queue by C̃ upon its
arrival. In order to determine this number of class-A and B customers, we need to take into
account the specifics of the 2-state Markov process that designates the class of consecutive
customers. Given that a class-A customer is being served during slot R̃ and that C̃ finds n
customers in the queue upon arrival, let tA,n (with pgf TA,n(z)) denote the number of class-A
customers in the queue; similarly, we let tB,n (with pgf TB,n(z)) represent the number of class-A
customers in the queue in case that a class-B customer is being served. Obviously, n − tA,n
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and n− tB,n then represents the number of class-B customers in the queue in both cases. With
TA,0(z) = TB,0(z) = 1, it is easy to check that, for n ≥ 1, the conditional pgf’s TA,n(z) and
TB,n(z) can be calculated by the recursive matrix equation[

TA,n(z)
TB,n(z)

]
=

[
αz (1− α)

(1− β)z β

] [
TA,n−1(z)
TB,n−1(z)

]
=

[
αz (1− α)

(1− β)z β

]n [
1
1

]
. (34)

This indicates that the matrix Q(z), defined as

Q(z) ,

[
αz (1− α)

(1− β)z β

]
,

and its diagonalized form, will play an important role in the subsequent analysis. The eigen-
values of Q(z) are given by

λ1(z) =
1

2

[
αz + β +

√
(αz − β)2 + 4(1− α)(1− β)z

]
λ2(z) =

1

2

[
αz + β −

√
(αz − β)2 + 4(1− α)(1− β)z

]
. (35)

In addition, the 2× 2 matrix R(z) that contains the right-column eigenvectors of Q(z) satisfies

R(z) =

[
1−α

λ1(z)−αz
λ1(z)+(1−α−β)z
λ1(z)−λ2(z)

1−α
λ2(z)−αz

λ2(z)+(1−α−β)z
λ2(z)−λ1(z)

λ1(z)+(1−α−β)z
λ1(z)−λ2(z)

λ2(z)+(1−α−β)z
λ2(z)−λ1(z)

]
,

where we have relied on the normalization condition

R(z)

[
1
1

]
= R(z)−1

[
1
1

]
=

[
1
1

]
. (36)

Diagonalization of Q(z) in (34) then leads to, in view of (36)[
TA,n(z)
TB,n(z)

]
= R(z)

[
λ1(z)n

λ2(z)n

]
. (37)

Let us briefly point to some of the properties of these conditional pgfs. From the above expres-
sions, it follows that the components of R(z) have both a simple pole and a branch point for
values of z = ẑ that satisfy λ1(ẑ) = λ2(ẑ) (i.e., the square root that appears in (35) equals 0 for
z = ẑ, implying that ẑ is the solution of a quadratic equation), and some ẑ may even fall within
the complex unit circle |z| < 1. However, a closer inspection reveals that the ẑ are removable
singular points ([24]) of the conditional pgfs in (37). Let us for instance take a look at

TB,n(z) =
λ1(z) + (1− α− β)z

λ1(z)− λ2(z)
λ1(z)n +

λ2(z) + (1− α− β)z

λ2(z)− λ1(z)
λ2(z)n .

Consider any function f(z) for which f(z) ∈ R, ∀z ∈ R. Then the MacLaurin series expansion
of f(x + y) + f(x − y) around y = 0 is an even function of y, i.e., contains only even powers
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of y. If we let y represent the square root that appears in (35), then this reasoning shows that
TB,n(z) is an even function of y and therefore contains neither a branch point nor a simple pole
for y = 01. Indeed, if we work out the above expression for TB,n(z) in terms of (even) powers
of the square root in (35), we obtain

TB,n(z) =

(
1

2

)n
(β + (α + 2(1− β))z)

bn−1
2
c∑

j=0

(
n

2j + 1

)
(αz + β)n−2j−1

((αz − β)2 + 4(1− α)(1− β)z)j

+

(
1

2

)n bn2 c∑
j=0

(
n
2j

)
(αz + β)n−2j((αz − β)2 + 4(1− α)(1− β)z)j ,

with the convention that the first sum in the right-hand side equals 0 for n = 0. This expression
also shows that TB,n(z) is a polynomial of degree n, as expected. A similar expression can be
established for TA,n(z).

Next, let us return to the waiting time calculation, still under the assumption that s > 0,
and define θ as the residual burst size, being the number of customers that arrive during slot
R̃ and will be served before customer C̃ (see Fig. 4). Its pgf Θ(z) satisfies ([8])

Θ(z) , E
[
zθ
]

=
E(z)− 1

λ(z − 1)
.

Then q+θ is the number of customers that will receive full service during the waiting time of C̃.
Relying on the above calculations, we can determine how many of these customers are of class
A and B, and we let aj (bj), with pgf A(z) (B(z)) as before, represent the respective service
times of the j-th class-A (B) customer in the queue. In addition, we must take into account
the residual service time ca of the customer being served during slot R̃. Since ca includes slot
R̃ while w does not, we can express the conditional pgf of w as

E
[
zw| ca − 1 = i, q + θ = n, t̃ = A, s > 0

]
= E

zi+tA,n∑
j=1

aj+

n−tA,n∑
j=1

bj

∣∣∣∣∣∣ ca − 1 = i, q + θ = n, t̃ = A, s > 0

 = ziB(z)nTA,n(φ(z)) ,

for i, n ≥ 0, and with φ(z) , A(z)
B(z)

. An analogous expression evidently holds in case of t̃ = B.

The random variable θ and the triplet (q, ca, t̃) are mutually independent. If we take into
account expression (37) for TA,n(z) and TB,n(z) and average the above expected value over all
possible values of ca − 1, q, θ and t̃, and keep in mind our definition of Q̃(z, x) in (33), we
eventually obtain

E[zw| s > 0] =
[
1 1

]
R(φ(z))

[
Θ(B(z)λ1(φ(z))Q̃(B(z)λ1(φ(z)), z)

Θ(B(z)λ2(φ(z))Q̃(B(z)λ2(φ(z)), z)

]
. (38)

1Notice the analogy with complex numbers calculus: for z = x + ıy with x, y ∈ R, then f(z) + f(z∗) ∈ R,
since this is an even function of ıy
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Finally, in case of s = 0, slot R̃ falls within an idle period, and define t̃p as the class of the
last customer that was served before slot R̃. Due to the i.i.d. nature of the aggregate arrival
process, all idle periods have the same (geometric) distribution, regardless of the last customer’s
class. Therefore, since PA(0) (PB(0)) equals the probability that a class-A (B) customer leaves
behind an empty system, we have that

q̃A , Pr
[
t̃p = A

]
=

PA(0)

PA(0) + PB(0)
; q̃B , Pr

[
t̃p = B

]
=

PB(0)

PA(0) + PB(0)

The waiting time of C̃ is now determined by the value of θ in the following way:

E
[
zw| θ = n, t̃p = A, s = 0

]
= B(z)nTA,n(φ(z))

E
[
zw| θ = n, t̃p = B, s = 0

]
= B(z)nTB,n(φ(z)) .

If we average these expected values over all possible values of θ and t̃p , we thus find

E[zw| s = 0] =
[
q̃A q̃B

]
R(φ(z))

[
Θ(B(z)λ1(φ(z))
Θ(B(z)λ2(φ(z))

]
(39)

Finally, with (38)-(39), we obtain:

Theorem 4 The pgf of the customer waiting time can be expressed as

W (z) = (1− ρ)
[
q̃A q̃B

]
R(φ(z))

[
Θ(B(z)λ1(φ(z))
Θ(B(z)λ2(φ(z))

]
+ρ
[
1 1

]
R(φ(z))

[
Θ(B(z)λ1(φ(z))Q̃(B(z)λ1(φ(z)), z)

Θ(B(z)λ2(φ(z))Q̃(B(z)λ2(φ(z)), z)

]
. (40)

Note that, due to q̃A + q̃B = 1, B(1) = φ(1) = λ1(1) = Θ(1) = Q̃(1) = 1, and R(1) =

[
1 0
1 0

]
,

one can easily verify that the right-hand side of this expression equals 1 for z = 1, implying
that W (1) = 1, i.e., this pgf is indeed normalized.

5 Three special cases

5.1 Identical service-time distributions: A(z) = B(z)

First, let us consider the special case whereby the pgf’s A(z) and B(z) are identical. The pgf
S(z) can then be rewritten as

S(z) = (1− ρ)(z − 1)
zA(E(z)) + (1− α− β)A2(E(z))

z2 − (α + β)zA(E(z))− (1− α− β)A2(E(z))

= (1− ρ)(z − 1)
A(E(z))[z + (1− α− β)A(E(z))]

[z − A(E(z))][z + (1− α− β)A(E(z))]

= (1− ρ)
(z − 1)A(E(z))

z − A(E(z))
.

(41)
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This is the well-known [8, 7] pgf of the system content at random slot boundaries in a single-
server system with one class of customers with service-time pgf A(z), as expected.

Let us also consider the result for W (z). For A(z) = B(z), we have that φ(z) = 1, and

therefore also λ1(φ(z)) = 1 and R(φ(z)) =

[
1 0
1 0

]
. Then, in view of the definition of Q̃(z, x),

the results of the previous section immediately lead to

W (z) = Θ(A(z))

(
1− ρ+

1

zA(z)
(Sa(A(z), z)− (1− ρ))

)
. (42)

If we now invoke the explicit expressions for Θ(z) and Sa(z, x), we eventually find

W (z) =
1− ρ
λ

E(A(z))− 1

A(z)− 1

z − 1

z − E(A(z))
. (43)

An expression for the steady-state pgf of the system time (i.e., waiting time + service time) for
the single-class case can be found in [8, 7] as well, and is indeed equal to the above expression
for W (z) multiplied by A(z).

5.2 No interclass correlation: γ = 0

A second remarkable special case is obtained when the interclass correlation γ is zero, i.e.,
when α + β = 1 or β = 1 − α. In this case, the two customer classes occur randomly and
independently in the arrival stream and the distribution of all service times is given by

C(z) , αA(z) + (1− α)B(z) , (44)

independently from customer to customer.
Formula (21) then reduces to

S(z) = (1− ρ)(z − 1)
z[pAA(E(z)) + pBB(E(z))]

z2 − z[αA(E(z)) + (1− α)B(E(z))]
.

In this case, the quantity ẑ is equal to zero, and equations (18) reduce to pA = α and
pB = 1− α. In these circumstances, S(z) can be rewritten as

S(z) = (1− ρ)(z − 1)
αA(E(z)) + (1− α)B(E(z))

z − [αA(E(z)) + (1− α)B(E(z))]

= (1− ρ)
(z − 1)C(E(z))

z − C(E(z))
.

(45)

Again, we obtain the well-known [8, 7] steady-state pgf of the system content at random slot
boundaries in a single-server system with one class of customers with service-time pgf C(z), as
expected.

As far as the calculations for W (z) are concerned, we now have that λ1(z) = 1 − α + αz,

λ2(z) = 0, and R(φ(z)) =

[
1 0
1 0

]
. Therefore, B(z)λ1(φ(z)) is equal to C(z) given above, and

the remaining calculations are therefore essentially the same as in the previous case.
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5.3 Single-class system: α = 1

As a third special case, let us assume α = 1 and β arbitrary. In this case, only customers of
class A arrive in the steady state and we expect to retrieve result (41) again. This is, indeed,
the case. Formula (21) now reduces to

S(z) = (1− ρ)(z − 1)
z[pAA(E(z)) + pBB(E(z))]− βA(E(z))B(E(z))

z2 − z[A(E(z)) + βB(E(z))] + βA(E(z))B(E(z))

= (1− ρ)(z − 1)
z[pAA(E(z)) + pBB(E(z))]− βA(E(z))B(E(z))

[z − A(E(z))][z − βB(E(z))]
.

The zero ẑ is a zero of the second factor in the denominator of the above expression, which
implies that

ẑ = βB(E(ẑ)) ,

so that equations (18) reduce to pA = 1 and pB = 0. The pgf S(z) can therefore be simplified
as

S(z) = (1− ρ)(z − 1)
zA(E(z))− βA(E(z))B(E(z))

[z − A(E(z))][z − βB(E(z))]

= (1− ρ)
(z − 1)A(E(z)

z − A(E(z))
, (46)

as expected.

For the calculations for W (z) we find that λ1(z) = z, λ2(z) = βz, and R(φ(z)) =

[
1 0
1 0

]
.

Therefore, B(z)λ1(φ(z)) is equal to A(z), and again, we end up with similar calculations as
before, to yield (43).

6 Discussion of results and numerical examples

In this section, we discuss the results obtained for the general case, both from a qualitative
perspective and by means of some numerical examples.

The first interesting result obtained is the form of the stability condition (10),

λ <
1

C ′(1)
=

1

tAµA + tBµB
,

which shows that the maximum achievable throughput of this system, expressed in customers
per slot, is completely determined by the mean service time of an arbitrary customer, regardless
of the possible interclass correlation.
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Next, for sake of brevity, our main focus in this and the next section will be on the formula
(22) that we obtained for the mean system content at random slot marks:

E[s] = ρ+
λ2C ′′(1) + E ′′(1)C ′(1)

2(1− ρ)
+
γtAtBλ

2(µA − µB)2

(1− γ)(1− ρ)
+
λ(pA − tA)(µA − µB)

1− γ
. (47)

.
This result very clearly shows the influence of the various system parameters on the per-

formance of the system. As could be expected intuitively, the mean system content depends
on the first two moments of the arrival process (as represented by the quantities λ and E ′′(1),
and to some extent ρ = λC ′(1)) and the first two moments of the service times (contained
in the quantities C ′(1), C ′′(1), µA, µB, and also ρ = λC ′(1)). It is not surprising that E[s]
goes to infinity as ρ approaches its limiting value 1, dictated by the stability condition of the
system. However, it is striking that E[s] also seems to increase without bound if the interclass
correlation γ = α + β − 1 approaches the value +1, even when the stability condition ρ < 1
is met. Positive interclass correlation appears to be very detrimental for the performance of
the system, whereas negative interclass correlation has a very moderate positive effect on the
performance. In fact, the truth is a little more subtle, as will be discussed in section 7.

The first two terms in formula (47) correspond to the classical result that would be obtained
in a system without interclass correlation and with service-time pgf C(z) (see e.g. [8, 7]). This
means that the third and fourth terms in (47) can be fully attributed to the presence of class
clustering in the arrival process. We note, indeed, that the third term vanishes when γ = 0; in
the fourth term, both tA and pA reduce to the same value α when γ = 0 (see equations (2) and
(18) with ẑ = 0), which implies that the fourth term is equal to zero as well in that case. It is
easy to see that the third and fourth terms also disappear when all customers have the same
service-time distribution, i.e., when A(z) = B(z) and, hence µA = µB, and, finally, also in the
case where there is only one class of customers in the system, i.e., where either α = 1 (and,
hence, pA = tA = 1 and tB = 0) or β = 1 (and, therefore, pA = tA = 0).

Let us consider some numerical results. In a first example, we assume Poisson arrivals
(i.e., E(z) = eλ(z−1)), equal fractions of both classes of customers in the arrival stream (i.e.,
tA = tB = 0.5), geometrically distributed service times of both classes, i.e.,

A(z) =
z

µA + (1− µA)z
; B(z) =

z

µB + (1− µB)z
, (48)

with µA = 8 and µB = 2. The stability condition (10) is then given by ρ = λ[tAµA + tBµB] =
5λ < 1 (i.e., λ < 0.2).

Fig. 5 shows the mean system content E[s] as a function of the load ρ for various values of
the interclass correlation γ. The figure confirms that, for given values of ρ < 1, the parameter
γ has a major impact on the results when it is positive and only a minor influence when it is
negative. An intuitive explanation of this phenomenon lies in the observation that the numbers
of consecutive class-A customers and class-B customers in the arrival stream both increase
dramatically as γ approaches the value +1. Indeed, the mean number of class-A customers
between two consecutive class-B customers is given by

mean class-A sequence =
1

1− α
=

1

tB(1− γ)
=

2

1− γ
,
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fig5-eps-converted-to.pdf

Figure 5: Mean system content E[s] versus ρ, for various values of γ

and, similarly, the mean number of class-B customers between two consecutive class-A cus-
tomers is equal to

mean class-B sequence =
1

1− β
=

1

tA(1− γ)
=

2

1− γ
.

For negative values of γ, this implies that customers of both classes alternate strongly. For
positive values of γ, however, there may be very long sequences of customers of the same class.
During such periods, the momentary load is either given by

ρA , λµA = 8λ (49)

or by
ρB , λµB = 2λ , (50)

respectively. It is easily seen that the stability condition ρ < 1 or λ < 0.2 guarantees that
ρB = 2λ is strictly less than 1, but not necessarily that ρA = 8λ < 1. It is clear that, if λ or
ρ is small enough (more specifically, λ < 0.125 or ρ < 0.625) the system is locally stable both
during A-sequences and B-sequences (and, hence, also globally stable), while if 0.125 ≤ λ < 0.2
or, equivalently, 0.625 ≤ ρ < 1, the system is locally stable during B-sequences but not during
A-sequences. In the latter case, (global) stability is assured because although the queue size
builds up during A-sequences (because, on average, more work arrives than the server can
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Figure 6: Mean system content E[s] versus γ, for various values of ρ

perform), it decreases again during B-sequences (when much less work enters than the server
can execute). However, when the interclass correlation approaches +1, the amplitude of these
queue size variations goes to infinity, implying that the mean system content does the same.

The same behavior can be observed in Fig. 6, where we have plotted E[s] as a function
of γ for various values of ρ. The figure illustrates very clearly that the system content grows
without bound as γ → +1 when ρ is higher than its critical value 0.625. However, when ρ is
less than this critical value, the mean system content remains finite for all values of γ. This
result, obtained numerically here and also explained intuitively, is somewhat unexpected in
view of formula (47), which seems to say that the mean system content E[s] should become
unbounded as γ → +1 regardless of the other system parameters. In order to clarify this
seeming contradiction between the formula and the numerical results, we take a closer look at
the limit case γ → +1 in the next section.

A second example is treated in Figs. 7 to 9. Here, again, we assume Poisson arrivals and
geometrically distributed service times of both classes (as defined in equation (48)), in this case
with mean values µA = 100 and µB = 10. The interclass correlation γ is kept constant at
γ = 0.8. This implies that α = 0.8 + 0.2tA, β = 1 − 0.2tA and ρ = 10λ(1 + 9tA). We now
investigate the impact of the parameter tA, i.e., the fraction of class-A customers in the arrival
stream, on the mean system content and the mean waiting times of the customers. Figs. 7
and 8 show the mean system content E[s] versus ρ (for various values of tA) and versus tA (for
various values of ρ), respectively. Similarly, Fig. 9 shows the corresponding result as in Fig.
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Figure 7: Mean system content E[s] versus ρ, for γ = 0.8 and various values of tA

8 for the mean waiting time E[w] of the customers. Fig. 7 shows that for any given value of
tA, the mean system content is an increasing function of the load ρ, as expected. Furthermore,
Fig. 8 reveals that, for any given value of the total load ρ, the mean system content increases
as a function of tA for “low” values of tA (more or less in the interval 0 ≤ tA ≤ 0.1), then
reaches a maximum value for tA somewhere around 0.1, and, finally decreases monotonically
in the interval 0.1 ≤ tA ≤ 1. The intuitive explanation for this behavior probably goes as
follows. For tA = 0, all customers belong to class B (with a short service time of 10 slots);
as soon as tA becomes positive, say 0 ≤ tA ≤ 0.1, most arriving customers are still of class
B, but the sporadically arriving class-A customers (with a long service time of 100 slots),
when in service, somehow block the regular processing of class-B customers. This effect causes
the system content to increase. If, however, tA increases further beyond the tipping point of
tA = 0.1 (while the total load ρ remains constant), the system starts receiving considerably less
customers (of both types) for a given load, which explains the decreasing system content in the
interval 0.1 ≤ tA ≤ 1.

The behavior of the mean waiting times, as shown in Fig. 9, is qualitatively a bit similar as
for the mean system content. More specifically, it can be observed that the mean waiting times
also increase for “low” values of tA to reach a maximum value and then decrease for “higher”
values of tA. However, the maximum value of the waiting time is attained for tA around 0.25,
whereas the highest mean system content occurs for tA in the vicinity of 0.1. Also, the rates at
which the mean waiting times increase and decrease seem relatively slower than for the mean
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Figure 8: Mean system content E[s] versus tA, for various values of ρ

system content. Intuitively, this can be attributed to the fact that the waiting time reflects the
unfinished work in the system (at the arrival instant of a customer), while the system content
indicates the number of customers in the system, whereby all customers contribute identically,
irrespective of their service time, i.e., irrespective of the amount of work they represent. The
fact that the mean waiting time (and, hence, the unfinished work in the system) for tA = 0 is
substantially smaller than for all other values of tA can be explained by the higher burstiness
of the arrival process of work units if class-B customers (bringing small amounts of work) are
alternated with class-A customers (bringing large batches of work at the same time), which
happens as soon as tA gets positive.

7 Strong positive interclass correlation

The main results obtained so far for the general case are the formulas (21) and (22) for the pgf
and the mean value of the system content at random slot boundaries. As discussed before, these
formulas are expressed in terms of the basic parameters of our model, as well as the probabilities
pA and pB that depend on the zero ẑ of the denominator of (21), which, in general, is to be
determined numerically. In this section, we examine the behavior of the zero ẑ for high positive
values of the interclass correlation γ. Let us first return to the first numerical example in section
6. Fig. 10 shows the zero ẑ for this example, as a function of the load ρ, for various “large”
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Figure 9: Mean waiting time E[w] versus tA, for various values of ρ

values of γ. We observe that ẑ becomes closer and closer to the value 1 when γ → +1, on
condition that ρ remains smaller than its critical value 0.625. When ρ ≥ 0.625, however, ẑ is
not near to 1 at all.

Let us consider another example, for which the zero ẑ can be determined analytically. More
specifically, let us assume Bernoulli arrivals (i.e., E(z) = 1− λ+ λz), geometrically distributed
service times (with mean µA > 1) for class-A customers (as defined in equation (48)) and
constant service times equal to 1 slot for class-B customers (i.e., B(z) = z and µB = 1). It
is not difficult to see that, in this case, the denominator equation of (21) is equivalent to the
following third-order polynomial equation in z:

(z − 1){(ρA − λ)[1− λ+ λtA(1− γ)]z2

− (1− λ)[1− λγ + (ρA − λ)(1− tA(1− γ))]z + γ(1− λ)2} = 0 ,

where ρA = λµA, as defined in (49).
The above equation has one root z = 1 and two other roots z1 and z2, solutions of the

remaining quadratic equation, that can be expressed explicitly as follows:
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Figure 10: The zero ẑ versus ρ, for high positive values of γ

z1 =
1− λ

2(ρA − λ)[1− λ+ λtA(1− γ)]
[1− λγ + (ρA − λ)(1− tA(1− γ)) +

√
D] ,

z2 =
1− λ

2(ρA − λ)[1− λ+ λtA(1− γ)]
[1− λγ + (ρA − λ)(1− tA(1− γ))−

√
D] ,

where

D , [1− λγ + (ρA − λ)(1− tA(1− γ))]2 − 4γ(ρA − λ)[1− λ+ λtA(1− γ)] . (51)

Note that z1 ≥ z2 for all feasible values of the system parameters.
Let us introduce some numerical values to study the behavior of the zeroes z1 and z2. More

specifically, let tA = 0.5 (i.e., both customer classes are equiprobable) and µA = 5. Then,
ρA = 5λ and ρ = 3λ, implying that global equilibrium is guaranteed as soon as λ < 1/3 or
ρA < 5/3. Figs. 11 and 12 show the two zeroes z1 and z2 for this case, as functions of γ and
ρA respectively.

Fig. 11 reveals that z1 > 1 and z2 < 1 for all feasible values of ρA, be it ρA < 1, ρA = 1 or
ρA > 1, if γ is strictly less than 1 (which is implicitly assumed throughout this paper). This,
of course, implies that the zero ẑ mentioned before is always given by ẑ = z2. Fig. 12 further
clarifies that ẑ = z2 is very close to 1 for high positive values of γ, on condition that ρA < 1,
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Figure 11: The zeroes z1 and z2 versus γ, for various values of ρA

but can differ substantially from 1 if ρA > 1. We note that the discriminant D, defined in (51),
reduces to

D = (1− 5λ)2 = (1− ρA)2

if γ → +1, so that √
D = 1− ρA , if ρA < 1 ,

√
D = ρA − 1 , if ρA > 1 ,

which explains the discontinuity in z1 and z2 at ρA = 1 in Fig. 12. These (analytical) results
corroborate our conclusions from the previous (numerical) example. We now try to analyze the
situation for arbitrary choices of A(z), B(z) and E(z).

In general, the behavior of the zero ẑ for strong positive interclass correlation can be analyzed
by considering the defining equation of ẑ, i.e., the requirement that the denominator of (21)
should vanish, for γ = 1. With γ = 1, and hence α = β = 1, this equation becomes :

[z − A(E(z))][z −B(E(z))] = 0 .

In this particular case, the equation degenerates and is equivalent to two independent,
simpler equations, i.e.,

z − A(E(z)) = 0
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Figure 12: The zeroes z1 and z2 versus ρA, for high positive values of γ

and
z −B(E(z)) = 0 .

As in the previous examples, let us assume, without loss of generality, that class-A customers
have a larger mean service time than class-B customers, i.e., that µA > µB. By means of
Rouché’s theorem [22, 8], it is not difficult to prove that when ρA , λµA < 1 and ρB , λµB < 1
(implying that the system is locally stable during A-periods and B-periods respectively), both
equations have exactly one zero inside the closed unit disk {z : |z| ≤ 1} of the complex z-plane;
moreover these zeroes are both equal to 1. This entails that, in this case, ẑ is also equal to
1. However, when ρA > 1 and ρB < 1, the first equation can be shown (again, by applying
Rouché’s theorem) to have two zeroes inside the closed unit disk, one of which is still equal to
1. The other zero lies strictly inside the unit disk and is the notorious zero ẑ that plays such an
important role in the analysis of our system. The above makes plausible that, also in general,
ẑ is close to 1 when γ → +1 on condition that ρA < 1 and ρB < 1, but not necessarily if ρA
increases beyond 1.

Let us assume now that both ρA and ρB are strictly lower than 1. We will show next that,
in this case, the mean system content does not grow without bound when γ → +1. In order to
do so, we approximate γ by

γ ≈ 1− ε , (52)

where ε is a very small positive amount. As argued above, in these circumstances, the quantity
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ẑ is also very close to 1, and, hence, can be approximated as

ẑ ≈ 1− rε+ qε2 , (53)

where r and q are yet to be determined. In order to do so, we introduce the quantity ε in the
defining equation of ẑ:

ẑ2 − ẑ[αA(E(ẑ)) + βB(E(ẑ))] + γA(E(ẑ))B(E(ẑ)) = 0 .

Specifically, we make the substitutions (52) and (53) for γ and ẑ, we replace α and β by

α ≈ 1− ε(1− tA) ,

β ≈ 1− εtA ,

respectively, and we approximate A(E(ẑ)) and B(E(ẑ)) as

A(E(ẑ)) ≈ 1− λµArε+ [λµAq + A′′(1)
λ2r2

2
+ µAE

′′(1)
r2

2
]ε2 ,

B(E(ẑ)) ≈ 1− λµBrε+ [λµBq +B′′(1)
λ2r2

2
+ µBE

′′(1)
r2

2
]ε2 .

Identifying equal powers of ε on both sides of the resulting equation yields 0 = 0 for the
coefficients of ε0 and ε1, but a useful equation for ε2, from which the quantity r appearing in
(53) can be easily derived as

r =
1− ρ

(1− ρA)(1− ρB)
. (54)

Neglecting quadratic and higher powers of ε in (53), we can obtain the following first-order
approximation for ẑ:

ẑ ≈ 1− ε 1− ρ
(1− ρA)(1− ρB)

,

which is consistent with ẑ < 1 if ρA < 1 and ρB < 1 (and, hence, ρ < 1). Using the above
result in the expressions (18) for pA and pB yields approximations for pA and pB which are
independent of ε:

pA ≈
tA(1− ρA)

1− ρ
, pB ≈

tB(1− ρB)

1− ρ
. (55)

These can now be introduced in the last term of (47) to yield

λ(pA − tA)(µA − µB)

1− γ
≈ −tAtBλ

2(µA − µB)2

ε(1− ρ)
.

Finally making use of this expression in (47) yields the following result (independent of ε
and, hence, of γ) for the mean system content E[s] in case the interclass correlation γ is close
to +1 and both ρA and ρB are less than 1:
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E[s] ≈ ρ+
λ2C ′′(1) + E ′′(1)C ′(1)

2(1− ρ)
+
tAtBλ

2(µA − µB)2

1− ρ
. (56)

This result explains the apparent contradiction between the analytic and numerical results
that we observed earlier. Although equation (47) suggests that the mean system content E[s]
grows without bound for γ → +1 regardless of the other system parameters, equation (56)
reveals that this is not the case when both ρA < 1 and ρB < 1. It can be shown that in this
case, the global stochastic equilibrium of the system performance measures (such as the mean
system contents) can be obtained as the weighted average of these quantities in the two class-
specific systems in equilibrium. These two class-specific systems correspond to considering the
system evolution towards its (local) regime during the very long A-periods on the one hand,
and the very long B-periods on the other hand. The (local) system regime during A-periods (or
B-periods, respectively) can be analyzed with a single-class queueing model with service-time
pgf A(z) (or B(z), respectively). These local regimes are characterized by the following pgf’s
of the system content at customer departure times :

P̂A(z) =
(1− ρA)[E(z)− 1]A(E(z))

λ[z − A(E(z))]
;

P̂B(z) =
(1− ρB)[E(z)− 1]B(E(z))

λ[z −B(E(z))]
,

so that the (global) pgf of the system content at arbitrary departure times (of either a class-A
customer or a class-B customer) is given by

P (z) ≈ tAP̂A(z) + tBP̂B(z) .

The corresponding pgf of the system content at random slot boundaries is [8, 7]

S(z) = P (z)
λ(z − 1)

E(z)− 1
.

Some straighforward calculations show that this is equivalent to

S(z) ≈ (1− ρ)(z − 1)
z
(
tA(1−ρA)

1−ρ A(E(z)) + tB(1−ρB)
1−ρ B(E(z))

)
− A(E(z))B(E(z))

[z − A(E(z))][z −B(E(z))]
.

It is not difficult to see that exactly the same result is obtained when we replace γ by +1 and
introduce the expression (55) for pA and pB in equation (21), obtained in subsection 3.3 for
the pgf S(z) in the general model studied in this paper. This proves that, indeed, the system
exhibits some kind of quasi-stationary behavior when both ρA < 1 and ρB < 1 and γ → +1.
We label the global stochastic equilibrium of the system in this case with the term “strong”
equilibrium or “strong” regime.

On the other hand, when the load ρ < 1, i.e., the system is (globally) stable, but ρA > 1
and ρB < 1, we refer to the global equilibrium of the system as a “compensated” equilibrium,
because the overload periods created by the A-customers are compensated by the underload
periods of the B-customers.
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8 Conclusions and future work

In this paper, we have studied a dual-class, single-server queue in discrete time, operating under
the global FCFS service discipline, assuming independent (aggregated) arrivals from slot to slot
combined with a general first-order Markovian interclass correlation model. In our view, a first
contribution of importance is the derivation of the main performance measures of the system in
semi-analytical form, i.e., we have obtained explicit expressions for such quantities as the mean
system content and the mean customer waiting time in terms of the basic parameters of the
model and one parameter (ẑ) which is only implicitly known through a non-linear equation that
it satisfies. Also, we have presented an analytic way to derive an expression for the steady-state
pgf of the customer waiting time, that we consider to be a meaningful addition to existing work.

In addition to that, an extensive evaluation of these results has shown that the interclass
correlation does not have any effect on the stability condition of the system, but it may have
a very direct and great influence on the main performance measures of the system. More
specifically, when the system is (globally) stable (i.e., when the global load ρ is strictly less than
1), we have observed that two different kinds of global equilibrium are possible, depending on
the exact value of the load. For “low” values of the load (i.e., such that ρA and ρB are both
lower than 1), the system exhibits a “strong” equilibrium, whereas for higher values of ρ (i.e.,
such that one of the quantities ρA and ρB is higher than 1 and the other lower than 1), the
system reaches a “compensated” class of equilibrium. Especially in the latter case, the impact
of strong positive interclass correlation may be devastating for the queueing performance. We
consider these observations and conclusions to be another important contribution of the paper.

We believe that the phenomenon of class clustering in the context of multi-class queueing
systems deserves more attention than it traditionally has received in the classical queueing
literature. This is not only true for the system studied here, but also in other queueing situations
whereby the service mechanism is sensitive to the order of service of customers of different
classes. For instance, we have observed that class clustering may also have substantial effects
on the performance of multi-class queues with multiple class-dedicated servers and a global
FCFS service discipline [13, 15]. Also, in priority queues interclass correlation has been shown
to have a possibly major impact on the delay-differentiating capabilities of the priority rule
[31, 10, 11].

The model examined in this paper can be generalized in various directions. To start with,
the assumption of independent aggregated arrivals from slot to slot may be relaxed to allow
for correlated or bursty classes of arrival processes. We may also consider more complicated
models for the interclass correlation in the arrival stream than the two-state Markovian model,
e.g., the sizes of subsequent sequences of customers of each class could be described by general
(rather than geometric) probability distributions, and so on. We plan to tackle several of these
generalizations in future work. Our prior experience lets us believe that an analytic probability-
generating functions approach may also work for these extended models, although we expect
that generating numerical results will become increasingly involved, i.e., the number of zeroes
inside the complex unit circle that must be calculated numerically will be larger than 1, and
therefore the results will become harder to interpret and less intuitive to explain.
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