17 research outputs found

    Power factor improvement on LED lamp driver using BIFRED converter

    Get PDF
    This paper presents the implementation of a power converter to improve power factor for LED lamp driver. The power converter which used in this system is the integration of boost and flyback converter (boost integrated flyback rectifier energy storage DC-DC/BIFRED). The boost converter as power factor correction (PFC) works on discontinuous conduction mode (DCM) operation to make the resistive converter. Thus, when a rectifier circuit supplies a resistive load, the load current that flows back to the source will have the same waveform as the voltage and it makes the power factor value next to 1 (unity). According to experiment results, the BIFRED converter as LED lamp driver can improve power factor from 0.84 to become 0.98 and this driver circuit also meets the line-current harmonic limits set by IEC61000-3-2 class C

    Review on State-of-the-Art Unidirectional Non-Isolated Power Factor Correction Converters for Short-/Long-Distance Electric Vehicles

    Get PDF
    Electrification of the transportation sector has originated a worldwide demand towards green-based refueling infrastructure modernization. Global researches and efforts have been pondered to promote optimal Electric Vehicle (EV) charging stations. The EV power electronic systems can be classified into three main divisions: power charging station configuration (e.g., Level 1 (i.e., slow-speed charger), Level 2 (i.e., fast-speed charger), and Level 3 (i.e., ultra-fast speed charger)), the electric drive system, and the auxiliary EV loads. This paper emphasizes the recent development in Power Factor Correction (PFC) converters in the on-board charger system for short-distance EVs (e.g., e-bikes, e-trikes, e-rickshaw, and golf carts) and long-distance EVs (passenger e-cars, e-trucks, and e-buses). The EV battery voltage mainly ranges between 36 V and 900 V based on the EV application. The on-board battery charger consists of either a single-stage converter (a PFC converter that meets the demands of both the supply-side and the battery-side) or a two-stage converter (a PFC converter that meets the supply-side requirements and a DC-DC converter that meets the battery-side requirements). This paper focuses on the single-phase unidirectional non-isolated PFC converters for on-board battery chargers (i.e., Level 1 and Level 2 charging infrastructure). A comprehensive classification is provided for the PFC converters with two main categories: (1) the fundamental PFC topologies (i.e., Buck, Boost, Buck-Boost, SEPIC, C k, and Zeta converters) and (2) the modified PFC topologies (i.e., improved power quality PFC converters derived from the fundamental topologies). This paper provides a review of up-to-date publications for PFC converters in short-/long-distance EV applications.Qatar National Research FundScopu

    A High Gain DC-DC Converter with Grey Wolf Optimizer Based MPPT Algorithm for PV Fed BLDC Motor Drive

    Get PDF
    Photovoltaic (PV) water pumping systems are becoming popular these days. In PV water pumping, the role of the converter is most important, especially in the renewable energy-based PV systems case. This study focuses on one such application. In this proposed work, direct current (DC) based intermediate DC-DC power converter, i.e., a modified LUO (M-LUO) converter is used to extricate the availability of power in the high range from the PV array. The M-LUO converter is controlled efficiently by utilizing the Grey Wolf Optimizer (GWO)-based maximum power point tracking algorithm, which aids the smooth starting of a brushless DC (BLDC) motor. The voltage source inverter’s (VSI) fundamental switching frequency is achieved in the BLDC motor by electronic commutation. Hence, the occurrence of VSI losses due to a high switching frequency is eliminated. The GWO optimized algorithm is compared with the perturb and observe (P&O) and fuzzy logic based maximum power point tracking (MPPT) algorithms. However, by sensing the position of the rotor and comparing the reference speed with the actual speed, the speed of the BLDC motor is controlled by the proportional-integral (PI) controller. The recent advancement in motor drives based on distributed sources generates more demand for highly efficient permanent magnet (PM) motor drives, and this was the beginning of interest in BLDC motors. Thus, in this paper, the design of a high-gain boost converter optimized by a GWO algorithm is proposed to drive the BLDC-based pumping motor. The proposed work is simulated in MATLAB-SIMULINK, and the experimental results are verified using the dsPIC30F2010 controller

    A review on power electronics technologies for power quality improvement

    Get PDF
    Nowadays, new challenges arise relating to the compensation of power quality problems, where the introduction of innovative solutions based on power electronics is of paramount importance. The evolution from conventional electrical power grids to smart grids requires the use of a large number of power electronics converters, indispensable for the integration of key technologies, such as renewable energies, electric mobility and energy storage systems, which adds importance to power quality issues. Addressing these topics, this paper presents an extensive review on power electronics technologies applied to power quality improvement, highlighting, and explaining the main phenomena associated with the occurrence of power quality problems in smart grids, their cause and effects for different activity sectors, and the main power electronics topologies for each technological solution. More specifically, the paper presents a review and classification of the main power quality problems and the respective context with the standards, a review of power quality problems related to the power production from renewables, the contextualization with solid-state transformers, electric mobility and electrical railway systems, a review of power electronics solutions to compensate the main power quality problems, as well as power electronics solutions to guarantee high levels of power quality. Relevant experimental results and exemplificative developed power electronics prototypes are also presented throughout the paper.This work has been supported by FCT-Funda莽茫o para a Ci锚ncia e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. This work has been supported by the FCT Project DAIPESEV PTDC/EEI-EEE/30382/2017 and by the FCT Project newERA4GRIDs PTDC/EEIEEE/30283/2017

    Fuzzy Controlled THD Reduction and Performance Improvement of a PMBLDC Motor Using MMLI

    Get PDF
    In this study, an improved chopper is implemented for current extraction, enhanced solar power generation control, and increased voltage. A simplified space vector control technique is applied to operate the permanent-magnet brushless DC drive (PMBLDC) by controlling the inverter operation. This is used as a special electrical machine with reliable operation and maintenance control. This system uses the Perturb and observer (P&O) algorithm which maximises the PV-system output power and reduces the overall cost. A fuzzy logic controller (FLC) is used to control the duty cycle and increase the PV voltage. The modified multilevel inverter (MMLI) reduces harmonic distortions and low-switching losses by using a self-tuning filter (STF). This study achieved a better PMBLDC system performance, an improved efficiency, and eliminated the total harmonic distortion (THD) by the self-tuning filter with and without using MATLAB/SIMULINK

    Design and Implementation of Modified Zeta Converter for Solar Water Pumping Application

    Get PDF
    The linear increase in the growth of the population demands a requisite for energy resources. Knowing the loathsome truth that non-renewable sources will ultimately exhaust, the significance of renewable sources cannot be undervalued. Considering various factors, many work areas are reliant upon fossil fuels for the generation of electricity. The use of fossil fuels will increase the quality of power production but will drain one day, and industries must change to renewable sources. The earliest system that strikes a chord with regard to renewable energy is the photovoltaic (PV) energy system. In this specific circumstance, interest in solar systems is expanding step by step, and its installations are becoming broad. The implementation of the solar water pumping method used for irrigation purposes using a Zeta converter was best suited for small and minor farmers, but still, the efficiency of the system can be upgraded with the use of filters. The vantage of the ZETA converter has less result voltage ripple and smooth water pumping application. The PV-based system has reached the point where it is used in Electric vehicles by enhancing the standard operating condition of the converter under the steady and dynamic behavior of a PV system. Eventually, it can be worked considerably under minimum solar irradiance. Maximum power point tracking (MPPT) of the signal had dominant performance in a zeta converter circuit while sign levels ripple current, and voltage on the output side was compact

    Evaluaci贸n del compromiso entre distorsi贸n arm贸nica y eficiencia energ茅tica en los sistemas de mejoramiento del factor de potencia de los alimentadores Zeta, Luo y Cuk para motores de DC sin escobillas

    Get PDF
    The objective of this article is to evaluate the existing compromise between the harmonic distortion and theenergy efficiency of the drivers for brushless DC motors based on the isolated Zeta, Luo and Cuk converters to determinethe advantages and contributions of each converter with respect to the energetic efficiency, also, the relation that has thisefficiency with the quality of the electrical energy. In order to carry out the proposed evaluation, the inverter models foundin the literature were used, as well as the inverter and motor simulation models found in the Simscape Electronics tool ofthe Matlab software. The research focused on comparing the power factor, total harmonic distortion (THD) and energyefficiency (understood as the quotient between the active energy consumed by the motor and the active energy deliveredby the AC network) of a feeder system for a BLDC motor. To make the comparison, two performance criteria were definedbased on the simulation of the system with the converters in ideal mode and in real mode. From the experimental tests itwas observed that as the energy efficiency of the system increases, the THD increases and the power factor seen by the ACnetwork decreases. From the work it was concluded that the Luo converter is the one that presents the best compromisebetween harmonic distortion and energy efficiencyEl objetivo del presente art铆culo es evaluar el compromiso existente entre la distorsi贸n arm贸nica y la eficienciaenerg茅tica de los manejadores para motores de DC sin escobillas, basados en los convertidores Zeta, Luo y Cuk aislados para determinar las ventajas y contribuciones de cada convertidor respecto a la eficiencia energ茅tica. As铆 mismo, la relaci贸n que tiene dicha eficiencia con la calidad de la energ铆a el茅ctrica. Para realizar la evaluaci贸n planteada se han utilizado los modelos de los convertidores encontrados en la literatura, como tambi茅n los modelos de simulaci贸n del inversor y del motor encontrados en la herramienta Simscape Electronics del software Matlab. La investigaci贸n se centr贸 en comparar el factor de potencia, la distorsi贸n arm贸nica total (THD) y la eficiencia energ茅tica (entendida como el cociente entre la energ铆a activa consumida por el motor y la energ铆a activa entregada por la red de AC) de un sistema alimentador para un motor BLDC. Para efectuar la comparaci贸n se definieron dos criterios de desempe帽o basados, respectivamente, en la simulaci贸n del sistema con los convertidores en modo ideal y en modo real. De las pruebas experimentales se observ贸 que conforme aumenta la eficiencia energ茅tica del sistema aumenta la THD y disminuye el factor de potencia visto por la red de AC. Del trabajo se concluy贸 que el convertidor Luo es el que presenta el mejor compromiso entre distorsi贸n arm贸nica y eficiencia energ茅tica

    Analysis and Design of High Efficiency Grid-to-Vehicle (G2V) Plug-in Chargers for Local e-Transportation

    Get PDF
    Electric transportation worldwide has witnessed a tremendous increase in the use of electric vehicles (EV's) due to increased awareness of environmental issues. Road EV's compromise a broad spectrum of vehicles right from two-wheelers three-wheelers (rickshaws/Auto/Trio), cars and electric buses. E-Rickshaw has gained popularity in the Asian market post-2010 because of their symbolic resemblance with traditional auto-rickshaw. The fast growth of the market is principally pushed by the low ownership cost of electric three-wheelers, falling battery prices, and favorable government policies and support. These EVs run on low-cost 48 V, 120 Ah lead acid battery packs having low depth-of-discharge (DOD). Hence, frequent battery charging becomes essential for such EVs. Conventional battery chargers available in the market utilize flyback converter based topologies in order to charge such battery packs. On one hand such battery chargers are easy to implement, these topologies fail to achieve unity power factor (UPF) operation leading to high total harmonic distortion (THD) and poor input power quality at the input. Thus active power factor correction (PFC) becomes a vital constituent in AC-DC converters. By understanding the constraints posed by continuous current mode (CCM) based battery chargers, the proposed converters are designed to operate in discontinuous current mode (DCM) because of its evident benefits such as inherent PFC, zero current turn-on and zero diode reverse recovery losses. By omitting sensors at the input and utilizing only the output sensors, regulated voltage or current can be obtained which makes the system cost-effective and improves its reliability and robustness to high frequency noise. This thesis presents both isolated and non-isolated battery charger for local e-transportation EVs utilizing 48 V lead acid battery pack. At first, a non-isolated single-stage interleaved buck-boost float charger is proposed by considering the advantages such as reduced current stresses, minimum number of semiconductor devices and absence of bulky high frequency transformer. DCM operation of the proposed converter ensure UPF operation for variable input voltage and utilizing just a single sensor makes this charger configuration economical and easy to implement. However, such a configuration had high current stress on the semiconductor devices leading to increased thermal requirement and reduced efficiency at light loads. Thus addressing these problems, a high efficiency two-stage battery charger is proposed. The battery charger uses an interleaved DCM buck-boost converter in order to achieve PFC at variable input voltage, whereas the second stage is an unregulated half-bridge LLC resonant converter which provides isolation as well as soft-switching for the primary switches. Synchronous rectification (SR) along with only capacitive filter is used on center tapped transformer secondary to improve converter efficiency. Due to DCM of the front-end AC-DC converter achieves zero current turn-on of the switches and DC-DC converter switches achieve zero voltage turn-on because of the LLC resonant. The proposed battery charger implements constant current (CC) and constant voltage (CV) method of charging using simple PI controllers, thus making it suitable for commercial use. Small signal models for both the battery charger configurations are developed using the current injected equivalent circuit approach and a detailed controller design is illustrated. Simulation results using PSIM11.1 software and experimental results from proof-of-concept laboratory hardware prototypes are provided in order to validate the reported analysis and design which demonstrates their performance

    Advances in Control of Power Electronic Converters

    Get PDF
    This book proposes a list of contributions in the field of control of power electronics converters for different topologies: DC-DC, DC-AC and AC-DC. It particularly focuses on the use of different advanced control techniques with the aim of improving the performances, flexibility and efficiency in the context of several operation conditions. Sliding mode control, fuzzy logic based control, dead time compensation and optimal linear control are among the techniques developed in the special issue. Simulation and experimental results are provided by the authors to validate the proposed control strategies

    Advances and Technologies in High Voltage Power Systems Operation, Control, Protection and Security

    Get PDF
    The electrical demands in several countries around the world are increasing due to the huge energy requirements of prosperous economies and the human activities of modern life. In order to economically transfer electrical powers from the generation side to the demand side, these powers need to be transferred at high-voltage levels through suitable transmission systems and power substations. To this end, high-voltage transmission systems and power substations are in demand. Actually, they are at the heart of interconnected power systems, in which any faults might lead to unsuitable consequences, abnormal operation situations, security issues, and even power cuts and blackouts. In order to cope with the ever-increasing operation and control complexity and security in interconnected high-voltage power systems, new architectures, concepts, algorithms, and procedures are essential. This book aims to encourage researchers to address the technical issues and research gaps in high-voltage transmission systems and power substations in modern energy systems
    corecore