30,961 research outputs found

    Stream Learning in Energy IoT Systems: A Case Study in Combined Cycle Power Plants

    Get PDF
    The prediction of electrical power produced in combined cycle power plants is a key challenge in the electrical power and energy systems field. This power production can vary depending on environmental variables, such as temperature, pressure, and humidity. Thus, the business problem is how to predict the power production as a function of these environmental conditions, in order to maximize the profit. The research community has solved this problem by applying Machine Learning techniques, and has managed to reduce the computational and time costs in comparison with the traditional thermodynamical analysis. Until now, this challenge has been tackled from a batch learning perspective, in which data is assumed to be at rest, and where models do not continuously integrate new information into already constructed models. We present an approach closer to the Big Data and Internet of Things paradigms, in which data are continuously arriving and where models learn incrementally, achieving significant enhancements in terms of data processing (time, memory and computational costs), and obtaining competitive performances. This work compares and examines the hourly electrical power prediction of several streaming regressors, and discusses about the best technique in terms of time processing and predictive performance to be applied on this streaming scenario.This work has been partially supported by the EU project iDev40. This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 783163. The JU receives support from the European Unionā€™s Horizon 2020 research and innovation programme and Austria, Germany, Belgium, Italy, Spain, Romania. It has also been supported by the Basque Government (Spain) through the project VIRTUAL (KK-2018/00096), and by Ministerio de EconomĆ­a y Competitividad of Spain (Grant Ref. TIN2017-85887-C2-2-P)

    Robust detection, isolation and accommodation for sensor failures

    Get PDF
    The objective is to extend the recent advances in robust control system design of multivariable systems to sensor failure detection, isolation, and accommodation (DIA), and estimator design. This effort provides analysis tools to quantify the trade-off between performance robustness and DIA sensitivity, which are to be used to achieve higher levels of performance robustness for given levels of DIA sensitivity. An innovations-based DIA scheme is used. Estimators, which depend upon a model of the process and process inputs and outputs, are used to generate these innovations. Thresholds used to determine failure detection are computed based on bounds on modeling errors, noise properties, and the class of failures. The applicability of the newly developed tools are demonstrated on a multivariable aircraft turbojet engine example. A new concept call the threshold selector was developed. It represents a significant and innovative tool for the analysis and synthesis of DiA algorithms. The estimators were made robust by introduction of an internal model and by frequency shaping. The internal mode provides asymptotically unbiased filter estimates.The incorporation of frequency shaping of the Linear Quadratic Gaussian cost functional modifies the estimator design to make it suitable for sensor failure DIA. The results are compared with previous studies which used thresholds that were selcted empirically. Comparison of these two techniques on a nonlinear dynamic engine simulation shows improved performance of the new method compared to previous technique

    Optimisation of electricity energy markets and assessment of CO2 trading on their structure : a stochastic analysis of the greek power sector

    Get PDF
    Power production was traditionally dominated by monopolies. After a long period of research and organisational advances in international level, electricity markets have been deregulated allowing customers to choose their provider and new producers to compete the former Public Power Companies. Vast changes have been made in the European legal framework but still, the experience gathered is not sufficient to derive safe conclusions regarding the efficiency and reliability of deregulation. Furthermore, emissions' trading progressively becomes a reality in many respects, compliance with Kyoto protocol's targets is a necessity, and stability of the national grid's operation is a constraint of vital importance. Consequently, the production of electricity should not rely solely in conventional energy sources neither in renewable ones but on a mixed structure. Finding this optimal mix is the primary objective of the study. A computational tool has been created, that simulates and optimises the future electricity generation structure based on existing as well as on emerging technologies. The results focus on the Greek Power Sector and indicate a gradual decreasing of anticipated CO2 emissions while the socioeconomic constraints and reliability requirements of the system are met. Policy interventions are pointed out based on the numerical results of the model. (C) 2010 Elsevier Ltd. All rights reserved

    Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    Full text link
    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multidisciplinary experiments in a laboratory whose projected life span is at least 30 years. From these experiments, a critical suite of experiments is outlined, whose construction will be funded along with the facility. The Facility design permits expansion and evolution, as may be driven by future science requirements, and enables participation by other agencies. The design leverages South Dakota's substantial investment in facility infrastructure, risk retirement, and operation of its Sanford Laboratory at Homestake. The Project is planning education and outreach programs, and has initiated efforts to establish regional partnerships with underserved populations - regional American Indian and rural populations

    Ensemble evaluation of hydrological model hypotheses

    Get PDF
    It is demonstrated for the first time how model parameter, structural and data uncertainties can be accounted for explicitly and simultaneously within the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. As an example application, 72 variants of a single soil moisture accounting store are tested as simplified hypotheses of runoff generation at six experimental grassland field-scale lysimeters through model rejection and a novel diagnostic scheme. The fields, designed as replicates, exhibit different hydrological behaviors which yield different model performances. For fields with low initial discharge levels at the beginning of events, the conceptual stores considered reach their limit of applicability. Conversely, one of the fields yielding more discharge than the others, but having larger data gaps, allows for greater flexibility in the choice of model structures. As a model learning exercise, the study points to a ā€œleakingā€ of the fields not evident from previous field experiments. It is discussed how understanding observational uncertainties and incorporating these into model diagnostics can help appreciate the scale of model structural error

    Optimization of Dimples in Microchannel Heat Sink with Impinging Jetsā€”Part B: the Influences of Dimple Height and Arrangement

    Get PDF
    The combination of a microchannel heat sink with impinging jets and dimples (MHSIJD) can effectively improve the flow and heat transfer performance on the cooling surface of electronic devices with very high heat fluxes. Based on the previous work by analysing the effect of dimple radius on the overall performance of MHSIJD, the effects of dimple height and arrangement were numerically analysed. The velocity distribution, pressure drop, and thermal performance of MHSIJD under various dimple heights and arrangements were presented. The results showed that: MHSIJD with higher dimples had better overall performance with dimple radius being fixed; creating a mismatch between the impinging hole and dimple can solve the issue caused by the drift phenomenon; the mismatch between the impinging hole and dimple did not exhibit better overall performance than a well-matched design
    • ā€¦
    corecore