1,014 research outputs found

    Possibilistic sequential decision making

    Get PDF
    International audienceWhen the information about uncertainty cannot be quantified in a simple, probabilistic way, the topic of possibilistic decision theory is often a natural one to consider. The development of possibilistic decision theory has lead to the proposition a series of possibilistic criteria, namely: optimistic and pessimistic possibilistic qualitative criteria [7], possibilistic likely dominance [2] and [9], binary possibilistic utility [11] and possibilistic Choquet integrals [24]. This paper focuses on sequential decision making in possibilistic decision trees. It proposes a theoretical study on the complexity of the problem of finding an optimal strategy depending on the monotonicity property of the optimization criteria – when the criterion is transitive, this property indeed allows a polytime solving of the problem by Dynamic Programming. We show that most possibilistic decision criteria, but possibilistic Choquet integrals, satisfy monotonicity and that the corresponding optimization problems can be solved in polynomial time by Dynamic Programming. Concerning the possibilistic likely dominance criteria which is quasi-transitive but not fully transitive, we propose an extended version of Dynamic Programming which remains polynomial in the size of the decision tree. We also show that for the particular case of possibilistic Choquet integrals, the problem of finding an optimal strategy is NP-hard. It can be solved by a Branch and Bound algorithm. Experiments show that even not necessarily optimal, the strategies built by Dynamic Programming are generally very good

    Uncertainty Analysis of the Adequacy Assessment Model of a Distributed Generation System

    Full text link
    Due to the inherent aleatory uncertainties in renewable generators, the reliability/adequacy assessments of distributed generation (DG) systems have been particularly focused on the probabilistic modeling of random behaviors, given sufficient informative data. However, another type of uncertainty (epistemic uncertainty) must be accounted for in the modeling, due to incomplete knowledge of the phenomena and imprecise evaluation of the related characteristic parameters. In circumstances of few informative data, this type of uncertainty calls for alternative methods of representation, propagation, analysis and interpretation. In this study, we make a first attempt to identify, model, and jointly propagate aleatory and epistemic uncertainties in the context of DG systems modeling for adequacy assessment. Probability and possibility distributions are used to model the aleatory and epistemic uncertainties, respectively. Evidence theory is used to incorporate the two uncertainties under a single framework. Based on the plausibility and belief functions of evidence theory, the hybrid propagation approach is introduced. A demonstration is given on a DG system adapted from the IEEE 34 nodes distribution test feeder. Compared to the pure probabilistic approach, it is shown that the hybrid propagation is capable of explicitly expressing the imprecision in the knowledge on the DG parameters into the final adequacy values assessed. It also effectively captures the growth of uncertainties with higher DG penetration levels

    Lexicographic refinements in possibilistic sequential decision-making models

    Get PDF
    Ce travail contribue à la théorie de la décision possibiliste et plus précisément à la prise de décision séquentielle dans le cadre de la théorie des possibilités, à la fois au niveau théorique et pratique. Bien qu'attrayante pour sa capacité à résoudre les problèmes de décision qualitatifs, la théorie de la décision possibiliste souffre d'un inconvénient important : les critères d'utilité qualitatives possibilistes comparent les actions avec les opérateurs min et max, ce qui entraîne un effet de noyade. Pour surmonter ce manque de pouvoir décisionnel, plusieurs raffinements ont été proposés dans la littérature. Les raffinements lexicographiques sont particulièrement intéressants puisqu'ils permettent de bénéficier de l'arrière-plan de l'utilité espérée, tout en restant "qualitatifs". Cependant, ces raffinements ne sont définis que pour les problèmes de décision non séquentiels. Dans cette thèse, nous présentons des résultats sur l'extension des raffinements lexicographiques aux problèmes de décision séquentiels, en particulier aux Arbres de Décision et aux Processus Décisionnels de Markov possibilistes. Cela aboutit à des nouveaux algorithmes de planification plus "décisifs" que leurs contreparties possibilistes. Dans un premier temps, nous présentons des relations de préférence lexicographiques optimistes et pessimistes entre les politiques avec et sans utilités intermédiaires, qui raffinent respectivement les utilités possibilistes optimistes et pessimistes. Nous prouvons que les critères proposés satisfont le principe de l'efficacité de Pareto ainsi que la propriété de monotonie stricte. Cette dernière garantit la possibilité d'application d'un algorithme de programmation dynamique pour calculer des politiques optimales. Nous étudions tout d'abord l'optimisation lexicographique des politiques dans les Arbres de Décision possibilistes et les Processus Décisionnels de Markov à horizon fini. Nous fournissons des adaptations de l'algorithme de programmation dynamique qui calculent une politique optimale en temps polynomial. Ces algorithmes sont basés sur la comparaison lexicographique des matrices de trajectoires associées aux sous-politiques. Ce travail algorithmique est complété par une étude expérimentale qui montre la faisabilité et l'intérêt de l'approche proposée. Ensuite, nous prouvons que les critères lexicographiques bénéficient toujours d'une fondation en termes d'utilité espérée, et qu'ils peuvent être capturés par des utilités espérées infinitésimales. La dernière partie de notre travail est consacrée à l'optimisation des politiques dans les Processus Décisionnels de Markov (éventuellement infinis) stationnaires. Nous proposons un algorithme d'itération de la valeur pour le calcul des politiques optimales lexicographiques. De plus, nous étendons ces résultats au cas de l'horizon infini. La taille des matrices augmentant exponentiellement (ce qui est particulièrement problématique dans le cas de l'horizon infini), nous proposons un algorithme d'approximation qui se limite à la partie la plus intéressante de chaque matrice de trajectoires, à savoir les premières lignes et colonnes. Enfin, nous rapportons des résultats expérimentaux qui prouvent l'efficacité des algorithmes basés sur la troncation des matrices.This work contributes to possibilistic decision theory and more specifically to sequential decision-making under possibilistic uncertainty, at both the theoretical and practical levels. Even though appealing for its ability to handle qualitative decision problems, possibilisitic decision theory suffers from an important drawback: qualitative possibilistic utility criteria compare acts through min and max operators, which leads to a drowning effect. To overcome this lack of decision power, several refinements have been proposed in the literature. Lexicographic refinements are particularly appealing since they allow to benefit from the expected utility background, while remaining "qualitative". However, these refinements are defined for the non-sequential decision problems only. In this thesis, we present results on the extension of the lexicographic preference relations to sequential decision problems, in particular, to possibilistic Decision trees and Markov Decision Processes. This leads to new planning algorithms that are more "decisive" than their original possibilistic counterparts. We first present optimistic and pessimistic lexicographic preference relations between policies with and without intermediate utilities that refine the optimistic and pessimistic qualitative utilities respectively. We prove that these new proposed criteria satisfy the principle of Pareto efficiency as well as the property of strict monotonicity. This latter guarantees that dynamic programming algorithm can be used for calculating lexicographic optimal policies. Considering the problem of policy optimization in possibilistic decision trees and finite-horizon Markov decision processes, we provide adaptations of dynamic programming algorithm that calculate lexicographic optimal policy in polynomial time. These algorithms are based on the lexicographic comparison of the matrices of trajectories associated to the sub-policies. This algorithmic work is completed with an experimental study that shows the feasibility and the interest of the proposed approach. Then we prove that the lexicographic criteria still benefit from an Expected Utility grounding, and can be represented by infinitesimal expected utilities. The last part of our work is devoted to policy optimization in (possibly infinite) stationary Markov Decision Processes. We propose a value iteration algorithm for the computation of lexicographic optimal policies. We extend these results to the infinite-horizon case. Since the size of the matrices increases exponentially (which is especially problematic in the infinite-horizon case), we thus propose an approximation algorithm which keeps the most interesting part of each matrix of trajectories, namely the first lines and columns. Finally, we reports experimental results that show the effectiveness of the algorithms based on the cutting of the matrices

    Solving multi-criteria decision problems under possibilistic uncertainty using optimistic and pessimistic utilities

    Get PDF
    International audienceThis paper proposes a qualitative approach to solve multi-criteria decision making problems under possibilistic uncertainty. De-pending on the decision maker attitude with respect to uncertainty (i.e. optimistic or pessimistic) and on her attitude with respect to criteria (i.e. conjunctive or disjunctive), four ex-ante and four ex-post decision rules are dened and investigated. In particular, their coherence w.r.t. the principle of monotonicity, that allows Dynamic Programming is studied

    Lexicographic refinements in possibilistic decision trees and finite-horizon Markov decision processes

    Get PDF
    Possibilistic decision theory has been proposed twenty years ago and has had several extensions since then. Even though ap-pealing for its ability to handle qualitative decision problems, possibilisticdecision theory suffers from an important drawback. Qualitative possibilistic utility criteria compare acts through min and max operators, which leads to a drowning effect. To over-come this lack of decision power of the theory, several refinements have been proposed. Lexicographic refinements are particularly appealing since they allow to benefit from the Expected Utility background, while remaining qualitative. This article aims at extend-ing lexicographic refinements to sequential decision problems i.e., to possibilistic decision trees and possibilistic Markov decision processes, when the horizon is finite. We present two criteria that refine qualitative possibilistic utilities and provide dynamic programming algorithms for calculating lexicographically optimal policies

    Order-of-Magnitude Influence Diagrams

    Get PDF
    In this paper, we develop a qualitative theory of influence diagrams that can be used to model and solve sequential decision making tasks when only qualitative (or imprecise) information is available. Our approach is based on an order-of-magnitude approximation of both probabilities and utilities and allows for specifying partially ordered preferences via sets of utility values. We also propose a dedicated variable elimination algorithm that can be applied for solving order-of-magnitude influence diagrams

    Possibilistic decision theory: from theoretical foundations to influence diagrams methodology

    Get PDF
    Le domaine de prise de décision est un domaine multidisciplinaire en relation avec plusieurs disciplines telles que l'économie, la recherche opérationnelle, etc. La théorie de l'utilité espérée a été proposée pour modéliser et résoudre les problèmes de décision. Ces théories ont été mises en cause par plusieurs paradoxes (Allais, Ellsberg) qui ont montré les limites de son applicabilité. Par ailleurs, le cadre probabiliste utilisé dans ces théories s'avère non approprié dans certaines situations particulières (ignorance totale, incertitude qualitative). Pour pallier ces limites, plusieurs travaux ont été élaborés concernant l'utilisation des intégrales de Choquet et de Sugeno comme critères de décision d'une part et l'utilisation d'une théorie d'incertitude autre que la théorie des probabilités pour la modélisation de l'incertitude d'une autre part. Notre idée principale est de profiter de ces deux directions de recherche afin de développer, dans le cadre de la décision séquentielle, des modèles de décision qui se basent sur les intégrales de Choquet comme critères de décision et sur la théorie des possibilités pour la représentation de l'incertitude. Notre objectif est de développer des modèles graphiques décisionnels, qui représentent des modèles compacts et simples pour la prise de décision dans un contexte possibiliste. Nous nous intéressons en particulier aux arbres de décision et aux diagrammes d'influence possibilistes et à leurs algorithmes d'évaluation.The field of decision making is a multidisciplinary field in relation with several disciplines such as economics, operations research, etc. Theory of expected utility has been proposed to model and solve decision problems. These theories have been questioned by several paradoxes (Allais, Ellsberg) who have shown the limits of its applicability. Moreover, the probabilistic framework used in these theories is not appropriate in particular situations (total ignorance, qualitative uncertainty). To overcome these limitations, several studies have been developed basing on the use of Choquet and Sugeno integrals as decision criteria and a non classical theory to model uncertainty. Our main idea is to use these two lines of research to develop, within the framework of sequential decision making, decision models based on Choquet integrals as decision criteria and possibility theory to represent uncertainty. Our goal is to develop graphical decision models that represent compact models for decision making when uncertainty is represented using possibility theory. We are particularly interested by possibilistic decision trees and influence diagrams and their evaluation algorithms
    • …
    corecore