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Introduction

Decision making process is an important topic in Artificial Intelligence. Modeling decision

problems is a tedious task since in real world problems several types of uncertainty related

to decision maker’s behavior and states of nature should be considered.

The most famous decision criterion proposed by decision theory is the expected utility.

Despite the success of this decision model, it has some limits since it is unable to represent

all decision makers behaviors as it has been highlighted by Allais [1] and Ellsberg [30]. To

respond to these paradoxes, alternative decision models like those based on Choquet and

Sugueno integrals have been proposed [13, 78].

Besides, most of available decision models refer to probability theory for the represen-

tation of uncertainty. However, this framework is appropriate only when all numerical data

are available, which is not always possible. Indeed, there are some situations, like the case of

total ignorance, which are not well handled and which can make the probabilistic reasoning

unsound. Several non classical theories of uncertainty have been proposed in order to deal

with uncertain and imprecise data such as evidence theory [72], Spohn’s ordinal conditional

functions [76] and possibility theory [89] issued from fuzzy sets theory [88].

The aim of this thesis is to study different facets of the possibilistic decision theory

from its theoretical foundations to sequential decisions problems with possibilistic graphical

decision models.

Our choice of the possibilistic framework is motivated by the fact that the possibility

theory offers a natural and simple model to handle uncertain information. In fact, it is an

appropriate framework for experts to express their opinions about uncertainty numerically

using possibility degrees or qualitatively using total pre-order on the universe of discourse.

In the first part of this thesis, we provide in Chapter 1 a study of existing classical

decision models namely Maximax, Maximin, Minimax regret, Laplace and Hurwicz decision

1



Introduction 2

criteria under total uncertainty. Then, we present expected decision theories (i.e. expected

utility and subjective expected utility) and we detail non expected decision models.

We develop in Chapter 2 possibilistic decision theory (i.e optimistic and pessimistic

utility (Upes and Uopt), binary utility (PU), possibilistic likely dominance (LN and LΠ) and

order of magnitude expected utility (OMEU)) by detailing the axiomatic system of each

criterion. We then give special attention to Choquet based criteria by developing particular

properties of possibilistic Choquet integrals. More precisely, we propose necessity-based

Choquet integrals for cautious decision makers and possibility-based Choquet integrals for

adventurous decision makers.

The second part of our work is dedicated to sequential decision making where a decision

maker should choose a sequence of decisions that are executed successively. Several graphical

decision models can be used to model in a compact manner sequential decision making.

We can in particular mention decision trees [65], influence diagrams [43] and valuation

based systems [73], etc. Most of these graphical models refer to probability theory as

uncertainty framework and to expected utility as decision criterion. This motivates us to

study possibilistic graphical decision models using results of the first part on possibilistic

decision criteria.

To this end, we first give in Chapter 3 an overview on standard decision trees and

influence diagrams and on their evaluation algorithms. Then, we formally define possibilistic

decision trees by studying in Chapter 4 the complexity of finding the optimal strategy in the

case of different possibilistic decision criteria. We show that except for the Choquet based

decision criteria, the application of dynamic programming is possible for most possibilistic

decision criteria since pessimistic and optimistic utilities, binary utility, likely dominance

and order of magnitude expected utility satisfy the crucial monotonicity property needed

for the application of this algorithm.

For the particular case of Choquet based criterion we show that the problem is NP-hard

and we develop a Branch and Bound algorithm. We also characterize some particular cases

where dynamic programming can be applied.

In order to show the efficiency of the studied algorithms in the case of possibilistic

decision trees with Choquet integrals, we propose in Chapter 5 an experimental study

aiming to compare results provided by dynamic programming w.r.t those of Branch and

Bound.

Possibistic decision trees inherit the same limits than those of standard decision trees,
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namely the fact that they are no longer appropriate to model huge decision problems since

they will grow exponentially. Hence, our interest of proposing in Chapter 6 another possi-

bilistic graphical decision models i.e. possibilistic influence diagrams.

We, especially distinguish two classes of possibilistic influence diagrams (homogeneous

and heterogeneous) depending on the quantification of chance and utility nodes. Indeed,

homogeneous possibilistic influence diagrams concern the case where chance and value nodes

are quantified in the same setting contrarily to the case of heterogeneous ones. Then, we

propose indirect evaluation algorithms for different kinds of possibilistic influence diagrams:

the first algorithm is based on the transformation of influence diagrams into possibilistic

decision trees and the second one into possibilistic networks [6] which are a possibilistic

counterpart of Bayesian networks [46]. These indirect approaches allow us to benefit from

already developed evaluation algorithms for possibilistic decision trees and also for possi-

bilistic networks.



Part I

Possibilistic decision criteria based

on Choquet integrals under

uncertainty
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An Introduction to Decision

Theories: Classical Models
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1.1 Introduction

Decision making is a multidisciplinary domain that concerns several disciplines such that

economy, psychology, operational research and artificial intelligence. So, decision making is

a complex domain characterized by uncertainty since it is related to several other domains.

In addition, decision makers cannot express their uncertainty easily because necessary in-

formations are not always available.

In general, we can distinguish three situations of decision making according to the

uncertainty relative to the states of nature:

• A situation of total uncertainty when no information is available.

• A situation of probabilistic uncertainty when it exists a probability function (objective

or subjective) that quantifies uncertainty about states of nature.

• A situation of non probabilistic uncertainty when probability theory cannot be used

to quantify uncertainty. Then, non classical theories of uncertainty such as fuzzy sets

theory [88], possibility theory [89] and evidence theory [72] can be used.

According to the situation, several decision criteria have been proposed in the literature.

These criteria can be classified into two classes:

1. Quantitative decision approaches and

2. Qualitative decision approaches.

The most famous quantitative decision models are based on expected utility. These classical

decision models are well developed and axiomatized by Von Neumann and Morgenstern [57]

in context of objective probabilistic uncertainty and by Savage [68] when the probability

is subjective. However, these classical decision models have some limits since they cannot

represent all the decision maker behavior and all kinds of uncertainty.

In order to overcome these limitations, new models have been developed: Choquet ”non

expected utility”, possibilistic decision theory [26, 27], Sugeno integrals [26, 69, 78], etc.

This chapter gives a survey of decision theories. It is organized as follows: Section 1.2

presents basic definitions and notations. Uncertainty in decision problems is discussed in

Section 1.3. Section 1.4 details the framework of decision making under total uncertainty.
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Expected decision models will be developed in Section 1.5. Non expected decision models

will be introduced in Section 1.6.

1.2 Definitions and notations

A decision problem consists on a choice between a list of possible alternatives considering

expert knowledge’s about states of nature and his preferences about possible results of his

decision expressed via a set of utilities. The choice of the optimal strategy is also influenced

by the nature of the decision maker that can be:

• Optimistic: Decision maker chooses the decision that has the maximal payoff even if

it is a risky choice.

• Pessimistic: Decision maker chooses the least risky decision.

• Neutral: Decision maker is neutral w.r.t loss and gain.

Decision making is the identification and the choice of some alternatives based on prefer-

ences of the decision maker and the decision environment. This process aims to select a

strategy that is optimal w.r.t the decision maker’s satisfaction.

Let us give some useful notations:

• The set of states of nature is denoted by S. |S| denotes the cardinality of the set S.

• The set of subsets of S represents events. This set is denoted by E (i.e. E = 2S).

• The set of consequences is denoted by C.

• An act, called also an action (a decision), is denoted by f and it assigns a consequence

to each state of nature it is a mapping f : S 7−→ C from S to C. We have: ∀s ∈
S, f(s) ∈ C.

• The set of acts is denoted by F.

• A constant act is an act that gives the same consequence whatever the state of nature.

F const is the set of constant acts.

• An utility function (denoted by u) is a mapping from C to U , i.e. u : C → U where

U = {u1, . . . , un} is a totally ordered subset of R such that u1 ≤ · · · ≤ un.

• The worst utility (resp. the best utility) is denoted by u⊥ (resp. u>).
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1.3 Uncertainty in decision problems

There are several situations of information availability about states of nature. These situ-

ations are characterized by different forms of uncertainty, namely:

• Total uncertainty where no information is available about the states of nature.

• Probabilistic uncertainty where uncertainty can be modeled via a probability dis-

tribution. We can distinguish two types of probability:

1. Objective probability: also called by frequentest probability, it indicates the rel-

ative frequency of the realization of events. A situation of uncertainty charac-

terized by objective probability is called a situation of risk. In this report, as in

literature, we will use the term risk to indicate probabilistic uncertainty and the

term uncertainty to indicate all types of uncertainty.

2. Subjective probability: models the personal degree of belief that the events occur.

• Non probabilistic uncertainty where probability theory cannot be used to model

uncertainty. Several non probabilistic uncertainty theories (named also non classical

theories of uncertainty) have been developed such as fuzzy sets theory [88], imprecise

probabilities [84], possibility theory [18, 20, 90] evidence theory [72] and rough set

theory [59].

In some situations, decision makers are unable to give exact numerical values to quan-

tify decision problems but they can only provide an order relation between different

values. This order relation can be represented by numerical values which have no sense

but which express only the order. These situations are characterized by qualitative

uncertainty, which can be represented using possibility theory.

1.4 Decision criteria under total uncertainty

Several decision criteria have been developed for decision under total uncertainty, regarding

the decision maker behavior (optimistic, pessimistic and neutral). Among the most used

ones, we will detail the Maximin, Maximax, Minimax regret, Laplace and Hurwicz decision

criteria.
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1.4.1 Maximin and Maximax criteria

Maximin and Maximax are a non probabilistic decision criteria defined by Wald [85, 86].

Maximin represents the pessimistic behavior of the decision maker. Decisions are ranked

according to their worst outcomes. Indeed, the optimal decision is the one whose worst

outcome is at least as good as the worst outcome of any other decisions.

Symmetrically, Maximax represents the optimistic behavior of the decision maker since

decisions are ranked according to their best outcomes. Formally, these decision criteria can

be defined as follows:

Definition 1.1 The Maximin criterion (denoted by a∗) is expressed by:

a∗ = max
f∈F

amin(f) (1.1)

where amin(f) = mins∈S u(f(s)).

The Maximax criterion (denoted by a∗) is expressed by:

a∗ = max
f∈F

amax(f) (1.2)

where amax(f) = maxs∈S u(f(s)).

Example 1.1 Let us consider a decision maker who should choose what he will buy between

ice cream, cold drinks and newspapers. His satisfaction depends on the climate (nice, rain

and snow). Table 1.1 represents utilities of each choice.

Choice Climate

Nice Rain Snow

Ice cream 500 300 50

Drinks 200 400 150

Newspapers 100 250 450

Table 1.1: Utilities of drink choice problem

If we use the Maximin decision criterion, we have a∗ = 150 and the optimal decision is

to buy drinks. While if we use the Maximax decision criterion, we have a∗ = 500 and the

optimal decision is to buy ice cream.
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Maximin and Maximax are very simple to compute, but they are not discriminant since

we can have the same values (a∗ or a∗) for different decisions (e.g. in the example 1.1 if the

maximal utility for the three choices is equal to 500 then we will have a∗ = 500 for each

decision and we cannot choose between them).

1.4.2 Minimax regret criterion

In 1951, Savage [68, 80] proposed a decision model based on the regret (also called oppor-

tunity loss). Indeed, the regret is obtained by computing the difference between the utility

of the current consequence and the maximal one for the same state. The Minimax regret

approach is to minimize the worst case regret.

Definition 1.2 The Minimax regret criterion (denoted by r∗) is computed as follows:

r∗ = min
f∈F

r(f) (1.3)

where r(f) = maxs∈S r(f, s) and r(f, s) = [maxf ′∈F u(f ′(s))]− u(f(s)).

Example 1.2 Let us continue with the example 1.1. Table 1.2 represents the matrix of

regrets which computes r(f(s)) for each state and each decision. In this example the decision

maker will choose to buy drinks since r∗ = 300.

di Nice Rain Snow r(f)

Ice cream 0 100 400 400

Drinks 300 0 300 150

Newspapers 400 150 0 400

Table 1.2: The matrix of regrets

Note that like the Maximin criterion, the Minimax regret criterion models pessimism

but it is more sophisticated since it compares choices based on their regrets considering

other choices. Nevertheless, the Minimax regret can lead the same minimal regrets for

different decisions.
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1.4.3 Laplace criterion

Laplace criterion (also called Laplace insufficient reason criterion) is justified by the fact

that if no probabilities have been defined then there is no reason to not consider that any

state s ∈ S is more or less likely to occur than any other state [75]. Laplace criterion is the

first model that used probability theory to represent uncertainty about states of nature, we

have ∀s ∈ S, pr(s) = 1/|S| (principle of equiprobability).

Definition 1.3 The Laplace decision criterion (denoted by Lap∗) is computed as follows:

Lap∗ = max
f∈F

Lap(f) (1.4)

where Lap(f) =
∑
s∈S u(f(s))

|S| .

Example 1.3 Using the same example 1.1, we have:

Lap(buy ice cream) = 283.333, Lap(buy drinks) = 250 and

Lap(buy newspapers) = 266.666.

So, the optimal decision according to Laplace criterion is to buy ice cream.

Laplace criterion uses the sum and the division operators, so it assumes that we have

numerical utilities, which is not always the case. This point will be detailed in Chapter 2

where we will present qualitative decision theories. Note that Laplace criterion may give

the same value for two different situations as it is presented in the following example

Example 1.4 Let S = {s1, s2}, U = {−100, 0, 100} and F = {f, g}. Table 1.3 represents

the utility of each act in F for each state in S:

f g

s1 100 0

s2 -100 0

Table 1.3: Utilities for act f and g

Lap(f) = (100+(−100))
2 = 0 and Lap(g) = (0+0)

2 = 0.

Therefore, the assumption that all the states are equiprobable is not reasonable since we

can have the same average for different decisions.
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1.4.4 Hurwicz decision criterion

It is also called the criterion of realism or weighted average decision criterion [44]. In fact,

it is a compromise between optimistic and pessimistic decision criteria. The computation of

the Hurwicz is based on the coefficient α which is a value in the interval [0, 1] that expresses

the behavior of the decision maker such that if α is close to 1 (resp. 0) then the decision

maker is optimistic (resp. pessimistic).

Definition 1.4 The Hurwicz decision criterion (denoted by H) is computed as follows:

H(f) = α min
s∈S

u(f(s)) + (1− α) max
s∈S

u(f(s)) (1.5)

Example 1.5 Using the same example 1.1, we have for α = 0.8:

H(buy ice cream) = (0.8 ∗ 50) + (0.2 ∗ 500) = 140,

H(buy drinks) = (0.8 ∗ 150) + (0.2 ∗ 400) = 200 and

H(buy newspapers) = (0.8 ∗ 100) + (0.2 ∗ 450) = 170.

So, the optimal decision according to the Hurwicz criterion is to buy drinks.

1.5 Expected decision theories

As we have seen in the Section 1.3, there exist several ways to represent uncertainty ac-

cording to available information. This variety of uncertainty modeling’s leads to different

decision making criteria. Mainly, we distinguish quantitative and qualitative decision crite-

ria. In this section, we focus on historical, quantitative decision criteria (see chapter 2 for

more details about qualitative decision criteria).

Quantitative decision criteria can be used when uncertainty is represented by numer-

ical values. The principal quantitative decision criterion is the expected decision model

introduced by Bernoulli and developed by von Neumann and Morgenstern [57]. Despite

its success, the expected decision model has some limits which were the subject of several

works that proposed extensions of expected models for instance rank dependent utility and

more generally non expected decision models [69]. These quantitative decision criteria are

detailed in the sequel of this section.
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1.5.1 Von Neumann and Morgenstern’s decision model

In 1738, Bernoulli published a work entitled ”St. Petersburg proceedings” in which he

presented the paradox (known by ”St. Petersburg paradox”) which shows via a game that

the expected value (i.e. the expected payoffs) of a small value may be infinite [4]. The

principle of this game is as follows: It tosses a coin, if face appears then we win 2 dollars

and we stop the game, else we stay in the game and a new toss is made. If face appears

then we win 4 dollars and we stop the game, else we throw the coin again. If face appears,

we receive 8 dollars and so on.

So in this game if a player wants to win 2n dollars then he must made n − 1 times tails

before face. In this case, the probability to win 2n dollars is 1/2n. The expected monetary

value of this game is
∑+∞

i=1
1
2i
∗ 2i =

∑+∞
i=1 1 = +∞. Since the expected monetary value

of this game is infinite then a player can pay any amount to play this game which is not

reasonable.

In this example Bernoulli shows that the decision criterion based on the expectation

value should be refined via the notion of utility. He argued that the utility function be a

logarithmic function given its property of decreasing marginal utilities. In fact, this utility

function allows a non linear processing of consequences which avoids the paradoxal nature

of the game presented by Saint-Petersbourg.

Expected Utility (EU)

In 1944 [57], Von Neumann and Morgenstern (VNM) have developed the proposition of

Bernoulli and they proposed Expected Utility theory (denoted by EU) and defined necessary

conditions that guarantee the existence of a utility function. The EU model concerns

decision making under risk, i.e. it is assumed that an objective probability distribution on

the state of nature S is known. As we have seen, an act assigns a consequence to each

state of nature and a utility is affected to each consequence by a utility function. So,

∀s ∈ S, ∃ui ∈ U s.t u(f(s)) = ui.

Formally, we have for each utility ui ∈ U , pr(ui) =
∑

s∈S pr(s) such that u(f(s)) = ui.

Uncertainty, about the set of utilities U = {u1, . . . , un} can be represented via a probabilistic

lottery L denoted by L = 〈λ1/u1, . . . , λn/un〉 where λi is the uncertainty degree that the

decision leads to an outcome of utility ui (λi = L(ui)).

The size of a simple lottery is simply the number of its outcomes.

In a decision problem, each possible strategy can be represented by a lottery. Especially,
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in VNM approach λi is an objective probability and the expected utility of a lottery L is

defined as follows:

Definition 1.5 The expected utility of a lottery L (denoted by EU) is computed as follows:

EU(L) =
∑
ui∈U

ui ∗ L(ui) (1.6)

Example 1.6 Let L = 〈0.1/10, 0.6/20, 0.3/30〉 and L′ = 〈0.6/10, 0.4/30〉 be two probabilis-

tic lotteries. Using Equation (1.6), we have EU(L) = (0.1∗10) + (0.6∗20) + (0.3∗30) = 22

and EU(L′) = (0.6 ∗ 10) + (0.4 ∗ 30) = 18 so L is preferred to L′.

Von Neumann and Morgenstern axiomatization

Von Neumann and Morgenstern have proposed an axiomatic system (denoted by SEU ) to

characterize a preference relation � between probabilistic lotteries.

Let L, L′ and L′′ be three probabilistic lotteries, the axiomatic system SEU is defined

as follows:

1. Axiom 1SEU . Completeness (Orderability): It is always possible to state either

that L � L′ or L � L′.

2. Axiom 2SEU . Reflexivity: Any lottery L is always at least as preferred as itself:

L � L.

3. Axiom 3SEU . Transitivity: If L � L′ and L′ � L” then L � L”.

4. Axiom 4SEU . Continuity: If L′ is between L and L′′ in preference then there is a

probability p for which the rational agent (DM) will be indifferent between the lottery

L′ and the lottery in which L comes with probability p, L′′ with probability (1− p).

L � L′ � L′′ ⇒ ∃p, s.t 〈p/L, (1− p)/L′′〉 ∼ L′.

5. Axiom 5SEU . Substitutability: If a DM is indifferent between two lotteries L and

L′, then there is a more complex lottery in which L can be substituted with L′.

(L ∼ L′)⇒ ∃p, s.t 〈p/L, (1− p)/L′′〉 ∼ 〈p/L′, (1− p)/L′′〉.
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6. Axiom 6SEU . Decomposability: Compound lotteries can be reduced to simpler

lotteries using the laws of probability.

〈p/L, (1− p)/〈q/L′, (1− q)/L′′〉〉 ⇒ 〈p/L, (1− p)q/L′, (1− p)(1− q)/L′′〉.

7. Axiom 7SEU . Independence: If a DM prefers L to L′, then he must prefer the lottery

in which L occurs with a higher probability.

L � L′ ⇒ ∀p ∈ [0, 1]⇐⇒ 〈p/L, (1− p)/L”〉 > 〈p/L′, (1− p)/L”〉.

This independence axiom is the central axiom of the expected utility model. It can be

interpreted as follows: The DM who prefers L to L′ and who should make a choice between

two mixtures pL+ (1− p)L′′ and pL′ + (1− p)L′′ will operate as follows: If an event with

a probability (1 − p) happens, he will obtain L′′ apart of his choice. However, if the com-

plementary event happens the decision maker has to choose between L and L′. If the agent

prefers L to L′ then he will prefer the mixture pL+ (1− p)L′′ to pL′ + (1− p)L′′ according

to the independence axiom.

The existence of a utility function according to VNM axioms is stated by the following

theorem:

Theorem 1.1 If the preference relation � satisfies completeness, reflexivity, transitivity,

continuity and independence axioms then it exists a utility function u : C → R such that:

L � L′ ⇔
∑
c∈C

u(c)L(c) ≥
∑
c∈C

u(c)L′(c) (1.7)

where, ∀c ∈ C,L(c) (resp. L′(c)) is the probability degree to have the utility u(c) from L

(resp. L′).

1.5.2 Savage decision model

In the VNM model, the hypothesis of the existence of objective probabilities is a strong

assumption which is not guaranteed in all situations. So, an extension of expected decision

theory based on subjective probability has been proposed in the literature [68].
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Subjective Expected Utility (SEU)

Subjective expected utility is indeed based on the use of subjective probabilities to represent

uncertainty. This theory was developed by Savage in 1954 [68]. In this decision theory,

subjective probability is used to model uncertainty.

Definition 1.6 The subjective expected utility of an act f (denoted by SEU) is computed

as follows:

SEU(f) =
∑
s∈S

pr(s) ∗ u(f(s)). (1.8)

Example 1.7 Let the set of states of nature S = {s1, s2, s3} such that pr(s1) = 0.5,

pr(s2) = 0.3 and pr(s3) = 0.2. The decision maker should choose between the act f and g

that assign an utility to each state in S as it is represented in Table 1.4.

Acts/States s1 s2 s3

f 20 10 30

g 10 20 30

Table 1.4: The set of utilities

Using Equation (1.8), we have SEU(f) = (0.5 ∗ 20) + (0.3 ∗ 10) + (0.2 ∗ 30) = 19 and

SEU(g) = (0.5 ∗ 10) + (0.3 ∗ 20) + (0.2 ∗ 30) = 17, so f is preferred to g.

Savage axiomatization

The second axiomatic system is the one proposed by Savage (denoted by SSEU ) [68]. This

system gives necessary conditions that should be verified by a preference relation � between

acts.

Before the development of the set of axioms, let us define the following notation con-

cerning acts: fAh(s): the act f is applied if a state s pertains to the event A while the act

h is applied if s ∈ Ac. An event A is null iff ∀f,∀g, fAg � g and gAf � g.

1. Axiom 1SSEU . � is complete and transitive.
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2. Axiom 2SSEU . (Sure Thing Principle) For any f, g, h, h′ ∈ F and not null event A ⊆ S:

fAh � gAh iff fAh′ � gAh′.

3. Axiom 3SSEU . For not null event A ⊆ S, and for any f, g ∈ F const, ∀h ∈ E we have:

fAh � gAh iff f � g.

4. Axiom 4SSEU . For any A,B ∈ S and for f, g, f ′, g′ ∈ F const such that f � g and

f ′ � g′, we have:

fAg � fBg iff f ′Ag′ � f ′Bg′.

5. Axiom 5SSEU . There exist f, g ∈ F const such that f � g.

6. Axiom 6SSEU . For any f, g ∈ F such that f � g and for any h ∈ F const there exists a

finite partition P of the set S such that for any H ∈ P :

(a) [hHf ] � g and

(b) f � [hHg].

The key axiom of Savage is the Sure Thing Principle (STP) (Axiom 2SSEU ). This axiom

is interpreted by the fact that if an act is preferred when an event E is occurred then it

will still preferred whatever the act in the case of complementary event. The sure thing

principle (STP) axiom is considered as a strong condition and a weak version, named by

weak sure thing principle (WSTP) has been proposed (see e.g. [80]):

fEj � gEj ⇒ fEj′ � gEj′. (1.9)

The existence of a utility function according to Savage axioms is stated by the following

theorem:

Theorem 1.2 If the preference relation � satisfies Axiom 1SSEU to Axiom 6SSEU then

it exists a utility function u : C → R and a probability distribution Pr deduced from the

preference relation between acts such that:

f � g ⇔
∑
s∈S

u(f(s))pr(s) ≥
∑
s∈S

u(g(s))pr(s), ∀f, g ∈ F (1.10)
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1.6 Beyond expected utility decision models

Expected utility decision models cannot represent all decision makers behaviors because of

their linear processing of probabilities. In fact, Allais [1] and Ellsberg [30] have presented

experiences where EU and SEU cannot be used. In addition, probability theory cannot

represent all kinds of uncertainty.

To overcome these limits, some extensions of expected utility have been developed like

Rank Dependent Utility (RDU), Choquet and Sugeno integrals that we will detail below.

1.6.1 Rank Dependent Utility (RDU)

In 1953, Allais has shown the contradiction of the independence axiom of the VNM’s system

(Axiom 7SEU ) with the following counter example [1].

Counter Example 1.1 Suppose that an agent will choose between the following lotteries:

1. L1: win 1 M with certainty (L1 = 〈1/1〉).

2. L2: win 1 M with a probability 0.89, 5 M with a probability 0.1 and 0 with a probability

0.01 (L2 = 〈0.01/0, 0.89/1, 0.1/5〉).

Then, he should choose between:

1. L1’: win 1 M with a probability 0.11 and 0 with a probability 0.89 (L1′ = 〈0.89/0, 0.11/1〉).

2. L2’: win 5 M with a probability 0.1 and 0 with a probability 0.9 (L2′ = 〈0.9/0, 0.1/5〉).

Clearly, an agent will choose L1 instead of L2 and L2′ instead of L1′.

Consider now the following game with four lotteries.

1. P: win 1 M with a probability 1 (P = 〈1/1〉).

2. Q: win 0 M with a probability 1/11 and 5 M with a probability 10/11 (Q = 〈0.09/0, 0.9/5〉).

3. R: win 0 M with a probability 1 (R = 〈1/0〉).
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4. S: win 1 M with a probability 1 (S = 〈1/1〉).

We can represent lotteries L1, L2, L1′ and L2′ as follows:

L1 = 0.11P + 0.89S

L2 = 0.11Q+ 0.89S

L1′ = 0.11P + 0.89R

L2′ = 0.11Q+ 0.89R

As we have said the lottery L1 is preferred to the lottery L2, thus

0.11P + 0.89S � 0.11Q+ 0.89S.

According to the independence axiom (Axiom 7SEU ), this preference relation is equivalent

to P � Q with p = 0.11, (1− p) = 0.89 and L” = S. Normally, we should have:

L1′ = 0.11P + 0.89R � L2′ = 0.11Q + 0.89R i.e. L1′ � L2′. But in this experience, the

agent has chosen L2′, hence contradiction: The independence axiom is not respected.

As a solution to this paradox, Quiggin has developed Rank Dependent Utility [64] which is

based on the use of a non linear processing of probabilities via a transformation function

of probabilities (ϕ) which transforms cumulative probability. Generally, small probability

degrees are neglected by decision makers and they have not an important impact on their

choices. Based on this hypothesis, Buffon [11] has proposed to deal with a non linear

probabilities which leads to a non linear treatment of consequences in decision making.

The Rank Dependent Utility criterion (denoted by RDU) is defined as follows:

Definition 1.7 The Rank Dependent Utility of a lottery L = 〈pr1/u1, . . . , prn/un〉 is com-

puted as follows:

RDU(L) = u1 +

n∑
i=2

ϕ(

n∑
k=i

prk) [ui − ui−1] (1.11)

where ϕ(prk) is a transformation function of the probability prk.

Example 1.8 Let L = 〈0.1/10, 0.6/20, 0.3/30〉 and L′ = 〈0.6/10, 0.4/30〉 be two probabilis-

tic lotteries. ϕ is a transformation function of probability such that:

• If 0 ≤ prk < 0.35 then ϕ(prk) = 0.

• If 0.35 ≤ prk < 0.7 then ϕ(prk) = 0.3.
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• If 0.7 ≤ prk ≤ 1 then ϕ(prk) = 1.

Using Equation (1.11), we have RDU(L) = 10+ϕ(0.6+0.3)∗(20−10)+ϕ(0.3)∗(30−10) = 20

and RDU(L′) = 10 + ϕ(0.4) ∗ (30− 10) = 16 so L is preferred to L′.

1.6.2 Choquet expected utility (CEU)

In 1961, Ellsberg has shown the contradiction of the Sure Thing Principle (Axiom 2SSEU )

via the following counter example [30]:

Counter Example 1.2 Suppose that we have a box containing 90 balls (30 red (R),

60 blue (B) or yellow (Y)). The agent should choose between 4 decisions:

• x1: Bet on the fact that the drawn ball is red.

• x2: Bet on the fact that the drawn ball is blue.

• x3: Bet on the fact that the drawn ball is red or yellow.

• x4: Bet on the fact that the drawn ball is blue or yellow.

Profits of each decision are presented in Table 1.5.

R B Y

x1 100 0 0

x2 0 100 0

x3 100 0 100

x4 0 100 100

Table 1.5: Profits

The majority prefer x1 to x2 or x4 to x3.

If we suppose that we can have 100$ as a profit if the ball is yellow then the decision

x1 will be similar to x3 and x2 similar to x4. Normally, the preference relation will still

unchanged since we have modified a constant profit in the two decisions, we will have

x3 � x4.

In fact, there is no a couple p and u such that SEU(x1) > SEU(x2) and

SEU(x4) > SEU(x3). Hence Contradiction and the STP axiom is not satisfied.
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The paradox of Allais and Ellsberg can be captured by the use of a Choquet integrals as

a decision criterion based on a weakening of Savage’s sure thing principle. In fact, Choquet

expected utility allow the representation of the behaviors unlighted by Allais and Ellsberg.

Following [38] and [69], Choquet integrals appear as a right way to extend expected

utility to non Bayesian models. Like the EU model, this model is a numerical, compensatory,

way of aggregating uncertain utilities. But it does not necessarily resort on a Bayesian

modeling of uncertain knowledge. Indeed, this approach allows the use of any monotonic

set function 1 as a way of representing the DM’s knowledge.

More precisely, Choquet integrals are defined according to a capacity (denoted by µ)

which is a fuzzy measure µ : A→ [0, 1] where A is a subset of the state of nature S.

Let X be a measurable function from some set T to R, Choquet integrals are defined as

follows: ∫
Ch
Xdµ =

∫ 0

−∞
[µ(X > t)− 1]dt+

∫ ∞
0

µ(X > t)dt. (1.12)

If X is a finite set of values such that x1 ≤ x2 ≤ · · · ≤ xn, Equation (1.12) may be written

as follows: ∫
Ch
Xdµ = x1 +

n∑
i=2

(xi − xi−1)µ(X ≥ xi). (1.13)

When the measurable function X is a utility function u, the Choquet expected utility

of Equation (1.12) (denoted by CEU) writes:∫
Ch
udµ =

∫ 0

−∞
[µ(u > t)− 1]dt+

∫ ∞
0

µ(u > t)dt. (1.14)

Given a lottery L, CEU may be also expressed by:

Chµ(L) =

n∑
i=1

(ui − ui−1)µ(L ≥ ui) = u1 +

n∑
i=2

(ui − ui−1)µ(u ≥ ui). (1.15)

Given a decision f , CEU may be also expressed by:

Chµ(f) = u1 +

n∑
i=2

(ui − ui−1)µ(Fi) (1.16)

where Fi = {s, u(f(s)) ≥ ui).
The fuzzy measure µ used in the definition of the Choquet expected utility may be any

fuzzy measure.

1This kind of set function is often called capacity or fuzzy measure.
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Note that in the probabilistic case the capacity µ is the probability measure and the CEU

corresponds to the particular case of the Expected Utility (EU) (see Equation 1.6) whereas

if the capacity µ is a transformed probability (via a transformation function of probability

ϕ) then CEU is simply collapse to the Rank Dependent Utility (RDU) (see Equation 1.11).

Example 1.9 Let us consider the two lotteries of example 1.6 i.e.

L = 〈0.1/10, 0.6/20, 0.3/30〉 and L′ = 〈0.6/10, 0.4/30〉. Using Equation (1.15), we have

Chpr(L) = 10+(20−10)∗0.9+(30−20)∗0.3 = 22 and Chpr(L
′) = 10+(30−10)∗0.4 = 18.

The value of Chpr(L) (respectively Chpr(L
′)) is equal to EU(L) (respectively EU(L′)) since

as we have mentioned Chpr is similar to EU .

1.6.3 Sugeno integrals

In several cases, the decision maker cannot express his uncertainty by numerical values but

he can only give an order between events. So, uncertainty is qualitative and quantitative

decision models cannot be applied anymore.

Sugeno integrals [78, 79] are the qualitative counterpart of Choquet integrals requiring

a totally ordered scale of uncertainty.

These integrals are used for qualitative decision theory based on any qualitative fuzzy

measure µ. Sugeno integrals can be defined as follows:

Sµ(f) = max
c∈C

min(µ(Fc), u(c)) ∀f ∈ F (1.17)

with Fc = {s ∈ S, u(f(s)) ≥ u(c)}.

Note that if µ is a possibility measure Π (or a necessity measure N) [18] then Sµ is a

possibilistic decision criterion that we will develop in Chapter 2.

1.7 Conclusion

As we have seen in this chapter, there exist several classical decision theories. In fact, the

use of the appropriate decision criterion depends on the context of the decision problem

namely on the nature of uncertainty (total uncertainty, numerical and ordinal) and on the
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behavior of decision makers (pessimistic, optimistic and neutral). EU-based decision models

are well developed and axiomatized but they present some limits. We have presented some

extensions of EU decision models, especially rank dependent utility, Choquet and Sugeno

integrals. In next chapters, we will develop possibilitic decision theories that aim to avoid

limits of EU decision models by using possibility theory for the representation of uncertainty

and non expected decision models.



Chapter 2

Possibilistic Decision Theory
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2.1 Introduction

Probability theory is the fundamental uncertainty theory used in classical decision theory.

Despite its fame, probability theory presents some limits since it cannot model qualitative

uncertainty and total ignorance is represented by equiprobability which formalizes random-

ness rather than ignorance. In order to avoid limits of probability theory, non classical

uncertainty theories have been developed. Possibility theory offers a suitable framework

to handle uncertainty since it allows the representation of qualitative uncertainty. Deci-

sion criteria based on possibility theory have been developed such as fuzzy sets theory [88],

possibility theory [89] and evidence theory [72].

In this chapter, we will first give some basic elements of possibility theory in Section

2.2. Pessimistic and optimistic utilities will be detailed in Section 2.3 and binary utilities

will be developed in Section 2.4. Section 2.5 and 2.6 are respectively devoted to possibilistic

likely dominance and to Order of Magnitude expected utility. Finally, Section 2.7 presents

a deep study of possibilistic Choquet integrals with necessity and possibility measures.

Principal results of this chapter are published in [7, 9].

2.2 Basics of possibility theory

Possibility theory is a non classical theory of uncertainty devoted to handle imperfect in-

formations. This section gives some basic elements of this theory, for more details see

[18, 89, 90].

2.2.1 Possibility distribution

The basic building block of possibility theory is the notion of possibility distribution. It is

denoted by π and it is a mapping from the universe of discourse Ω to a bounded linearly

ordered scale L exemplified by the unit interval [0, 1], i.e. π : Ω→ [0, 1].

The particularity of the possibilistic scale L is that it can be interpreted in twofold: in

an ordinal manner, i.e. when the possibility degree reflect only an ordering between the

possible values and in a numerical interpretation, i.e. when possibility distributions are

related to upper bounds of imprecise probability distributions.

The function π represents a flexible restriction of the values ω ∈ Ω with the conventions
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represented in Table 2.1.

π(ω) = 0 ω is impossible

π(ω) = 1 ω is totally possible

π(ω) > π(ω′) ω is more possible than ω′ (or is more plausible)

Table 2.1: Conventions for possibility distribution π

An important property relative to possibility distribution is the normalization stating

that at least one element of Ω should be fully possible i.e.:

∃ω ∈ Ω s.t π(ω) = 1 (2.1)

Possibility theory is driven by the principle of minimal specificity. A possibility distribution

π′ is more specific than π iff π′ ≤ π, which means that any possible value for π′ should be

at least as possible for π. Then, π′ is more informative than π.

In the possibilistic framework, extreme forms of partial knowledge can be represented as

follows:

• Complete knowledge:

∃ω ∈ Ω, π(ω) = 1 and ∀ω′ 6= ω, π(ω′) = 0. (2.2)

• Complete ignorance:

∀ω ∈ Ω, π(ω) = 1. (2.3)

Example 2.1 Let us consider the problem of dating the fossil. The universe of discourse

related to this problem is the set of geological era defined by

Ω = {Cenozoic(Ceno),Mesozoic(Meso), Paleozoic(Paleo)}.
Suppose that a geologist gave his opinion on the geological era (E) of a fossil in the form of

a possibility distribution π1 i.e.:

π1(Ceno) = 0.4, π1(Meso) = 1, π1(Paleo) = 0.3.

For instance, the degree 0.3 represents the degree of possibility that the geological era of F

is Paleozoic. π1 is normalized since max(0.4, 1, 0.3) = 1.

π1(E = Meso) = 1 means that it is fully possible that the fossil dates from the Mesozoic

era.
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2.2.2 Possibility and necessity measures

In probability theory, for any event ψ ⊂ Ω, P (¬ψ) = 1 − P (ψ). The expression It is not

probable that ”not ψ” means that It is probable that ψ. On the contrary, it is possible that

ψ does not entail anything about the possibility of ¬ψ.

Probability is self dual, which is not the case of possibility theory where the description

of uncertainty about ψ needs two dual measures: The possibility measure Π(ψ) and the

necessity measure N(ψ) detailed below.

These two dual measures are defined as follows:

Possibility measure

Given a possibility distribution π, the possibility measure is defined by:

Π(ψ) = maxω∈ψπ(ω) ∀ψ ⊆ Ω. (2.4)

Π(ψ) is called the possibility degree of ψ, it corresponds to the possibility to have one of the

models of ψ as the real world [20]. Table 2.2 gives main properties of possibility measure.

Π(ψ) = 1 and Π(¬ψ) = 0 ψ is certainly true

Π(ψ) = 1 and Π(¬ψ) ∈]0, 1[ ψ is somewhat certain

Π(ψ) = 1 and Π(¬ψ) = 1 total ignorance

Π(ψ) > Π(ϕ) ψ is more plausible than ϕ

max(Π(ψ),Π(¬ψ)) = 1 ψ and ¬ψ cannot be both impossible

Π(ψ ∨ ϕ) = max(Π(ψ),Π(ϕ)) disjunction axiom

Π(ψ ∧ ϕ) ≤ min(Π(ψ),Π(ϕ)) conjunction axiom

Table 2.2: Possibility measure Π

Necessity measure

The necessity measure represents the dual of the possibility measure. Formally, ∀ψ ⊆ Ω:

N(ψ) = 1−Π(¬ψ) = minω/∈ψ(1− π(ω)). (2.5)

Necessity measure corresponds to the certainty degree to have one of the models of ψ as the

real world. This measure evaluates at which level ψ is certainly implied by our knowledge

represented by π. Table 2.3 represents a summary of main properties of this measure.
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N(ψ) = 1 and N(¬ψ) = 0 ψ is certainly true

N(ψ) ∈]0, 1[ and N(¬ψ) = 0 ψ is somewhat certain

N(ψ) = 0 and N(¬ψ) = 0 total ignorance

min(N(ψ), N(¬ψ)) = 0 unique link existing between N(ψ)andN(¬ψ)

N(ψ ∧ ϕ) = min(N(ψ), N(ϕ)) conjunction axiom

N(ψ ∨ ϕ) ≥ max(N(ψ), N(ϕ)) disjunction axiom

Table 2.3: Necessity measure N

Possibilistic conditioning

The conditioning consists in revising our initial knowledge, represented by a possibility

distribution π, which will be changed into another possibility distribution π′ = π(.|ψ) with

ψ 6= ∅ and Π(ψ) > 0. The two interpretations of the possibilistic scale induce two definitions

of the conditioning:

• min-based conditioning relative to the ordinal setting:

π(ω|mψ) =


1 if π(ω) = Π(ψ) and ω ∈ ψ

π(ω) if π(ω) < Π(ψ) and ω ∈ ψ
0 otherwise.

(2.6)

• product-based conditioning relative to the numerical setting:

π(ω|pψ) =

{
π(ω)
Π(ω) if ω ∈ ψ

0 otherwise.
(2.7)

Example 2.2 Let us consider the problem of fossil’s dating. Suppose that the geologist

makes a radioactivity’s test on the fossil which help them to know the fossil’s breed repre-

sented by the following set:

Breed = {Mammal, F ish,Bird}.
Suppose that we have a fully certain piece of information indicating that the breed of the

fossil is mammal.

Then, ψ′ = {Ceno ∧Mammal,Meso ∧Mammal, Paleo ∧Mammal} and

Π(ψ) = max(0.2, 0.3, 0.5) = 0.5. Using Equations 2.6 and 2.7, new distributions are pre-

sented in Table 2.4 where ψ = (Era ∧Breed).
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Era Breed π(ψ) π(ψ |p ψ′) π(ψ |m ψ′)

Ceno Mammal 0.2 0.2 0.4

Ceno Fish 1 0 0

Ceno Bird 0 0 0

Meso Mammal 0.3 0.3 0.6

Meso Fish 0.7 0 0

Meso Bird 0.7 0 0

Paleo Mammal 0.5 1 1

Paleo Fish 0.2 0 0

Paleo Bird 1 0 0

Table 2.4: Possibilistic conditioning

2.2.3 Possibilistic lotteries

Dubois et al. [24, 25] have proposed a possibilistic counterpart of VNM’s notion of lottery

(Chapter 1 Section 1.5). In the possibilistic framework, an act can be represented by a possi-

bility distribution on U , also called a possibilistic lottery, and denoted by 〈λ1/u1, . . . , λn/un〉
where λi = π(ui) is the possibility that the decision leads to an outcome of utility ui. When

there is no ambiguity, we shall forget about the utility degrees that receive a possibility

degree equal to 0 in a lottery, i.e. we write 〈λ1/u1, . . . , λn/un〉 instead of

〈λ1/u1, . . . , 0/ui, . . . λn/un〉. The set of possibilistic lotteries is denoted by L.

A possibilistic compound lottery 〈λ1/L1, . . . , λm/Lm〉 (also denoted by λ1∧L1∨· · ·∨λm∧
Lm) is a possibility distribution over a subset of L. The possibility πi,j of getting a utility

degree uj ∈ U from one of its sub−lotteries Li depends on the possibility λi of getting Li and

on the conditional possibility λij = π(uj | Li) of getting uj from Li i.e. πi,j = λj⊗λij , where

⊗ is equal to min in the case of qualitative scale and it is equal to ∗ if the scale is numerical.

Hence, the possibility of getting uj from a compound lottery 〈λ1/L1, . . . , λm/Lm〉 is the

max, over all Li, of πi,j . Thus, [24, 25] have proposed to reduce 〈λ1/L1, . . . , λm/Lm〉 into a

simple lottery denoted by, Reduction(〈λ1/L1, . . . , λm/Lm〉). Formally, we have:

Reduction(〈λ1/L1, . . . , λm/Lm〉) = 〈 max
j=1..m

(λj ⊗ λj1)/u1, . . . , max
j=1..m

(λj ⊗ λjn)/un〉. (2.8)

where ⊗ is the product operator in the case of quantitative possibility theory and the min

operator in the case of its qualitative counterpart.

Example 2.3 Let L1 = 〈0.2/10, 0.9/20, 1/30〉, L2 = 〈1/10, 0.1/20, 0.1/30〉 and

L3 = 〈1/10, 0.15/20, 0.5/30〉 be three possibilistic lotteries.
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L4 = 〈0.2/L1, 1/L2, 0.5/L3〉 is a compound possibilistic lottery that will be reduced into a

simple possibilistic lottery L′4. We have:

• In qualitative setting:

– L′4(10) = max[min(0.2, 0.2),min(1, 1),min(0.5, 1)] = 1,

– L′4(20) = max[min(0.2, 0.9),min(1, 0.1),min(0.5, 0.15)] = 0.2 and

– L′4(30) = max[min(0.2, 1),min(1, 0.1),min(0.5, 0.5)] = 0.5.

So, L′4 = 〈1/10, 0.2/20, 0.5/30〉.

• In numerical setting:

– L′4(10) = max[(0.2 ∗ 0.2), (1 ∗ 1), (1 ∗ 0.5)] = 1,

– L′4(20) = max[(0.2 ∗ 0.9), (1 ∗ 0.1), (0.5 ∗ 0.15)] = 0.18 and

– L′4(30) = max[(0.2 ∗ 1), (1 ∗ 0.1), (0.5 ∗ 0.5)] = 0.25.

So, L′4 = 〈1/10, 0.18/20, 0.25/30〉.

Like the probabilistic case, the reduction of a compound possibilistic lottery is polyno-

mial in the size of the compound lottery since min (or ∗) and max are polynomial operations.

2.3 Pessimistic and optimistic utilities

Under the assumption that the utility scale and the possibility scale are commensurate and

purely ordinal, [25] have proposed qualitative pessimistic and optimistic utility degrees for

evaluating any simple lottery L = 〈λ1/u1, . . . , λn/un〉 (possibly issued from the reduction

of a compound lottery).

2.3.1 Pessimistic utility (Upes)

The pessimistic criterion was originally proposed by Whalen [21], it supposes that the

decision maker is happy when bad consequences are hardly plausible.
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Definition 2.1 The pessimistic utility of a possibilistic lottery L = 〈λ1/u1, . . . , λn/un〉
(denoted by Upes) is computed as follows:

Upes(L) = min
i=1..n

max(ui, N(L ≥ ui)) (2.9)

where N(L ≥ ui) = 1−Π(L < ui) = 1− max
j=1,i−1

λj.

Example 2.4 Let a possibilistic lottery L = 〈0.5/0.4, 1/0.6, 0.2/0.8〉, using Equation (2.9)

we have Upes(L) = max(0.5,min(0.6, 0.5),min(0.8, 0)) = 0.5.

Particular values for Upes are as follows:

• If L assigns the possibility 1 to u⊥ (the worst utility) then Upes(L) = 0.

• If L assigns the possibility 1 to u> (the best utility) and 0 to all other utilities then

Upes(L) = 1.

2.3.2 Optimistic utility (Uopt)

The optimistic criterion was originally defined by Yager [21], it captures the optimistic

behavior of the decision maker. It estimates to what extend it is possible that a possibilistic

lottery reaches a good utility.

Definition 2.2 The optimistic utility of a possibilistic lottery L = 〈λ1/u1, . . . , λn/un〉 (de-

noted by Uopt) is computed as follows:

Uopt(L) = max
i=1..n

min(ui,Π(L ≥ ui)) (2.10)

where Π(L ≥ ui) = max
j=i..n

λj.

Example 2.5 Let a lottery L = 〈0.5/0.4, 1/0.6, 0.2/0.8〉, using Equation (2.10) we have

Uopt(L) = max(min(0.5, 1),min(0.6, 1),min(0.8, 0.2)) = 0.6.

Particular values for Uopt are as follows:

• If L assigns 1 to u> then Uopt(L) = 1.
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• If L assigns 1 to u⊥ and 0 to all other utilities then Uopt(L) = 0.

Upes and Uopt are qualitative decision criteria that represent particular cases of Sugeno

integrals in the context of possibility theory. More precisely, if the fuzzy measure in the

Sugeno formula (Chapter 1 Section 1.6) is a necessity measure N then the Sugeno integral

is pessimistic utility. If this capacity is a possibility measure Π then the Sugeno integral is

optimistic utility.

2.3.3 Axiomatization of pessimistic and optimistic utilities

As we have seen in Chapter 1, there exist two basic axiomatic systems for expected utilities

(SEU and SSEU ). Pessimistic and optimistic utilities were axiomatized in the style of VNM

[24, 25] to characterize preference relations between possibilistic lotteries. They have been

axiomatized in the style of Savage by [26, 27, 28].

These relations between Sugeno integrals and qualitative utilities have lead to an ax-

iomatic systems of Sugeno integral that generalizes the ones of Upes and Uopt (see [26] for

more details).

Axiomatization of pessimistic utility (Upes) in the style of VNM

Let � be a preference relation on the set of possibilistic lotteries L. The axiomatic system

of Upes (denoted by SP ) was proposed by [27], it is defined as follows:

• Axiom 1SP . Total pre-order: � is reflexive, transitive and complete.

• Axiom 2SP . Certainty equivalence: if the belief state is a crisp set A ⊆ U , then

there is u ∈ U such that {u} ∼ A.

• Axiom 3SP . Risk aversion: if π is more specific than π′ then π � π′.

• Axiom 4SP . Independence: if π1 ∼ π2 then 〈λ/π1, µ/π〉 ∼ 〈λ/π2, µ/π〉.

• Axiom 5SP . Reduction of lotteries:

〈λ/u, µ/(α/u, β/u′)〉 ∼ 〈max(λ,min(µ, α))/u,min(µ, β)/u′〉.

• Axiom 6SP . Continuity: π′ ≤ π ⇒ ∃λ ∈ [0, 1] s.t. π′ ∼ 〈1/π, λ/u⊥〉
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In [24], Dubois et al. have done a deeper study of pessimistic utilities and have shown

that only four axioms are needed for this decision criterion. The authors have shown that

qualitative utilities require preference and uncertainty scales equipped with the maximum,

the minimum and an order reversing operations. An improved set of axioms have been

proposed for pessimistic utilities that does not include the axiom concerning the reduction of

lotteries (Axiom 5SP ) since this axiom is implicitly obtained by the definition of possibilistic

lotteries. Another result in [24] is that the axiom of certainty equivalence (Axiom 2SP ) is

redundant and it is a direct consequence of (Axiom 1SP , Axiom 4SP and Axiom 6SP ).

The work of Dubois et al. [24] has led to a new set of axioms (denoted by S′P ) which

contains (Axiom 1SP , Axiom 3SP and Axiom 4SP ) and a new form of the axiom of continuity

(Axiom 6S
′
P ):

• Axiom 6S
′
P . Continuity: ∀π,∃λ ∈ [0, 1] π ∼ 〈1/u>, λ/u⊥〉.

Theorem 2.1 A preference relation � on L satisfies the axiomatic system S′P iff there

exists a utility function u : L→ [0, 1] such that:

L � L′ iff Upes(L) ≥ Upes(L′). (2.11)

Axiomatization of pessimistic utility (Upes) in the style of Savage

The axiomatic system of Upes in the context of Savage is denoted by SPS , it contains the

following axioms:

• Axiom 1SPS . is the Axiom 1SSEU from SSEU concerning ranking of acts.

• Axiom 2SPS . (Weak compatibility with constant acts): Let x and y be two

constant acts (x = z and y = w) ∀E ⊆ S and ∀h z ≤ w ⇒ xEh ≤ yEh

• Axiom 3SPS . is the Axiom 5SSEU from SSEU concerning the non triavility.

• Axiom 4SPS . (Restricted max dominance): Let f and g be any two acts and y be

a constant act of value y: f � g and f � y ⇒ f � g ∨ y.

• Axiom 5SPS . (Conjunctive dominance): ∀f, g, h g � f and h � f ⇒ g ∧ h � f .

The restricted max dominance axiom (Axiom 4SPS ) means that if an act f is preffered

to an act g and also to the constant act y then, even if the worst consequences of g are



Chapter 2: Possibilistic Decision Theory 34

improved to the value y, the act f is still preferred to g. Indeed, a strengthened form of

the conjunctive dominance is expressed by the axiom Axiom 5SPS . Notice that pessimistic

utility does not satisfy the STP axiom but its weaker version namely the axiom WSTP

(Chapter 1 Section 1.5).

Theorem 2.2 A preference relation � on acts satisfies the axiomatic system SPS iff there

exists a utility function u : C → [0, 1] and a possibility distribution π : S → [0, 1] such that

∀f, g ∈ F : f � g iff Upes(f) ≥ Upes(g).

After presenting the axioms of pessimistic utility in the style of VNM and Savage, we will

proceed to represent those concerning optimistic utility.

Axiomatization of optimistic utility (Uopt) in the style of VNM

In [25], Dubois et al. presented an axiomatic system (denoted by SO) that characterizes

Uopt. This system is obtained from SP by substituting Axiom 2SP and Axiom 4SP by their

diametrical counterparts i.e. Axiom 2SO and Axiom 4SO :

• Axiom 2SO . Uncertainty attraction: if π′ ≥ π then π′ � π.

• Axiom 4SO . ∀π,∃λ ∈ [0, 1] s.t. π ∼ 〈λ/u>, 1/u⊥〉.

In an analogous way to the pessimistic case, the Axiom 6S
′
O is defined for optimistic utility

to improve its axiomatic system [24]:

• Axiom 6S
′
O . Continuity: π′ ≤ π ⇒ ∃λ ∈ [0, 1] s.t. π ∼ 〈1/π′, λ/u⊥〉.

Theorem 2.3 A preference relation � on L satisfies the axiomatic system SO and Axiom

6S
′
O iff there exists an optimistic utility function u : L→ [0, 1] such that:

L � L′ iff Uopt(L) ≥ Uopt(L′). (2.12)

Axiomatization of optimistic utility (Uopt) in the style of Savage

The axiomatic system of Uopt in the context of Savage is denoted by SOS , it shares some

similar axioms to SPS (Axiom 1SPS , Axiom 2SPS and Axiom 3SPS ). SOS is as follows:
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• Axiom 1SOS is Axiom 1SPS .

• Axiom 2SOS is Axiom 2SPS .

• Axiom 3SOS is Axiom 3SPS .

• Axiom 4SOS . (Restricted conjunctive dominance): Let f and g be any two acts

and y be a constant act of value y: g � f and y � f ⇒ g ∧ y � f .

• Axiom 5SOS . (disjunctive dominance): ∀f, g, h f � g and f � h⇒ f � g ∨ h.

Axiom 4SOS is the dual property of the restricted max dominance which holds for the

conjunction of two acts and a constant one. It allows a partial decomposability of qualitative

utility with respect to the conjunction of acts in the case where one of them is constant.

The second particular axiom in SOS is the axiom of disjunctive dominance which express

that the decision maker focuses on the ”best” plausible states.

Theorem 2.4 A preference relation � on acts satisfies the axiomatic system SOS iff there

exists a utility function u : C → [0, 1] and a possibility distribution π : S → [0, 1] such that

∀f, g ∈ F :

f � g iff Uopt(f) ≥ Uopt(g). (2.13)

2.4 Binary utilities (PU)

Giang and Shenoy [36] criticized pessimistic and optimistic utilities presented by Dubois et

al. in [21]. Their argument is based on the fact that proposed frameworks for possibilistic

utilities are based on axioms (i.e Axiom 2SP and Axiom 2SO) relative to uncertainty attitude

contrary to the VNM axiomatic system based on risk attitude which does not make a sense

in the possibilistic framework since it represents uncertainty rather than risk.

Moreover, to use pessimistic and optimistic utilities, the decision maker should clas-

sify himself as either pessimistic or optimistic which is not always obvious and even this

classification is done it can lead to unreasonable decision.

That is why Giang and Shenoy [37] have proposed a bipolar criterion which encompasses

both the pessimistic and optimistic utilities. Claiming that the lotteries that realize in the

best prize or in the worst prize play an important role in decision making, these authors
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have proposed a bipolar model in which the utility of an outcome is a pair u = 〈u, u〉 where

max(u, u) = 1: the utility is binary i.e. u is interpreted as the possibility of getting the

ideal, good reward (denoted by >) and u is interpreted as the possibility of getting the anti

ideal, bad reward (denoted by ⊥).

Because of the normalization constraint max(u, u) = 1, the set

U = {〈u, u〉 ∈ [0, 1]2,max(λ, µ) = 1} is totally ordered:

〈u, u〉 �b 〈v, v〉 iff



u = v = 1 and u ≤ v
or

u ≥ v and u = v = 1

or

u = 1, v = 1 and v < 1

(2.14)

Each ui = 〈ui, ui〉 in the utility scale is thus understood as a small lottery 〈ui/>, ui/⊥〉.
A lottery 〈λ1/u1, . . . , λn/un〉 can be view as a compound lottery, and its utility is computed

by reduction using Equation2.15.

Definition 2.3 The binary utility of a lottery L = 〈λ1/u1, . . . , λn/un〉 (denoted by PU) is

computed as follows:

PU(〈λ1/u1, . . . , λn/un〉)
= Reduction(λ1/〈u1/>, u1/⊥〉, . . . , λn/〈un/>, un/⊥〉)
= 〈max

j=1..n
(min(λj , uj))/>, max

j=1..n
(min(λj , uj))/⊥〉

(2.15)

We thus get, for any lottery L a binary utility PU(L) = 〈u, u〉 in U . Lotteries can then be

compared according to Equation (2.14):

L � L′ iff Reduction(L) � Reduction(L′). (2.16)

Example 2.6 Let u1 =< 1, 0 >, u2 =< 1, 0.5 >, u3 =< 1, 0.7 > and u4 =< 1, 1 >. Let L

and L′ be two corresponding lotteries such that:

L = 〈0.7/u1, 1/u2, 0.5/u3, 0.5/u4〉 and L′ = 〈0.5/u1, 0.7/u2, 0/u3, 1/u4〉.
Using equation 2.15, we have PU(L) = 〈1, 0.5〉 and PU(L′) = 〈1, 1〉. So, L′ � L.
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Axiomatization of binary utilities (PU)

The preference relation �PU satisfies the following axiomatic system (denoted by SPU ) in

the style of Von Neumann and Morgenstern decision theory:

• Axiom 1SPU . Total pre-order: �PU is reflexive, transitive and complete.

• Axiom 2SPU . Qualitative monotonicity �PU satisfies the following condition:

〈λ/u>, µ/u⊥〉 � 〈λ′/u>, µ′/u⊥〉 if


(1 ≥ λ ≥ λ′ and µ = µ′ = 1) or

(λ = 1 and λ′ < 1) or

(λ = λ′ = 1 and µ′ ≥ µ)

(2.17)

• Axiom 3SPU . Substitutability: if L ∼ L′ then 〈λ/L, µ/L”〉 ∼ 〈λ/L′, µ/L”〉.

• Axiom 4SPU . Continuity: ∀c ∈ C, ∃L ∈ L s.t c ∼ L.

Theorem 2.5 A preference relation � on L satisfies the axiomatic system SPU iff there

exists a binary utility such that:

L � L′ iff PU(L) ≥ PU(L′). (2.18)

2.5 Possibilistic likely dominance (LN , LΠ)

When the scales evaluating the utility and the possibility of the outcomes are not com-

mensurate, [29, 31] propose to prefer, among two possibilistic decisions, the one that is

more likely to overtake the other. Such a rule does not assign a global utility degree to the

decisions, but draws a pairwise comparison. Although designed on a Savage-like framework

rather than on lotteries, it can be translated on lotteries. This rule states that given two

lotteries L1 = 〈λ1
1/u

1
1, . . . , λ

1
n/u

1
n〉 and L2 = 〈λ2

1/u
2
1, . . . , λ

2
n/u

2
n〉, L1 is as least as good as

L2 as soon as the likelihood (here, the necessity or the possibility) of the utility of L1 is as

least as good as the utility of L2 is greater or equal to the likelihood of the utility of L2 is

as least as good as the utility of L1. Formally:

Definition 2.4 ≥LN and ≥LΠ are defined as follows:
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L1 ≥LN L2 iff N(L1 ≥ L2) ≥ N(L2 ≥ L1). (2.19)

L1 ≥LΠ L2 iff Π(L1 ≥ L2) ≥ Π(L2 ≥ L1) (2.20)

where Π(L1 ≥ L2) = supu1
i ,u

2
i s.t. u1

i≥u2
i
min(λ1

i , λ
2
i ) and

N(L1 ≥ L2) = 1− supu1
i ,u

2
i s.t. u1

i<u
2
i
min(λ1

i , λ
2
i ).

The preference order induced on the lotteries is not transitive, but only quasitransitive:

obviously L1 >N L2 and L2 >LN L3 implies L1 >LN L3 (resp. L1 >LΠ L2 and L2 >LΠ L3

implies L1 >LΠ L3) but it may happen that L1 ∼LN L2, L2 ∼LN L3 (resp. L1 ∼LΠ L2,

L2 ∼LΠ L3) and L1 >LN L3 (resp. L1 >LΠ L3).

Example 2.7 Let the set of states of nature S = {s1, s2, s3} such that Π(s1) = 0.3, Π(s2) =

0.7 and Π(s3) = 1 and the set of utilities U = {2, 3, 5}. The lotteries L and L′ are as follows

L = 〈1/2, 0.7/3, 0.3/5〉 and L′ = 〈0.7/2, 0.3/3, 1/5〉.

We have [L � L′] = {s1, s2} and [L′ � L] = {s3}.
Π({s1, s2}) = 0.7 < Π({s3}) = 1, so L′ >LΠ L.

N({s1, s2}) = 0 < N({s3}) = 0.3, so L′ >LN L.

Axiomatization of possibilistic likely dominance

In 2003, Dubois et al. [29] have developed the axiomatic system (denoted by SL) of likely

dominance rule in the context of Savage decision theory [29].

In fact, this axiomatic system is a relaxed Savage framework augmented by the ordinal

invariance axiom. A preference relation �LN or �LΠ satisfies the following axioms :

• Axiom 1SL . Weak pre-order: � is irreflexive, quasitransitive and complete.

• Axiom 2SL . Weak Sure Thing Principle: fAh � gAh iff fAh′ � gAh′.

• Axiom 3SL . (The third axiom of Savage (Axiom 3SSEU )).

• Axiom 4SL . There exist three acts f , g and h ∈ F const such that f � g � h.
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• Axiom 5Sl . Ordinal Invariance ∀f, f ′, g, g′ four acts: if (f, g) and (f ′, g′) are state

wise order equivalent 1 iff f ′ � g′.

The Axiom 2SL is the weak version of the Sure Thing Principle (i.e Axiom 2SSEU ).

Theorem 2.6 A preference relation � on L satisfies the axiomatic system SL iff there

exists a utility function such that:

L � L′ iff LN(L) ≥ LN(L′). (2.21)

L � L′ iff LΠ(L) ≥ LΠ(L′). (2.22)

2.6 Order of Magnitude Expected Utility (OMEU)

Order of Magnitude Expected Utility theory relies on a qualitative representation of beliefs,

initially proposed by Spohn [77], via Ordinal Conditional Functions, and later popularized

under the term kappa-rankings. κ : 2Ω → Z+ ∪ {+∞} is a kappa-ranking if and only if:

S1 minω∈Ω κ({ω}) = 0

S2 κ(A) = minω∈A κ({ω}) if ∅ 6= A ⊆ A, κ(∅) = +∞

Note that an event A is more likely than an event B if and only if κ(A) < κ(B): kappa-

rankings have been termed as “disbelief functions”. They receive an interpretation in terms

of order of magnitude of “small” probabilities. “κ(A) = i” is equivalent to P (A) is of the

same order of εi, for a given fixed infinitesimal ε. As pointed out by [22], there exists a

close link between kappa-rankings and possibility measures, insofar as any kappa-ranking

can be represented by a possibility measure, and vice versa.

Order of magnitude utilities have been defined in the same way [62, 87]. Namely, an

order of magnitude function µ : X → Z+∪{+∞} can be defined in order to rank outcomes

x ∈ X in terms of degrees of “dissatisfaction”. Once again, µ(x) < µ(x′) if and only if x

is more desirable than x′, µ(x) = 0 for the most desirable consequences, and µ(x) = +∞
1Two pairs of acts (f, g) and (f ′, g′) are called state wise order equivalent iff ∀s ∈ S, f(s) ≥p g(s) iff

f ′(s) ≥p g′(s) s.t ≥p is a preference relation among constant acts then f ≥ g.
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for the least desirable consequences. µ is interpreted as: µ(x) = i is equivalent to say that

the utility of x is of the same order of εi, for a given fixed infinitesimal ε. An order of

magnitude expected utility (OMEU) model can then be defined (see [62, 87] among others).

Considering an order of magnitude lottery L = 〈κ1/µ1, . . . , κn/µn〉 as representing a some

probabilistic lottery, it is possible to compute the order of magnitude of the expected utility

of this probabilistic lottery: it is equal to mini=1,n{κi + µi}. Hence the definition of the

OMEU value of a κ lottery L = 〈κ1/µ1, . . . , κn/µn〉:

Definition 2.5 The order of magnitude of the expected utility of a lottery L is computed

as follows:

OMEU(L) = min
i=1,n
{κi + µi}. (2.23)

Example 2.8 Let us consider a two lotteries L = 〈1.2/2, 0/4, 3/5, 5/7〉 and

L′ = 〈0/2, 1/4, 3.6/5, 0.5/6〉. Using Equation (2.23) we have:

OMEU(L) = min(3.2, 4, 8, 11) = 3.2 and OMEU(L′) = min(2, 5, 8.6, 6.5) = 2

so L′ �OMEU L.

According to the interpretation of kappa ranking in terms of order of magnitude of proba-

bilities, the product of infinitesimal the conditional probabilities along the paths lead to a

sum of the kappa levels. Hence the following principle of reduction of the kappa lotteries:

Reduction(κ1 ∧ L1 ∨ · · · ∨ κm ∧ Lm)

= 〈 min
j=1..m

(κj1 + κj)/u1, . . . , min
j=1..m

(κjn + κj)/un〉 (2.24)

Axiomatization of order of magnitude of the expected utility

In [35], Giang and Shenoy have proposed axioms relative to the preference relation w.r.t

the OMEU criterion. These axioms are analogous to the ones proposed by von Neumann

and Morgenstern and similar to those presented in [50].

The preference relation �OMEU satisfies the following system of axioms denoted by

SOMEU :

• Axiom 1SOMEU . The preference relation between lotteries is complete and transitive.
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• Axiom 2SOMEU . (Reduction of compound lotteries) Any compound lottery is

indifferent to a simple lottery whose disbelief degrees are calculated according to

Spohn’s calculus:

A compound lottery denoted by Lc = 〈λ1/L1, . . . , λm/Lm〉 where

Li = 〈ki1/µ1, . . . , kin/µn〉 for 1 ≤ i ≤ k is indifferent to the simple lottery Ls =

〈k1/µ1, . . . , kn/µn〉 where: kj = min1≤i≤k{λi + kij}.

• Axiom 3SOMEU . (Substitutability) If Li ∼ Li′ then

〈λ1/L1, . . . , λi/Li, . . . λm/Lm〉 ∼ 〈λ1/L1, . . . , λi/L
′
i, . . . λm/Lm〉.

• Axiom 4SOMEU . (Quasi-continuity) For each utility ui ∈ U there exists a qualitative

lottery that is indifferent to it.

• Axiom 5SOMEU . (Transitivity) ∀Li, Lj , Lk ∈ L if Li � Lj and Lj � Lk then Li � Lk.

• Axiom 6SOMEU . (Qualitative monotonicity) Let two standard lotteries

L = 〈k1/µ1, k2/µ2〉 and L′ = 〈k′1/µ1, k
′
2/µ2〉:

L � L′ iff


k1 = k′1 = 0 and kr > k′r ∀r 6= 1

k1 = 0 and k′1 > 0

k1 < k′1 and k2 = k′2

(2.25)

Theorem 2.7 A preference relation � on L satisfies the system of axioms SOMEU iff:

L � L′ iff OMEU(L) ≥ OMEU(L′). (2.26)

2.7 Possibilistic Choquet integrals

Possibilistic Choquet integrals allow the representation of different behaviors of decision

makers according to the nature of the fuzzy measure µ in Equation (1.15) defined in Chapter

1.

Indeed Possibility-based Choquet integrals allow to represent behaviors of adventurous

possibilistic decision makers by considering the fuzzy measure µ as a possibility measure Π

as stated by the following definition:
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Definition 2.6 The possibility-based Choquet integrals of a lottery L (denoted by ChΠ(L))

is computed as follows:

ChΠ(L) = Σi=n,1(ui − ui−1) . Π(L ≥ ui). (2.27)

Example 2.9 Let L = 〈1/10, 0.2/20, 0.7/30〉 and L′ = 〈1/10, 0.1/30〉 be two possibilistic

lotteries, we have ChΠ(L) = 10 + (20− 10) ∗ 0.7 + (30− 20) ∗ 0.7 = 24 and

ChΠ(L′) = 10 + (30− 10) ∗ 0.1 = 12. So, L � L′.

Necessity-based Choquet integrals allow to represent behaviors of cautious possibilistic

decision makers by considering the fuzzy measure µ as a necessity measure.

Definition 2.7 The necessity based Choquet integrals of a lottery L (denoted by ChN (L))

is computed as follows:

ChN (L) = Σi=n,1(ui − ui−1) . N(L ≥ ui). (2.28)

Example 2.10 Let L = 〈0.3/10, 0.5/20, 1/30〉 and L′ = 〈1/10, 0.5/20, 0.2/30〉 be two pos-

sibilistic lotteries, using Equation (2.28), we have ChN (L) = 10 + (20 − 10) ∗ (1 − 0.3) +

(30− 20) ∗ (1− 0.5) = 22 and ChN (L′) = 10 + (20− 10) ∗ (1− 1) = 10. So, L � L′.

2.7.1 Axiomatization of possibilistic Choquet integrals

The key axiom of Choquet expected utility is based on the notion of comonotony (the

terminology of comonotony comes from common monotony). Formally, we say that two

acts f and g of F are comonotonic if there exists no pair s and s′ of S such that:

f(s) � f(s′) and g(s) ≺ g(s′).

Note that any positive linear combination of two comonotonic acts preserves the initial

order between these acts. Basing on this property of comonotonic acts, [38] and [69] have

proposed the comonotonic sure thing principle. The axiomatic system of Choquet Expected

Utility denoted by SCh in the style of Savage contains the following axioms:

• Axiom 1SCh . (Weak order): the preference relation � is a weak order.

• Axiom 2SCh . (Continuity ): ∀f, g, h ∈ F , If f � g and g � h then there exist α and

β ∈ [0, 1] such that αf + (1− α)h � g and g � βf + (1− β)h.
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• Axiom 3SCh . (Comonotonic sure thing principle): Let f and g be two acts of F

and Ai with (i = 1 . . . n) a partition on S. We have f = (x1, A1; . . . ;xk, Ak; . . . ;xn, An)

and g = (y1, A1; . . . ; yk, Ak; . . . ; yn, An) such that (x1 ≤ · · · ≤ xk ≤ · · · ≤ xn) and

(y1 ≤ · · · ≤ yk ≤ · · · ≤ yn) and ∃i(i = 1 . . . n) such that xi = yi = uc then:

f � g ⇐⇒ f ′ � g′.

f ′ and g′ are two acts obtained from f and g by replacing the common utility uc by

a new value that guarantee the ascending order of xi and yi.

Theorem 2.8 A preference relation � on L satisfies the axiomatic system SCh iff there

exists a utility function such that:

L � L′ iff ChN (L) ≥ ChN (L′). (2.29)

and

L � L′ iff ChΠ(L) ≥ ChΠ(L′). (2.30)

In 2006, Rébillé has provided an axiomatization of a preference relation of a decision maker

that ranks necessity measures according to their Choquet’s expected utilities [66]. This

axiomatic system has been developed under risk in a similar way than the one of Von

Neumann and Morgenstern’s approach [57]. Nevertheless, in its axiomatic system Rébillé

proposed a linear mixture of possibilistic lotteries by probability degrees which is not allowed

in our work since we use only possibility degrees to model uncertainty.

2.7.2 Properties of possibilistic Choquet integrals

We propose now some additional properties of possibilistic Choquet integrals that are par-

ticularly useful to study the behavior of this decision criteria in sequential decision making.

Proposition 2.1 Given a lottery L = 〈λ1/u1, . . . , λn/un〉, an utility ui s.t. ui ≤ max
uj∈L,λj>0

uj

and a lottery L′ = 〈λ′1/u1, . . . , λ
′
n/un〉 s.t. λ′i ≥ λi and ∀j 6= i, λ′j = λj, it holds that

ChN (L′) ≤ ChN (L).

We provide the proof of Proposition 2.1 in the ordinal setting.
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Proof. [Proof of Proposition 2.1]

We suppose without loss of generality that the uj are ranked by increasing order, i.e.

that j < l iff uj < ul.

Let n be the index of the greater uk such that λk > 0. Hence there is a λj , j ≤ k such

that λj = 1 and thus 1−max(λ1, . . . , λj) = 0 for any j > k.

Since ui ≤ maxuj∈L,λj>0uj , i ≤ k, L and L′ are written as follows:

L = 〈λ1/u1, . . . , λi−1/ui−1, λi/ui, λi+1/ui+1, . . . , λn/un〉
L′ = 〈λ1/u1, . . . , λi−1/ui−1, λ′i/ui, λi+1/ui+1, . . . , λn/un〉

ChN (L) can be decomposed in 3 terms V1, V2, V3, i.e. ChN (L) = V1 + V2 + V3 where:

V1 = u1 + (u2 − u1)(1− λ1) + · · ·+ (ui − ui−1)(1−max(λ1, . . . , λi−1))

V2 = (ui+1 − ui)(1 − max(λ1, . . . , λi)) + (ui+2 − ui+1)(1 − max(λ1, . . . , λi, λi+1)) + · · · + (uk −
uk−1)(1−max(λ1, . . . , λi, λi+1, . . . , λk−1))

V3 = (uk+1 − uk)(1−max(λ1, . . . , λk)) + · · ·+ (un − un−1)(1−max(λ1, . . . , λn))

Since (1−max(λ1, . . . , λj) = 0 for any j > k, V3 = 0: ChN (L) = V1 + V2.

ChN (L′) can also be decomposed into 3 terms V ′1 , V
′
2 , V

′
3 , i.e.

ChN (L′) = V ′1 + V ′2 + V ′3 where:

V ′1 = u1 + (u2 − u1)(1− λ1) + · · ·+ (ui − ui−1)(1−max(λ1, . . . , λi−1)) = V1

V ′2 = (ui+1 − ui)(1 − max(λ1, . . . , λi−1, λ
′
i)) + (ui+2 − ui+1)(1 − max(λ1, . . . , λi−1, λ

′
i, λi+1)) +

· · ·+ (uk − uk−1)(1−max(λ1, . . . , λi−1, λ
′
i, λi+1, . . . , λk−1))

V ′3 = (uk+1 − uk)(1−max(λ1, . . . , λk)) + · · ·+ (un − un−1)(1−max(λ1, . . . , λn)) = V3 = 0

As a consequence, it holds that: ChN (L)− ChN (L′) = V2 − V ′2 .

Since λ′i ≥ λi, 1−max(λ1, . . . , λi−1, λ
′
i, . . . , λj) is lower than

1−max(λ1, . . . , λi−1, λi, . . . , λj), for any j.

Thus V2 ≥ V ′2 and ChN (L) ≥ ChN (L′).

Example 2.11 Let L = 〈1/10, 0.2/20, 0.5/30〉 and

L′ = 〈0.2/5, 1/10, 0.4/20, 0.1/35〉 be two possibilistic lotteries such that

maxui∈L = 30, L(10) = L′(10) = 1 and L(20) = 0.2 < L′(20) = 0.4. We have ChN (L) = 10

and ChN (L′) = 9.

This emphasizes the pessimistic character of ChN : adding to a lottery any consequence

that is not better that its best one decreases its evaluation.

Note that Proposition 2.1 is invalid for possibility-based Choquet integrals as it is shown

in the following counter example:
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Counter Example 2.1 Let U = {10, 20, 30}, L = 〈1/10, 0.5/20, 0.2/30〉 and

L′ = 〈1/10, 0.8/20, 0.2/30〉. Using Equation (2.27), we have ChΠ(L) = 10+(20−10)∗0.5+

(30−20)∗0.2 = 17 and ChΠ(L′) = 10+(20−10)∗0.8+(30−20)∗0.2 = 20 so even necessary

conditions in the proposition 2.1 are verified in L and L′ we have ChΠ(L′) > ChΠ(L).

As a consequence of the Proposition 2.1, we get the following result:

Proposition 2.2 Let L1, L2 be two lotteries such that

max
ui∈L2,λi>0

ui ≤ max
ui∈L1,λi>0

ui. It holds that:

ChN (Reduction(〈1/L1, 1/L2〉)) ≤ ChN (L1).

Proof. [Proof of Proposition 2.2]

We provide the proof of Proposition 2.2 in the ordinal setting.

Let L1, L2 be two lotteries such that maxui∈L2,λi>0ui ≤ maxui∈L1,λi>0ui.

Let L = Reduction(〈1/L1, 1/L2〉). From the definition of the reduction (Equation

4.2), it hold that λi = max(min(1, λj1),min(1, λj2)) = max(λj1, λ
j
2),∀i.

Since maxuj∈L2,λ2
j>0uj ≤ maxuj∈L1,λ1

j>0uj , we can get L from L1 by increasing

each λ1
j to the value max(λ1

j , λ
2
j ), for any j such that λ1

j < λ2
j . According to proposition

2.1, this is done without increasing the value of the Choquet integral of L, hence

ChN (L) ≤ ChN (L1).

Formally, L0 = L1, then for j = 1 . . . n,

Lj = 〈λj1/u1, . . . , λ
j
n/un〉 such that for any k 6= j, λjk = λj−1

k and λjj = max(λj−1
j , λj−1

2 ).

By construction, Ln = L. Thanks to Proposition 2.1, ChN (Lj) ≤ ChN (Lj−1), j = 1, n.

Then ChN (L) ≤ ChN (L1).

Example 2.12 Let L1 = 〈0.2/5, 1/10, 0.4/20, 0.1/35〉 and

L2 = 〈1/10, 0.2/20, 0.5/30〉 be two possibilistic lotteries.

We can check that max
ui∈L2,λi>0

ui = 30 ≤ max
ui∈L1,λi>0

ui = 35.

We have Reduction(〈1/L1, 1/L2〉) = 〈0.2/5, 1/10, 0.4/20, 0.5/30, 0.1/35〉
⇒ ChN (〈0.2/5, 1/10, 0.4/20, 0.5/30, 0.1/35〉) = 9 = ChN (L1) .

No such property holds for ChΠ, as shown by the following counter example:
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Counter Example 2.2 Let L1 = 〈0.2/0, 1/2, 0.5/9〉 and L2 = 〈0.4/4, 1/7〉 be two possi-

bilistic lotteries, we can check that max
ui∈L2,λi>0

ui = 7 ≤ max
ui∈L1,λi>0

ui = 9.

We have Reduction(〈1/L1, 1/L2〉) = 〈0.2/0, 1/2, 0.4/4, 1/7, 0.5/9〉
⇒ ChΠ(〈0.2/0, 1/2, 0.4/4, 1/7, 0.5/9〉) = 8. Moreover, ChΠ(L1) = 5.5 which contradicts the

Proposition 2.2.

It is simple to verify that the Proposition 2.1 and 2.2 are valid for ordinal and numerical

settings of possibility theory. This validity is due to the fact that ∀λi, (λi ∗ 1) = λi and

min(1, λi) = λi.

2.8 Software for possibilistic decision making

In this section, we propose a software implementing possibilistic decision criteria studied

in this chapter. This software, implemented with Matlab 7.10, allows the construction of

possibilistic lotteries and their reduction (in the case of qualitative and numerical possibilitic

setting). Using this software, possibilistic lotteries can be compared w.r.t any possibilistic

decision criteria i.e. Upes, Uopt, PU , LN , LΠ, OMEU , ChN and ChΠ.

Figure 2.1 is relative to the main menu allowing the construction of possibilistic lotteries

and the qualitative and numerical reduction of a possibilistic compound lottery.

Figure 2.1: Possibilistic lottery

For instance, Figure 2.2 is relative to the qualitative reduction of a compound lottery.

The reduced lottery is displayed in a table with two columns: the first one for utilities

and the second one for possibilities as shown in Figure 2.3.

Once a possibilistic lottery is constructed, its value is computed according to any pos-

sibilistic decision criterion as it is shown in Figure 2.4. Then, any two possibilistic lotteries
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Figure 2.2: Reduction of compound lottery

Figure 2.3: The reduced lottery

can be compared w.r.t any decision criterion studied in this chapter. For instance, Figure

2.5 presents the result of comparison of two possibilistic lotteries w.r.t possibility-based

Choquet integrals.
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Figure 2.4: Possibilistic decision criteria

Figure 2.5: Comparison of two lotteries

2.9 Conclusion

In this chapter, we have presented a survey on possibilistic decision theory which overcomes

some weakness lied to the use of probability theory to model uncertainty in classical decision

theories. We especially focus on main possibilistic decision criteria with their axiomatization

in the style of VNM and Savage. We also detailed some properties of possibilistic Choquet

integrals.
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3.1 Introduction

In the first part of this thesis, we have been interested by one-stage decision making. In

multi-stage decision making (also called sequential decision making), several actions (de-

cisions) should be executed successively. The consequence of an action executed at step t

will be the state of nature in step t + 1. A strategy (a policy) is a function that assigns a

decision to each state.

Several graphical models can be used for sequential decision making, such as decision

trees [65], influence diagrams [43], valuation based systems [73], etc. These tools offer

a direct or a compact representation of sequential decision problems and they represent

intuitive and simple tools to deal with decision problems of greater size.

Given a sequential decision problem, the question is how to find a strategy that is

optimal w.r.t a decision criterion. Depending on the graphical models, different algorithms

have been proposed:

• Dynamic programming was initially introduced by Richard Bellman in 1940. The

main contribution of Bellman is that he sets the optimization problem in a recursive

form [2]. The method proposed by Bellman is the backward induction method that

consists in handling the problem from the end (in time), so the last decisions are first

considered then the process follows backwards in time until the first decision step.

• Resolute choice was introduced by McClennen in 1990. The resolute choice behavior

must be adopted by decision makers using non expected utility criteria [54]. According

to McClennen [54]: ”The theory of resolute choice is predicated on the notion that the

single agent who is faced with making decisions over time can achieve a cooperative

arrangement between his present self and his relevant future selves that satisfies the

principle of intra personal optimality.”

This chapter is organized as follows: in Section 3.2, probabilistic decision trees which

are the oldest decision graphical models will be developed. Then, influence diagrams will

be presented in Section 3.3. Both of these decision formalisms will be presented with their

evaluation algorithms.
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3.2 Decision trees

Decision trees proposed by Raiffa in 1968 [65] are the pioneer of graphical decision models.

They allow a direct modeling of sequential decision problems by representing in a simple

graphical way all possible scenarios.

Decision trees were used in several real world applications, we can for illustration men-

tion:

• Health: in the department of physical medicine and rehabilitation of Wayne state

university school of medicine (USA), decision trees have been used to identify potential

mental health problems and to guide decision making for referrals [52].

• Environment: Gerber products, the well known baby products company, have used

decision trees to decide whether to continue using one kind of plastic or not according

to the opinion of several organizations such as the environmental group, the consumer

products safety commission [12].

• Energy: Energy star which is a joint program of the U.S. environmental protection

agency and the U.S. department of energy. Decision trees have been used to improve

the quality, the reliability and speed decisions in the domain of energy.

3.2.1 Definition of decision trees

A decision tree is composed of a graphical component and a numerical one as detailed below.

> Graphical component

A decision tree is a tree T = (N , E) which has a numerical part. The set of nodes N
contains three kinds of nodes:

• D = {D0, . . . , Dm} is the set of decision nodes (represented by rectangles). The

labeling of the nodes is supposed to be in accordance with the temporal order i.e. if

Di is a descendant of Dj , then i > j. Generally, the root node of the tree is a decision

node, denoted by D0.
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• LN = {LN1, . . . , LNk} is the set of leaves, also called utility leaves: ∀LNi ∈ LN ,

u(LNi) is the utility of being eventually in node LNi. For the sake of simplicity we

assume that only leave nodes lead to utilities.

• C = {C1, . . . , Cn} is the set of chance nodes represented by circles.

For any Ni ∈ N , Succ(Ni) ⊆ N denotes the set of its children. Moreover, for any

Di ∈ D, Succ(Di) ⊆ C: Succ(Di) is the set of actions that can be decided when Di is

observed. For any Ci ∈ C, Succ(Ci) ⊆ LN ∪ D: Succ(Ci) is indeed the set of outcomes of

the action Ci - either a leaf node is observed, or a decision node is observed (and then a

new action should be executed).

The size |T | of a decision tree is its number of edges which is equal to the number of its

nodes minus 1.

> Numerical component

The numerical component of decision trees valuates the edges outgoing from chance nodes

and assigns utilities to leaves nodes.

In classical probabilistic decision trees the uncertainty pertaining to the possible out-

comes of each Ci ∈ C is represented by a conditional probability distribution pi on Succ(Ci),

such that ∀Ni ∈ Succ(Ci), pi(Ni) = P (Ni|path(Ci)) where path(Ci) denotes all the value

assignments to chance and decision nodes on the path from the root node to Ci. To each

chance node Ci ∈ C we can associate a probabilistic lottery LCi relative to its outcomes.

Example 3.1 The decision tree of Figure 3.1 is defined by D = {D0, D1, D2},
C = {C1, C2, C3, C4, C5, C6} and LN = U = {0, 1, 2, 3, 4, 5}. Corresponding lotteries to

chance nodes are LC1 = 〈0.6/LD1 , 0.4/LD2〉, LC2 = 〈0.3/1, 0.7/2〉, LC3 = 〈1/1, 0/5〉,
LC4 = 〈0.2/0, 0.8/4〉, LC5 = 〈0.4/1, 0.6/4〉 and LC6 = 〈0.5/2, 0.5/5〉.

3.2.2 Evaluation of decision trees

A decision tree is considered as a finite set of strategies. Formally, we define a strategy as

a function δ from D to C ∪ {⊥}. δ(Di) is the action to be executed when a decision node

Di is observed. δ(Di) = ⊥ means that no action has been selected for Di (because either

Di cannot be reached or the strategy is partially defined). Admissible strategies must be:
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Figure 3.1: Example of a probabilistic decision tree

- sound : ∀Di ∈ D, δ(Di) ∈ Succ(Di) ∪ {⊥}.
- complete: (i) δ(D0) 6= ⊥ and (ii) ∀Di s.t. δ(Di) 6= ⊥,∀N ∈ Succ(δ(Di)), either δ(N) 6= ⊥
or N ∈ LN .

Let ∆ be the set of sound and complete strategies that can be built from the decision

tree, then any strategy δ in ∆ can be view as a connected subtree of the decision tree whose

arcs are of the form (Di, δ(Di)).

Evaluating a decision tree consists in finding the optimal strategy δ∗ within ∆ w.r.t a

decision criterion O. Formally, ∀δi ∈ ∆ we have δ∗ �O δi (i.e. δ∗ is preffered to any strategy

δi ∈ ∆ w.r.t a decision criterion O). In probabilistic decision trees, the decision criterion O

corresponds to the expected utility EU (see Chapter 1).

The size |δ| of a strategy δ is the sum of its number of nodes and edges, it is obviously

lower than the size of the decision tree.

Strategies can be evaluated and compared thanks to the notion of lottery reduction.

Recall indeed that leaf nodes in LN are labeled with utility degrees. Then a chance node

can be seen as a simple probabilistic lottery (for the most right chance nodes) or as a

compound lottery (for the inner chance nodes). Each strategy δi is a compound lottery Li
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and can be reduced to an equivalent simple one. Formally, the composition of lotteries will

be applied from the leafs of the strategy to its root, according to the following recursive

definition for any node Ni ∈ N :

L(Ni, δ) =


L(δ(Ni), δ) if Ni ∈ D
Reduction(< pri(Xj)/L(Xj , δ)Xj∈Succ(Ni) >) if Ni ∈ C
< 1/u(Ni) > if Ni ∈ LN

(3.1)

Equation (3.1) is simply the adaptation of lottery reduction to strategies, we can then

compute Reduction(δ) = L(D0, δ): Reduction(δ)(ui) that is simply the probability of get-

ting utility ui when δ is applied from D0.

Example 3.2 Let us evaluate the decision tree in Figure 3.1 using the expected utility

criterion EU . As shown in Table 3.1, we can distinguish 5 possible strategies

(∆ = {δ1, δ2, δ3, δ4, δ5}) where each strategy δi is characterized by a lottery Li:

δi Li EU(Li)

δ1 = {(D0, C1), (D1, C3), (D2, C5)} 〈0.76/1, 0.24/4, 0/5〉 1.72

δ2 = {(D0, C1), (D1, C3), (D2, C6)} 〈0.6/1, 0.2/2, 0.2/5〉 2

δ3 = {(D0, C1), (D1, C4), (D2, C5)} 〈0.12/0, 0.16/1, 0.72/4〉 3.04

δ4 = {(D0, C1), (D1, C4), (D2, C6)} 〈0.12/0, 0.2/2, 0.48/4, 0.2/5〉 3.32

δ5 = {(D0, C2)} 〈0.3/1, 0.7/2〉 1.7

Table 3.1: Exhaustive enumeration of possible strategies in Figure 3.1

From Table 3.1, we can see that the optimal strategy in this decision tree is δ∗ = δ4 with

EU(δ∗) = 3.32 corresponding to bold lines in Figure 3.2.

The number of potential strategies in a probabilistic decision tree is in O(2
√
n) as we will

prove in the next chapter (Proof of Proposition 5). Given the large number of strategies in

the decision tree, an exhaustive enumeration of all possible strategies to find the best one

is intractable. As an alternative method, Bellman proposed a recursive method of dynamic

programming called backward search method or backward induction method [2].

It is important to note that dynamic programming can be applied only when the crucial

property of monotonicity or weak monotonicity is satisfied by the decision criterion which

is the EU criterion. This property states that if a probabilistic lottery L is preferred to
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Figure 3.2: The optimal strategy δ∗ = {(D0, C1), (D1, C4), (D2, C6)}

the lottery L′ w.r.t a decision criterion O then the compound lottery 〈α/L, (1− α)/L”〉 is

preferred to 〈α/L′, (1 − α)/L”〉 w.r.t O (α ∈ [0, 1] and L” is a probabilistic lottery). This

property will be deeply studied in the next chapter.

The principle of backwards reasoning procedure (called ProgDyn) is depicted in a recur-

sive manner by Algorithm 3.1. When each chance node is reached, an optimal sub-strategy

is build for each of its children - these sub-strategies are combined w.r.t. their probability

degrees, and the resulting compound lottery (corresponding to the compound strategy) is

reduced: we get an equivalent simple lottery, representing the current optimal sub-strategy.

When a decision node X is reached, a decision Y ∗ leading to a sub-strategy optimal w.r.t

EU is selected among all the possible decisions Y ∈ Succ(X), by comparing the simple

lotteries equivalent to each sub strategy.

Note that L[ui] is the probability degree to have the utility ui in the lottery L and

Succ(N).first is the first node in the set of successors Succ(N).

Clearly, Algorithm 3.1 crosses each edge in the tree only once. When the comparison of

simple lotteries (Line (2)) and the reduction operation on a 2-level lottery (Line (1)) can

be performed in polytime, its complexity is polynomial w.r.t the size of the tree.
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Algorithm 3.1: ProgDyn

Data: In: a node X, In/Out: a strategy δ

Result: A lottery L

begin

for i ∈ {1, . . . , n} do L[ui]← 0

if N ∈ LN then L[u(N)]← 1

if N ∈ C then

% Reduce the compound lottery

foreach Y ∈ Succ(N) do

LY ← ProgDyn(Y, δ)

for i ∈ {1, . . . , n} do

L[ui]← max(L[ui], (λN (Y ) ∗ LY [ui])) (Line (1))

if N ∈ D then

% Choose the best decision

Y ∗ ← Succ(N).first

foreach Y ∈ Succ(N) do

LY ← ProgDyn(Y, δ)

if EU(LY ) > EU(LY ∗) then Y ∗ ← Y (Line (2))

δ(N)← Y ∗

L← LY ∗

return L

end

Example 3.3 Let us reconsider the decision tree in the example 3.1. Principal steps for

the evaluation of this decision tree using the dynamic programming function (Algorithm 3.1)

are detailed in what follows:

• Initially, we have δ = ∅ and N = D0 with succ(D0) = {C1, C2}.

• For Y = C1, LC1 = ProgDyn(C1, δ) since succ(C1) = {D1, D2} we have Y = D1 and

Y = D2.

– For Y = D1, we have LD1 = ProgDyn(D1, δ) and succ(D1) = {C3, C4}:

1. If Y = C3 then LC3 = 〈0/0, 1/1, 0/2, 0/3, 0/4, 0/5〉 and

EU(LC3) = 1.

2. If Y = C4 then LC4 = 〈0.2/0, 1/1, 0/2, 0/3, 0.8/4, 0/5〉 and

EU(LC4) = 3.2. Since EU(LC4) > EU(LC3), so Y ∗ = C4, δ(D1) = C4 and

LD1 = 〈0.2/0, 1/1, 0/2, 0/3, 0.8/4, 0/5〉.
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– For Y = D2, we have LD2 = ProgDyn(D2, δ) and succ(D2) = {C5, C6}:

1. If Y = C5 then LC5 = 〈0/0, 0.4/1, 0/2, 0/3, 0.6/4, 0/5〉 and

EU(LC5) = 2.8.

2. If Y = C6 then LC6 = 〈0/0, 0/1, 0.5/2, 0/3, 0/4, 0.5/5〉 and

EU(LC6) = 3.5. Since EU(LC6) > EU(LC5), so Y ∗ = C6, δ(D2) = C6 and

LD2 = 〈0/0, 1/1, 0.5/2, 0/3, 0/4, 0.5/5〉.

⇒ LC1 = 〈0.6/LD1 , 0.4/LD2〉 = 〈0.12/0, 0/1, 0.2/2, 0/3, 0.48/4, 0.2/5〉 and EU(LC1) =

3.32.

• For Y = C2, LC2 = ProgDyn(C2, δ) we have:

LC2 = 〈0/0, 0.3/1, 0.7/2, 0/3, 0/4, 0/5〉 and EU(LC2) = 1.7.

⇒ EU(LC1) > EU(LC2), so Y ∗ = C1, δ(D0) = C1 and

δ∗ = {(D0, C1), (D1, C4), (D2, C6)} with EU(δ∗) = 3.32 (see this optimal strategy in Figure

3.3).

Obviously, the value of EU(δ∗) obtained by dynamic programming is equal to the one ob-

tained by exhaustive enumeration in example 3.2.
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Figure 3.3: The optimal strategy δ∗ = {(D0, C1), (D1, C4), (D2, C6)} using dynamic pro-

graming
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3.3 Influence diagrams

Despite its popularity, decision trees have some limits since they are not appropriate in the

case of huge decision problems.

Influence diagrams (IDs) were proposed by Howard and Matheson in 1981 [43] as an

alternative to decision trees since they represent a compact graphical model to represent

decision maker’s belief and preferences about a sequence of decisions to be made under

probabilistic uncertainty without a real restriction on its forms.

Influence diagrams are used in several real applications in an efficient manner:

• Automated extraction: in [55], a new methodology for automated extraction of the

optimal pathways from IDs has been developed in order to help specialists to relate

all available pieces of evidence and consequences of choices.

• Medical diagnosis sector: A new technique for improving medical diagnosis for cancer

patients has been proposed in [3, 40].

• Financial sector: IDs were applied in the investment domain in order to allows to the

investors to construct optimal investment portfolios [82].

• Web semantic: [56] developed a personalized retrieval model based on influence dia-

grams that aims to integrate the user profile in the retrieval process. [83] suggested

a framework for assessing interoperability on the systems communicating over the

semantic web using influence diagrams.

3.3.1 Definition of influence diagrams

As decision trees, influence diagrams are composed of a graphical component and a numer-

ical one.

> Graphical component

The graphical component (or qualitative component) is a directed acyclic graph (DAG)

denoted by G = (N,A) where A is a set of arcs in the graph and N is a set of nodes

partitioned into three subsets C, D and V such that:
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• D = {D1, . . . , Dm} is a set of decision nodes which depict decision and have a temporal

order, namely the first decision to make must precede all other decision nodes and

the last decision should not be followed by any other decision. Decision nodes are

represented by rectangles.

• C = {C1, . . . , Cn} is a set of chance nodes which represent relevant uncertain factors

for decision problem. Chance nodes are represented by circles. The set of chance

nodes C is partitioned into three subsets [47]:

1. SC0 is the set of chance nodes observed prior to any decision.

2. SCi is the set of chance nodes observed after Di that is taken and before that

the decision Di+1 is taken.

3. SCm is the set of chance nodes never observed or observed too late to have an

impact on any decision (i.e. observed after the decision Dm). We have:

SC0 ≺ D1 ≺ SC1 ≺ · · · ≺ SCm−1 ≺ Dm ≺ SCm

• V = {V1, . . . , Vk} is a set of value nodes which represent utilities to be maximized,

they are represented by lozenges.

In what follows, we use the same notation for nodes of the influence diagram and variables

of the decision problem represented by this influence diagram e.g. the variable represented

by the node Ci is also denoted by Ci. Moreover, cij (resp. dij , vij) denotes the jth value of

the variable Ci (resp. Di, Vi).

The set of arcs A contains two kinds of arcs (see Figure 3.4).

• conditional arcs have as target chance or value nodes (first, second and fourth type of

arc in Figure 3.4). Only conditional arcs that have as target chance nodes represent

probabilistic dependencies.

• informational arcs have as target decision nodes and they imply time precedence

(third and fifth type of arc in Figure 3.4).
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The previous chance node affects the probability 

of the subsequent chance  

The decision affects the probability of the 

subsequent chance  

The decision is made knowing the probability of 

the chance occurrence 

The occurrence of the outcome is contingent on 

the chance probability 

The previous decision is made before  the 

subsequent one  

Figure 3.4: Types of arcs in an influence diagram

Example 3.4 Let us state a simple decision problem of Medical Diagnosis [74]: A physician

is trying to decide on a policy for treating patients suspected of suffering from a disease D.

D causes a pathological state P that in turn causes a symptom S to be exhibited. The

physician first observes whether or not a patient is exhibiting symptom S. Based on this

observation, he either treats the patient (for D and P ) or not. Physician’s utility function

depends on his decision to treat (Tr) or not, the presence or absence of the disease D and of

the pathological state P . Figure 3.5 presents an influence diagram for the medical diagnosis

problem, it contains three chance nodes (S, P and D), one decision node (Tr) and one

value node (V ). Only the arc that has as target the decision node Tr is an informational

arc.

The graphical component of an ID encodes different conditional independences between

chance nodes [47]. More precisely, a chance node Ci depends only on chance nodes belonging

to their parents (the set of parent of Ci is denoted by Pa(Ci)).

> Numerical component

The numerical component (or quantitative component) of IDs evaluates the different links

in the graph. Namely, each conditional arc which has as target a chance node Ci is quan-

tified by a conditional probability distribution of Ci in the context of its parents (denoted
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S P D 

Tr 

V 

Figure 3.5: The graphical component of the influence diagram for the medical diagnosis

problem

by Pa(Ci)). Such conditional probabilities should respect the following normalization con-

straints:

• If Pa(Ci) = ∅ (Ci is a root) then the a priori probability relative to Ci should satisfy:∑
cij∈ΩCi

P (cij) = 1 (3.2)

where: ΩCi is the domain of Ci.

• If Pa(Ci) 6= ∅, then the relative conditional probability relative to Ci in the context

of any instance pa(Ci) of its parents Pa(Ci) should satisfy:∑
cij∈ΩCi

P (cij | pa(Ci)) = 1. (3.3)

Chance nodes represent uncertain variables characterizing decision problem. Each deci-

sion’s alternative may have several consequences according to random variables. The set of

consequences is characterized by a utility function. In IDs, consequences are represented by

different combinations of value node’s parents. So, each value node Vi ∈ V is characterized

by a utility function in the context of its parents that assigns a numerical utility to each

instantiation pa(Vi) of its parents Pa(Vi).

Jensen [46, 49] gives the following proposition characterizing the d-separation criterion

for influence diagrams.
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Proposition 3.1 Let Cl ∈ SCi and Dj be a decision variable s.t i < j. Then

(i) Cl and Dj are d-separated i.e:

P (Cl | Dj) = P (Cl). (3.4)

(ii) Let W be any set of variables prior to Dj in the temporal ordering. Then, Cl and Dj

are d-separated given W i.e:

P (Cl | Dj ,W ) = P (Cl |W ). (3.5)

Note that the d-separation property for influence diagrams is slightly different from the one

defined for Bayesian network [46, 49] since, utility nodes and links into decision nodes are

ignored.

Example 3.5 Let us present the numerical component of the influence diagram introduced

in example 3.4. Table 3.2 represents a priori and conditional probabilities for chance nodes

S, P and D. Table 3.3 represents the set of utilities for the value node V , in the context of

its parents (Tr, P and D).

D P (D) P D P (P | D) S P P (S | P )

d 0.1 p d 0.8 s p 0.7

d̃ 0.9 p d̃ 0.15 s p̃ 0.2

p̃ d 0.2 s̃ p 0.3

p̃ d̃ 0.85 s̃ p̃ 0.8

Table 3.2: A priori and conditional probabilities

Physician’s States

Utilities pathological state (p) no pathological state (p̃)

disease (d) no disease (d̃) disease (d) no disease (d̃)

Treat (tr) 10 6 8 4

Not treat (t̃r) 0 2 1 10

Table 3.3: Physician’s utilities
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As mentioned above, decision nodes act differently from chance nodes, thus it is mean-

ingless to specify prior probability distribution on them. Moreover, it has no meaning to

attach a probability distribution to children nodes of a decision node Di unless a decision

dij has been taken.

Therefore what is meaningful is P (cij | do(dij)), where do(dij) is the particular opera-

tor defined by Pearl [63], and not P (cij , dij). When iterating this reasoning we can bunch

the whole decision nodes together and express the joint probability distribution of different

chance nodes conditioned by decision nodes. This means that if we fix a particular configu-

ration of decision nodes, say d, we get a Bayesian network representing P (C | do(d)) i.e the

joint probability relative to C, in the context of decision’s configuration d. In other words,

the joint distribution relative to C remains the same when varying d. Thus, using the chain

rule relative to Bayesian network [46, 49], we can infer the following chain rule relative to

influence diagrams [47]:

P (C | D) = ΠCi∈CP (Ci | Pa(Ci)). (3.6)

Example 3.6 Let us present the chain rule of the influence diagram in Figure 3.5 using

the equation 3.6.

P D S P (D) P (P | D) P (S | P ) P (P,D, S | Tr)
p d s 0.1 0.8 0.7 0.056

p d s̃ 0.1 0.8 0.3 0.024

p d̃ s 0.9 0.15 0.7 0.0945

p d̃ s̃ 0.9 0.15 0.3 0.0405

p̃ d s 0.1 0.2 0.2 0.004

p̃ d s̃ 0.1 0.2 0.8 0.016

p̃ d̃ s 0.9 0.85 0.2 0.153

p̃ d̃ s̃ 0.9 0.85 0.8 0.612

Table 3.4: The chain rule of the influence diagram in Figure 3.5

3.3.2 Evaluation of influence diagrams

Given an influence diagram, the identification of its optimal policy can be ensured via

evaluation algorithms which allow to generate the best strategy yielding to the highest

expected utility. In 1990, Cooper has shown that the problem of evaluation of ID is NP-

hard [15]. Within influence diagrams evaluation algorithms, we can distinguish:
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• Direct methods [70, 81] operate directly on influence diagrams. These methods are

based on two main operations i.e. arc reversal using Bayes theorem and node removal

through some value preserving reduction.

• Indirect methods transform influence diagrams into a secondary structure used to

ensure computations. We can in particular mention the transformation into Bayesian

networks [14] and into decision trees [71] that we will detail in what follows:

Evaluation of influence diagrams using Bayesian networks

This method, proposed by Cooper [14], is based on transforming influence diagrams into

Bayesian networks [46] as secondary structure following these three steps:

1. Transform each decision node into a chance node characterized by an equi-probability,

as follows:

P (Di | Pa(Di)) =
1

| dom(Di) |
(3.7)

where dom(Di) is the set of possible instance of Di.

2. Transform the value node V into a binary chance node with two values False (F) and

True (T).

3. Convert the utility function associated to V into a probability function as follows,

∀pa(V ) ∈ Pa(V ):

P (v = T | pa(V )) =
U(pa(V )) +K2

k1
(3.8)

where

K1 = Umax − Umin (3.9)

and

K2 = −Umin. (3.10)

Umax and Umin are the maximal utility and the minimal utility levels, respectively.

Obviously, P (v = F | pa(V )) = 1− P (v = T | pa(V )).

Once the BN is constructed, optimal strategy will be found through inference in BNs.

In general, inference in Bayesian networks is an NP-hard problem. Several propagation

algorithms have been proposed, the fundamental one was developed by Pearl for singly

connected networks [60, 61]. Jensen was developed the propagation algorithm for multiply

connected networks known as junction tree propagation algorithm [46, 47].
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Let us start with solving a single decision problem i.e. the influence diagram contains

one decision node Dm. Let E be the set of evidences, it contains the set of chance nodes in

Bayesian network with known values. Solving this decision problem amounts to determine

the instantiation of Dm that maximizes the expected utility computed as follows:

MEU(Dm, E) = max
Dm

 ∑
Pa′(V )

u(Pa(V ))P (Pa′(V )|Dm, E)

 . (3.11)

Where Pa′(V ) is the set of chance nodes in the set of parents of the node V (Pa(V )).

Using the equation 3.8, we obtain by replacing u(Pa(V )):

MEU(Dm, E) = maxDm

[∑
Pa′(V )(K1P (V = T | Pa(V )−K2)P (Pa′(V ) | Dm, E)

]
. We have:

MEU(Dm, E) = K1 ∗maxDm [P (V = T | Dm, E)]−K2. (3.12)

So, the maximization of expected utility requires the calculation of P (V = T |Dm, E) for

a given instantiation of Dm. This conditional probability is computed using the appropriate

Bayesian network inference algorithm according to the structure of the BN.

In the case of multiple decision problem, i.e. the influence diagram contains several

decision nodes D1, . . . , Dm, for each decision node Di in D, uninstantiated chance nodes

are removed from Pa(Di) and Pa′(Di) because the selection of the optimal decision for Di

must be made in light of available information. The set of evidence E should be updated

in the light of the previous step including decisions D1, . . . , Di−1 that have been made.

Formally, the maximal expected utility of a set of decisions node D in light of evidence

E is computed using a recursive version of equation 3.12:

MEU(D,E) = K1 ∗ f(D,E)−K2. (3.13)

where:

f(D,E) = max
D.first

 ∑
Pa′(Dr.first)

f(Dr, e ∪ Pa(Dr.first)) ∗ P (Pa′(Dr.first) | D.first, E)

 (3.14)

where: D.first is the first decision to be made in D and Dr is the remaining decisions in

D when the first one is removed. We have Pa′(∅) = Pa(V ), f(∅, E) = P (V = T | Pa(V ))

and P (∅ | D.first, E) = 1.

Example 3.7 Let us continue with the Medical Diagnosis’s example.

After the transformation of the ID, the decision node Tr will become a chance node Tr, its



Chapter 3: Graphical Decision Models 67

a priori probability distribution is presented in Table 3.5.

The new chance node V is characterized by a conditional probability distribution detailed in

Table 3.6.

Figure 3.6 presents the obtained Bayesian network.

S P D 

V 

Tr 

Figure 3.6: The Bayesian network corresponding to the influence diagram in Figure 3.5

Tr P (Tr)

tr 1/2

t̃r 1/2

Table 3.5: A priori probability distribution for Tr

We have k1 = Umax − Umin = 10− 0 = 10 and k2 = 0.

For instance, if the evidence is that S = s, then MEU(Tr, S = s) = 10 ∗maxTr[P (v = T |
Tr, S = s)] = 7.988 meaning that the best decision is Tr = tr.
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D Tr P P (v = T | D,Tr, P ) P (v = F | D,Tr, P )

d tr p 1 0

d̃ tr p 0.6 0.4

d tr p̃ 0.8 0.2

d̃ tr p̃ 0.4 0.6

d t̃r p 0 1

d̃ t̃r p 0.2 0.8

d t̃r p̃ 0.1 0.9

d̃ t̃r p̃ 1 0

Table 3.6: Conditional probability distribution for V

Evaluation of influence diagram using decision trees

The transformation of an influence diagram into a decision tree requires a reordering of

chance nodes in the diagram based on the concept of decision window [71].

A decision window of a decision node Di is the set of chance nodes observed between

the decision node Di and Di+1 (is the set SCi as it is detailed in section 3.3.1).

The principal of the transformation of an influence diagram into a decision tree can be

summarized as follows [71]:

• Find each arc from a chance node in one decision window to a chance node in an

earlier decision window. These arcs are called reversible arcs.

• Reverse these reversible arcs.

• Develop the decision tree according to the reordering of chance and decision nodes.

A priori and conditional probabilities relative to chance nodes in the decision tree are

computed from those of the influence diagram. Similarly, utilities are the same as

those in the numerical component of the influence diagram.

Once the decision tree is constructed, the optimal strategy will be found through dynamic

programming (see Algorithm 3.1).

Example 3.8 Let us continue with the Medical Diagnosis’s example. The influence dia-

gram in Figure 3.5 is transformed into the decision tree presented in Figure 3.7. Table 3.9,

3.10 and 3.11 represent probability tables relative to chance nodes in this tree.
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Figure 3.7: The corresponding decision tree to the influence diagram in Figure 3.5

To compute these probabilities, we have used the probabilities P (P ∩D) represented in Table

3.7 and P (P ∩ S) represented in Table 3.8.

In fact, probabilities in Table 3.7 are used to compute P (P = p) = 0.08 + 0.135 = 0.215

and P (P = p̃) = 0.02 + 0.765 = 0.785. These probabilities are used to compute P (P ∩ S)

represented in Table 3.8.

We can conclude from Table 3.8 that P (S = s) = 0.1505 + 0.157 = 0.3075 and P (S =

s̃) = 0.0645 + 0.628 = 0.6925 as it is represented in Table 3.9.
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D P P (D ∩ P )

d p 0.08

d̃ p 0.135

d p̃ 0.02

d̃ p̃ 0.765

Table 3.7: Probabilities for P (D ∩ P )

P S P (P ∩ S)

p s 0.1505

p s̃ 0.0645

p̃ s 0.157

p̃ s̃ 0.628

Table 3.8: Probabilities for P (P ∩ S)

S P (S)

s 0.3075

s̃ 0.6925

Table 3.9: A priori probabilities for S

D P P (D|P )

d p 0.3721

d̃ p 0.6279

d p̃ 0.0255

d̃ p̃ 0.9745

Table 3.10: Conditional probabilities P (D|P )

If the patient exhibits the symptom S then the optimal strategy in the tree represented

in Figure 3.7 is to treat the patient as it is shown in Figure 3.8. The expected utility of

this strategy is 7.988 (((5.7593 ∗ 0.3075) + (8.9776 ∗ 0.6925)) which is equal to the maximal

expected utility found in example 3.7 where the influence diagram was evaluated using a

Bayesian network.
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P S P (P |S)

p s 0.4894

p s̃ 0.0931

p̃ s 0.5106

p̃ s̃ 0.9069

Table 3.11: Conditional probabilities P (P |S)
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Figure 3.8: Optimal strategy if the patient exhibits the symptom S
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3.4 Conclusion

In this chapter, we have developed two probabilistic decision models which are decision

trees and influence diagrams where the decision criterion is the expected utility (EU). These

models allow the representation of sequential decision problems.

As we have seen in Chapter 2, possibilistic decision theory presents an interesting alter-

native to the classical decision theory used as a framework in standard decision trees and

influence diagrams.

In the Chapter 4 and 5, we propose a deep study of possibilistic decision trees and in

Chapter 6 we will study the possibilistic counterpart of influence diagrams.
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4.1 Introduction

As we have seen in the previous chapter, graphical decision models provide intuitive repre-

sentations of decision problems under uncertainty. Most of these models were developed in

the probabilistic framework.

In this chapter, we develop possibilistic decision trees by studying the complexity of

decision making in possibilistic decision trees for each possibilistic decision criteria presented

in Chapter 2.

This chapter is organized as follows: in Section 4.2, possibilistic decision trees will

be developed. Section 4.3 will detail these graphical models with qualitative possibilistic

utilities. Decision trees with possibilistic likely dominance will be detailed in Section 4.4 and

those with order of magnitude expected utility in Section 4.5. Possibilistic decision trees

with Choquet integrals will be developed in Section 4.6 and polynomial cases of possibilistic

Choquet integrals will be presented in Section 4.7.

Principle results of this chapter are published in [9].

4.2 Possibilistic decision trees

Possibilistic decision trees have the same graphical component as probabilistic ones (see

Section 3.2 in Chapter 3) i.e. it is composed of a set of nodes N and a set of edges

E . Like probabilistic decision trees, the set of nodes N contains three kinds of nodes i.e.

N = D ∪ C ∪ LN where D is the set of decision nodes, C is the set of chance nodes and

LN is the set of leaves. This is not the case of the numerical component which relies in the

possibilistic framework:

• Arcs issuing from chance nodes are quantified by possibility degrees in the context of

their parents. Formally, for any Ci ∈ C, the uncertainty pertaining to the more or less

possible outcomes of each Ci is represented by a conditional possibility distribution

πi on Succ(Ci), such that ∀N ∈ Succ(Ci), πi(N) = Π(N |path(Ci)). To each node

Ci ∈ C, a possibilistic lottery LCi is associated relative to its outcomes.

• Then, a utility is assigned to each leaf nodes which can be numerical (e.g. currency

gain) or ordinal (e.g. satisfaction) according to the decision criterion.
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Example 4.1 The decision tree of Figure 4.1 is defined by

D = {D0, D1, D2}, C = {C1, C2, C3, C4, C5, C6} and LN = U = {0, 1, 2, 3, 4, 5}. Corre-

sponding possibilistic lotteries to chance nodes are LC1 = 〈1/LD1 , 0.5/LD2〉, LC2 = 〈1/1, 0.7/2〉,
LC3 = 〈1/1, 0/5〉, LC4 = 〈0.2/0, 1/4〉, LC5 = 〈1/1, 0.3/4〉 and LC6 = 〈1/2, 0.5/5〉.
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Figure 4.1: Example of possibilistic decision tree

As we have seen in the previous chapter, solving decision trees amounts at building an

optimal strategy δ∗ in ∆ (the set of sound and complete strategies).

Like in probabilistic decision trees, strategies can be evaluated and compared thanks

to the notion of possibilistic lottery reduction: each chance node can be seen as a simple

lottery (for the most right chance nodes) or as a compound lottery (for the inner chance

nodes). Each strategy is thus a compound lottery and can be reduced to an equivalent

simple one. Formally, the composition of possibilistic lotteries will be applied from the leafs

of the strategy to its root, according to the following recursive definition for any Ni in N :

L(Ni, δ) =


L(δ(Ni), δ) if Ni ∈ D
Reduction(〈πi(Xj)/L(Xj , δ)Xj∈Succ(Ni)〉) if Ni ∈ C
< 1/u(Ni) > if Ni ∈ LN

(4.1)
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where Reduction(〈πi(Xj)/L(Xj , δ)Xj∈Succ(Ni)〉) is defined by the following equation as we

have seen in Chapter 2:

Reduction(〈λ1/L1, . . . , λm/Lm〉) = 〈 max
j=1..m

(λj ⊗ λj1)/u1, . . . , max
j=1..m

(λj ⊗ λjn)/un〉 (4.2)

⊗ is the product operator in the case of numerical possibility theory and the min operator

in the case of its qualitative counterpart.

Since, the operators max, ∗ and min used in the reduction operation are polytime,

Equation (4.2) defines a polytime computation of the reduced lottery.

Proposition 4.1 For any strategy δ in ∆, a simple possibilistic lottery reduction equivalent

to δ can be computed in polytime.

Proof. [Proof of Proposition 4.1]

Let δ ∈ ∆ = {(D0, δ(D0)), . . . , (Di, δ(Di)), . . . , (Dn, δ(Dl))} be a complete and sound

strategy.

We first compute the compound lottery corresponding to δ, merging each decision

node Di in δ with the chance node in δ(Di), say Cδi . We get a compound lottery

L = {Cδ0 , . . . , Cδi , . . . , Cδl } ; the merging is performed linearly in the number of decision

nodes in the strategy.

Then we can suppose without loss of generality that the nodes are numbered in

such a way that i < j implies that Cδi does not belong to the subtree rooted Cδj (we label

the nodes from the root to the leaves).

Then, for i = m to 1, we replace each compound lottery

Cδi = 〈pri(Xi1)/Xi1, . . . , pri(Xiki)/Xiki〉 by its reduction, where Succ(Cδi ) =

{Xi1, . . . , Xiki} is the set of successors of Cδi and ki = |Succ(Cδi )|. Because we pro-

ceed from the leaves to the root, the Xi1 are simple lotteries. Since the min and max

operation are linear, the reduction of this 2 level compound lottery is linear in the size

of the compound lottery. The size of the resulting compound lottery is bounded by the

sum of the size of the elementary lotteries before reduction, and thus linear. In any

case, it is bounded by the number of levels in the scale, which is itself bounded by the

number of edges and leaves in the tree (for the case where all the possibility degrees and

all the utility degrees are different). Hence a complexity of the reduction is bounded by

O(|E + LN |), where E is the number of edges and LN is the number of leave nodes in

the strategy.
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Thanks to the backward recursion, each node in the strategy is visited only once.

Thus a global complexity is bounded by O(l.(E + LN)), where l the number of chance

nodes in the strategy.

We are now in position to compare strategies, and thus to define the notion of optimality.

Let O be one of the possibilistic decision criteria defined in Chapter 2 (i.e. depending on

the application, ≥O is either ≥LΠ, or ≥LN , or the order induced by Upes, or by Uopt, etc.).

A strategy δ ∈ ∆, is said to be optimal w.r.t. ≥O iff:

∀δ′ ∈ ∆, Reduction(δ) ≥O Reduction(δ′). (4.3)

Notice that this definition does not require the full transitivity (nor the completeness)

of ≥O and is meaningful as soon as the strict part of ≥O or >O, is transitive. This means

that it is applicable to the preference relations that rely on the comparison of global utilities

(qualitative utilities, binary utility and Choquet integrals) but also to ≥LN and ≥LΠ. We

show in the following that the complexity of the problem of optimization depends on the

criterion at work.

Like probabilistic decision trees, the simplest solving method of possibilistic decision

trees consists on an exhaustive enumeration of all possible strategies in the decision tree

which will be compared w.r.t decision criterion. The following example illustrates this

process using ChN .

Example 4.2 Let us evaluate the decision tree in Figure 4.1 using necessity-based Choquet

integrals as a decision criterion in the context of qualitative possibility theory.

We can distinguish, in Table 4.1, 5 possible strategies (∆ = {δ1, δ2, δ3, δ4, δ5}) where Li is

the lottery of the strategy δi:

δi Li ChN (Li)

δ1 = {(D0, C1), (D1, C3), (D2, C5)} 〈1/1, 0.3/4, 0/5〉 1

δ2 = {(D0, C1), (D1, C3), (D2, C6)} 〈1/1, 0.5/2, 0.5/5〉 1

δ3 = {(D0, C1), (D1, C4), (D2, C5)} 〈0.2/0, 0.5/1, 1/4〉 2.3

δ4 = {(D0, C1), (D1, C4), (D2, C6)} 〈0.2/0, 0.5/2, 1/4, 0.5/5〉 2.6

δ5 = {(D0, C2)} 〈1/1, 0.7/2〉 1.7

Table 4.1: Exhaustive enumeration of possible strategies in Figure 6.2
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So, the optimal strategy in this decision tree is δ4 with ChN (δ4) = 2.6 as it is shown in

Figure 4.2.
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Figure 4.2: The optimal strategy δ∗ = {(D0, C1), (D1, C4), (D2, C6)}

Finding optimal strategies in possibilistic decision trees via an exhaustive enumeration

of ∆ is a highly computational task. For instance, in a possibilistic decision tree with n

decision nodes and a branching factor equal to 2, the number of potential strategies is in

O(2
√
n) (exactly like probabilistic decision trees since the two kinds of decision trees have

the same graphical component). Based on the work of [39], we can propose the following

result:

Proposition 4.2 In a possibilistic decision tree with n nodes and a branching factor equal

to 2, the number of potential strategies is in O(2
√
n).

Proof. [Proof of Proposition 4.2]

Suppose that we have a binary decision tree such that we have 4i decision nodes in depth

2i (1 decision node in depth 0,. . . , 16 decision nodes in depth 4). We will proceed by

backward induction to compute the number of strategies according to the depth in the
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decision tree.

For decision nodes which have no decision nodes in its successors we distinguish 2

strategies. Then we proceed by recurrence and the number of strategies starting by

a chance node is equal to the product of the numbers of strategies beginning from its

children. For decision nodes, the number of strategies is equal to the sum of the number

of strategies of its children.

The total number of strategies is equal to a sequence 2u2
k−1 when k is the number

of decision nodes in a path from a decision node to a utility node. The general term

of this sequence is equal to 2(2k+1−1). So, the number of strategies in the decision tree

pertains to O(2
√
n).

For standard probabilistic decision trees, where the goal is to maximize expected utility

(EU), an optimal strategy can be computed in polytime (with respect to the size of the

tree) via the dynamic programming which builds the best strategy backwards, optimizing

the decisions from the leaves of the tree to its root (see Algorithm 4.1).

Regarding possibilistic decision trees, Garcia and Sabbadin [33] have shown that such

a method can also be used to get a strategy maximizing Upes and Uopt. The reason is that

like EU, these possibilistic decision criteria satisfy the key property of weak monotonicity

stating that the combination of L (resp. L′) with L”, does not change the initial order

induced by O between L and L′ - this allows dynamic programming to decide in favor of L

or L′ before considering the compound decision.

Formally for any decision criterion O over possibilistic lotteries, ≥O is said to be weakly

monotonic iff whatever L, L′ and L”, whatever (α,β) such that max(α, β) = 1:

L �O L′ ⇒ 〈α/L, β/L”〉 �O 〈α/L′, β/L”〉. (4.4)

Given any preference order �O (satisfying the weak monotonicity property) among

possibilistic lotteries, the possibilistic counterpart of dynamic programming algorithm (Al-

gorithm 3.1) is depicted by Algorithm 4.1. When each chance node is reached, an optimal

sub-strategy is built for each of its children - these sub-strategies are combined w.r.t. their

possibility degrees, and the resulting compound strategy is reduced: we get an equivalent

simple lottery, representing the current optimal sub-strategy. When a decision node X is

reached, a decision Y ∗ leading to a sub-strategy optimal w.r.t �O is selected among all the

possible decisions Y ∈ Succ(X), by comparing the simple lotteries equivalent to each sub

strategies.
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This procedure crosses each edge in the tree only once. When the comparison of simple

lotteries by �O (Line (2)) and the reduction operation on a 2-level lottery (Line (1)) can

be performed in polytime, its complexity is polynomial w.r.t the size of the tree as stated

by the following Proposition:

Proposition 4.3 If �O satisfies the monotonicity property, then dynamic programing com-

putes a strategy optimal w.r.t O in polynomial time with respect to the size of the decision

tree.

Proof. [Proof of Proposition 4.3]

The principle of the Backward induction method at work in dynamic programming is to

eliminate sub-strategies that are not better than the optimal sub-strategies. The principle

of monotonicity writes:

L �O L′ ⇒ 〈α/L, β/L”〉 �O 〈α/L′, β/L”〉.
It guarantees that the elimination of sub-strategies that are not strictly better than their

concurrents is sound and complete for the decision trees of size 2. Notice that L �O L′

does not imply that L′ does not belong to an optimal strategy but it implies that if L′

belongs to an optimal strategy, so does L. When, a unique strategy among the optimal

one is searched for, the algorithm can forget about L′.

The sequel on the proof is direct, by recursion on the depth on the decision tree. Let us

denote 〈α/L, β/L”〉 by L1 and 〈α/L′, β/L”〉 by L2. Indeed, from L ≥O L′ ⇒ L1 �O L2,

we get that L ≥O L′ ⇒ 〈γL1, δL3〉 �O 〈γL2, δL3〉 and so on.
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Algorithm 4.1: Dynamic programming

Data: In: a node X, In/Out: a strategy δ

Result: A lottery L

begin

for i ∈ {1, . . . , n} do L[ui]← 0

if N ∈ LN then L[u(N)]← 1

if N ∈ C then

% Reduce the compound lottery

foreach Y ∈ Succ(N) do

LY ← ProgDyn(Y, δ)

for i ∈ {1, . . . , n} do

L[ui]← max(L[ui], (πN (Y )⊗ LY [ui])) (Line (1))

if N ∈ D then

% Choose the best decision

Y ∗ ← Succ(N).first

foreach Y ∈ Succ(N) do

LY ← ProgDyn(Y, δ)

if LY >O LY ∗ then Y ∗ ← Y (Line (2))

δ(N)← Y ∗

L← LY ∗

return L

end

In Line 1 of Algorithm 4.1, ⊗ is the min operator in the case of qualitative possibility

theory and the product operator in the case of numerical possibility theory. We will see in

the following that, beyond Upes and Uopt criteria, several other criteria satisfy the mono-

tonicity property and that their optimization can be managed in polytime by dynamic

programming. The possibilistic Choquet integrals, on the contrary, do not satisfy weak

monotonicity; we will show that they lead to NP-Complete decision problems.

Formally, for any of the possibilistic optimization criteria, the corresponding decision

problem can be defined as follows:

Definition 4.1 [DT-OPT-O](Strategy optimization w.r.t. an optimization criterion O

in possibilistic decision trees)

INSTANCE: A possibilistic Decision Tree T , a level α.

QUESTION: Does there exist a strategy δ ∈ ∆ such as Reduction(δ) ≥O α?

For instance DT-OPT-ChN (resp. DT-OPT-ChΠ, DT-OPT-Upes, DT-OPT-Uopt, DT-OPT-

PU , DT-OPT-LN , DT-OPT-LΠ and DT-OPT-OMEU) corresponds to the optimization
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of the possibilistic qualitative utility ChN (resp. ChΠ, Upes and Uopt, PU , LN , LΠ and

OMEU). Each one of these decision problems will be studied in what follows.

4.3 Qualitative possibilistic utilities (Upes, Uopt, PU)

Possibilistic qualitative utilities Upes and Uopt satisfy the weak monotonicity principle. Al-

though not referring to a classical, real-valued utility scale, but to a 2 dimensional scale,

this is also true in the case of PU .

Proposition 4.4 �PU , �Upes and �Uopt satisfy the weak monotonicity property.

This proposition is not explicitly proved in the literature although it is a common knowledge

in qualitative possibilistic decision theory (see [25, 37]).

Proof. [Proof of Proposition 4.4]

Weak monotonicity of PU

Consider any three lotteries L, L′ and L”. We can suppose without loss of generality that

they are in a reduced form, i.e.:

L = 〈u/>, u/⊥〉,
L′ = 〈v/>, v/⊥〉,
L” = 〈w/>, w/⊥〉.
Let L1 = Reduction(〈α/L, β/L”〉) and L2 = Reduction(〈α/L′, β/L”〉).
According to the reduction operation, we get:

• L1 = 〈u1/>, u1/⊥〉, where u1 = max(min(α, u),min(β,w)) and

u1 = max(min(α, u),min(β,w)).

• L2 = 〈u2/>, u2/⊥〉, where u2 = max(min(α, v),min(β,w)) and

u2 = max(min(α, v),min(β,w)).

Suppose that L ≥PU L′. Recall that max(α, β) = 1 and that L ≥PU L′ arises in 3 cases

(i.e. (i) u = v = 1 and u ≤ v, (ii) u ≥ v and u = v = 1, (iii) u = 1, v < 1 and v = 1).

Hence 6 different cases. For each of them, we show that L1 ≥PU L2 can be deduced:

• Case 1: u = v = 1 and u ≤ v, α = 1. u = v = 1 and α = 1 implies that

u1 = max(min(α, u),min(β,w)) = 1 and u2 = max(min(α, v),min(β,w)) = 1

u ≤ v and α = 1 implies that u1 = min(β,w) = u2. Hence L1 =PU L2.



Chapter 4: Possibilistic Decision Trees 83

• Case 2: u = v = 1 and u ≤ v, β = 1, u = v = 1 and β = 1 implies that u1 =

max(min(α, u)),min(β,w) = max(α,w) and u2 = max(min(α, v),min(β,w)) =

max(α,w) = max(α,w) = u1. u ≤ v and β = 1 implies that u1 =

max(min(α, u), w) and u1 = max(min(α, v), w); since u ≤ v, we get u1 ≤ u2.

Recall that max(w,w) = 1. When w = 1, we get u1 = u2 = 1 and u1 ≤ u2, and thus

L1 ≥PU L2. When w = 1, u1 = u2 = 1 and u1 = u2. Hence L1 =PU L2.

• Case 3: u ≥ v and u = v = 1, α = 1. This case is similar to case 1 (exchanging the

roles of the positive utilities and of the negative utilities.

• Case 4: u ≥ v and u = v = 1, β = 1. This case is similar to case 2 (exchanging the

roles of the positive utilities and of the negative utilities.

• Case 5: u = 1, v < 1, v = 1, α = 1. Then: u1 = 1, u1 = max(u,min(β,w)),

u2 = max(v,min(β,w)) and u2 = 1. That is to say u1 = 1 ≥ u2 and u1 ≤ u2 = 1.

Thus L1 ≥PU L2.

• Case 6: u = 1, v < 1, v = 1, β = 1. Then: u1 = max(α,w) u1 = max(min(α, u), w)

and u2 = max(min(α, v), w)

u2 = max(α,w). When w = 1 (resp. w = 1) we get u1 = u2 = 1 and u1 ≤ u2

(u1 = u2 = 1 u1 ≥ u2). Hence L1 ≤PU L2.

So, in any case, L ≥PU L′ implies that L1 ≤PU L2, i.e.

L1 = Reduction(〈α/L, β/L”〉) ≥ L2 = Reduction(〈α/L′, β/L”〉).
As a consequence L ≥PU L′ implies that 〈α/L, β/L”〉 ≥ 〈α/L′, β/L”〉.

Weak monotonicity of Upes

Consider any three lotteries L, L′ and L”. We can, without loss of generality, suppose

that L, L′ and L” are constant lotteries (thanks to certainty equivalence axiom [25]) i.e.

L =< 1/u >, L′ =< 1/u′ > and L” =< 1/u” >: any utility degree different from u (resp.

u′, resp. u”) receives a possibility degree equal to 0.

If L ∼Upes L′ then from the independence axiom [25] we have 〈α/L, β/L”〉 ∼Upes
〈α/L′, β/L”〉 (under the assumption that

max(α, β) = 1).

We thus only have to consider the case L >Upes L
′. Since Upes(L) = u and Upes(L

′) = u′,

this implies that u > u′. Let:

L1 = Reduction((α ∧ L) ∨ (β ∧ L”)) =< α/u, β/u” > and

L2 = Reduction((α ∧ L′) ∨ (β ∧ L”)) =< α/u′, β/u” >.
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Three cases are to be considered: u” ≥ u > u′, u > u′ ≥ u” and u > u” > u′

• Case 1: u” ≥ u > u′. Then:

Upes(L1) = max(min(u”, 1−α),min(u, 1)) = max(min(u”, 1−α), u) and Upes(L2) =

max(min(u”, 1− α), u′).

Obviously, u > u′ implies max(min(u”, 1 − α), u) ≥ max(min(u”, 1 − α), u′), i.e.

Upes(L1) ≥ Upes(L2).

• Case 2: u > u′ ≥ u”. Then:

Upes(L1) = max(min(u, 1− β), u”) and Upes(L2) = max(min(u′, 1− β), u”). Obvi-

ously, u > u′ implies max(min(u, 1− β), u”) ≥ max(min(u′, 1− β), u”),

i.e. Upes(L1) ≥ Upes(L2).

• Case 3: u > u” > u′. Hence:

Upes(L1) = max(min(u, 1− β), u”) and Upes(L2) = max(min(u”, 1− α), u′).

Recall that max(α, β) = 1. If α = 1, Upes(L2) = u′; from u” > u′ we then get:

max(min(u, 1 − β), u”) ≥ u′, i.e.: Upes(L1) ≥ Upes(L2). If β = 1, Upes(L1) = u”.

From u” > u′, we get

u” ≥ max(min(u”, 1− α), u′) i.e. Upes(L1) ≥ Upes(L2).

So, Upes(L1) ≥ Upes(L2): in any case, 〈α/L, β/L”〉 ≥UPes 〈α/L′, β/L”〉.

Weak monotonicity of Uopt

The proof is similar to the previous one. Consider any three lotteries L, L′ and L”. We

can without loss of generality suppose that L, L′ and L” are constant lotteries (thanks to

certainty equivalence axiom [25]) i.e. L =< 1/u >, L′ =< 1/u′ > and L” =< 1/u” >:

any utility degree different from u (resp. u′, resp. u”) receives a possibility degree equal

to 0.

If L ∼Uopt L′ then from the independence axiom [25] we have 〈α/L, β/L”〉 ∼Uopt
〈α/L′, βL”〉 (under the assumption that max(α, β) = 1).

We thus only have to consider the case L >Uopt L
′. Because Uopt(L) = u and Uopt(L

′) = u′,

this implies that u > u′. Let:

L1 = Reduction((α ∧ L) ∨ (β ∧ L”)) =< α/u, β/u” >.

L2 = Reduction((α ∧ L′) ∨ (β ∧ L”)) =< α/u′, β/u” >.

Three cases are to be considered: u” ≥ u > u′, u > u′ ≥ u” and u > u” > u′.

• Case 1: u” ≥ u > u′.

Then Uopt(L1) = max(min(u,max(α, β)),min(u”, β)) and Uopt(L2) =

max(min(u′,max(α, β)),min(u”, β)).
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Recall that max(α, β) = 1.

Thus: Uopt(L1) = max(min(u, 1),min(u”, β)) = max(u,min(u”, β)) and

Uopt(L2) = max(min(u′, 1),min(u”, β)) =

max(u′,min(u”, β)).

u > u′ implies that max(u,min(u”, β)) ≥ max(u′,min(u”, β)), i.e.

Uopt(L1) > Uopt(L2).

• Case 2: u > u′ ≥ u”.

Then Uopt(L1) = max(min(u, α),min(u”, 1)) = max(min(u, α), u”) and

Uopt(L2) = max(min(u′, α),min(u”, 1)) = max(min(u′, α), u”). u > u′ implies

max(min(u, α), u”) ≥ max(min(u′, α), u”), i.e. Uopt(L1) ≥ Uopt(L2).

• Case 3: u > u” > u′.

Hence Uopt(L1) = max(min(u, α),min(u”, 1)) = max(min(u, α), u”) and

Uopt(L2) = max(min(u′, 1),min(u”, β)) =

max(u′,min(u”, β)). If α = 1, then: Uopt(L1) = max(u, u”) = u and Uopt(L2) =

max(u′,min(u”, β)). u > u”, so u > min(u”, β); moreover u > u′, so u >

max(min(u”, β), u′), i.e. Uopt(L1) > Uopt(L2).

If β = 1, Uopt(L1) = max(min(u, α), u”) and Uopt(L2) = max(u′, u”) = u”. u” ≥ u”,

so max(min(u, α), u”) ≥ u”, i.e. Uopt(L1) ≥ Uopt(L2).

So, Uopt(L1) ≥ Uopt(L2): in any case, 〈α/L, β/L”〉 ≥Uopt 〈α/L′, β/L”〉.

As a consequence, dynamic programming (i.e. Algorithm 4.1) applies to the optimization

of these criteria in possibilistic decision trees. It is also known that dynamic programming

applies to the optimization of Upes, Uopt and PU in possibilistic Markov decision processes

[67] and thus to decision trees.We can then derive the following corollary:

Corollary 4.1 DT-OPT-Upes, DT-OPT- Uopt and DT-OPT-PU belong to P .

4.4 Possibilistic likely dominance (LN,LΠ)

We show now that possibilistic likely dominance satisfies the weak monotonicity principle.

Proposition 4.5 �LΠ and �LN satisfy the weak monotonicity principle.

In [23], the authors have defined the likely dominance decision rule and have presented

its axiomatic system in the context of Savage decision theory. In what follows we develop a
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formal proof for Proposition 4.5 which is a direct consequence of the basic axiom of Weak

Sure Thing Principle ( Axiom 2SL).

Proof. [Proof of Proposition 4.5]

Ordinal setting

Consider any three lotteries L, L′ and L”. We can suppose without loss of generality that

they are in a reduced form, i.e.:

L = 〈λ1/u1, . . . , λn/un〉,
L′ = 〈λ′1/u

′
1, . . . , λ

′
n/u

′
n〉,

L” = 〈λ”
1/u

”
1, . . . , λ

”
n/u

”
n〉.

Let L1 = Reduction(α ∧ L ∨ β ∧ L”). According to the definition of the reduction

(see section 2.2), the possibility of getting a utility degree uk ∈ U from L1 is equal to

λ1
k = max(min(α, λk),min(β, λ”

k)).

Let L2 = Reduction(α ∧ L′ ∨ β ∧ L”). According to the definition of the reduc-

tion, the possibility of getting a utility degree uk ∈ U from L2 is equal to λ2
k =

max(min(α, λ
′
k),min(β, λ”

k)).

Weak monotonicity of ≥LΠ

Suppose that L ≥LΠ L′, i.e. Π(L ≥ L′) ≥ Π(L′ ≥ L). Consider the set of utility

degrees receiving a possibility equal to 1 in L: U = {ui, λi = 1} and the set of utility

degrees receiving a possibility equal to 1 in L′: U ′ = {ui, λ
′
i = 1}. These sets are not

empty since the distributions are normalized. Π(L ≥ L′) ≥ Π(L′ ≥ L) if and only if

maxu∈U ≥ minu∈U ′ .
Let U1 = {uk, λk = 1} and U2 = {uk, λ′k = 1}.

• If α = 1: we have U ⊆ U1 and U ′ ⊆ U2 . Hence maxu∈U belongs to U1 and minu∈U ′

belongs to U2, maxu∈U1 ≥ maxu∈U and minu∈U2 ≤ minu∈U ′ . Thus maxu∈U1 ≥
minu∈U2 , i.e. L1 ≥LΠ L2.

• If α < 1 and β = 1: let ui be any of the degrees that receive a degree 1 in L”. Since

β = 1, ui belongs to both U1 and U2. Thus Π(L1 ≥ L2) = Π(L2 ≥ L1) = 1.

So, L ≥LΠ L′ implies that L1 ≥LΠ L2, i.e. that Reduction(α ∧ L ∨ β ∧ L”) ≥LΠ

Reduction(α ∧ L′ ∨ β ∧ L”). Which means that L ≥LΠ L′ implies that (α ∧ L ∨ β ∧
L”) ≥LΠ (α ∧ L′ ∨ β ∧ L”).

⇒ Weak monotonicity is satisfied by ≥LΠ.
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Weak monotonicity of ≥LN

Suppose that L ≥LN L′, i.e. N(L ≥ L′) ≥ N(L′ ≥ L). Consider the set of utility

degrees receiving a possibility equal to 1 in L: U = {ui, λi = 1} and the set of utility

degrees receiving a possibility equal to 1 in L′: U ′ = {ui, λ
′
i = 1}. These sets are not

empty since the distributions are normalized. N(L ≥ L′) is equal to zero as soon as

maxu∈U ′ ≥ minu∈U . N(L ≥ L′) is positive (and N(L′ ≥ L) is null) iff minu∈U > maxu∈U ′ .

Thus N(L ≥ L′) ≥ N(L′ ≥ L) when either minu∈U > maxu∈U ′ or

minu∈U ≤ maxu∈U ′ and minu∈U ≤ maxu∈U .

• If β = 1: let ui be any of the degrees that receive a degree 1 in L”. Since β = 1, ui

belongs to both U1 and U2. Thus N(L1 ≥ L2) = N(L2 ≥ L1) = 0.

• If β < 1 then α = 1 and thus U ⊆ U1 and U2 ⊆ U ′L. In particular minu∈U belongs to

U1 and maxu∈U ′ belongs U2. Thus Π(L1 ≥ L2) = 1: N(L2 ≥ L1) = 0. This implies

that N(L1 ≥ L2) ≥ N(L2 ≥ L1).

So, L ≥LN L′ implies that L1 ≥LN L2, i.e. that Reduction(α ∧ L ∨ β ∧ L”) ≥LN
Reduction(α ∧ L′ ∨ β ∧ L”). Which means that L ≥LN L′ implies that (α ∧ L ∨ β ∧
L”) ≥LN (α ∧ L′ ∨ β ∧ L”).

⇒ Weak monotonicity is satisfied by ≥LN .

Cardinal setting

According to the definition of reduction and in the case of ⊗ = ∗, the possibility of getting

a utility degree uk ∈ U from the lottery L1 is equal to λ1
k = max((α ∗ λk), (β ∗ λ”

k)).

Concerning the lottery L2 we have λ2
k = max((α ∗ λ′k), (β ∗ λ”

k)).

Note that the reasoning of the proof in the ordinal setting is also valid for the cardinal

setting concerning the weak monotonicity of ≥Lπ and ≥LN .

Algorithm 4.1 is thus sound and complete for ≥LΠ and ≥LN , and provides in polytime

any possibilistic decision tree with a strategy optimal w.r.t these criteria (≥Lπ and ≥LN ).

Proposition 4.5 allows the definition of the following corollary:

Corollary 4.2 DT-OPT-LN and DT-OPT-LΠ belong to P .

It should be noticed that, contrarily to what can be done with the three previous rules,

the likely dominance comparison of two lotteries will be reduced to a simple comparison

of aggregated values (Line (2)). Anyway, since only one best strategy is looked for, the
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transitivity of >LN (resp. >LΠ) guarantees the correctness of the procedure - the non

transitivity on the indifference is not a handicap when only one among the best strategies

is looked for. The difficulty would be raised if we were looking for all the best strategies.

4.5 Order of magnitude expected utility (OMEU)

We shall now define kappa decision trees: for any Ci ∈ C the uncertainty pertaining to

the more or less possible outcomes of each Ci is represented by a kappa degree κi(N) =

Magnitude(P (N |past(Ci))),∀N ∈ Succ(Ci) (with the normalization condition that the

degree κ = 0 is given to at least one N in Succ(Ci)). According to the interpretation of

kappa ranking in terms of order of magnitude of probabilities, the product of infinitesimal

the conditional probabilities along the paths lead to a sum of the kappa levels. Hence the

following principle of reduction of the kappa lotteries:

Reduction(〈κ1/L1, . . . , κm/Lm〉 =

〈 min
j=1..m

(κj1 + κj)/u1, . . . , min
j=1..m

(κjn + κj)/un〉 (4.5)

Like qualitative utilities and possibilistic likely dominance rule, OMEU satisfies the weak

monotonicity principle:

Proposition 4.6 �OMEU satisfies the weak monotonicity property.

Proof. [Proof of Proposition 4.6]

Consider any tree L, L′ and L” be 3 kappa lotteries. We can suppose without loss of

generality that they are in reduced form, i.e. that:

L = 〈κ1/µ1, . . . , κn/µn〉,
L′ = 〈κ′1/µ1, . . . , κ

′
n/µn〉 and

L” = 〈κ1”/µ1, . . . , κn”/µn〉. It holds that: OMEU(L) = mini=1,n{κi + ui} and

OMEU(L′) = mini=1,n{κ′i + ui}.
Let L1 = Reduction(〈α/L, β/L”〉. According to the reduction definition, the kappa

ranking of utility degree uk ∈ U from L′ is equal to: κk = min((α+ κk), (β + κk”)).

Thus: OMEU(L1) = mini=1..nmin[(κi + α), (κi” + β)] + ui.

Similarly, let L2 = Reduction(〈α/L′, β/L”).
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It holds that OMEU(L2) = mini=1..nmin[(κ′i + α), (κi” + β)] + ui.

Suppose that L ≥OMEU L
′, i.e. that min

i=1..n
{κi + ui} ≤ min

i=1..n
{κ′i + ui}.

Then min
i=1..n

{κi + ui}+ α ≤ min
i=1..n

{κ′i + ui}+ α.

Then min
i=1..n

{κi + ui + α} ≤ min
i=1..n

{κ′i + ui + α}.
As a consequence, we get:

min(min
i=1..n

{κi” + ui + β}, min
i=1..n

{κi + ui + α}) ≤
min(min

i=1..n
{κi” + ui + β}, min

i=1..n
{κ′i + ui + α}).

By associativity of the min operation, we get:

min
i=1..n

min({κi” + ui + β}, {κi + ui + α}) ≤
min
i=1..n

min({κi” + ui + β}, {κ′i + ui + α}).
Hence:

min
i=1..n

min[(κi + α), (κi” + β)] + ui ≤ min
i=1..n

min[(κ′i + α), (κi” + β)] + ui.

That is to say that OMEU(L1) ≤ OMEU(L2).

We have shown that L ≥OMEU L′ implies that Reduction(〈α/L, β/L”〉) ≥OMEU

Reduction(〈α/L′, β/L”〉).
Thus L ≥OMEU L

′ implies that 〈α/L, β/L”〉 ≥OMEU 〈α/L′, β/L”〉.

As a consequence of Proposition 4.6, dynamic programming (Algorithm 4.1) is appro-

priate for the optimization of Order of Magnitude Expected Utility. We can then give the

following corollary:

Corollary 4.3 DT-OPT-OMEU belongs to P .

4.6 Possibilitic Choquet integrals (ChΠ and ChN )

Contrary to qualitative utilities, binary possibilistic utility and likely dominance, the situa-

tion is much lesser comfortable when the aim is to optimize a possibilistic Choquet integral

(either ChN or ChΠ). The point is that the possibilistic Choquet integrals (as many other

Choquet integrals) do not satisfy the monotonicity principle in both ordinal and numerical

settings as illustrated by counter example 4.1 and 4.2, respectively.

Counter Example 4.1 (Ordinal setting)

• Necessity-based Choquet integrals:

Let us consider these three possibilistic lotteries
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L = 〈0.2/0, 0.5/0.51, 1/1〉, L′ = 〈0.1/0, 0.6/0.5, 1/1〉 and L” = 〈0.01/0, 1/1〉.
L1 = 〈α/L, β/L”〉 and L2 = 〈α/L′, β/L”〉, with α = 0.55 and β = 1. Using Equation 4.2 we

have: Reduction(L1) = 〈0.2/0, 0.5/0.51, 1/1〉 and Reduction(L2) = 〈0.1/0, 0.55/0.5, 1/1〉.
Computing ChN (L) = 0.653 and ChN (L′) = 0.650 we get L ≥ChN L′.

But ChN (Reduction(L1)) = 0.653 < ChN (Reduction(L2)) = 0.675, i.e. 〈α/L, β/L”〉 <ChN
〈α/L′, β/L”〉:
→ This contradicts the monotonicity property.

• Possibility-based Choquet integrals:

Let us consider these three lotteries

L = 〈1/0, 0.5/0.51, 0.2/1〉, L′ = 〈1/0, 0.6/0.5, 0.1/1〉 and L” = 〈1/0, 0.49/0.51〉.
L1 = 〈α/L, β/L”〉 and L2 = 〈α/L′, β/L”〉, with α = 1 and β = 0.55. Using Equation 4.2

we have: Reduction(L1) = 〈1/0, 0.5/0.51, 0.2/1〉 and

Reduction(L2) = 〈1/0, 0.6/0.5, 0.49/0.51, 0.1/1〉.
Computing ChΠ(L) = 0.353 and ChΠ(L′) = 0.350 we get L >ChΠ

L′.

But ChΠ(Reduction(L1)) = 0.3530 < ChΠ(Reduction(L2)) = 0.3539, i.e. 〈α/L, β/L”〉 <ChΠ

〈α/L′, β/L”〉:
→ This contradicts the monotonicity property.

Counter Example 4.2 (Numerical setting)

• Necessity-based Choquet integrals:

Let us consider these three lotteries L = 〈0.2/0, 0.5/0.51, 1/1〉, L′ = 〈0.1/0, 0.6/0.5, 1/1〉
and L” = 〈0.01/0, 1/1〉.
L1 = 〈α/L, β/L”〉 and L2 = 〈α/L′, β/L”〉, with α = 0.55 and β = 1. Using equation 4.2 we

have: Reduction(L1) = 〈0.11/0, 0.275/0.51, 1/1〉 and Reduction(L2) = 〈0.055/0, 0.33/0.5, 1/1〉.
Computing ChN (L) = 0.653 and ChN (L′) = 0.650 we get L ≥ChN L′.

But ChN (Reduction(L1)) = 0.809 < ChN (Reduction(L2) = 0.45,

i.e. 〈α/L, β/L”〉 <ChN 〈α/L′, β/L”〉:
→ This contradicts the monotonicity property.

• Possibility based Choquet integrals:

Let us consider these three lotteries L = 〈1/0, 0.5/0.51, 0.2/1〉, L′ = 〈1/0, 0.6/0.5, 0.1/1〉
and L” = 〈1/0, 0.49/0.51〉.
L1 = 〈α/L, β/L”〉 and L2 = (〈α/L′, β/L”〉, with α = 1 and β = 0.55. Using Equation 4.2

we have: Reduction(L1) = 〈1/0, 0.5/0.51, 0.2/1〉 and Reduction(L2) = 〈1/0, 0.6/0.5, 0.26/0.51, 0.1/1〉.
Computing ChΠ(L) = 0.353 and ChΠ(L′) = 0.350 we get L >ChΠ

L′.
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But ChΠ(Reduction(L1)) = 0.3530 < ChΠ(Reduction(L2)) = 0.3516, i.e. 〈α/L, β/L”〉 <ChΠ

〈α/L′, β/L”〉:
→ This contradicts the monotonicity property.

Based on these counterexamples, it is clear that dynamic programming cannot be applied

for DT-OPT-ChN and DT-OPT-ChΠ problems. In Proposition 4.7, we show that these

problems are in fact NP-hard.

Proposition 4.7 DT-OPT-ChN and DT-OPT-ChΠ are NP-hard.

To present the proof of this proposition, we will use the properties of possibilistic Choquet

integrals developed in Chapter 2 (Propositions 1 and 2) for the case of ChN and a part of

the work of [39] for the case of ChΠ.

The hardness of the problem is obtained by a polynomial reduction from a 3SAT prob-

lem to DT-OPT-ChN (resp. DT-OPT-ChΠ) as shown in the following proof.
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Algorithm 4.2: Necessity-based transformation

Data: A CNF Cl = {Cl1, . . . , Clm} on X = {X1, . . . , Xn}
Result: Possibilistic decision tree ΠT
begin

Fix ε ∈ [0, 1] such that εn < 1/2

foreach Xi ∈ X do

uxi
← 2(n− i) + 1

λxi
← εi+1

u¬xi ← 2(n− i) + 2

λ¬xi
← εi

Let u> ← (2 ∗ n) + 1

Create a decision node D0 as the root of ΠT
Create a chance node H as the unique child of D0

foreach Xi ∈ X do

Create a decision node DXi
with two children Cxi

and C¬xi
:

Cxi is the simple lottery 〈1/u>, λxi/uxi〉
C¬xi

is the simple lottery 〈1/u>, λ¬xi
/u¬xi

〉
Add DXi

to the children on H, with a possibility degree equal to 1

foreach Cli = {l1, l2, l3} ∈ Cl do

Create a decision node DCli with as 3 children Ci
l1

, Ci
l2

, Ci
l3

Ci
lj

is the simple lottery 〈1/u>, λl1/ul1〉
Ci

lj
is the simple lottery 〈1/u>, λl2/ul2〉

Ci
lj

is the simple lottery 〈1/u>, λl3/ul3〉

Add DCli to the children on H, with a possibility degree equal to 1

return ΠT

end
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Algorithm 4.3: Possibility-based transformation

Data: 3 SAT problem

Result: Possibilistic decision tree ΠT
begin

Fix ε such that 0 < ε < 1

Create a decision tree D0 as the root of ΠT
Create a chance node H

Add H as a child of D0

T0 ← CreateTN(1, 0)

foreach Xi ∈ X do

Create a decision node DXi

Add a chance node Cxi
as a child of DXi

Associate to Cxi the lottery 〈1/0〉
Add a chance node C¬xi

as a child of DXi

Associate to C¬xi
the lottery 〈1/0〉

foreach Cli ∈ Cl do

foreach literal lj ∈ Cli do

Associate to Clj the lottery < εi/Σi−1
k=010k >

return ΠT

end

Proof. [Proof of Proposition 4.7]

We first prove that DT-OPT-ChN (resp DT-OPT-ChΠ) belongs to NP class.

Membership to NP

The membership of DT-OPT-ChN (resp. DT-OPT-ChΠ) to NP is straightforward. In

fact, there is a polynomial algorithm for the determination of an optimal strategy w.r.t

ChN (resp. ChΠ) in a possibilistic decision tree by an oracle machine. This algorithm

will guess a strategy δ for the decision tree that will be reduced into a lottery L. This

lottery will be evaluated w.r.t the decision criterion i.e. ChN (L) (resp. ChΠ(L)) will be

computed. According to the Definition 4.1, the final step of the algorithm is to check that

ChN (L) ≥ α (resp. ChΠ(L) ≥ α).

Since the reduction operation is linear in the size of the compound lottery and the

computation of the Necessity-based Choquet value (resp. the Possibility-based Choquet

value) is linear in the number of utility levels in the utility scale, the full procedure is

polynomial. Hence DT −OPT − ChN (resp. DT −OPT − ChΠ) belongs to NP .
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NP Hardness of DT-OPT-ChN

The Hardness of the problem is obtained by the following polynomial reduction from a

3SAT to DT-OPT-ChN . A 3SAT problem is a set of a 3 CNF on X = {x1, . . . , xn}
which represents also the set of literals L = {l1, . . . , ln}. The set of clauses is denoted by

Cl = {Cl1, . . . , Clm} where each clause Cli is defined by Cli = {l1i , l2i , l3i }.
The principle of the transformation is as follows:

• For each literal l ∈ L we define a utility ul and a possibility degree λxi . We also

define a utility degree u> that will be greater than all ul.

• For each xi ∈ X we associate a decision node Dxi with two chance nodes Cxi =<

1/u>, λxi/uxi > and C¬xi =< 1/u>, λ¬xi/u¬xi > to ¬xi as children. The first one

represents the choice xi and the second one the choice ¬xi.

• For each Cli = {li1, li2, li3} ∈ Cl we define a decision node DCli with three chance

nodes as children:

Cil1 =< 1/u>, λl1/ul1 > (meaning that the satisfaction of the clause is ensured by

the choice l1),

Cil2 =< 1/u>, λl2/ul2 > (meaning that the satisfaction of the clause is ensured by

the choice l2)

Cil3 =< 1/u>, λl3/ul3 > (meaning that the satisfaction of the clause is ensured by

the choice l3).

When selecting a chance node for DCli , a strategy specifies how it intends to satisfy

clause Cli.

This reduction, outlined in Algorithm 4.2, is performed in O(m + n). In fact, the

decision tree contains m+n+1 decision nodes, 3m+2n+1 chance nodes and (3m+2n)×2

leaves.

A strategy δ can select the literals in a consistent manner (in this case, if l is chosen

for Xi, ¬l is never chosen for a DCli) or in a contradictory manner (i.e. δ selects l

in some decision node in the tree and ¬l for some others). By construction, there is

a bijection between the non contradictory strategies, if any, and the models of the formula.

The simple lottery equivalent to a strategy δ is the following: π(>) = 1, π(ul) = λl if

literal l is chosen for some decision node, π(ul) = 0 otherwise.

• The set of simple lotteries equivalent to contradictory strategies is included in LNC
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s.t:

LNC = {L : πL(u>) = 1, ∀l ∈ L, πL(ul) ∈ {0, λl} and min(πL(ul), πL(u¬l)) = 0}.

• The set of simple lotteries equivalent to contradictory strategies is included in LC

s.t:

LC = {L : πL(u>) = 1, ∀l ∈ L, πL(ul) ∈ {0, λl}, ∃l ∈ L s.t. min(πL(ul), πL(u¬l)) 6= 0}.

The principle of the proof is to set the values of the λl’s and the ul’s in such a way that

the Choquet value of the worst of the non contradictory lotteries is greater than the

Choquet value of the best contradictory lottery. To this extend, we choose an ε ∈ [0, 1]

such that εn < 1/2. Then we set λxi = εi+1, u¬xi = 2(n−i)+2, λ¬xi = εi, u> = (2∗n)+1.

It holds that:

• The worst non contradictory lottery in LNC , denoted by L↓NC , is such as all the

positive literals are possible and the possibility of any negative literal is equal to 0

i.e.

L↓NC = 〈λxn/uxn , . . . , λx1/ux1 , 1/u>〉

(for the sake of simplicity we omitted terms where possibility degrees are equal to 0).

This holds since according to the proposed codification, positive literal have always

a utility lower than their negative version.

• The best contradictory lottery in LC , denoted by L↑C , is such as all negative literals

are possible and the possibility of any positive literal is equal to 0 except for x1 (the

less valuable positive literal) i.e.

L↑C = 〈λ¬xn/u¬xn , . . . , λx1/ux1 , λ¬x1/u¬x1 , 1/u>〉

(terms with 0 degrees are omitted). This holds since (i) according to the proposed

codification negative literals always have a utility greater than their positive ver-

sion and (ii) the less the number of utilities in the lottery receiving a non negative

possibility degree, the greater the Choquet value (Proposition 2.2).

• Considering L↓NC , the utilities that receive a positive degree of possibility are, by

increasing order:

uxn < uxn−1 < · · · < ux1 < u> (all ¬xi, receive a possibility degree equal to 0).

Hence:
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ChN (L↓NC) = uxn + (uxn−1 − uxn)(1− λxn) + (uxn−2 − uxn−1)(1−max(λxn , λxn−1))

+ · · ·+ (ux1 −ux2)(1−max(λxn , . . . , λx2)) + (u>−ux1)(1−max(λxn , . . . , , λx2 , λx1))

= 1 + 2(1− λxn) + 2(1− λxn−1) + · · ·+ 2(1− λx1)

= 2n+ 1− 2(λxn + · · ·+ λx1) and:

• Considering L↑C , the utilities that receive a positive degree of possibility are, by

increasing order: u¬xn < u¬xn−1 < · · · < u¬x2 < ux1 < u¬x1 < u> (all xi, i > 1

receive a possibility degree equal to 0). Hence:

ChN (L↑C) = u¬xn + (u¬xn−1 − u¬xn)(1− λ¬xn)

+(u¬xn−2 − u¬xn−1)(1−max(λ¬xn , λ¬xn−1)) + . . .

+(u¬x2 − u¬x3)(1−max(λ¬xn , . . . , λ¬x3)) + (ux1 − u¬x2)(1−max(λ¬xn , . . . , λ¬x2))

+(u¬x1 − ux1)(1−max(λ¬xn , . . . , λ¬x2 , λx1))

+(u> − u¬x1)(1−max(λ¬xn , . . . , λ¬x2 , λx1 , λ¬x1))

= 2 + 2(1− λ¬xn) + 2(1− λ¬xn−1) + · · ·+ 2(1− λ¬x3)

+(1− λ¬x2) + (1− λx1) + (1− λ¬x1)

= 2 + 2(1− λ¬xn) + 2(1− λ¬xn−1) + . . .

+(1−λ¬x2)+(1−λ¬x2) = 2(1−λ¬xn)+2(1−λ¬xn−1)+ · · ·+2(1−λ¬x2)+(1−λ¬x1)

= 2 + 2(n− 1)− 2(λ¬xn + · · ·+ λ¬x2) + 1− λ¬x1

= 2.n+ 1− 2(λ¬xn + · · ·+ λ¬x2)− λ¬x1

It follows that ChN (L↓NC)− ChN (L↑C)

= 2n+ 1− 2(λxn , . . . , λx1)

= −2n− 1 + 2(λ¬xn , . . . , λ¬x2) + λ¬x1

= 2(λ¬xn , . . . , λ¬x2) + λ¬x1 − 2(λxn , . . . , λx1)

= λ¬x1 − 2λxn( since by definition λ¬xi = λxi−1).

Recall that λ¬x1 = ε and λxn = εn+1: ChN (L↓NC)−ChN (L↑C) is equal to ε− 2.εn+1. Since

we have chosen ε in [0, 1] is such a way that εn < 1/2, we get ChN (L↓NC)−ChN (L↑C) > 0.

This shows that ChN (L↓NC) > ChN (L↑C).

Hence the Choquet value of any non contradictory strategy, if such a strategy exists, is

greater than ChN (L↑C). Moreover, the CNF is consistent iff there exists a non contradictory

strategy. Hence, it is consistent iff there exist a strategy with a Choquet value greater

than α = ChN (L↑C).
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NP Hardness of DT-OPT-ChΠ

The hardness of the problem is proved by a polynomial reduction from 3SAT to DT-OPT-

ChΠ. In the following, we will use a constant 0 < ε < 1. Obviously, εi < 1, i = 1,m and

i < j implies that εi > εj .

A possibilistic decision tree is built with a root node D0 having as unique child a chance

node that branches on n decision nodes Di, i = 1, n (with a possibility degree equal to

1 for each ). Each Di must makes a decision on the value on Xi: it has two children,

Cxi and C¬xi , which are chance node. Consider any literal l ∈ {x1, . . . , xn,¬x1, . . . ,¬xn}
and the corresponding chance node Cl For the purpose of normalization of the possibility

distribution, Cl is linked, with a possibility degree equal to 1, to a leave labeled with utility

0. In addition, for any Cli in Cl satisfied by l, a leave node labeled by Cli is added as a

child of Cl, with a possibility degree equal to εi and a utility degree equal Σi−1
k=010k. For

Cl1 (resp. Cl2, Cl3,. . . ,Clm) the associated utility is 1 (resp. 11, 111,. . . , 1..1︸︷︷︸
m terms

)).

This reduction, outlined by Algorithm 4.3, is performed in O(n+m).

One can check that:

• There is a bijection between the interpretation of the CNF and the admissible strate-

gies

• ChΠ value of a strategy δ is equal to
∑

i=1,m,δ satisfies Cli
10i−1 ∗ εi

The CNF is consistent iff there exists a strategy that satisfies all clauses. Indeed, its

Choquet value will be equal to
∑

i=1,m, 10i−1 ∗ εi which is the greater possible Choquet

value. This means that the proposed reduction approach from a 3SAT problem to a

decision tree ensures that the optimal strategy has the maximal possibility-based Choquet

value.

Example 4.3 (resp. 4.4) illustrates the polynomial transformation of a 3SAT problem to

DT-OPT-ChN (resp. DT-OPT-ChΠ) described in the previous proof using the algorithm

4.2 (resp algorithm 4.3).

Example 4.3 To illustrate the transformation algorithm in the case of

necessity-based Choquet integrals, we will consider the case of 3SAT = ((x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x2∨¬x3)) and ε = 0.7. Using algorithm 4.2, we obtain the decision tree represented

in Figure 4.3. Details of possibility distributions and utilities are as follows:

• For x1 we have ux1 = 2(3− 1) + 1 = 5 and λx1 = 0.72 = 0.49.
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• For ¬x1 we have u¬x1 = 2(3− 1) + 2 = 6 and λ¬x1 = 0.71 = 0.7.

• For x2 we have ux2 = 2(3− 2) + 1 = 3 and λx2 = 0.73 = 0.343.

• For ¬x2 we have u¬x2 = 2(3− 2) + 2 = 4 and λ¬x2 = 0.72 = 0.49.

• For x3 we have ux3 = 2(3− 3) + 1 = 1 and λx3 = 0.74 = 0.2401.

• For ¬x3 we have u¬x3 = 2(3− 3) + 2 = 2 and λ¬x3 = 0.73 = 0.343.
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Figure 4.3: Transformation of the CNF ((x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)) to a decision

tree with ε = 0.7.

Example 4.4 Let us consider the 3SAT = ((x1∨x2∨x3)∧(¬x1∨¬x2∨¬x3)) with ε = 0.2.

Using Algorithm 4.3, we obtain the decision tree represented in Figure 4.4 such that:

• u(Cl1) =
∑0

k=0 10k = 1 and π(Cl1) = (0.2)1 = 0.2.

• u(Cl2) =
∑1

k=0 10k = 11 and π(Cl2) = (0.2)2 = 0.04.
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Figure 4.4: Transformation of the CNF ((x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)) with ε = 0.2.

4.7 Polynomial cases of possibilistic Choquet integrals

It is important to note that Proposition 4.7 is not true for all possibility distributions. We

can in particular distinguish three classes of decision problems (denoted by Binary-Class,

Max-Class and Min-Class) where DT-OPT-ChΠ and DT-OPT-ChN are polynomial and

dynamic programming can be applied to find the optimal strategy.

4.7.1 Binary possibilistic lotteries

The first polynomial case of possibilistic Choquet integrals (denoted by Binary-Class) con-

cerns binary lotteries defined as follows:

Definition 4.2 Let U = {u1, u2} be the set of possible utilities composed of only two utilities
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u1 and u2 such that u1 < u2. In the case of Binary-Class, each lottery L ∈ L is as follows:

L = 〈λ1/u1, λ2/u2〉.

Proposition 4.8 DT-OPT-ChN (resp. DT-OPT-ChΠ) is polynomial in the case of Binary-

Class.

Proof. [Proof of Proposition 4.8]

In what follows, we present the proof in numerical setting (the same principle is valid for

the ordinal setting).

Necessity-based Choquet integrals

U = {u1, u2} and u1 < u2

We will consider the following three possibilistic lotteries:

L = 〈λ1/u1, λ2/u2〉, L′ = 〈λ′1/u1, λ
′
2/u2〉 and L” = 〈λ”1/u1, λ”2/u2 >.

ChN (L) = u1 + (u2 − u1)(1− λ1), ChN (L′) = u1 + (u2 − u1)(1− λ′1)

ChN (L) ≥ ChN (L′) ⇒ λ′1 ≥ λ1.

Note that L1 = αL+ βL” and L2 = αL′ + βL”

• If α = 1: L1 = 〈max(λ1, βλ”1)/u1,max(λ2, βλ”2)/u2 > and

L2 = 〈max(λ′1, βλ”1)/u1,max(λ′2, βλ”2)/u2 >.

ChN (L1) = u1 + (u2 − u1)(1−max(λ1, βλ”1)) and

ChN (L2) = u1 + (u2 − u1)(1−max(λ′1, βλ”1)). Two cases are possible:

– If λ1 > βλ”1 and λ′1 > βλ”1 ⇒ ChN (L1) > ChN (L2)

since λ′1 ≥ λ1

– If λ1 < βλ”1 and λ′1 < βλ”1 ⇒ ChN (L1) = ChN (L2)

• If β = 1: L1 = 〈max(αλ1, λ”1)/u1,max(αλ2, λ”2)/u2 > and

L2 = 〈max(αλ′1, λ”1)/u1,max(αλ′2, λ”2)/u2 >.

ChN (L1) = u1 + (u2 − u1)(1−max(α ∗ λ1, λ”1)) and

ChN (L2) = u1 + (u2 − u1)(1 − max(α ∗ λ′1, λ”1)). Since λ′1 ≥ λ1 then ChN (L1) ≥
ChN (L2).

Possibility-based Choquet integrals
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Let three possibilistic lotteries: L = 〈λ1/u1, λ2/u2 >, L′ = 〈λ′1/u1, λ
′
2/u2 > and

L” = 〈λ”1/u1, λ”2/u2 >.

Let L1 = αL+ βL” and L2 = αL′ + βL” with max(α, β) = 1.

We have ChΠ(L) = u1 + (u2−u1)∗λ2 and ChΠ(L′) = u1 + (u2−u1)∗λ′2, so if we suppose

that ChΠ(L) > ChΠ(L′) then λ2 > λ′2.

There are two possible cases:

• Case 1: If α = 1

We have L1 = L+ βL” and L2 = L′ + βL”.

L1 = 〈max(λ1, βλ”1)/u1,max(λ2, βλ”2)/u2 >, and

L2 = 〈max(λ′1, βλ”1)/u1,max(λ′2, βλ”2)/u2 > so ChΠ(L1) = u1 + (u2 − u1) ∗
max(λ2, βλ”2) and

ChΠ(L2) = u1 + (u2 − u1) ∗max(λ′2, βλ”2).

Since we have λ2 > λ′2 ⇒ ChΠ(L1) ≥ ChΠ(L2).

• Case 2: If β = 1

We have L1 = αL + L” and L2 = αL′ + L”.

L1 = 〈max(αλ1, λ”1)/u1,max(αλ2, λ”2)/u2 >, and L2 =

〈max(αλ′1, λ”1)/u1,max(αλ′2, λ”2)/u2 > so ChΠ(L1) = u1+(u2−u1)∗max(αλ2, λ”2)

and ChΠ(L2) = u1 + (u2 − u1) ∗max(αλ′2, λ”2).

Since we have λ2 > λ′2 ⇒ ChΠ(L1) ≥ ChΠ(L2).

4.7.2 The maximal possibility degree is affected to the maximal utility

The second polynomial case of possibilistic Choquet integrals (denoted by Max-Class) con-

cerns possibilistic lotteries where the maximal possibility degree namely 1 is affected to the

maximal utility in the lottery. This class is defined as follows:

Definition 4.3 Let U = {u1, . . . , un} be the set of possible utilities where umax is the

maximal utility in a possibilistic lottery L such that umax ≤ un. In the case of Max-Class,

each lottery L ∈ L is as follows: L = 〈λ1/u1, . . . , 1/umax〉.

Proposition 4.9 DT-OPT-ChΠ (resp. DT-OPT-ChN with α = 1) is polynomial in the

case of Max-Class.
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Proof. [Proof of Proposition 4.9]

In what follows, we present the proof in numerical setting (the same principle is valid for

the ordinal setting).

Necessity-based Choquet integrals

We will consider the case where α = 1

• Case 1: Let us consider three lotteries L, L′ and L” having the same maximal utility

un:

L = 〈λ1/u1, . . . , 1/un〉, L′ = 〈λ′1/u1, . . . , 1/un〉 and

L” = 〈λ”1/u1, . . . , 1/un〉. Then,

ChN (L) = u1 + · · ·+ (un − un−1)(1−max(λ1, . . . , λn−1))

ChN (L′) = u1 + · · ·+ (un − un−1)(1−max(λ′1], . . . , λ′n−1))

L1 = 〈α/L, β/L”〉 and L2 = 〈α/L′, β/L” are two compound lotteries, we have:

L1 = 〈max(λ1, βλ”1)/u1, . . . , 1/un〉
L2 = 〈max(λ′1, βλ”1)/u1, . . . , 1/un〉
ChN (L1) = u1 + . . .

+ (un − un−1)(1−max(max(λ1, βλ”1), . . . ,max(λn−1, βλ”n−1)))

ChN (L2) = u1 + . . .

+ (un − un−1)(1−max(max(λ′1, βλ”1), . . . ,max(λ′n−1, βλ”n−1)))

⇒ If ChN (L) > ChN (L′) then ChN (L1) ≥ ChN (L2)

• Case 2: L and L′ have the same maximal utility denoted by umax and L′′ has as

maximal utility ui.

– If umax > ui

L = 〈λ1/u1, . . . , λi/ui, . . . , 1/umax〉
L′ = 〈λ′1/u1, . . . , λ

′
i/ui, . . . , 1/umax〉 and

L” = 〈λ”1/u1, . . . , λ”i/ui, . . . , 1/umax〉. Then,

ChN (L) = u1 + · · · + (ui − ui−1)(1 − max(λ1, . . . , λi−1)) + · · · + (umax −
umax−1)(1−max(λ1, . . . , λmax−1))

ChN (L′) = u1 + · · · + (ui − ui−1)(1 − max(λ′1, . . . , λ
′
i−1)) + · · · + (umax −

umax−1)(1−max(λ′1, . . . , λ
′
max−1))
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L” = 〈λ”1/u1, . . . , 1/ui〉.

L1 = 〈α/L, β/L”〉 and L2 = 〈α/L′, β/L” are two compound lotteries, we have:

L1 = 〈max(λ1, βλ”1)/u1, . . . , 1/ui, . . . , 1/umax〉
L2 = 〈max(λ′1, βλ”1)/u1, . . . , 1/ui, . . . , 1/umax〉
ChN (L1) = u1 + . . .

+ (ui − ui−1)(1−max(max(λ1, βλ”1), . . . ,

max(L[ui−1], βL′′[ui−1])))

ChN (L2) = u1 + . . .

+ (un − un−1)(1−max(max(λ′1, βλ”1), . . . ,max(λ′i−1, βλ”i−1)))

⇒ If ChN (L) > ChN (L′) then ChN (L1) ≥ ChN (L2).

– If umax < ui

L = 〈λ1/u1, . . . , 1/umax〉,
L′ = 〈λ′1/u1, . . . , 1/umax〉 and

L′′ = 〈λ”1/u1, . . . , λ”max/umax, . . . , 1/ui〉. Then,

ChN (L) = u1 + · · ·+ (umax − umax−1)(1−max(λ1, . . . , λmax−1))

ChN (L′) = u1 + · · ·+ (umax − umax−1)(1−max(λ′1, . . . , λ
′
max−1))

L1 = 〈α/L, β/L”〉 and L2 = 〈α/L′, β/L” are two compound lotteries, we have:

L1 = 〈max(λ1, βλ”1)/u1, . . . , 1/umax, . . . , 1/ui〉
L2 = 〈max(λ′1, βλ”1)/u1, . . . , 1/umax, . . . , 1/ui〉
ChN (L1) = u1 + · · ·+ (umax − umax−1)(1−max(max(λ1, βλ”1),

. . . ,max(λmax−1, βλ”max−1)))

ChN (L2) = u1 + · · ·+ (umax − umax−1)(1−max(max(λ′1, βλ”1),

. . . ,max(λ′max−1], βλ”max−1)))

⇒ If ChN (L) > ChN (L′) then ChN (L1) ≥ ChN (L2)

• Case 3: L and L” have the same maximal utility denoted by umax and L′ has as

maximal utility ui.

– If umax > ui

L = 〈λ1/u1, . . . λi/ui, . . . , 1/umax〉,
L′ = 〈λ′1/u1, . . . , 1/ui > and
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L” = 〈λ”1/u1, . . . , λ”i/ui, . . . , 1/umax〉. Then,

ChN (L) = u1 + · · · + (ui − ui−1)(1 − max(λ1, . . . , λi−1)) + · · · + (umax −
umax−1)(1−max(λ1, . . . , λmax−1))

ChN (L′) = u1 + · · ·+ (ui − ui−1)(1−max(λ′1, . . . , λ
′
i−1)).

L1 = 〈α/L, β/L”〉 and L2 = 〈α/L′, β/L” are two compound lotteries, we have:

L1 = 〈max(λ1, βλ”1)/u1, . . . ,max(λi, βλ”i)/ui, . . . , 1/umax〉
L2 = 〈max(λ′1, βλ”1)/u1, . . . , 1/ui〉
ChN (L1) = u1 + . . .

+ (ui − ui−1)(1−max(max(λ1, βλ”1), . . . ,max(λi−1, βλi−1))) + · · ·+ (umax −
umax−1)(1−max(max(λ1, βλ”1),

. . . ,max(λmax−1, βλ”max−1)))

ChN (L2) = u1 + . . .

+ (ui − ui−1)(1−max(max(λ′1, βλ”1), . . . ,max(λ”i−1, βλ”i−1)))

⇒ If ChN (L) > ChN (L′) then ChN (L1) ≥ ChN (L2).

– If umax < ui

L = 〈λ1/u1, . . . , 1/umax〉,
L′ = 〈λ′1/u1, . . . , λ

′
max/umax, . . . , 1/ui〉 and

L” = 〈λ”1/u1, . . . , 1/umax〉. Then,

ChN (L) = u1 + · · ·+ (umax − umax−1)(1−max(λ1, . . . , λmax−1))

ChN (L′) = u1 + · · ·+ (umax− umax−1)(1−max(λ′1, . . . , λ
′
max−1)) + · · ·+ (ui−

ui−1)(1−max(λ′1, . . . , λ
′
i−1))

L1 = 〈α/L, β/L”〉 and L2 = 〈α/L′, β/L” are two compound lotteries, we have:

L1 = 〈max(λ1, βλ”1)/u1, . . . , 1/umax〉
L2 = 〈max(λ′1, βλ”1)/u1, . . . , 1/umax, . . . , 1/ui〉
ChN (L1) = u1 + · · ·+ (umax − umax−1)(1−max(max(λ1, βλ”1),

. . . ,max(λmax−1, βλ”max−1)))

ChN (L2) = u1 + · · ·+ (umax − umax−1)(1−max(max(λ′1, βλ”1),

. . . ,max(λ′max1
, βλ”max−1)))

⇒ If ChN (L) > ChN (L′) then ChN (L1) ≥ ChN (L2).
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• Case 4: L has a maximal utility denoted by umax and L′ and L′′ have the same

maximal utility ui.

– If umax > ui

L = 〈λ1/u1, . . . , λi/ui, . . . , 1/umax〉,
L′ = 〈λ′1/u1, . . . , 1/ui〉and
L”= 〈λ”1/u1, . . . , 1/ui〉. Then,

ChN (L) = u1 + · · · + (ui − ui−1)(1 − max(λ1, . . . , λi−1)) + · · · + (umax −
umax−1)(1−max(λ1, . . . , λmax−1))

ChN (L′) = u1 + · · ·+(ui−ui−1)(1−max(λ′1, . . . , λ
′
i−1))⇒ ChN (L) > ChN (L′)

L1 = 〈α/L, β/L”〉 and L2 = 〈α/L′, β/L” are two compound lotteries, we have:

L1 = 〈max(λ1, βλ”1)/u1, . . . ,max(λi, β)/ui, . . . , 1/umax〉
L2 = 〈max(λ′1, βλ”1)/u1, . . . , 1/ui >

ChN (L1) = u1 + . . .

+ (ui−ui−1)(1−max(max(λ1, βλ”1), . . . ,max(λi−1, β) + (umax−umax−1)(1−
max(max(λ1, βλ”1), . . . ,max(λmax−1, βλ”max−1)))

ChN (L2) = u1 + . . .

+ (ui − ui−1)(1−max(max(λ′1, βλ”1), . . . ,max(λ′i−1, βλ”i−1)))

⇒ ChN (L1) > ChN (L2).

– If umax < ui

L = 〈λ1/u1, . . . , 1/umax〉,
L′ = 〈λ′1/u1, . . . , λ

′
max/umax, . . . , 1/ui〉 and

L′′ = 〈λ”1/u1, . . . , λ”max/umax, . . . , 1/ui〉. Then,

ChN (L) = u1 + · · ·+ (umax − umax−1)(1−max(λ1, . . . , λmax−1))

ChN (L′) = u1 + · · ·+ (umax− umax−1)(1−max(λ′1, . . . , λ
′
max−1)) + · · ·+ (ui−

ui−1)(1−max(λ′1, . . . , λ
′
i−1))

ChN (L′) > ChN (L)

L1 = 〈α/L, β/L”〉 and L2 = 〈α/L′, β/L” are two compound lotteries, we have:

L1 = 〈max(λ1, βλ”1)/u1, . . . , 1/umax〉
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L2 = 〈max(λ′1, βλ”1)/u1, . . . ,max(λ′max, βλ”max), . . . , 1/ui〉
ChN (L1) = u1 + · · ·+ (umax − umax−1)(1−max(max(λ1, βλ”1),

. . . ,max(λmax−1, βλ”max−1)))

ChN (L2) = u1 + · · ·+ (umax − umax−1)(1−max(max(λ′1, βλ”1),

. . . ,max(λ′max−1, βλ”max−1) + · · · + (ui − ui−1)(1 −
max(max(λ′1, βλ”1), . . . ,max(λ′i−1, βλ”i−1)))

⇒ ChN (L2) > ChN (L1).

Possibility-based Choquet integrals

Let three possibilistic lotteries L = 〈λ1/u1, . . . , 1/un〉,
L′ = 〈λ′1/u1, . . . , 1/un〉 and L” = 〈λ”1/u1, . . . , 1/un〉. Then,

ChΠ(L) = u1 + (u2 − u1) ∗ 1 + · · ·+ (un − un−1) ∗ 1

and ChΠ(L′) = u1 + (u2 − u1) ∗ 1 + · · ·+ (un − un−1) ∗ 1.

⇒ ChΠ(L) = ChΠ(L′). There are two cases:

• Case 1: If α = 1

L1 = 〈1/L, β/L”〉 and L2 = 〈1/L′, β/L” are two compound lotteries, we have:

L1 = 〈max(λ1, βλ”1)/u1, . . . ,max(1, β)/un〉, and

L2 = 〈max(λ′1, βλ”1)/u1, . . . ,max(1, β)/un〉.
⇒ ChΠ(L1) = ChΠ(L2).

• Case 2: If β = 1: similar to the first case.

4.7.3 The maximal possibility degree is affected to the minimal utility

The third polynomial case of possibilistic Choquet integrals (denoted by Min-Class) con-

cerns possibilistic lotteries where the maximal possibility degree namely 1 is affected to the

minimal utility in the lottery. This class is defined as follows:

Definition 4.4 Let U = {u1, . . . un} be the set of possible utilities where umin is the minimal

utility in a possibilistic lottery such that umin ≤ un. In the case of Min-Class, each lottery

L ∈ L is as follows: L = 〈1/umin, . . . , λn/un〉.



Chapter 4: Possibilistic Decision Trees 108

Proposition 4.10 DT-OPT-ChN is polynomial in the case of Min-Class.

Proof. [Proof of Proposition 4.10]

In what follows, we present necessary proof in numerical setting (the same principle is

valid for the ordinal setting).

We will consider the case where α = 1

• Case 1: L, L′ and L” have the same minimal utility ui.

L = 〈1/ui, . . . , λn/un〉 ⇒ ChN (L) = ui

L′ = 〈1/ui, . . . , λ′n/un〉 ⇒ ChN (L′) = uj

L” = 〈1/ui, . . . , λ”n/un〉,
L1 = 〈1/ui, . . . ,max(λn, βλ”n)/un〉,
L2 = 〈1/ui, . . . ,max(λ′n, βλ”n)/un〉
⇒ ChN (L1) = ChN (L2) = ui.

• Case 2: L and L′ have the same minimal utility ui but not L”.

L = 〈1/ui, . . . , λn/un〉 and L′ = 〈1/ui, . . . , λ′n/un〉
⇒ ChN (L) = ChN (L′) = ui and L” = 〈1/uj , . . . , λ”n/un〉.

– If L” = 〈1/uj , . . . , λ”n/un〉 (i.e. ui < uj)

L1 = 〈1/ui, . . . ,max(αλ′n, βλ”n)/un〉,
L2 = 〈1/ui, . . . ,max(αλ′n, βλ”n)/un〉
⇒ ChN (L1) = ChN (L2) = ui.

– If L” = 〈1/uj , . . . , λ”i/ui, . . . , λ”n/un〉 (i.e. ui > uj)

L1 = 〈β/uj , . . . ,max(αλn, βλ”n)/un >,

L2 = 〈β/uj , . . . ,max(αλ′n, βλ”n)/un >

⇒ ChN (L1) = ChN (L2).

• Case 3: L and L′ don’t have the same minimal utility.

L = 〈1/ui, . . . , λn/un〉 and L′ = 〈1/uj , . . . , λ′n/un〉
⇒ ChN (L) = ui and ChN (L′) = uj .

– If L” = 〈1/ui, . . . , λ”n/un〉 (i.e. ui > uj)

L1 = 〈1/ui, . . . ,max(αλ′n, βλ”n)/un〉,
L2 = 〈1/uj , . . . ,max(αλ′i, βλ”i)/ui, . . . ,max(αλ′n, βλ”n)/un〉
= 〈1/uj , . . . ,max(λ′i, β)/ui, . . . ,max(αλ′n, βλ”n)/un〉
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⇒ ChN (L1) = ui > ChN (L2) = uj .

– If L” = 〈1/ui, . . . , λ”j/uj , . . . , λ”n/un〉 (i.e. ui < uj)

L1 = 〈1/ui, . . . ,max(αλ′n, βλ”n)/un >,

L2 = 〈β/ui, βλ”i+1/ui+1, . . . , βλ”j−1/uj−1, 1/uj ,

. . . ,max(αλ′n, βλ”n)/un >

⇒ ChN (L1) = ui

ChN (L2) = ui + (ui+1−ui)(1−β) + (ui+2−ui+1)(1−max(β, βλ”i+1)) + · · ·+
(uj − uj−1)(1−max(β, . . . , βλ”j−1)) + (uj+1 − uj)(1−max(β, . . . , 1)) + · · ·+
(un − un−1)(1−max(β, . . . , 1))

= ui + (ui+1 − ui)(1 − β) + (ui+2 − ui+1)(1 −max(β, βλ”i+1)) + · · · + (uj −
uj−1)(1−max(β, . . . , βλ”j−1)) + (uj+1 − uj)(1− 1) + · · ·+ (un − un−1)(1− 1)

= ui + (ui+1 − ui)(1 − β) + (ui+2 − ui+1)(1 − max(β, βλ”i+1)) + · · · + (uj −
uj−1)(1−max(β, . . . , βλ”j−1))

Let X = (ui+1−ui)(1−β)+(ui+2−ui+1)(1−max(β, βL′′[ui+1]))+ · · ·+(uj−
uj−1)(1−max(β, . . . , βλ”j−1))

X ≥ 0 since (ui+1 − ui)(1− β) ≥ 0

(ui+2 − ui+1)(1−max(β, βλ”i+1) ≥ 0

. . .

(uj − uj−1)(1−max(β, . . . , βλ”j−1)) ≥ 0

⇒ ChN (L2) = ui +X (s.t. X ≥ 0)

⇒ ChN (L1) ≤ ChN (L2)

• Case 4: L and L′ have not the same minimal utility i.e.

L = 〈1/uj , . . . , λn/un〉 and

L′ = 〈1/ui, . . . , λ′n/un〉
⇒ ChN (L) = uj and ChN (L′) = ui

– If L” = 〈1/ui, . . . , λ”n/un > (i.e. ui > uj): similar to the first item in the

previous case

– If L” = 〈1/ui, . . . , λ”j/uj , . . . , λ”n/un〉 (i.e. ui < uj): similar to the second

item in the previous case

• Case 5: The minimal utility in L (resp. L′, L”) is ui (resp. uj , uk).

– If ui > uj > uk,

L = 〈1/ui, . . . , λn/un〉,
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L′ = 〈1/uj , . . . , λ′i/ui, . . . , λ′n/un〉
and L” = 〈1/uk, . . . , λ”j/uj , . . . , λ”i/ui, . . . , λ”n/un〉
⇒ ChN (L) = ui and ChN (L′) = uj , ChN (L) > ChN (L′)

L1 = 〈β/uk, . . . , βλj/uj , . . . , 1/ui, . . . ,max(λn, βλ”n)/un〉
L2 = 〈β/uk, . . . , 1/uj , . . . , 1/ui, . . . ,max(λ′n, βλ”n)/un〉
ChN (L1) = uk + (uk+1 − uk)(1− β) + · · ·+ (ui+1 − ui)(1− 1)

ChN (L2) = uk + · · ·+ (uj+1 − uj)(1− 1) < ChN (L1).

– If ui > uk > uj

L = 〈1/ui, . . . , λn/un〉,
L′ = 〈1/uj , . . . , λ′k/uk, . . . , λ′i/ui, . . . , λ′n/un〉
and L” = 〈1/uk, . . . , λ”i/ui, . . . , λ”n/un〉
⇒ ChN (L) = ui and ChN (L′) = uj , ChN (L) > ChN (L′)

L1 = 〈β/uk, . . . , 1/ui, . . . ,max(λn, βλ”n)/un〉
L2 = 〈1/uj , . . . ,max(λ′k, βλ”k/uk, . . . ,max(λ′n, βλ”n)/un >

ChN (L1) = uk + · · ·+ (ui − ui−1)(1−max(β, . . . ,max(λi−1, βλ”i−1)))

ChN (L2) = uj .

⇒ ChN (L1) > ChN (L2).

– If uj > ui > uk

L = 〈1/ui, . . . , λj/uj , . . . , λn/un〉,
L′ = 〈1/uj , . . . , λ′n/un〉
and L” = 〈1/uk, . . . , λ”i/ui, . . . , λ”j/uj , . . . , λ”n/un〉
⇒ ChN (L) = ui and ChN (L′) = uj , ChN (L′) > ChN (L)

L1 = 〈β/uk, . . . , 1/ui, . . . ,max(λn, βλ”n)/un >

L2 = 〈β/uk, . . . , βλ”i/ui, . . . , 1/uj , . . . ,max(λ′n, βλ”n)/un >

ChN (L1) = uk + · · ·+ (ui+1 − ui)(1− 1)

ChN (L2) = uk+ · · ·+(ui+1−ui)(1−max(β, . . . ,max(λ′i, βλ”i)))+ · · ·+(uj+1−
uj)(1− 1)

ChN (L2) = ChN (L1) + (ui+1 − ui)(1 − max(β, . . . ,max(λ′i, βλ”i))) + · · · +
(uj+1 − uj)(1− 1)

⇒ ChN (L2) > ChN (L1).

– If uk > ui > uj

L = 〈1/ui, . . . , λk/uk, . . . , λn/un〉,
L′ = 〈1/uj , . . . , λ′i/ui, . . . , λ′k/uk, . . . , λ′n/un〉
and L” = 〈1/uk, . . . , λ”n/un〉
⇒ ChN (L) = ui and ChN (L′) = uj , ChN (L) > ChN (L′)
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L1 = 〈1/ui, . . . ,max(λk, β)/uk, . . . ,max(λn, βλ”n)/un〉
L2 = 〈1/uj , . . . ,max(λ′n, βλ”n)/un〉
ChN (L1) = ui

ChN (L2) = uj

⇒ ChN (L1) > ChN (L2).

– If uk > uj > ui

L = 〈1/ui, . . . , λj/uj , . . . , λk/uk, . . . , λn/un〉,
L′ = 〈1/uj , . . . ,′k /uk, . . . , λ′n/un〉
and L” = 〈1/uk, . . . , λ”n/un〉
⇒ ChN (L) = ui and ChN (L′) = uj , ChN (L′) > ChN (L)

L1 = 〈1/ui, . . . , λj/uj , . . . ,max(λn, βλ”n)/un〉
L2 = 〈1/uj , . . . ,max(λ′n, βλ”n)/un〉
ChN (L1) = ui

ChN (L2) = uj

⇒ ChN (L1) > ChN (L2).

4.8 Conclusion

In this chapter, we have developed possibilistic decision trees where possibilistic decision

criteria presented in Chapter 2 are used. We have proposed a full theoretical study of

the complexity of the problem of finding an optimal strategy in possibilistic decision trees.

Table 4.8 summarizes the results of this study.

Upes Uopt PU LΠ LN OMEU ChN ChΠ

P P P P P P NP-hard NP-hard

Table 4.2: Results about the Complexity of ΠTree − OPT for the different possibilistic

criteria

In fact, we have developed necessary proofs for each decision criterion in order to show if

the monotonicity property is verified (to apply dynamic programming in order to find the

optimal strategy) or not. Then, we have shown that strategy optimization in possibilistic

decision trees is a polynomial problem for most of possibilistic decision criteria except

for possibilistic Choquet integrals. Indeed, we have shown that the problem of finding a
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strategy optimal w.r.t possibility-based or necessity-based Choquet integrals is NP-hard via

a reduction from a 3SAT problem. Nevertheless, we have identified three particular cases

when these criteria satisfy the monotonicity property.

In next chapter, we develop an alternative solving approach for possibilistic decision tree

with Choquet integrals since dynamic programming cannot be applied. More precisely, we

propose an implicit enumeration approach via a Branch and Bound algorithm.
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5.1 Introduction

In the previous chapter, we have shown that the problem of finding an optimal strategy w.r.t

possibilistic Choquet integrals is NP-hard. As a consequence, the application of dynamic

programming may lead to suboptimal strategies.

As an alternative, we propose to proceed by implicit enumeration via a Branch and

Bound algorithm based on an optimistic evaluation of the Choquet value of possibilistic

decision trees.

In order to study the feasibility of our proposed solutions for finding the optimal strategy

w.r.t possibilistic decision criteria in decision trees, we propose also an experimental study.

In what follows, Section 5.1 presents the Branch and Bound algorithm and Section 5.2

gives our experimental results.

The main results of this chapter are published in [7, 8].

5.2 Solving algorithm for non polynomial possibilistic Cho-

quet integrals

As stated by Proposition 4.8, 4.9 and 4.10, dynamic programming can be applied for only

some particular classes of Choquet-based possibilistic decision trees i.e. Binary-Class, Max-

Class and Min-Class. As an alternative, we propose to proceed by implicit enumeration via

a Branch and Bound algorithm. Our choice was motivated by the success of this approach

with the Rank Dependent Utility (RDU) criterion [39] where the implicit enumeration

outperforms the resolute choice [58].

The Branch and Bound algorithm (denoted by BB and outlined by Algorithm 5.1) takes

as argument a partial strategy δ and an upper bound of the best Choquet value it can reach.

It returns the value ChoptN (respectively ChoptΠ ) of the best strategy denoted by δopt. The

initial parameters of this algorithm are:

• The empty strategy (δ(Di) = ⊥,∀Di) for δ.

• The value of the strategy provided by dynamic programming algorithm for δopt. In-

deed, even not necessarily providing an optimal strategy, this algorithm may provide

a good one, at least from a consequentialist point of view.
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At each step, the current partial strategy, δ, is developed by the choice of an action for

some unassigned decision node. When several decision nodes need to be developed, the one

with the minimal rank (i.e. the former one according to the temporal order) is developed

first. The recursive procedure stops when either the current strategy is complete (then δopt

and ChoptN may be updated (resp. ChoptΠ )) or proves to be worst than δopt in any case.

To this extent, we call a function that computes a lottery (denoted by Lottery(δ)) that

overcomes all those associated with the complete strategies compatible with δ and use

ChN (Lottery(δ)) (resp. ChΠ(Lottery(δ))) as an upper bound of the Choquet value of

the best strategy compatible with δ the evaluation is sound, because whatever L,L′, if L

overcomes L′, then ChN (L) ≥ ChN (L′) (resp. ChΠ(L) ≥ ChΠ(L′)).

Whenever ChN (Lottery(δ)) ≤ ChoptN (resp. ChΠ(Lottery(δ)) ≤ ChoptΠ ), the algorithm

backtracks, yielding the choice of another action for the last decision nodes considered.

Moreover when δ is complete, Lottery(δ) returns L(D0, δ); the upper bound is equal to the

Choquet value when computed for a complete strategy.

Function Lottery (Algorithm 5.2) inputs a partial strategy. It proceeds backwards,

assigning a simple lottery 〈1/u(NLi)〉 to each leaf in the decision tree.

In the Branch and Bound algorithm (Algorithm 5.1), the fuzzy measure µ may be the

possibility measure Π or the necessity measure N according to the problem at hand.
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Algorithm 5.1: BB

Data: A (possibly partial) strategy δ, its Choquet value Chδµ

Result: Choptµ % also memorizes the best strategy found so far, δopt

begin

if δ = ∅ then Dpend = {D1} else

Dpend = {Di ∈ D s.t. δ(Di) = ⊥ and ∃Dj , δ(Dj) 6= ⊥ and Di ∈ Succ(δ(Dj)) }

if Dpend = ∅ (% δ is a complete strategy) then

if Chδµ > Choptµ then

δopt ← δ

return Chδµ

else

Dnext ← arg minDi∈Dpend i

foreach Ci ∈ Succ(Dnext) do

δ(Dnext)← Ci

Eval← Chµ(Lottery(D0, δ))

if Eval > Choptµ then

Choptµ ← max(Chδµ(δ), Eval)

return Choptµ

end
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Algorithm 5.2: Lottery

Data: a node X, a (possibly partial) strategy δ

Result: LX % LX [ui] is the possibility degree to have the utility ui
begin

for i ∈ {1, .., n} do LX [ui]← 0

if X ∈ LN then LX [u(X)]← 1

if X ∈ C then

foreach Y ∈ Succ(X) do

LY ← Lottery(Y, δ)

for i ∈ {1, .., n} do LX [ui]← max(LX [ui], πX(Y )⊗ LY [ui])

% ⊗ = min in the ordinal setting ;

% ⊗ = ∗ in the numerical setting

if X ∈ D then

if δ(X) 6= ⊥ then LX = Lottery(δ(X), δ) else

if |Succ(X)| = 1 then

LX = Lottery(δ(Succ(X)), δ)

else

foreach Y ∈ Succ(X) ∩Nδ do

LY ← Lottery(Y, δ)

for i ∈ {1, .., n} do GcY [ui]← 1−maxuj<uiLY [uj ]

% Compute the upper envelop of the cumulative functions)

for i ∈ {1, .., n} do Gc[ui]← maxY ∈Succ(X)∩Nδ G
c
Y [ui]

% Compute Rev(Gc)

LX [un]← 1

for i ∈ {n− 1, .., 1} do LX [ui]← 1−Gc[ui+1]

return LX

end

At each chance node Ci, we perform a composition of the lotteries in Succ(Ci) according

to the principle of reduction of possibilistic lotteries presented in Chapter 2 (Section 2.2).

At each decision node Di we choose a lottery that overcomes all those in Succ(Di). To this

end, let us use the following notations and definitions:

• Given a simple lottery L ∈ L, GcL is the possibilistic decumulative function of a lottery
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L such that ∀u ∈ U :

GcL(u) =

{
N(L ≥ u) if µ = N

Π(L ≥ u) if µ = Π.
(5.1)

• Given a set G = {GcL1
, . . . , GcLk} of decumulative functions, the upper envelop of G is

the decumulative function GcG defined by:

∀u ∈ U,GcG(u) = maxGcLi∈G
GcLi(u). (5.2)

• Given a decumulative function GcG on U , Rev(Gc) gives a lottery defined by:

Rev(Gc)(ui) =

{
1 if i = n

1−GcG(ui+1) if i ∈ {1, . . . , n− 1}.
(5.3)

Proposition 5.1 The possibilistic decumulative function associated to a lottery Rev(Gc)

is equal to Gc.

Proof. [Proof of Proposition 5.1]

We have by definition, GcRev(Gc)(u1) = 1 − Gc(u1). Moreover, ∀i = 2, n,Rev(Gc)(ui) ≥
Rev(Gc)(ui−1).

Hence GcRev(Gc)(ui) = 1−maxj=1,i−1Rev(Gc)(uj) = 1−Rev(Gc)(ui−1).

Since Rev(Gc)ui−1 = 1−Gc(ui), we get GcRev(Gc)(ui) = Gc(ui).

Thus GcRev(Gc) = Gc.

As a consequence: Given a set {L1, . . . , Lk} ⊆ L of simple lotteries over U , G = {GcL1
, . . . , GcLk}

the set of their decumulative functions, we can check that: Rev(GcG) overcomes any lottery

Li ∈ {L1, . . . , Lk}.

Hence, the Choquet value of Lottery(D0, δ) is an upper bound of the Choquet value of

the best complete strategy compatible with δ, which proofs the correctness of our algorithm.

Example 5.1 Let us consider the possibilistic decision tree in Figure 5.1.

The exhaustive enumeration of this tree (Figure 5.1) leads to 5 possible strategies

∆ = {δ1, δ2, δ3, δ4, δ5, } represented in Table 5.1. The optimal strategy is δ3 with

ChN (δ3) = 0.675.

Let us start by the dynamic programming algorithm (Algorithm 4.1):
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Figure 5.1: Possibilistic decision tree

δi Li ChN (Li)

δ1 = {(D0, C1), (D1, C3), (D2, C5)} 〈0.2/0, 0.5/0.51, 1/1〉 0.653

δ2 = {(D0, C1), (D1, C3), (D2, C6)} 〈1/0, 0.5/0.51, 0.55/1〉 0

δ3 = {(D0, C1), (D1, C4), (D2, C5)} 〈0.1/0, 0.55/0.5, 1/1〉 0.675

δ4 = {(D0, C1), (D1, C4), (D2, C6)} 〈1/0, 0.55/0.5, 1/1〉 0

δ5 = {(D0, C2)} 〈1/0, 0.2/1〉 0

Table 5.1: Exhaustive enumeration of possible strategies in Figure 5.1

• Initially, we have δ = ∅ and N = D0 with succ(D0) = {C1, C2}.

• For Y = C1, LC1 = ProgDyn(C1, δ) since succ(C1) = {D1, D2} we have Y = D1 and

Y = D2.

– For Y = D1, we have LD1 = ProgDyn(D1, δ) and succ(D1) = {C3, C4}:

1. If Y = C3 then LC3 = 〈0.2/0, 0.5/0.51, 1/1〉 and
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ChN (LC3) = 0.653.

2. If Y = C4 then LC4 = 〈0.1/0, 0.6/0.5, 1/5〉 and

ChN (LC4) = 0.650. Since ChN (LC3) > ChN (LC4), so Y ∗ = C3, δ(D1) = C3

and LD1 = 〈0.2/0, 0.5/0.51, 1/1〉.

– For Y = D2, we have LD2 = ProgDyn(D2, δ) and succ(D2) = {C5, C6}:

1. If Y = C5 then LC5 = 〈0.01/0, 1/1〉 and

ChN (LC5) = 0.99.

2. If Y = C6 then LC6 = 〈1/0〉 and

ChN (LC6) = 0. Since ChN (LC5) > ChN (LC6), so Y ∗ = C5, δ(D2) = C5 and

LD2 = 〈0.01/0, 1/1〉.

⇒ LC1 = 〈0.55/LD1 , 1/LD2〉 and ChN (LC1) = 0.653.

• For Y = C2, LC2 = ProgDyn(C2, δ) we have:

LC2 = 〈1/0, 0.2/1〉 and ChN (LC2) = 0.

⇒ ChN (LC1) > ChN (LC2), so Y ∗ = C1, δ(D0) = C1 and

δ∗ = {(D0, C1), (D1, C3), (D2, C5)} with ChN (δ∗) = 0.653.

Note that the value of ChN (δ∗) obtained by dynamic programming is different from the one

obtained by exhaustive enumeration (i.e. 0.675) since as we have seen in Chapter 4 dynamic

programming does not guarantee optimal solutions since possibilistic Choquet integrals does

not satisfy the monotonicity property.

We propose now to apply the Branch and Bound algorithm (Algorithm 5.1) for the

evaluation. The major steps of this algorithm can be summarized as follows (we start with

the solution provided by dynamic programming i.e. ChN (δopt) = 0.653):

• δ = ∅ and ChoptN = 0.653 (lower bound given by dynamic programming).

BB calls ChN (Lottery(D0, (D0, C1)))

We have GcC3
= 〈1/0, 0.8/0.51, 0.5/1〉 and GcC4

= 〈1/0, 0.9/0.5, 0.4/1〉.
So Gc = 〈1/0, 0.9/0.5, 0.8/0.51, 0.5/1〉 and LD1 = 〈0.1/0, 0.2/0.5, 0.5/0.51, 1/1〉.

We have GcC5
= 〈1/0, 0.99/1〉 and GcC6

= 〈1/0, 0/1〉.
So Gc = 〈1/0, 0.99/1〉 and LD2 = 〈0.01/0, 1/1〉.
So, Lottery(D0, (D0, C1)) = (0.1/0, 0.2/0.5, 0.5/0.51, 1/1)

and Eval = ChN (Lottery(D0, (D0, C1))) = 0.703 > 0.653.
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• δ = (D0, C1) and ChoptN = 0.653.

BB calls ChN (Lottery(D0, ((D0, C1), (D1, C3)))).

Lottery(D0, ((D0, C1), (D1, C3))) = 〈0.2/0, 0.5/51, 1/1〉
and Eval = ChN (Lottery(D0, ((D0, C1), (D1, C3)))) = 0.653 = 0.653.

δ = (D0, C1) and ChoptN = 0.653.

BB calls ChN (Lottery(D0, ((D0, C1), (D1, C4))))

Lottery(D0, ((D0, C1), (D1, C4))) = 〈0.1/0, 0.55/0.5, 1/1〉
and Eval = ChN (Lottery(D0, ((D0, C1), (D1, C4)))) = 0.675 > 0.653.

• δ = ((D0, C1), (D1, C4)) and ChoptN = 0.1.

BB calls ChN (Lottery(D0, ((D0, C1), (D1, C4), (D2, C5)))),

Lottery(D0, ((D0, C1), (D1, C4), (D2, C5))) = 〈0.1/0, 0.55/0.5, 1/1〉
and Eval = ChN (Lottery(D0, ((D0, C1), (D1, C4), (D2, C5)))) = 0.675 > 0.653.

• δ = ((D0, C1), (D1, C4), (D2, C5)) and ChoptN = 0.653.

There is no more pending decision node. δopt ← ((D0, C1), (D1, C4), (D2, C5)) and

ChoptN = 0.675.

• δ = ((D0, C1), (D1, C4)) and ChoptN = 0.675.

BB calls ChN (Lottery(D0, ((D0, C1), (D1, C4), (D2, C6)))),

Lottery(D0, ((D0, C1), (D1, C4), (D2, C6))) = 〈1/0, 0.55/0.5, 0.55/1〉
and Eval = ChN (Lottery(D0, ((D0, C1), (D1, C4), (D2, C6)))) = 0 < 0.675.

• δ = ((D0, C1), (D1, C4), (D1, C5)) and

ChoptN = 0.675.

There is no more pending decision node, δopt ← ((D0, C1), (D1, C4), (D2, C5)) and

ChoptN = 0.675.

The algorithm eventually terminates with δopt = ((D0, C1), (D1, C4), (D2, C5)) and

ChoptN = 0.675 corresponds to the optimal strategy obtained by exhaustive enumeration (see

Table 5.1).

5.3 Experimental results

In order to show the feasibility of the studied algorithms in the case of possibilistic decision

trees using Choquet integrals, we propose an experimental study aiming at:



Chapter 5: Solving algorithm for Choquet-based possibilistic decision trees 122

• Compare results provided by dynamic programming w.r.t those of Branch and Bound

by computing the regret of applying the first algorithm even if it does not guarantee

the optimal values (as it is the case with Branch and Bound).

• Compare the execution CPU time of dynamic programming and Branch and Bound for

polynomial cases of possibilistic Choquet integrals (i.e. Binary-Class and Max-Class

for ChΠ, Binary-Class, Min-Class and Max-Class for ChN ).

To this end, we have implemented both dynamic programming and Branch and Bound

algorithms in Matlab 7.10.0. The experimental study was carried out on a PC with Duo

CPU 210 GHz and 4.00 GO (RAM).

The first step of our experimental study concerns the generation of binary possibilistic

decision trees with ND decision nodes, NC chance nodes (NC = ND ∗ 2) and NV utilities

(NV = ND +NC + 1). The depth of generated decision trees is ND − 1 (see Figure 5.2)

such that at each level i (0 ≤ i ≤ ND − 1) we have 2i nodes.
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Figure 5.2: Structure of constructed decision trees

Following this reasoning, we propose to consider 4 cases namely ND = 5, ND = 21,

ND = 85 and ND = 341. This means that the size of generated trees will be 31, 127, 511,
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2047 respectively. For utilities, we have randomly chosen values in the set U = {0, 1, . . . , 20}
(with a numerical interpretation). Conditional possibilities relative to chance nodes are also

chosen randomly in [0, 1] ensuring the possibilistic normalization.

Using these parameters, we have generated randomly a sample of 50 possibilistic deci-

sion trees for each tree size (i.e. 31, 127, 511 and 2047).

Quality of solutions provided by dynamic programming

Since the application of dynamic programming in the case of possibilistic Choquet inte-

grals can lead to a suboptimal strategy, we propose to estimate their quality by comparing

them to exact values generated by Branch and Bound. More precisely, we compute for

different trees the closeness value (denoted by Closeness) equal to VDP
VBB

such that VDP is

the possibilistic Choquet integrals relative to the optimal strategy provided by dynamic

programming and VBB by Branch and Bound. Clearly within the randomly generated trees

some of them correspond to particular cases where the two approaches are equivalent i.e.

Binary-Class, Min-Class and Max-Class.

Tree Size

Setting 31 127 511 2047

ChN Qualitative 0.998 0.843 0.632 0.190

Numerical 0.987 0.765 0.473 0.25

ChΠ Qualitative 1 0.85 0.693 0.32

Numerical 0.946 0.727 0.487 0.21

Table 5.2: The closeness value with ChN and ChΠ

Tree Size

Decision criterion 31 127 511 2047

ChN 99% 78% 75% 71%

ChΠ 98% 80% 73% 71%

Table 5.3: The percentage of polynomial cases

The experimental results, summarized in Table 5.2, confirm that the closeness value is

close to 1 for smallest decision trees (31 nodes) for the case of ChN and ChΠ in qualitative

and numerical settings. This means that for small trees, dynamic programming gives a very

good approximation of optimal strategies (about 99% for tree size equal to 31 and 80% for
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tree size equal to 127). This good approximation can be explained by the large number

of polynomial cases for smallest decision trees (about 99% for 31 nodes and 80% for 127

nodes) as it is presented in Table 5.3. For large trees, the closeness decreases approaching

to 0 for trees having 2047 nodes. Clearly the number of polynomial cases also decreases in

this case (about 70%).

Execution CPU time

Table 5.4 (resp. Table 5.5) gives different average execution CPU time for each size of

possibilistic decision trees with ChN (resp. ChΠ) in both qualitative and numerical set-

tings.

Tree Size

Algorithm 31 127 511 2047

Qualitative Dynamic Programming 0.119 3.160 69.605 1.6295e+003

setting Branch and Bound 0.276 7.144 121.751 2.6413e+006

Numerical Dynamic Programming 0.106 2.859 68.383 1.3541e+003

setting Branch and Bound 0.409 5.976 120.5095 2.3658e +006

Table 5.4: Execution CPU time for ChN (in seconds)

Tree Size

Algorithm 31 127 511 2047

Qualitative Dynamic Programming 0.1216 2.905 66.1384 3.9629e+003

setting Branch and Bound 0.284 5.967 118.178 4.0624e+003

Numerical Dynamic Programming 0.1226 2.5654 65.7173 13043e+003

setting Branch and Bound 0.314 5.484 118.559 2.323e+006

Table 5.5: Execution CPU time for ChΠ (in seconds)

First, we note that we have the same trend regarding the execution CPU time for ChN

and also for ChΠ in qualitative and numerical setting i.e. it increases according to the size

of the tree.

These results also show that dynamic programming is faster than Branch and Bound

algorithm since initially it computes the lower bound using dynamic programming.
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5.4 Conclusion

In this chapter, we have proposed a Branch and Bound algorithm to find optimal strategies

in possibilistic decision trees when the decision criteria are possibilistic Choquet integrals.

In fact in such a case we have shown that the application of dynamic programming can lead

to sub-optimal solutions. Then, we have performed experiments on different decision trees

built randomly in order to study the quality of solutions provided by dynamic programming

by comparing them to those of the Branch and Bound algorithm. We have also compared

the two algorithms w.r.t their execution CPU time. In the next chapter we will study

another graphical possibilistic model, namely possibilistic influence diagrams.
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6.1 Introduction

After developing possibilistic decision trees in Chapter 4 and 5, we are now interested by

the study of the possibilistic counterpart of influence diagrams in order to benefit from the

simplicity of these graphical decision models.

Depending on the quantification of chance and decision nodes, we distinguish two kinds

of possibilistic influence diagrams namely homogeneous and heterogeneous ones. For these

two classes, we propose indirect evaluation algorithms transforming them into possibilistic

decision trees (developed in the previous chapter) or into possibilistic networks [5].

This chapter is organized as follows: in Section 6.2, possibilistic influence diagrams

will be developed. In Section 6.3, we propose two evaluation algorithms of these graphical

decision models via a transformation into possibilistic decision trees or into possibilistic

networks.

6.2 Possibilistic influence diagrams

Roughly speaking, possibilitic influence diagrams, denoted by ΠIDu
⊗, have the same graph-

ical component as standard ones (seen in Chapter 3) i.e. they are composed of a set of

nodes N = D∪C ∪V where D is the set of decision node, C is the set of chance nodes and

V is the set of value nodes and a set of arcs A (informational and conditional arcs). This

is not the case of the numerical component which relies on the possibilistic framework such

that:

• For each chance node Ci ∈ C, we should provide conditional possibility degrees

Π(cij | pa(Ci)) of each instance cij of Ci in the context of each instance of its parents.

In order to satisfy the normalization constraint, these conditional distributions should

satisfy:

maxcij∈DciΠ(cij | pa(Ci)) = 1. (6.1)

In what follows ΠIDu
∗ (resp. ΠIDu

min) denotes possibilistic influence diagrams where

conditional possibility distributions are modeled in the numerical (resp. qualitative)

setting.

• For each value node Vi ∈ V , a set of utilities U is defined in the context of each instan-

tiation pa(Vi) of its parents Pa(Vi). In what follows ΠID∗⊗ (resp. ΠIDmin
⊗ ) denotes

possibilistic influence diagrams where utilities are numerical (resp. qualitative).
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• Likewise standard influence diagrams, decision nodes in possibilistic IDs are not quan-

tified.

Since decision nodes are not quantified, they act differently from chance nodes, thus for

a given chance node Ci and a decision node Di, it is meaningless to consider Π(cij , dij). In

fact, what is meaningful is Π(cij | do(dij)) where do(dij) is the particular operator defined by

Pearl [63]. Using chain rules relative to possibilistic networks [5] and to standard influence

diagrams [47], the following chain rule for possibilistic IDs can be inferred:

π(C | D) =
⊗
Ci∈C

Π(Ci | Pa(Ci)) (6.2)

where
⊗

is the min operator in the case of qualitative possibility theory and the product

operator in the case of numerical possibility theory.

Like standard influence diagrams, a general proof of Equation 6.2 concerning the chain

rule of possibilistic influence diagrams can be done by considering a particular configuration

d of decisions. If this configuration is inserted in the possibilistic influence diagram then

we will get a possibilistic network representing Π(C|d). Using the chain rule of possibilistic

networks [6], we obtain two cases w.r.t the interpretation of the uncertainty scale:

1. For numerical setting, we have Π(C|d) is the product of all possibility potentials

attached to the decision variables instantiated to d.

2. For qualitative setting, we have Π(C|d) is the minimum of all possibility potentials

attached to the decision variables instantiated to d.

In other words, possibilistic influence diagrams are a compact representation of the joint

distribution relative to chance nodes conditioned by a configuration of decision nodes.

Different combinations between the quantification of chance and utility nodes in influ-

ence diagrams offer several kinds of possibilistic influence diagrams which can be grouped

into two principal classes [42]:

1. Homogeneous possibilistic influence diagrams where chance and value nodes

are quantified in the same setting. Within this class, we can distinguish two variants:

• Product-based possibilistic influence diagrams, denoted by ΠID∗∗, where both

dependencies between chance nodes and value nodes are quantified in a genuine

numerical setting.
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• Min-based possibilistic influence diagrams, denoted by ΠIDmin
min, where both de-

pendencies between chance nodes and value nodes are quantified in a qualita-

tive setting used for encoding an ordering between different states of the world

[41, 42].

2. Heterogeneous possibilistic influence diagrams where chance and value nodes

are not quantified in the same setting. Depending on this quantification, there are

two possible quantifications and heterogeneous possibilistic influence diagrams will be

denoted by ΠIDmin
∗ and ΠID∗min.

Different kinds of possibilistic influence diagrams are summarized in Table 6.1.

U/ Π Qualitative Numerical

Qualitative ΠIDmin
min ΠIDmin

∗
Numerical ΠID∗min ΠID∗∗

Table 6.1: Classification of possibilistic influence diagrams

The following example presents a min-based possibilistic influence diagram.

Example 6.1 The influence diagram of Figure 6.1 is defined by D = {D1, D2},
C = {A1, A2} and V = {U}.

D1 

A2 

U 

D2 
A1 

 

Figure 6.1: The graphical component of the influence diagram

Conditional possibilities are represented in Tables 6.2 and 6.3. Table 6.4 represents the

set of utilities for the value node U .

Let us represent in Table 6.5 the chain rule of the possibilistic influence diagram in

Figure 6.1 using the Equation 6.2 in the qualitative setting of possibility theory.
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A1 D1 π(A1 | D1)

T T 1

T F 0.4

F T 0.2

F F 1

Table 6.2: Conditional possibilities for A1

A2 D2 π(A2 | D2)

T T 0.3

T F 1

F T 1

F F 0.4

Table 6.3: Conditional possibilities for A2

D1 D2 A2 u(D1, D2, A2)

T T T 0.2

T T F 0.3

T F T 0.4

T F F 0.6

F T T 1

F T F 0

F F T 0.1

F F F 0.7

Table 6.4: The utility function u(D1, D2, A2)
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A1 A2 D1 D2 π(A1, A2 | D1, D2)

T T T T 0.3

T T T F 1

T T F T 0.3

T T F F 0.4

T F T T 1

T F T F 0.4

T F F T 0.4

T F F F 0.4

F T T T 0.2

F T T F 0.2

F T F T 0.3

F T F F 1

F F T T 0.2

F F T F 0.2

F F F T 1

F F F F 0.4

Table 6.5: The chain rule of the possibilistic influence diagram in Figure 6.1

6.3 Evaluation of possibilistic influence diagrams

Given a possibilistic influence diagram, it should be evaluated to determine optimal decisions

δ∗. Contrarily to standard influence diagrams where the decision criterion is the maximal

expected utility MEU , we can here use the panoply of possibilitic decision criterion (al-

ready presented in Chapter 2) under the constraint to respect the semantic underlying the

influence diagram (i.e. qualitative or quantitative).

More precisely, possibilistic likely dominance (LN and LΠ) and possibilistic Choquet

integrals (ChN and ChΠ) can be used with product-based possibilistic influence diagrams

since they can be defined with numerical possibility theory.

Besides, pessimistic and optimistic utilities (Upes, Uopt) and binary utilities (PU) can be

used in min-based influence diagrams since they are a purely ordinal possibilistic decision

criteria.

It is important to note that only possibilistic Choquet integrals can be used as deci-
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sion criteria in heterogeneous possibilistic influence diagrams, since they are appropriate to

handle heterogeneous informations.

Table 6.6 indicates for each kind of possibilistic influence diagrams, the possibilistic

decision criteria that can be used.

Upes Uopt PU LN LΠ OMEU ChN ChΠ

ΠIDmin
min

√ √ √ √ √ √ √ √

ΠID∗∗
√ √ √ √

ΠIDmin
∗

√ √

ΠID∗min
√ √

Table 6.6: Adaptation of possibilistic decision criteria to different kinds of possibilistic

influence diagrams

Few works were interested to this problem. Garcia et al. [33, 34] have proposed two

methods for the evaluation of possibilistic IDs using pessimistic and optimistic utilities.

Their first work consists on an indirect method based on the transformation of possibilistic

influence diagrams into possibilistic decision trees and the in the second one, they proposed

a variable elimination algorithm. Note that influence diagrams are developed using order

of magnitude expected utility (OMEU) as a decision criterion [53]. Therefore, a variable

elimination algorithm was used to compute the optimal strategy in an order of magnitude

influence diagram.

We propose now to consider all possible decision criteria via two indirect evaluation

methods: the first one is based on the transformation of possibilistic influence diagrams

into possibilistic decision trees and the second one is based on their transformation into

possibilistic networks [5, 6].

6.3.1 Evaluation of influence diagrams using possibilistic decision trees

A possibilistic influence diagram can be unfold into a possibilistic decision tree using trans-

formation method similar to the one proposed for the case of standard influence diagrams

(detailed in Chapter 3).

This transformation may lead to new dependencies between chance nodes which will be

quantified using initial possibility distributions. Then, utility values are the same as those

in the influence diagram and they will be affected to each leaf in the decision tree.
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Once the possibilistic decision tree is constructed, it should be evaluated to find the

optimal strategy. This obviously depends on the decision criterion, more precisely:

• Dynamic programming algorithm (Algorithm 4.1 in Chapter 4) should be applied for

other possibilistic decision criteria (i.e. Uopt, Upes, PU , LN , LΠ, OMEU) and for

polynomial cases of possibilistic Choquet integrals (i.e. Binary-Class, Max-Class and

Min-Class).

• Branch and Bound algorithm (Algorithm 5.1 in Chapter 5) should be applied in the

case of possibilistic Choquet integrals (i.e. ChN and ChΠ).

Example 6.2 The possibilistic decision tree in Figure 6.2 corresponds to the transformation

of the influence diagrams of Figure 6.1.
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Figure 6.2: The possibilistic decision tree corresponding to the transformation of the influ-

ence diagrams of Figure 6.1

Suppose that we will use the optimistic utility criterion Uopt (Equation 2.10) as decision

criterion, then the application of the dynamic programing algorithm generates two optimal
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strategies δ∗1 = {(D1 = T ), (D2 = F )} and δ∗2 = {(D1 = F ), (D2 = F )} with Uopt(δ
∗
1) = 0.4

and Uopt(δ
∗
2) = 0.4 as it is presented in Figure 6.3.
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Figure 6.3: Optimal strategies in possibilistic decision tree in Figure 6.2

Clearly, the size of the decision tree can grow exponentially w.r.t the size of the influence

diagrams since we should duplicate several parts of the decision tree in order to represent

all possible scenarios. This drawback of decision trees encourages us to explore another

track by transforming influence diagrams into compact structures which are possibilistic

networks.

6.3.2 Evaluation of influence diagrams using possibilistic networks

The idea of this evaluation method is to adapt the Cooper’s method [14] to our context by

morphing the initial influence diagram into a possibilistic network, then to use it in order

to perform computations in a local manner via propagation algorithms. In fact possibilistic

networks [32] are possibilitic counterparts of Bayesian networks and can be defined in a

min-based or product-based version.
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Moreover, several propagation algorithms are available with such a networks; some of

them are adaptations of Pearl and Jensen algorithms [5, 6, 10, 32] and others are dedicated

to min-based possibilistic networks like the anytime algorithm [5, 6].

It is important to note that, a propagation algorithm in a possibilistic network is a form

of dynamic programming. So, this indirect method of evaluation can be used only in the

case of decision criteria that satisfy the monotonicity property (i.e. Upes, Uopt, PU , LN ,

LΠ, OMEU and polynomial classes of possibilistic Choquet integrals).

In our work, we offer the possibility of evaluating possibilistic influence diagrams with

several value nodes using a pretreatment on the influence diagram before its transformation

into a possibilistic network. The pretreatment step consists on the reduction of the number

of value nodes to one (denoted by Vr) that will inherit the parents of all value nodes. The

value node Vr will have the minimum of utilities, formally:

u(Vr | pa(Vr)) = min
i=1...k

u(Vi | pa(Vr)) (6.3)

The key idea of the proposed algorithm is to transform decision and the value node into

chance nodes in order to obtain possibilistic networks and then, perform propagation in this

secondary structure.

New chance nodes obtained from the transformation of decision nodes should be char-

acterized by total ignorance namely:

Π(dij |pa(Di)) = 1, ∀Di ∈ D (6.4)

Value nodes will be transformed into a new binary chance nodes which will be quantified

according to the nature of utilities, we can distinguish two cases:

1. Assuming that utilities and possibilities are commensurable and uncertainty scale is

[0, 1], binary chance nodes issued from the transformation of value nodes should be

quantified as follows:

Π(Vr = T |pa(Vr)) = u(pa(Vr)). (6.5)

and

Π(Vr = F |pa(Vr)) = 1. (6.6)

2. If utilities and possibilities are not commensurable then each utility should be trans-

formed into the scale [0, 1]:
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Π(Vr = T |pa(Vr)) =
u(pa(Vr))− Umin
Umax − Umin

(6.7)

and

Π(Vr = F |pa(Vr)) = 1. (6.8)

where Umax (resp. Umin) is the maximal utility in U(pa(Vr)) (resp. is the minimal

utility in U(pa(Vr))).

Once the possibilistic network is constructed then the optimal strategy will computed

iteravely via appropriate propagation algorithms as we will detail after.

In order to illustrate the computation phase, we consider the case of qualitative possi-

bilistic utilities (i.e. Uopt, Upes and PU) when the uncertainty scale is purely ordinal which

is beneficial in the case of possibilistic decision making since the qualitative aspect of these

decision criteria is the particularity of this theory.

The evaluation of possibilistic influence diagrams starts by the instantiation of the last

decision Dm that maximizes the qualitative utility taking into account a set of evidence

E that contains the set of nodes with known values. Then for each decision Di, iterating

backwards with i = m − 1, . . . , 1 (w.r.t the temporal order of decisions) and considering a

set of evidence updated with selected instantiations of decisions in previous steps.

Given a min-based possibilistic network, we propose the following result to compute the

optimal instantiation of the decision Di maximizing the optimistic utility (Uopt):

Proposition 6.1 The optimal instantiation of the decision Di maximizing the optimistic

utility in a possibilistic network is determined as follows:

U∗opt(Di, E) = max
Di

Π(Vr = T |Di, E). (6.9)

Proof. [Proof of Proposition 6.1]

Using the definition of the optimistic utility in Chapter 2, Uopt(δ) can be expressed by:

Uopt(δ) = maxc∈C min(Π(c | δ(c)), u(c, δ(c))).

In a possibilistic network and at a stage i, U∗opt(Di, E) can be computer as follows:

U∗opt(Di, E) = maxDi
[
maxPa′(Vr) min(U(Pa(Vr)),Π(Pa′(Vr)|Di, E))

]
where Pa′(Vr) is the set of chance nodes in the parents of Vr (Pa′(V ) ⊂ Pa(V )). Since

U(Pa(Vr)) = Π(Vr = T |Pa(Vr)), we obtain:
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U∗opt(Di, E) = maxDi
[
maxPa′(Vr) min(Π(Vr = T |Pa(Vr)),Π(Pa′(Vr)|Di, E))

]
U∗opt(Di, E) = maxDi Π(Vr = T |Di, E).

The computation of Π(Vr = T |Dm,E) is ensured via propagation algorithms depending on

the DAG structure. In fact in the case of singly connected DAGs (DAG which contain no

loops) the possibilistic adaptation of Pearl’s algorithm is used and the possibilistic adap-

tation of junction trees propagation are appropriate for multiply connected DAGs (DAG

which can contain loops). If these two algorithms are blocked in min-based possibilistic

networks, the anytime algorithm can be used [5, 6]. The following proposition is available

for the case of pessimistic utilities:

Proposition 6.2 The optimal instantiation of the decision Di maximizing the pessimistic

utility in a possibilistic network is determined as follows:

U∗pes(Di, E) = max
Di

min
Pa′(Vr)

Π(Vr = T |Pa′(Vr), Di, E). (6.10)

where Pa′(Vr) is the set of chance node in the parents of the value node Vr.

Proof. [Proof of Proposition 6.2]

Pessimistic utility of a strategy δ is expressed as follows:

Upes(δ) = minc∈C max(nΠ(c | δ(c)), u(c, δ(c))) where n is transformation function such

that nΠ(δ ≥ ui) = Π(δ < ui). The pessimistic utility of a decision Di is computed in a

possibilistic network as follows:

U∗pes(Di, E) = maxDi
[
minPa′(Vr) max(U(Pa(Vr)),Π(Pa′(Vr)|Di, E))

]
where Pa′(Vr) is the set of chance nodes in the parents of Vr (Pa′(Vr) ∈ Pa(Vr)). Since

U(Pa(Vr)) = Π(Vr = T |Pa(Vr)), we obtain:

U∗pes(Di, E) = maxDi
[
minPa′(Vr) max(Π(Vr = T |Pa(Vr)),Π(Pa′(Vr)|Di, E))

]
U∗pes(Di, E) = maxDi minPa′(Vr) Π(Vr = T |Pa′(Vr), Di, E).

In a previous work [42], we have shown that in the case of binary utilities the transfor-

mation of the value node Vr into a chance node includes also the transformation of binary

utilities into a single one, namely:

Π(Vr = T | pa(Vr)) = min(u(pa(Vr)), u(pa(Vr))). (6.11)

and

Π(Vr = F | pa(Vr)) = 1. (6.12)

In this case the following proposition is available:
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Proposition 6.3 The optimal instantiation of the decision Di maximizing the binary utility

in a possibilistic network is determined as follows:

PU∗(Di, E) = max
Di

Π(Vr = T |Di, E). (6.13)

Example 6.3 Let us transform the possibilistic influence diagram in Figure 6.1 into a

possibilistic network in Figure 6.4.

A2 

A1 

D1 

D2 

U 

Figure 6.4: Obtained possibilistic network from the transformation of the influence diagram

in Figure 6.1

The decision nodes D1 and D2 are transformed into a chance nodes. The possibility

distributions relative to these chance nodes are represented in Table 6.7 and 6.8. The value

node U is transformed into a chance node with possibility distributions represented in Table

6.9.

D1 Π(D1)

T 1

F 1

Table 6.7: The conditional possibility for D1

The possibilistic network in Figure 6.4 is multiply connected, so the possibilistic adap-

tation of junction trees propagation will be used to make inference in this network and to

compute the optimal strategy w.r.t optimistic utility.

For finding the optimal strategy in the possibilistic network in Figure 6.4, we will start

by Di = D2 and E = ∅. We compute maxD2 Π(U = T | D2) we have:
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D2 D1 A1 Π(D2 | D1, A1)

T T T 1

T T F 1

T F T 1

T F F 1

F T T 1

F T F 1

F F T 1

F F F 1

Table 6.8: The conditional possibility for D2

D1 D2 A2 Π(U = T | D1, D2, A2) Π(U = F | D1, D2, A2)

T T T 0.2 1

T T F 0.3 1

T F T 0.4 1

T F F 0.6 1

F T T 1 1

F T F 0 1

F F T 0.1 1

F F F 0.7 1

Table 6.9: The conditional possibility for U

• Π(U = T | D2 = T ) = 0.3 and

• Π(U = T | D2 = F ) = 0.4.

So the best decision for D2 is D2 = F .

Let us now determine the best decision for D1 where E = (D2 = F ), we have:

• Π(U = T | D1 = T,D2 = F ) = 0.4 and

• Π(U = T | D1 = F,D2 = F ) = 0.4.

So, we have two optimal strategies ∆∗ = (D1 = T,D2 = F ) and (D1 = F,D2 = F ) with

U∗opt = 0.4 .
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6.4 Conclusion

In this chapter, we have developed possibilistic influence diagrams where possibilistic de-

cision criteria (seen in Chapter 2) are used. We have proposed evaluation algorithms for

these graphical models using possibilistic decision trees (detailed in Chapter 4) or possi-

bilistic networks according to the possibilistic decision criterion.

More precisely, if the decision criterion satisfies the monotonicity property then the

possibilistic influence diagram can be transformed into a possibilistic decision tree and

dynamic programming can be applied to find optimal strategy or it can be transformed

into a possibilistic network and possibilistic versions of propagation algorithms should be

applied according to the nature of their DAGs (singly or multiply connected). For these

types of possibilistic decision criteria, the use of the two indirect methods of evaluation is

possible and the choice between them depends on the size of the influence diagram. In fact,

for great size it is better to use possibilistic networks as a secondary structure since they

are more compact representations.

For possibilistic decision criteria that do not satisfy the monotonicity property, only

the transformation into a decision tree is allowed and Branch and Bound algorithm can be

applied to find the optimal strategy.

Note that if the decision criterion does not satisfy the monotonicity property and the

decision problem contains several variables then the determination of the optimal strategy

via its transformation into a possibilistic network is impossible and it cannot be evaluated.

In addition, if we proceed by transforming the influence diagram into a decision tree then

we obtain a huge tree.

An interesting future work concerns the evaluation of possibilistic influence diagrams

with possibilistic Choquet integrals in the case of huge decision problems.



General Conclusion

We have proposed in this thesis a contribution for possibilistic decision theory in both single

and sequential decision problems.

We have first developed classical decision theories and existing possibilistic decision cri-

teria by giving their axiomatic systems in the style of Von Neumann and Morgenstern and in

the style of Savage. Then, we have proposed possibilistic Choquet integrals in order to ben-

efit from possibility theory, to represent qualitative uncertainty, and from Choquet integrals

to represent different decision makers behaviors. In fact, we have developed necessity-based

Choquet integrals for cautious decision makers and possibility-based Choquet integrals for

adventurous decision makers.

Another contribution of this work concerns graphical decision models to deal with se-

quential decision making, more precisely we have developed possibilistic decision trees with

different possibilistic decision criterion presented in the first part of our thesis.

More precisely we have proposed a complexity study of decision making in possibilistic

decision trees which showed that the strategy optimization problem in possibilistic decision

trees is only NP-hard in the case of possibilistic Choquet integrals (ChN and ChΠ) which is

not the case of optimistic and pessimistic utility (Uopt and Upes), binary utility (PU), pos-

sibilistic likely dominance (LN and LΠ) and order of magnitude expected utility (OMEU)

where this problem is polynomial since they satisfy the monotonicity property.

These results allow us to propose appropriate evaluation algorithms since we show that

the dynamic programming can be applied in the case of Uopt, Upes, PU , LN , LΠ and OMEU

contrarily to the case of ChN and ChΠ where it can provide sub-optimal strategies. For

this particular case we have proposed a Branch and Bound algorithm that proceeds by

implicit enumeration to find the optimal strategy. Then, we have defined three particular

classes of possibilistic Choquet integrals that satisfy the monotonicity property and where

the polynomial dynamic programming can be applied.

141
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We also proposed an experimental study aiming to compare results of the two algorithms

on a synthetic benchmark. This study shows that dynamic programming, even if it generates

sub-optimal strategies, allows to have values which are close to those obtained by the Branch

and Bound algorithm for small decision trees.

Finally, we have proposed possibilistic influence diagrams to deal with huge decision

problems where decision trees cannot be generated. More precisely, we have identified

several types of possibilistic influence diagrams depending on the quantification of chance

and value nodes. To evaluate possibilistic influence diagrams, we have proposed two indirect

methods based on their transformation into a secondary structure. The first one transforms

possibilistic influence diagrams into possibilistic decision trees and the second one transforms

them into possibilistic networks. It is important to note that in the case of possibilistic

Choquet integrals, possibilistic influence diagrams cannot be transformed into possibilistic

networks since propagation algorithms are a form of dynamic programming This means

that for this particular case it is more appropriate to transform the influence diagram into

a decision tree and to evaluate it via the Branch and Bound algorithm.

As future work, we can first distinguish direct evaluation of possibilistic influence dia-

grams in the case of possibilistic Choquet integrals using variable elimination in order to

find the optimal strategy in the case of huge decision problems where the transformation

into possibilistic decision trees cannot be applied.

Another line of research will be the development of possibilistic unconstrained influence

diagrams (UID) [48] to deal with problems where the ordering of the decisions are unspec-

ified. In fact, an anytime algorithm has been proposed in [51] for solving a UID by an

indirect method which transforms the UID into a decision tree and performs a search in

this tree guided by a heuristic function.

Then, it will be interesting to develop possibilistic hybrid influence diagrams containing

a mix of discrete and continuous chance nodes by exploring the solving method based on

the approximation of a hybrid influence diagram with a discrete one by discretizing the

continuous chance nodes [17].
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