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Résumé

Ce travail contribue à la théorie de la décision possibiliste et plus précisément à la prise de décision
séquentielle dans le cadre de la théorie des possibilités, à la fois au niveau théorique et pratique.
Bien qu’attrayante pour sa capacité à résoudre les problèmes de décision qualitatifs, la théorie de
la décision possibiliste souffre d’un inconvénient important: les critères d’utilité qualitative possi-
bilistes comparent les actions avec les opérateurs min et max, ce qui entraîne un effet de noyade.
Pour surmonter ce manque de pouvoir décisionnel, plusieurs raffinements ont été proposés dans
la littérature. Les raffinements lexicographiques sont particulièrement intéressants puisqu’ils per-
mettent de bénéficier de l’arrière-plan de l’utilité espérée, tout en restant «qualitatifs». Cependant,
ces raffinements ne sont définis que pour les problèmes de décision non séquentiels.

Dans cette thèse, nous présentons des résultats sur l’extension des raffinements lexicographiques
aux problèmes de décision séquentiels, en particulier aux Arbres de Décision et aux Processus
Décisionnels de Markov possibilistes. Dans un premier temps, nous présentons des relations de
préférence lexicographiques optimistes et pessimistes entre les politiques avec et sans utilités in-
termédiaires, qui raffinent respectivement les utilités possibilistes optimistes et pessimistes. Nous
prouvons que les critères proposés satisfont le principe de l’efficacité de Pareto ainsi que la pro-
priété de monotonie stricte. Cette dernière garantit la possibilité d’application d’un algorithme
de programmation dynamique pour calculer des politiques optimales. Nous étudions tout d’abord
l’optimisation lexicographique des politiques dans les Arbres de Décision possibilistes et les Pro-
cessus Décisionnels de Markov à horizon fini. Nous fournissons des adaptations de l’algorithme de
programmation dynamique qui calculent une politique optimale en temps polynomial. Ces algo-
rithmes sont basés sur la comparaison lexicographique des matrices de trajectoires associées aux
sous-politiques. Ce travail algorithmique est complété par une étude expérimentale qui montre
la faisabilité et l’intérêt de l’approche proposée. Ensuite, nous prouvons que les critères lexi-
cographiques bénéficient toujours d’une fondation en termes d’utilité espérée, et qu’ils peuvent
être capturés par des utilités espérées infinitésimales.

La dernière partie de notre travail est consacrée à l’optimisation des politiques dans les Proces-
sus Décisionnels de Markov (éventuellement infinis) stationnaires. Nous proposons un algorithme
d’itération de la valeur pour le calcul des politiques optimales lexicographiques. De plus, nous
étendons ces résultats au cas de l’horizon infini. La taille des matrices augmentant exponentielle-
ment (ce qui est particulièrement problématique dans le cas de l’horizon infini), nous proposons
un algorithme d’approximation qui se limite à la partie la plus intéressante de chaque matrice de
trajectoires, à savoir les premières lignes et colonnes. Enfin, nous rapportons des résultats expéri-
mentaux qui prouvent l’efficacité des algorithmes basés sur la troncation des matrices.

Mots clefs: Décision séquentielle, théorie de possibilités, critères lexicographiques, arbres de dé-
cision, processus décisionnels de Markov





Abstract

This work contributes to possibilistic decision theory and more specifically to sequential decision-
making under possibilistic uncertainty, at both the theoretical and practical levels. Even though
appealing for its ability to handle qualitative decision problems, possibilisitic decision theory suf-
fers from an important drawback: qualitative possibilistic utility criteria compare acts through min
and max operators, which leads to a drowning effect. To overcome this lack of decision power,
several refinements have been proposed in the literature. Lexicographic refinements are particu-
larly appealing since they allow to benefit from the expected utility background, while remaining
“qualitative”. However, these refinements are defined for the non-sequential decision problems
only.

In this thesis, we present results on the extension of the lexicographic preference relations to
sequential decision problems, in particular, to possibilistic Decision trees and Markov Decision
Processes. We first present optimistic and pessimistic lexicographic preference relations between
policies with and without intermediate utilities that refine the optimistic and pessimistic qualita-
tive utilities respectively. We prove that these new proposed criteria satisfy the principle of Pareto
efficiency as well as the property of strict monotonicity. This latter guarantees that dynamic pro-
gramming algorithm can be used for calculating lexicographic optimal policies. Considering the
problem of policy optimization in possibilistic decision trees and finite-horizon Markov decision
processes, we provide adaptations of dynamic programming algorithm that calculate lexicographic
optimal policy in polynomial time. These algorithms are based on the lexicographic comparison
of the matrices of trajectories associated to the sub-policies. This algorithmic work is completed
with an experimental study that shows the feasibility and the interest of the proposed approach.
Then we prove that the lexicographic criteria still benefit from an Expected Utility grounding, and
can be represented by infinitesimal expected utilities.

The last part of our work is devoted to policy optimization in (possibly infinite) stationary
Markov Decision Processes. We propose a value iteration algorithm for the computation of lexi-
cographic optimal policies. We extend these results to the infinite-horizon case. Since the size of
the matrices increases exponentially (which is especially problematic in the infinite-horizon case),
we thus propose an approximation algorithm which keeps the most interesting part of each matrix
of trajectories, namely the first lines and columns. Finally, we reports experimental results that
show the effectiveness of the algorithms based on the cutting of the matrices.

Keywords: Sequential decision theory, possibility theory, lexicographic criteria, decision trees,
Markov decision processes
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INTRODUCTION
General introduction

In classical decision-making under uncertainty frameworks, one has to select an action among sev-
eral alternatives according to Expected utility [Neumann and Morgenstern, 1944, Savage, 1954],
considering that uncertainty is modeled via a probability distribution.

When the decisions are spread over time, a decision maker can choose between several punc-
tual actions with incapacity to predict, with certainty, the outcome event. This problem of sequen-
tial decision-making under uncertainty exists in multiple domains such as automatic control, robot
control, medical diagnosis, in-time stock management, modeling games etc. Several representa-
tion formalisms can be used for sequential decision problems, such as influence diagrams [Howard
and Matheson, 1984], Markov decision processes [Bellman, 1957b] and decision trees [Raiffa,
1968] etc.

Despite its success, the expected utility framework presents some limitations concerning the
representation of total ignorance and the handling of qualitative information. It is appropriate
when all probabilities are available or can be easily elicited from the decision-maker, which is not
always possible. Several generalizations or alternatives to classical probability theory have been
suggested in order to deal with imperfect information, including imprecise probabilities [Walley,
1991], evidence theory [Shafer, 1976] and possibility theory [Zadeh, 1978]. In the present work,
we are interested in possibility theory that offers a natural and simple framework to handle qual-
itative information, and especially in possibilistic qualitative decision theory [Giang and Shenoy,
2005, Weng, 2005, Dubois et al., 2001b, Godo and Zapico, 2001, Dubois et al., 1998a, Dubois and
Prade, 1995, Godo and Zapico, 2001]. The development of possibilistic decision theory has led to
the proposition of a series of possibilistic decision criteria, and in particular: optimistic and pes-
simistic possibilistic qualitative criteria (the qualitative counterparts of expected utility) [Dubois
and Prade, 1995], possibilistic likely dominance [Dubois et al., 2003], binary possibilistic util-
ity [Giang and Shenoy, 2001] and possibilistic Choquet integrals [Rebille, 2006,Dubois and Rico,
2016a].

Possibilistic (qualitative) decision theory is relevant, among other fields, for applications to

1



General introduction 2

sequential decision-making under uncertainty, where a suitable policy (i.e. a set of actions) is to
be found w.r.t. a qualitative decision criterion, starting from a qualitative description of the initial
world, of the available actions, of their uncertain effects and of the goal to reach (see e.g. [Bauters
et al., 2016, Ben Amor et al., 2014, Drougard et al., 2014, Drougard et al., 2013, Sabbadin, 2001,
Sabbadin et al., 1998]). It is important to note that, in compact sequential decision models, like
Markov decision processes and influence diagrams, the set of potential policies is combinatorial
and it may grow exponentially. The computation of an optimal policy for a given representation
and a given decision criterion is an algorithmic issue. In this thesis, we are interested to the
optimization of the possibilistic counterparts of decision trees and Markov decision processes,
which assume that the uncertain effects of actions can be represented by possibility distributions
and that utilities are qualitative.

Even though appealing for its ability to handle qualitative problems, possibilistic decision the-
ory suffers from an important drawback: the lack of discrimination power of its decision criteria.
As many of possibilistic decision criteria, optimistic and pessimistic qualitative utilities, compare
acts, and policies in sequential decision problems, through min and max operators, which leads to
a drowning effect: plausible enough bad or good consequences may blur the comparison between
acts that would otherwise be clearly differentiable. As a consequence, it appears that these criteria
do not respect the Pareto efficiency and the sure thing principle.

To overcome the lack of decision power of possibility theory, several refinements of possibilis-
tic decision criteria have been proposed for the non-sequential case decision problems [Dubois
et al., 2000, Giang and Shenoy, 2001, Fargier and Sabbadin, 2003, Fargier and Sabbadin, 2005,
Weng, 2005]. In particular, [Fargier and Sabbadin, 2003, Fargier and Sabbadin, 2005] have pro-
posed lexicographic refinements of possibilistic qualitative utilities that are appealing since they
allow to benefit from the Expected Utility background, while remaining ”qualitative”. However,
the latter is limited to non-sequential decision problems, and cannot take into account the fact that
the drowning effect can also appear due to the reduction of compound possibilistic policies into
simple possibility distributions on the consequences.

The aim of this thesis is to study and solve the problem of drowning effect in sequential
decision problems, in particular in possibilistic decision trees and possibilistic Markov decision
processes. We propose to extend the lexicographic refinements of qualitative utilities to sequential
problems-thus providing lexicographic possibilistic decision criteria that compare full policies
(and not simply their reductions).

This thesis is decomposed into two main parts:

The first part offers necessary background on sequential decision-making under uncertainty in
various aspects:

1. Chapter 1 recalls the expected utility decision model and introduces the basic concepts
relative to decision theory. We present possibility theory and we detail optimistic and pes-
simistic utilities as well as the shortcoming of these criteria. Then we evoke their refine-
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ments in non-sequential decision-making: first, we present a brief overview of approaches
that try to remedy the drowning effect problem, then EU-based refinements and lexico-
graphic refinements are developed.

2. Chapter 2 is devoted to sequential decision-making models. We especially focus on possi-
bilistic decision trees and possibilistic Markov decision processes. These graphical models
are presented in the possibilistic (qualitative) version and their solving algorithms w.r.t.
qualitative criteria are described.

The second part of the thesis represents our main contributions. It is structured as follows:

1. Chapter 3 presents the drowning effect in possibilistic decision trees, finite-horizon Markov
decision processes and also in stationary Markov decision processes. We then define lex-
icographic refinements of possibilistic decision criteria on policies without intermediate
utilities and with intermediate utilities. Besides, we study the properties of these criteria.
Indeed, we prove that these criteria satisfy Pareto efficiency as well as strict monotonicity.

2. Chapter 4 extends the lexicographic comparisons to possibilistic decision trees and pos-
sibilistic finite-horizon Markov decision processes. We propose an algorithmic solution,
based on Dynamic Programming approach, for each model. Moreover, we provide an ex-
perimental study to validate and discuss the proposed algorithms.

3. The primary aim of chapter 5 is to show how to relate the theory of expected utility with
that of possibilistic qualitative utilities by refinement relations in the case of sequential
decision-making (obviously when considering finite-horizon possibilistic decision trees and
possibilistic finite-horizon). We propose a special form of expected utility (based on big-
stepped probability distributions) as a refinement of possibilistic qualitative utilities, using
a transformation function of the scale. Then we establish formal results of equivalence
between lexicographic refinements of qualitative utilities and these expected utility criteria
proposed. Thus we prove that it is possible to construct stochastic models inducing an order
on policies that refines the order induced on the same policies in the given possibilistic
model. We define a dynamic programming algorithm, for calculating optimal policies with
respect to the so-obtained criteria with an experimental study in the end.

4. Finally, Chapter 6 is devoted to stationary Markov decision processes in which the set of
states, the available actions and the transition functions are assumed not do depend on the
stage (time step) of the problem. First, we propose a lexicographic variant of the value
iteration algorithm for the finite-horizon case, with an approximation algorithm in order to
decrease the complexity of the fist. We present then an experimental comparative analysis
of these algorithms. In addition, we provide a value iteration algorithm to compute an
approximate lexicographic optimal policy when the horizon is infinite.

The main results of this thesis are published in [Ben Amor et al., 2015, Ben Amor et al., 2016b,
Ben Amor et al., 2016a, Ben Amor et al., 2017].
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One-stage Possibilistic Decision-Making
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1.1 Introduction

Decision theory is a multidisciplinary domain that concerns economy, psychology, social sciences,
operational research and artificial intelligence. Many important problems involve decision-making
under uncertainty, that is choosing an act (also called decision or action) or, in sequential decision-
making, a policy among many different available alternatives, considering decision maker’s lim-
ited knowledge about states of nature (states of the world) and his preferences.

In real world several types of uncertainty should be considered. Most available decision mod-
els refer to probability theory for the representation of uncertainty [Neumann and Morgenstern,
1944, Savage, 1954]. Despite its success, probability theory is appropriate when all numerical
information is available or can be easily elicited. When information about uncertainty cannot be
quantified in a probabilistic way, several non-classical theories of uncertainty can be considered
in order to deal with imperfect, ordinal information namely, fuzzy sets theory [Zadeh, 1965], evi-
dence theory [Shafer, 1976] and possibility theory [Zadeh, 1978, Dubois and Prade, 1988] etc. In

4
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this work, we will focus on qualitative decision-making, especially on possibility theory suitable
for handling uncertain and imprecise knowledge.

This chapter provides the theoretical background of possibilistic decision theory: Section 1.2
presents classical probabilistic decision theory. Section 1.3 reviews the possibilistic decision the-
ory, in particular, it introduces the basics of possibility theory and details the most commonly used
possibilistic decision criteria: optimistic and pessimistic qualitative utilities. Section 1.4 exposes
the drowning effect problem in these latter criteria. Finally, Section 1.5 defines refinements of
qualitative utilities proposed for the one-step decision problems.

1.2 Decision-making under probabilistic uncertainty

Decision-making under uncertainty is primarily the identification and the choice of some alterna-
tives, that most commonly are expressed implicitly, based on preferences of the decision maker.
Thus, solving a decision problem amounts to providing an optimal act with respect to the avail-
able knowledge about the environment and the decision maker preferences relative to possible
consequences of different alternatives.

In this Section, we present the probabilistic decision theory, considered as the standard quan-
titative decision model, and also the Expected Utility (EU) criterion first introduced by Bernoulli
[Bernoulli, 1738], and then axiomatized by Von Neumann and Morgenstern [Neumann and Mor-
genstern, 1944] and Savage [Savage, 1954]. We first detail subjective expected utility and Savage’s
axiomatic system, then we present the expected utility criterion in the Von Neumann and Morgen-
stern’s framework and its axiomatization.

1.2.1 Subjective Expected Utility: Savage’s approach

Expected utility theory based on subjective probability has been well developed and axiomatized
by Savage [Savage, 1954]. In Savage’s framework, subjective probability is used to model uncer-
tainty. Formally, a decision problem under uncertainty using the Savage approach is defined by a
4-tuple (S,X,A,�), where:

• S is the set of states of nature,

• X is the set of consequences, formally, the preference between two consequences x and y
∈ X is denoted by x � y. It means that “x is at least as good as y" for the decision maker.

• A = XS is the set of possible acts, an act is thus a function f : S 7→ X ,

• � is a preference relation on A satisfying two main crucial properties:
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– Completeness: ∀f, g ∈ A either f � g or g � f .

– Transitivity: If f is at least as good as g and g is at least as good as q, then f is at least
as good as q.

If (f � g and g � q) then (f � q).

f � g denotes the preference between two acts f and g. It means that “f is at least as good as
g" for the decision maker. � denotes the asymmetric part of � and ∼ its symmetrical part:

• The strict preference relation � is defined by f � g if and only if f � g and g � f and it
means that“ f is strictly preferred to g ".

• The indifference relation∼ is defined by f ∼ g if and only if f � g and g � f and it means
that “ f and g are indifferently preferred ".

Considering probability theory, the information pertaining to the state of nature and the pref-
erences on X are encoded as follows: uncertainty is represented by a probability distribution p
over S and the preferences on X are encoded by a utility function µ : X 7→ U .

Acts are then ranked (for any two acts, either one is better than the other, or the two are
equivalent) by Subjective Expected Utility, denoted by SEU [Savage, 1954]:

Definition 1.1. Given a probability distribution p over S and a utility function µ on X , the SEU
of an act h is defined by:

SEU(h) =
∑
s∈S

p(s) . µ(h(s)). (1.1)

Example 1.1. Suppose that you are thinking about taking out fire insurance on your home. Per-
haps it costs $100 to take out insurance on a house worth $100,000, and you ask: Is it worth it?
Let us formalize this decision problem: Let S = {Severe fire,Minor fire,No fire} be the set
of states of nature s.t.:

• Severe fire is the state in which your house catches on a severe fire,

• Minor fire is the state in which your house catches on a negligible fire,

• No fire is the state in which your house doesn’t catch on fire.

Using fire occurrence data, we have p(Severe fire) = 0.2, p(Minor fire) = 0.3 and p(NoFire) =
0.5. Consider the two acts Insurance (take an insurance) and No insurance (do not take an
insurance) and the consequences given in Table 1.1.
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Acts/States Severe fire Minor fire Not fire
Insurance No house+($100) House+($100-$50) House+(-$100)
Noinsurance No house+($0) House+(-$50) House+($0)

Table 1.1: Consequences of acts Insurance and No insurance

The utility value associated to each consequence is defined as follows:

• µ(No house+ $100) = 3, µ(House+ ($100− $50))=6, µ(House+ (−$100))=7,

• µ(No house+ $0)=0, µ(House+ (−$50))=5, µ(House+ $0)=10.

Using Equation 1.1, we have:

• SEU(Insurance) = (0.2× 3) + (0.3× 6) + (0.5× 7) = 5.9 and

• SEU(No insurance) = (0.2× 0) + (0.3× 5) + (0.5× 10) = 6.5.

So, the act No insurance is preferred to Insurance.

Savage has provided an axiomatic system that gives necessary conditions that should be sat-
isfied by a preference relation � between acts to be represented by an EU [Savage, 1954]. First,
we define fAh as the act which gives the same consequence f on A ⊆ S and as h on S \ A. A
constant act is defined by:

Definition 1.2. (Constant act) A constant act fx ∈ A provides the same consequence x ∈ X ,
whatever the state of nature i.e.:

∀s ∈ S, fx(s) = x.

Savage’s axiomatic system is based on the five following axioms [Savage, 1954]:

Axiom. (SAV 1: Complete Pre-order) The preference relation � is complete and transitive.

Axiom. (SAV 2: Sure Thing Principle (STP)) For all acts f, g, h, h′ ∈ A and for every event
E ⊆ S:

fEh � gEh iff fEh′ � gEh′.

Axiom. (SAV 3: Conditioning over constant acts) Thus, for any not null event E ⊆ S, and any
constant acts fx, gy ∈ A it holds that:

∀E ⊆ S, fx � gy iff ∀h ∈ A, fxEh � gyEh.
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Axiom. (SAV 4: Projection from acts over events) For any consequences x, y, x′, y′ ∈ X , for any
constant acts fx, gy, f ′x′ , g

′
y′ ∈ A. If x � y and x′ � y′, then ∀E,D ⊆ S we have:

fxEgy � fxDgy iff f ′x′Eg
′
y′ � f ′x′Dg′y′ .

Axiom. (SAV 5: Non triviality) ∃ f, g ∈ A, such that f � g.

The principle axiom of Savage is the Sure Thing Principle (SAV2), it is interpreted by the
fact that if an act is preferred to another when an event E is occurred then it will still preferred
whatever the act in the case of complementary event.

If a preference relation � satisfies axioms SAV 1 to SAV 5, as well as two technical axioms
of continuity and monotonicity, then this preference relation can be represented by an expected
utility from the set of act to the reals:

Theorem 1.1. If the preference relation � satisfies Savage axioms then it exists a utility function
µ: X 7→ R and a probability distribution p deduced from the preference relation between acts
such that :

∀f, g ∈ A, f � g ⇔ SEU(L) ≥ SEU(L′). (1.2)

1.2.2 Expected Utility: Von Neumann and Morgenstern’s approach

In the present Section, we present the expected utility model in the Von Neumann and Morgen-
stern’s framework [Neumann and Morgenstern, 1944], the most known framework to deal with
decision-making problems under risk. In this framework, an act is represented by a probability
distribution over the set of possible outcomes. It is called a simple probabilistic lottery and it is
denoted by L = 〈λ1/x1, . . . , λn/xn〉, where λi = p(xi) is the probability that the decision leads
to outcome xi. A utility µ function maps each outcome xi to a utility value in a totally ordered
numerical set U . This function models the attractiveness of each outcome for the decision maker.
Thus, a simple probabilistic lottery can be seen also as a probability distribution over the set of
utilities denoted by L = 〈λ1/µ1, . . . , λn/µn〉.

A probabilistic compound lottery denoted by 〈 λ1/L1, . . . , λm/Lm 〉 is a probability distribu-
tion over a set of lotteries where λi is the probability to obtain lottery Li.

Formally, a decision-making problem under risk can be represented using:

• X the set of consequences,

• L the set of probabilistic lotteries, where each lottery Li is a probability distribution p over
the set of consequences X ,



CHAPTER 1. ONE-STAGE POSSIBILISTIC DECISION-MAKING 9

• µ : X 7→ U the utility function, a mapping from the set of consequences X to a numerical
scale.

Note that, it is possible to transform a Savage act into a lottery, since we can calculate the
probability p of getting each utility level from the probabilities of states:

∀µi ∈ U, p(µi) =
∑

s∈S,µ(f(s))=µi

p(s).

We get then a probability distribution over the set of utilities, i.e. simple probabilistic lottery.

Solving a decision problem under risk amounts to evaluating alternatives and choosing an
optimal one among them. The computation of the expected utility of a lottery L is performed as
follows:

Definition 1.3. Given a probabilistic lottery L = 〈λ1/x1, . . . , λn/xn〉 and a utility function u, the
expected utility of L (denoted by EU(L)) is computed by:

EU(L) =
∑
xi∈X

λi . µ(xi). (1.3)

Example 1.2. Consider the same decision problem as in Example 1.1. The two acts Insurance
andNo insurance can be represented, respectively, using the two following probabilistic lotteries
L = 〈0.2/3, 0.3/6, 0.5/7〉 and L′ = 〈0.2/0, 0.3/5, 0.5/10〉.

Using Equation 1.3, we have the same values as in Example 1.1 i.e. EU(Insurance) = 5.9
and EU(No insurance) = 6.5.

Von Neumann and Morgenstern have provided an axiomatic system to characterize a prefer-
ence relation � between probabilistic lotteries [Neumann and Morgenstern, 1944]:

Axiom. (V NM1: Weak order) The preference relation � is complete and transitive.

Axiom. (V NM2: Continuity) Let L, L′ and L
′′

be three probabilistic lotteries, if L is at least
good as L′ and L′ is at least good as L

′′
then there is a probability p for which the decision maker

will be indifferent between lottery L′ and the compound lottery in which L comes with probability
p, and L

′′
with probability (1− p). Formally:

L � L′ � L′′ ⇒ ∃ p ∈ ]0, 1[ s.t. 〈p/L, (1− p)/L′′〉 ∼ L′.

Axiom. (V NM3: Independence) Let L, L′ and L
′′

be three probabilistic lotteries, we have:

L � L′ ⇔ ∃ p ∈]0, 1] s.t. 〈p/L, (1− p)/L′′〉 � 〈p/L′, (1− p)/L′′〉.
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The fundamental axiom of the (objective) expected utility model is the independence axiom.
It can be interpreted as follows: If the decision maker prefers L to L′ and he has to choose between
〈p/L, (1 − p)/L′′〉 and 〈p/L′, (1 − p)/L′′〉 then he will prefer the compound lottery 〈p/L, (1 −
p)/L′′〉 to 〈p/L′, (1− p)/L′′〉 whatever the probability of the event that happens.

Thus, if the preference relation � satisfying completeness, transitivity, continuity and inde-
pendence axioms, then it can be represented by an expected utility. This is the meaning of the
following representation theorem:

Theorem 1.2. If the preference relation� satisfies V NM axioms, then it is exists a utility function
µ: X 7→ R over the set of lotteries L such that:

∀L,L′, L � L′ ⇔ EU(L) ≥ EU(L′). (1.4)

1.2.3 Beyond Expected Utility decision theories

Despite its success, the Expected Utility theory has some limitations such as:

• The behavior of total ignorance is represented by equiprobability, so it formalizes random-
ness instead of ignorance.

• EU is not able to capture certain behaviors that appear rational such as those shown in the
paradoxes of Allais [Allais, 1953] and Ellsberg [Ellsberg, 1961]: In 1953, Allais paradox
has shown that the independence axiom of the VNM’s system is violated [Allais, 1953] and
in 1961, Ellsberg has shown the behavior of people in the face of ignorance is in contradic-
tion with the Sure Thing Principle of SEU.

• EU-theory supposes that all the numerical information is available or that it can be elicited
from the decision maker. In some situations, decision makers are unable to express their
uncertainty and preferences numerically for all comparisons.

In order to overcome EU-based model limitations, some extensions of EU, that use quanti-
tative representation of uncertainty, have been developed. Most of them are based on the most
well-known criterion Choquet integral [Choquet, 1954] which is based on generalized measure
of uncertainty. Quiggin has developed the Rank-Dependent Utility criterion (RDU) (which is a
particular case of Choquet integral) that have received an axiomatic justification [Quiggin, 1982].

When uncertainty and/or preferences are ordinal in nature, one can use alternatives to prob-
ability theory. So, considering qualitative preferences but remaining within a probabilistic quan-
tification of uncertainty has led to quantile-based approaches [Montes et al., 2014, Szörényi et al.,
2015]. In several cases, especially when the representation of both uncertainty and preferences by
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additive quantitative values is inappropriate, purely ordinal approaches have been considered to
handle qualitative uncertainty and preferences. Qualitative decision models have been introduced
with emergence of the rule of Sugeno integrals [Sugeno, 1974], that is considered as an ordinal
counterpart of Choquet integrals.

1.3 Possibilistic decision theory

Possibility theory [Zadeh, 1978, Dubois and Prade, 1995] is the fundamental purely ordinal un-
certainty theory. For many years, it has received much interest in the Artificial Intelligence com-
munity [Pearl, 1993,Dubois and Prade, 1995,Dubois et al., 1998a,Dubois et al., 2001b,Godo and
Zapico, 2001, Giang and Shenoy, 2005, Weng, 2005].

In this Section, we are interested in qualitative decision theory by using possibility theory for
the representation of uncertainty. The development of possibilistic decision theory has led to the
proposition of several possibilistic decision criteria, in particular qualitative utilities : optimistic
and pessimistic utilities. These criteria are used to identify a preference relation on simple possi-
bilistic lotteries, associated to acts, defined in what follows.

1.3.1 Possibility theory

Possibility theory, issued from Fuzzy Sets theory, offers a natural and flexible model to represent
and handle uncertain information, especially qualitative uncertainty and total ignorance. It was
introduced by Zadeh [Zadeh, 1978] and further developed by Dubois and Prade [Dubois and Prade,
1988].

The basic component of possibility theory is the notion of possibility distribution. It is a repre-
sentation of the knowledge of an agent regarding the state of the world. A possibility distribution
is denoted by π and it is a mapping from the universe of discourse S to a finite ordinal scale
V = {α0 = 0V < α1 < . . . < αl = 1V }, we denote the function by: π : S → V .

For each state s ∈ S, π(s) = 1 means that realization of the state s is totally possible and
π(s) = 0 means that s is an impossible state. π(s) > π(s′) expresses that s is preferred to s′ (or
is more plausible).
It is generally assumed that there exist at least one state s which is totally possible i.e. π(s) = 1:
π is said then to be normalized.

The possibilistic scale V can be interpreted in two manners:

• Quantitative manner, or numerical, using possibility degrees i.e. the values of the possi-
bility distribution make sense in the possibilistic scale.
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• Qualitative manner, or ordinal, using total pre-order on the universe of discourse. This
order can be represented by numerical values which have no sense but which express only
the order.

In the possibilistic framework, extreme forms of partial knowledge can be captured, namely:

• Complete knowledge i.e. ∃ s s.t. π(s) = 1 and ∀ s′ 6= s, π(s′) = 0.

• Total ignorance i.e. ∀s ∈ S, π(s) = 1 (all states in S are possible).

In possiblistic theory, for any used scale V , there are two essential measures:

• Possibility measure: Π(A) = maxω∈A π(ω).
Π(A) is the possibility degree evaluating at which level the event A is consistent with the
knowledge represented by π.

• Necessity measure: N(A) = 1−Π(Ā) = 1− supω/∈A π(ω).
N(A) expresses the necessity degree evaluating at which level the event A is certainly im-
plied by the knowledge.

Example 1.3. Let us consider the possibility distribution π which shows the opinion of a doctor
concerning the diagnosis of a patient. The universe of discourse related to this problem is a set of
three diseases and a healthy case: S = {d1, d2, d3, h}.

π(d1) = 0.5, π(d2) = 1, π(d3) = 0.7, π(h) = 0.

Note that this distribution is normalized since max(0.5, 1, 0.7, 0) = 1.

If we consider the event A: "The patient suffers from d1 or d3", then we have:
Π(A) = max(0.5, 0.7) = 0.7 and N(A) = 1−max(1, 0) = 0.0.

1.3.2 Possibilistic lotteries

Dubois et al. [Dubois and Prade, 1995, Dubois et al., 1998a] have proposed a possibilistic coun-
terpart of VNM’s notion of lottery to represent a one stage decision problem. In the possibilistic
framework, an act can be represented by a possibility distribution on V = {u1, . . . , up}, also
called a possibilistic lottery, and denoted by 〈λ1/u1, . . . , λp/up〉 i.e. λi = π(ui) is the possibility
that the decision leads to an outcome of utility ui.

A possibilistic compound lottery 〈λ1/L1, . . . , λr/Lr〉 is a normalized possibility distribution
over the set of lotteries. The possibility πi,j of getting an utility degree uj ∈ V from one of
its sub-lotteries Li depends on the possibility λi of getting Li and on the conditional possibility
λij = Π(uj | Li) of getting uj from Li i.e. Πi,j = min(λj , λij).
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Thus, [Dubois and Prade, 1995,Dubois et al., 1998a] have proposed to reduce a compound lot-
tery (over a set of simple lotteries) 〈λ1/L1, ..., λr/Lr〉 into an equivalent simple lottery. Formally
we have:

Reduction(〈λ1/L1, . . . , λr/Lr〉) = 〈max
j=1..r

(min(λj1, λj))/u1, . . . , max
j=1..r

(min(λjp, λj))/up〉.
(1.5)

Example 1.4. Let L1 = 〈1/0.5, 0.7/0.3〉 and L2 = 〈1/0.5, 0.6/0.3〉 be two simple possibilistic
lotteries, and let L′ = 〈1/L1, 0.8/L2〉 be th compound lottery represented in Figure 1.1 (a). The
reduction of L′ into a simple lottery L′′, presented by (b) in Figure 1.1, can be calculated using
Equation 1.5 as follows:

• L′′(0.5) = max(min(1, 1),min(0.8, 0.6)) = 1 and

• L′′(0.3) = max(min(1, 0.7),min(0.8, 1)) = 0.8,

So, L′′ = Reduction (L′) = 〈1/0.5, 0.8/0.3〉.

(a) (b)

1

1 0.5

0,8

0,7

1

0,6

1

0,8

L”L’
0.3

0.3

0.5

0.5

0.3

Figure 1.1: A possibilistic compound lottery L′ (a) and its reduction L′′ (b)

Note that, the reduction of a simple lottery is the simple lottery itself. Furthermore, the reduc-
tion of a compound lottery is a polynomial operation, because min and max are also polynomial
operations.

The development of possibility theory has led to the emergence of several possibilistic criteria
depending on the nature of the utility scale. These criteria allow to compare simple lotteries
associated to acts as detailed in what follows.

1.3.3 Possibilistic decision criteria

Possibilistic decision criteria can be gathered into three classes:
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• Utility and possibility scales are commensurate and purely ordinal: contains possi-
bilistic qualitative criteria such as optimistic utility (denoted by uopt) and pessimistic utility
(denoted by upes) [Dubois and Prade, 1995, Dubois et al., 1999] that are qualitative coun-
terparts of the EU criterion, besides possibilistic binary utilities (denoted by PU ) [Giang
and Shenoy, 2001].

• Utility and possibility scales are commensurate and utilities are quantitative: in this
class we have possibility-based Choquet integrals (denoted by ChΠ) and Necessity-based
Choquet integrals (denoted by ChN ) [Rebille, 2006, Ben Amor et al., 2010, Dubois and
Rico, 2016b].

• Utility and possibility scales are not commensurate: we have possibility-based likely
dominance (denoted byLΠ) and Necessity-based likely dominance (denoted byLN ) [Fargier
and Perny, 1999, Dubois et al., 2003].

In this Thesis, we are interested in the first class, especially in the well-known qualitative
utilities: optimistic and pessimistic utilities that are qualitative counterparts of the EU criterion.

1.3.4 Possibilistic qualitative utilities

Under the assumption that the utility scale and the possibility scale are commensurate and purely
ordinal, Dubois and Prade [Dubois and Prade, 1995,Dubois et al., 1999] have proposed pessimistic
and optimistic criteria. These two qualitative criteria are actually particular cases of a more general
criterion based on the Sugeno integral [Sugeno, 1974].

1.3.4.1 Pessimistic utility

The pessimistic criterion was originally defined by Whalen [Whalen, 1984] and it generalizes the
Wald criterion [Wald, 1971]. It supposes that the decision maker is happy when bad consequences
are hardly plausible i.e. considers the bad and plausible consequences. It estimates to what extent
it is certain (i.e. necessary according to measure N) that L reaches a good utility.

Definition 1.4. Let L = 〈λ1/u1, . . . , λn/un〉 be a possibilistic lottery, the pessimistic utility of L,
denoted by upes is computed as follows:

upes(L) = min
i=1..n

max(ui, n(λi)). (1.6)

where n is an order reversing function (e.g. n(λi) = 1− λi).

Example 1.5. Let L = 〈1/0.2, 0.7/0.5, 0.4/0.6〉 and L′ = 〈1/0.8, 0.3/0.7, 0.5/0.9〉 be two pos-
sibilistic lotteries. Using Equation 1.6 we have:
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• upes(L) = min(max(0.2, 0),max(0.5, 0.3),max(0.6, 0.6)) = 0.2

• upes(L′) = min(max(0.8, 0),max(0.7, 0.7),max(0.9, 0.5)) = 0.7

which means that L′ �upes L.

Dubois and Prade have proposed an adaptation of qualitative utilities to evaluate acts in the
style of Savage [Dubois et al., 1998b]. Using this framework, the definition of the pessimistic
decision rule is as follows:

Definition 1.5. Given a possibilistic distribution π over S and a utility function u on the set of
consequences X , the pessimistic utility of an act f is defined by:

upes(f) = min
si∈S

max(u(f(si)), 1− π(si)). (1.7)

Therefore, we can compare two acts f and gon the basis of their pessimistic utilities:

f �upes g ⇔ upes(f) ≥ upes(g).

1.3.4.2 Optimistic utility

The optimistic criterion was originally proposed by Yager [Yager, 1979, Yager, 1997] and it cap-
tures the optimistic behavior of the decision maker that makes at least one of the good conse-
quences highly plausible. So, this criterion estimates to what extent it is possible that a possibilistic
lottery reaches a good utility.

Definition 1.6. Let L = 〈λ1/x1, . . . , λn/xn〉 be a possibilistic lottery, the optimistic utility of L,
denoted by uopt is computed as follows:

uopt(L) = max
i=1..n

min(ui, λi). (1.8)

Example 1.6. Let L = 〈1/0.2, 0.7/0.5, 0.4/0.6〉 and L′ = 〈1/0.8, 0.3/0.7, 0.5/0.9〉 be two pos-
sibilistic lotteries. Using Equation 1.8 we have:

• uopt(L) = max(min(0.2,1),min(0.5,0.7),min(0.4,0.6)) = 0.5.

• uopt(L′) = max(min(1,0.8),min(0.3,0.7),min(0.5,0.9)) = 0.8.

which means that L′ �uopt L.

Similar to its pessimistic counterpart, this criterion was also defined in Savage framework to
choose among acts rather than lotteries. Its definition is as follows:
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Definition 1.7. Given a possibilistic distribution π over a set S and a utility function u on a set of
consequences X , the optimistic utility of an act f is defined by:

uopt(f) = max
si∈S

min(u(f(si)), π(si)). (1.9)

The pessimistic and optimistic utilities represent particular cases of Sugeno integrals, a more
general criterion, in the context of possibility theory [Sugeno, 1974, Grabisch et al., 2000, Dubois
et al., 2001a, Marichal, 2001]:

Sγ,u(L) = max
λ∈[0,1]

min(λ, γ(Fλ)). (1.10)

where Fλ = {si ∈ S, u(f(si)) ≥ λ}, is a set of preferred states for act f. γ captures knowledge
(necessity or possibility measures) and reflects the decision maker attitude toward uncertainty.

uopt is recovered when γ is the possibility measure Π and upes is recovered when γ corre-
sponds to necessity measure N.

1.4 Limitations of possibilistic qualitative utilities

Qualitative decision criteria in general, and qualitative utilities in particular, suffer from a lack
of discrimination called the "drowning effect" due to the use of idempotent operations-max and
min. This shortcoming is explicit when considering the Savage’s formalism. Indeed, two acts f
and g can be considered as indifferent even if they give an identical and extreme (either good or
bad) consequence in some plausible state. As a consequence the principle of Pareto efficiency also
called strict Pareto dominance: ∀ s, u(f(s)) ≥ u(g(s)) and ∃ s∗, π(s∗) > 0 and u(f(s∗)) >
u(g(s∗)) does not imply that f is strictly preferred to g (i.e. g � f ), as shown in the following
example borrowed from [Fargier and Sabbadin, 2005]:

Example 1.7. Let S = {s1, s2} and V = {0, 0.1, 0.2, 0.3, 0.4, 1}. Let f and g be two acts whose
utility consequences in the states s1 and s2 are listed in the following table, as well as the degrees
of possibility of s1 and s2:

Table 1.2: Drowning effect

s1 s2
u(f(s)) 0.3 0.4
u(g(s)) 0.3 0.1
π 1 0.2

Thus uopt(f) = uopt(g) = 0.3 (and upes(f) = upes(g) = 0.3) although f strictly dominates
g in the state s2 and that the two acts are equivalent in s1. This is due to the fact that the good
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performance of the two acts on the most plausible state (min(u(f(s1)), π(s1)) = min(3, 5) =
min(u(g(s1)), π(s1)) = 3) blurs the comparison.

Moreover, it has been shown that optimistic and pessimistic qualitative utilities do not fully
satisfy the fundamental property of decision criteria: the Sure Thing Principle (STP) (axiom.
SAV2) that insures that identical consequences do not influence the relative preference between
two acts. In fact, it has been shown that qualitative utilities respect the STP only if there is no
uncertainty at all [Fargier and Sabbadin, 2005]. Note that when � is complete and transitive, the
principle of Pareto efficiency is a direct consequence of the Sure thing principle.

1.5 Refinements of possibilistic qualitative utilities

Contrary to the EU approach, possibilistic qualitative preference relations uopt and upes suffer
from a lack of decisiveness, since they do not satisfy the STP. In this section, we present some
approaches that try to remedy this problem.

1.5.1 Refining qualitative decision criteria

As a solution to qualitative criteria’s drawbacks, it seems to be interesting to stay in the pure
qualitative framework and escape the drowning effect by satisfying the STP. For this purpose,
many papers have proposed some tools to cope with the drowning effect of possibilistic decision
criteria. The idea is to propose discriminating criteria i.e. refinements of the possibilistic criteria.
Formally:

Definition 1.8. (Refinement) Let � and �′ be any two complete preference relations on the set of
acts A. We say that �′ refines � if and only if ∀ f, g ∈ A, f � g ⇒ f �′ g, where � and �′ are
the strict parts of � and �′ respectively.

Definition 1.9. A relation �′ is said to be more specific than a relation � if and only if �′ refines
� and �6=�′ .

Thus, a refinement �′ agrees with � when � provides a strict preference. So, the two pref-
erence relations are perfectly compatible. Obviously, when �′ refines �, either they provide the
same decisions, or the former is more specific.

The idea of refining qualitative possibilistic criteria has first been proposed by [Dubois et al.,
2000]: when two acts result indifferent w.r.t. a possibilistic criterion, the ties are broken by se-
quentially considering the ranking w.r.t. another qualitative criteria. Hence, the refined ordering is
obtained by sequentially applying additional qualitative criteria to the original one. For instance,
when the pessimistic utility criterion is indifferent, it is possible to decide based on the optimistic
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utility ordering or a T-norm aggregation. This refinement allows to evaluate acts based on a lex-
icographic ordering of a set of different qualitative criteria, instead of an order induced by one
criterion. In fact, [Dubois et al., 2000]’s approach is purely qualitative, since it uses min and max
but it does not obey the STP.

Then, in [Giang and Shenoy, 2001], the authors have improved the discrimination power of
possibilistic utilities by proposing Binary possibilistic utility in order to compare special kind
of qualitative lotteries: totally ordered set of possibility measures on a two element set {0, 1}
containing the utilities (i.e. the scale of utilities) of the best and the worst consequences. Such
possibility distribution represents a qualitative lottery. Note that the pessimistic and optimistic
utilities are special cases of this bipolar criterion. The decision rule of [Giang and Shenoy, 2001]
can capture the lexicographic use of the optimistic and pessimistic utilities when the pessimistic
one cannot discriminate and vice-versa [Godo and Zapico, 2005]. Besides, the proposed criterion
satisfies the STP but it has a major shortcoming: Consider two acts with contrasted consequences,
i.e. respectively a bad or neutral one, and a good or neutral one, and that the two acts have
maximal possibility. It appears that the binary possibilistic utility may be indifferent because of
the drowning effect ofmin andmax: neutral consequences (possibility and utility equal to 1) hide
all other consequences and make all such lotteries equivalent. A refinement of binary possibilistic
utility has been proposed in [Weng, 2005]. In this work indeed, two similar possibilities of the
same lottery are merged, using new operators, in a lexicographical ordered sequence of values
instead of one possibility degree that we get after the reduction. The resulting criterion thus suffers
from a drowning effect since it deletes all doubles of branches in each lottery.

In [Lehmann, 2002], Lehmann adds some qualitative notions to the classical expected utility
framework. He has axiomatized a refined criterion, based on the qualitative maximin criterion
of [Wald, 1971], in the VNM style: it breaks ties between equivalent worst states by considering
their respective likelihoods (the probabilities). This criterion takes the form of an expected util-
ity criterion with standard probabilities and qualitative infinitesimal utilities. In this model, two
situations can be considered: nonstandard (lexicographic) probabilities with standard utilities or
standard probabilities with nonstandard (lexicographic) utilities. Note that in this model the lexi-
cographic characteristic is used only on one of the two dimensions (either the probability level, or
the utility level).

In addition, [Fargier and Sabbadin, 2000, Fargier and Sabbadin, 2002] proposed refinements
of monotonic utilities (they are based on Sugeno integral): when comparing two acts, every state
in which both acts give identical results being neglected (by forcing the two acts to take a fixed
value α). This refinement obeys the STP but it claims to forget the transitivity of the indifference
relation.

In order to overcome the lack of decisiveness of the possibilistic optimistic and pessimistic
utilities, Fargier and Sabbadin show that possibilistic utilities can be refined by an EU crite-
rion [Fargier and Sabbadin, 2003, Fargier and Sabbadin, 2005]. Choosing an EU-model is ad-
vantageous, since EU satisfies the STP and the principle of Pareto dominance. The authors show
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that these EU-based Refinements of qualitative utilities can be understood as a generalization of
the leximin and leximax criteria. We have chosen these refinements since they ensure optimal
discrimination in accordance with Pareto efficiency, especially they respect the STP. In the sequel
of this Chapter, we detail these latter refinements that constitute the basis of our contribution.

1.5.2 Expected utility-based refinements of qualitative utilities

The EU-based refinements of qualitative utilities criteria proposed in [Fargier and Sabbadin, 2003,
Fargier and Sabbadin, 2005] satisfy the Sure Thing Principle - and thus escape the drowning ef-
fect. They are based on the use of a probability distribution p and a utility function µ such that the
obtained preference relation �EU,p,µ refines the preference relation that corresponds to the deci-
sion rule uopt when considering a possibility distribution π and a utility function u, denoted in this
Section �OPT,π,u. The idea is to construct the expected utility criterion by a transformation func-
tion χ : V → [0, 1] which transforms each possibility distribution π into a probability distribution
p:

Definition 1.10. (Probabilistic transformation of an ordinal scale)
A transformation of the scale V is a strictly increasing function χ : V → [0, 1] such that
χ(0V ) = 0; χ is a probabilistic transformation with respect to the possibility distribution π if∑
s∈S χ(π(s)) = 1.

Note that χ(0V ) = 0 means that the impossibility of an event is expressed by a null probability.
However the most plausible events (possibility degrees of 1V , do not receive probability degree 1,
since they are mutually exclusive. Note that χ is a unique function for transforming the scale V ,
thus both p and µ will be built upon this transformation. This is due to the fact that preference and
uncertainty levels are commensurate and belong to the same scale. In the refined decision model,
no undesirable arbitrary information is introduced by χ, so, p and µ are as close as possible to the
original information about π and u: transformations of V is said to be "unbiased". Formally:

Definition 1.11. (Unbiased transformation of a scale)
χ is unbiased iff ∀ α, α′ ∈ V, α ≥ α′ ⇔ χ(α) ≥ χ(α′).

This property ensures that π and p = χ ◦ π, the transformation of the distribution π using χ,
(resp. u and µ = χ ◦ u) are ordinarily equivalent.

From χ, it is possible to define a decision model of the expected utility type, transformed from
the optimistic one〈S,X,A,�EU,χ◦π,χ◦u〉, by exhibiting a sufficient condition on the χ function
(named H) so that the obtained preference relation refines the optimistic possibilistic preference
relation:

H : ∀α, α′ ∈ V such that α > α′ : χ(α)2 > |S|. χ(1V ).χ(α′).

Then formally, �EU,χ◦π,χ◦u refines �OPT,π,u whenever χ satisfies H .
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If χ respectsH , the probability distribution p = χ◦π obtained by transforming π is a big-step
probability [Snow, 1999,Benferhat et al., 1999], i.e verifying: ∀s ∈ S, p(s) >∑s′,p(s)>p(s′) p(s′).

Note that the condition H concerns only the scale V and the size of the state space and not
the distributions π or utilities u, hence, p and µ will be built using the transformation function of
the scale. If 〈S,X,A,�OPT,π,u〉 ranks an optimistic possibilistic model, all expected utility type
preference relations defined from χ satisfying H are equivalent.

Example 1.8. Let us return to Example 1.7 and write χ∗ : V = (α0 = 5 > ... > αk = 0)
the probabilistic transformation defined by: χ∗(0) = 0; χ∗(αi) = v

N2i+1 , i = 0, k − 1; where
v = 1∑

i=0,k−1
ni

N2i+1
, N = |S| and ni = |{s ∈ S, π(s) = i}|. In Example 1.7, N = 2 and

L = {5, 4, 3, 2, 1, 0}.

χ∗(V ) is the series v
N2 ,

v
N4 ,

v
N8 ,

v
N16 ,

v
N32 , 0; where v = 1

1
N2 + 1

N16
.

So:

• EU(f) = χ∗(5).χ∗(3) + χ∗(4).χ∗(2) = v2

N10 + v2

N20 ,

• EU(g) = χ∗(5).χ∗(3) + χ∗(2).χ∗(1) = v2

N10 + v2

N48 .

Hence, f �EU,χ∗◦π,χ∗◦u g

In the sequel of this Section, χ∗ will denote the transformation function χ∗(αi) = v

N2i+1 ,
i = 0, k − 1 obtained with v = 1∑

i=0,k−1
ni

N2i+1
. Fargier et Sabbadin have shown that χ∗ is not a

unique generator for the expected utilities: there may exist other unbiased and specific functions,
for instance χ∗∗, that attach different numbers to states i.e. (χ∗∗ ◦ π 6= χ∗ ◦ π) or to consequences
(χ∗∗ ◦ u 6= χ∗ ◦ u). The two obtained models are ordinally equivalent i.e. they make the same
decisions and rank acts in the same way. The following theorem presents a summary for optimistic
transformation:

Theorem 1.3. (Optimistic transformation) For any qualitative possibilistic model, there exists a
probabilistic transformation χ∗ of V such that:

• �EU,χ∗◦π,χ∗◦u is an unbiased, optimistic refinement of �OPT,π,u.

• If�EU,p,µ is an unbiased and optimistic refinement�OPT,π,u then�EU,p,µ=�EU,χ∗◦π,χ∗◦u.

It has been shown that an EU-based refinement of the same type (but somewhat more com-
plex to express) could be obtained in the case of the pessimistic utility criterion, since �OPT,π,u
and �PES,π,u are dual relations. It is possible to use the transformation χ∗ (that allows to get
probability degrees) coupled with a transformation function ψ∗ to get the utilities s.t. ψ∗(α) =
χ∗(1V )− χ∗(n(α)).
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This lead to the following pessimistic counterpart of Theorem 1.3:

Theorem 1.4. (Pessimistic transformation) For any qualitative possibilistic model, there exists at
least one pair of transformations (χ∗, ψ∗) of V satisfying H such that:

• �EU,χ∗◦πi,ψ∗◦u is an unbiased refinement of �PES,π,u.

• If �EU,p,µ is an unbiased and pessimistic refinement �pes,π,u then �EU,p,µ is equivalent to
�EU,χ∗◦πi,ψ∗◦u.

1.5.3 Lexicographic refinements of qualitative utilities

The possibilistic qualitative utilities can be refined using the leximin and leximax orderings pro-
posed by [Moulin, 1988] to compare vectors [Fargier and Sabbadin, 2005]. In fact, the preference
relation leximin (resp. leximax) has been proposed as refinement relation of min (resp. max), as
well as discrimin order [Dubois et al., 1996, Cayrol et al., 2014] defined below: Let ~f denotes a
vector of N elements of V i.e. ~f ∈ V N . ∀i ∈ 1..N , fi denotes the ith element of ~f .

Definition 1.12. To compare two vectors ~u,~v ∈ V N (two vectors of N elements of V ) using
discrimin order, we first delete all pairs (ui, vj) from ~u and ~v s.t. ui = vi. let D be the set of
indices of elements not deleted. Then, ~u �discrimin ~v iff min

i∈D
ui > min

i∈D
vi.

Hence, leximax denoted �lmin (resp. leximax denoted �lmax) allows to escape the lack of
decisive power of �min and �discrimin orderings (resp. �max order):

Definition 1.13. (Leximax, Leximin)
Let us consider ~u,~v ∈ V N (vectors of N elements of V ), and let ∀i ∈ 1..N , ui (resp. vi) denotes
the ith element of ~u (resp. ~v). The leximax and the leximin relations on ~u and ~v denoted ≥lmax
and ≥lmin, respectively are defined as follows:
~u �lmax ~v ⇔ (∀j, u(j) = v(j)) or (∃ i s.t. ∀ j < i, u(j) = v(j) and u(j) > v(j)),
~u �lmin ~v ⇔ (∀j, u(j) = v(j)) or (∃ i s.t. ∀ j > i, u(j) = v(j) and u(j) > v(j)).

where for any ~w ∈ V N , w(k) is the kth biggest element of ~w (i.e. w(1) ≥ ... ≥ w(N)).

Indeed, the leximax (resp. leximin) comparison consists in ordering both vectors in increasing
(resp. decreasing) order and then lexicographically comparing them element by element. More-
over, both relations escape the drowning effect and are very efficient: the only pair of ties is vectors
that are identical up to a permutation of their elements.

Example 1.9. Let ~u = (3, 2, 6) and ~v = (2, 2, 6).
~u �lmax ~v since u(1) = v(1) = 6 and u(2) = 3 > v(2) = 2.
~u �lmin ~v since u(3) = v(3) = 2 and u(2) = 3 > v(2) = 2.
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Then, when S is finite, the comparison of acts can indeed be seen as a comparison of vectors
of pairs of elements of V using 2 dimensions (VM )N , instead of simple vectors in (V N ). Hence,
an act can be represented by a matrix with N lines of pairs, s.t. N is the number of states, and
M = 2 columns (one for possibility degree and one for the corresponding utility):

Definition 1.14. The representative matrix of any act f ∈ A is:
~f = ((π1, u1), ..., (πi, ui), ..., (πN , uN )),
where πi corresponds to π(si) and ui to u(f(si)).

Example 1.10. Let us return to Example 1.7. The representative matrices of f and g are:
F = ((1, 0.3), (0.2, 0.4)) and G = ((1, 0.3), (0.2, 0.1)).

Therefore, [Fargier and Sabbadin, 2003, Fargier and Sabbadin, 2005] proposed an extension
of the lexicographic relations to acts using a complete pre-order � on lines of V 2 instead of the
classical relation � on V . So, to compare two matrices representing two acts it is sufficient to
order the lines of each matrix according to � and to apply then any of the two previous leximax
and leximin procedures:

First, let F denotes a N × M matrix of elements of V i.e. F ∈ (VM )N (s.t. M ≥ 2).
∀i ∈ 1..M ;∀j ∈ 1..N , fij denotes an element (or coefficient) of F in line i and column j.

Definition 1.15. (Leximax(�); Leximin(�))
Let � be a complete pre-order on VM , . is its strict part and ∼= is its symmetric part. Let F,G
be two matrices of (VM )N , the leximax and leximin relations on F and G denoted �lmax(�) and
�lmin(�), respectively, are defined as follows:

• F �lmax(�) G⇔ (∀j, f(�,j) ∼= g(�,j)) or (∃ i s.t. ∀ j < i, f(�,j) = g(�,j) and

f(�,i) . g(�,i))

• F �lmin(�) G⇔ (∀j, f(�,j) ∼= g(�,j)) or (∃ i s.t. ∀ j > i, f(�,j) = g(�,j) and

f(�,i) . g(�,i))

where ∀i ∈ 1, .., N , f(�,i) (resp. g(�,i)) is the ith biggest line of F (resp. G) according to �.

When � =�lmin, the comparison consists in first ordering the elements of each line in in-
creasing order w.r.t �lmin, then in ordering the lines in decreasing order (w.r.t. �lmax). It is then
enough to lexicographically compare the two new matrices. This preference relation, denoted
�lmax(lmin), is a refinement of �max(min) and also �OPT,π,u.

Example 1.11. Let us consider Example 1.10. We can compare the representative matrices of f
(F = ((1, 0.3), (0.2, 0.4))) and g (G = ((1, 0.3), (0.2, 0.1))) using lmax(lmin) as follows: We
have (1, 0.3) ∼=lmin (1, 0.3) and (0.4, 0.2) �lmin (0.2, 0.1) so f �max(min) g.



CHAPTER 1. ONE-STAGE POSSIBILISTIC DECISION-MAKING 23

For pessimistic utility, Fargier et Sabbadin have proposed a lexicographic refinement�lmin(lmax)
to the π-reverse matrix. More precisely, given a matrix F , it π-reverse matrix is denoted n F

such that: n F = ((n(π(s1)), u(s1)), ..., (n(π(sN )), u(sN ))). So, refining upes leads to the ap-
plication of leximin(leximax) comparison to π-reverse matrix. However, refining uopt leads to
leximax(leximin) comparison directly to the representative vectors.

Finally, they have proved that the ordinal lexicographic refinements are equivalent to proba-
bilistic EU-based refinements defined in Section 1.5.2, More formally:

Theorem 1.5. For any possibilistic model, it holds that:

• �EU,χ∗◦π,χ∗◦u≡�lmax(lmin)

• �EU,χ∗◦π,ψ∗◦u≡�lmin(lmax)

where χ∗ and ψ∗ are two transformation functions as shown in Section 1.5.2.

Hence, these lexicographic refinements obey to the Sure Thing Principle.

In this thesis, we aim to extend these efficient refinements (leximax(leximin) and leximin(leximax))
to sequential decision-making problems, presented in the next Chapter.

1.6 Summary

In this Chapter, we have presented an overview of probabilistic decision model that is well devel-
oped and axiomatized. This framework is appropriate when all numerical data are available or can
be elicited from the decision maker, which is not always the case. Possibilistic decision theory
offers a flexible and simple framework to represent qualitative uncertainty. We especially detailed
main decision criteria based on possibility theory namely optimistic and pessimistic qualitative
utilities. These two possibilistic criteria suffer from the drowning effect problem and fail to sat-
isfy the principle of Pareto efficiency, in contrast to the classical numerical criterion— expected
utility. [Fargier and Sabbadin, 2003, Fargier and Sabbadin, 2005] show that possibilistic utilities
can be refined by an expected utility criterion. Choosing an EU-model is advantageous, since it
both leads to an EU refinement of the original rule that overcomes the lack of decisiveness of
the possibilistic criteria, and it satisfies the Sure thing principle and the principle of Pareto domi-
nance. These refinements are equivalent to lexicographic procedures in the one stage procedures
described in [Fargier and Sabbadin, 2003, Fargier and Sabbadin, 2005].

In next chapter, we will present the foundation of sequential decision problems in possibilistic
decision trees and possibilistic Markov decision process where the decision maker should choose
a sequence of decisions instead of one decision.
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2.1 Introduction

In the first chapter, we have been investigating non-sequential decision problems. In real world
problems, the decision maker is often facing a succession of actions to be taken over time, i.e.
sequential decision problems. In these problems a suitable policy is to be found, that associates a
decision to each state of the world. Many graphical models have been proposed to represent such
problems, such as influence diagrams [Howard and Matheson, 1984], Markov decision processes
[Bellman, 1957b] and decision trees [Raiffa, 1968].

In this work, we are interested in the formalism of decision trees and Markov decision pro-
cesses since they allow an explicit representation of a sequential decision problem.

In classical sequential decision-making models uncertainty is stochastic and the satisfaction of
the decision maker is expressed by a numerical, additive utility function [Raiffa, 1968, Puterman,
1994]. In fact, considering ordinal preferences but remaining within a probabilistic quantification
of uncertainty in sequential decision-making has led to quantile-based approaches [Gilbert et al.,
2017], to the use of reference points [Weng, 2011] or to approaches by pairwise comparison [Yue

24
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et al., 2012]. In this thesis, we are interested in the main purely ordinal decision graphical models:
Possibilistic sequential decision models (e.g. see [Sabbadin et al., 1998, Sabbadin, 1999, Garcia
and Sabbadin, 2006, Drougard et al., 2013, Ben Amor et al., 2014, Drougard et al., 2014, Bauters
et al., 2016]).

This chapter is organized as follows: Section 2.2 formally defines possibilistic decision trees
and reviews existing algorithms to find optimal policies with a reasonable complexity. Section 2.3
gives an overview on possibilistic Markov decision processes and then details the optimization of
these graphical models w.r.t. possibilistic optimistic and pessimistic utilities i.e. how to find an
optimal policy.

2.2 Possibilistic decision trees (ΠDT s)

Decision trees (DT s) provide an explicit modeling of sequential decision problems by represent-
ing each possible scenario by a path from the root to the leaves of the tree [Raiffa, 1968]. In this
Section, we study the optimization problem in possibilistic decision trees, denoted ΠDT s. where
we aim to find an optimal policy w.r.t. a decision criterion: optimistic or pessimistic utilities shown
in the previous Chapter.

2.2.1 Definition

ADT is composed of a graphical component and a numerical one as detailed below. The graphical
component of a DT is a labelled graph DT = (N , E), whereN = ND ∪NC ∪NLN is the set of
nodes composed of three three kinds of nodes (see Figure 2.1):

• ND is the set of decision nodes (represented by squares);

• NC is the set of chance nodes (represented by circles);

• NLN is the set of leaves, also called utility nodes.

The set E contains the directed edges between nodes, forming a tree where each edge links a
parent node to its child node. For any node N ∈ N , Out(N) ⊆ E denotes its outgoing edges,
Succ(N) the set of its children nodes and Succ(N, e) the child of N that is reached by edge
e ∈ Out(N).

A DT represents a sequential decision problem in the following way:

• Leaf nodes correspond to states of the world in which a utility is obtained (for the sake of
simplicity we assume that utilities are attached to leaves only); the utility of a leaf node
LNi ∈ NLN is denoted u(LNi).
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• Decision nodes correspond to states of the world in which a decision is to be made: Di ∈
ND represents a decision variable Yi. Its domain corresponds to the labels a of the edges
starting from Di.These edges lead to chance nodes, i.e. Succ(Di) ⊆ NC .

• A state variable Xj is assigned to each chance node Cj ∈ NC . Its domain corresponds to
the labels x of the edges starting from that node. Each edge starting from a chance node
Cj represents an event Xj = x. For any Cj ∈ NC , Succ(Cj) ⊆ NLN ∪ ND i.e. after the
execution of a decision, either a leaf node or a decision node is reached.

Given a decision tree DT , Start(DT ) denotes the set of its first decision nodes (it is a sin-
gleton containing the root of the tree if this root is a decision node, or its successors if the root is
a chance node). For the sake of simplicity, we suppose that all the paths from the root to a leaf in
the tree have the same length. The horizon of the decision tree, denoted by h, is the number of
decision nodes along these paths. The branching factor, denoted by b, is the number of children at
each node. Given a node N ∈ N , we shall also consider the subproblem DTN defined by the tree
rooted in N .

The joint knowledge on the state variables is not given in extenso, but through the labeling
of the edges issued from chance nodes. In a possibilistic context, the uncertainty pertaining to
the possible outcomes of each Xj is represented by a possibility distribution: each edge starting
from a chance node Cj , representing an event Xj = x, is endowed with a number πCj (x), the
possibility π(Xj = x|past(Cj))1. A possibilistic ordered scale, V , is used to evaluate the utilities
and possibilities.

Example 2.1. Let us suppose that a ”Rich and Unknown” person runs a startup company. In every
state s/he must choose between Saving money (Sav) or Advertising (Adv) and s/he may then get
Rich (R) or Poor (P) and Famous (F) or Unknown (U). Figure 2.1 shows the ΠDT (with horizon
h = 2) that represents this sequential decision problem. This ΠDT contains 10 chance nodes
NC = {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10}, 5 decision nodesND = {D0, D1, D2, D3, D4}
and 16 leaf nodes NLN = {LN1, . . . , LN16}.

Solving a decision tree amounts to building a policy (and thus, a succession of chance node)
for each reachable decision node. Formally, we define a policy as a function δ : ND 7→ A, where
A is the set of possible actions, including a special “undefined” action ⊥, chosen for decision
nodes which are left unexplored by a given policy. δ(Di) is the action to be executed when a
decision node Di is reached.

Admissible policies assign a chance node to each reachable decision node, i.e. must be:

• sound: ∀Di ∈ ND, δ(Di) ∈ Out(Di) ∪ {⊥} ⊆ A, and

1As in classical probabilistic decision trees, it is assumed that π(Xj = x|past(Cj)) only depends on
the variables in past(Cj) and often only on the decision made in the preceding node and on the state of the
preceding chance node.
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Figure 2.1: The ΠDT of Example 2.1

• complete:
(i) ∀Di ∈ Start(DT ), δ(Di) 6= ⊥ and
(ii) ∀Di s.t. δ(Di) 6= ⊥, ∀N ∈ Succ(Succ(Di, δ(Di))) either δ(N) 6= ⊥ or N ∈ NLN .

We denote by ∆N (or simply ∆, when there is no ambiguity) the set of admissible policies
built from a tree rooted in N . Each policy δ in ∆ defines a connected subtree of DT , the branches
of which represent possible scenarios, or trajectories. Formally, a trajectory is a sequence of value
assignments to decision and chance variables along a path from a starting decision node (a node
in Start(DT )) to a leaf:

τ = (aj0 , xi1 , aj1 , . . . , ajh−1 , xih),
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where Y0 = aj0 is the first decision in the trajectory, xi1 the value taken by its first chance
variable, Xj0 in this scenario, Yi1 = aj1 is the second decision, etc.

We often identify a policy δ, the corresponding subtree and the set of its trajectories (hence
the notation τ ∈ δ to mean that τ is a trajectory of δ). We also consider subtrees of the original
DT , and thus sub-policies: let Cj be a chance node, Di1 , . . . , Dik its successors and, for l = 1, k,
the policies δil ∈ ∆Dil

which solve the subproblem rooted in Dil .

δi1 + · · · + δik is the policy of ∆Cj resulting from the composition of the δil : (δi1 + · · · +
δik)(N) = δil(N) iff N belongs to the subtree rooted in Dil .

Example 2.2. Let us consider the ΠDT of example 2.1. This ΠDT encodes 16 trajectories:

• τ1 = (Adv,R&U,Adv,R&U),

• τ2 = (Adv,R&U,Adv,R&F ),

• τ3 = (Adv,R&U, Sav, P&U),

• τ4 = (Adv,R&U, Sav,R&U),

• τ5 = (Adv,R&F,Adv,R&U),

• τ6 = (Adv,R&F,Adv,R&F ) etc.

The possibilistic evaluation of a policy, as proposed by [Sabbadin et al., 1998], relies on the
qualitative optimistic and pessimistic decision criteria axiomatized by [Dubois and Prade, 1995].
The utility of the policy is computed on the basis of the transition possibilities and the utilities of
its trajectories. For each trajectory τ = (aj0 , xi1 , aj1 , . . . , xih)

• Its utility, u(τ), is the utility u(xih) of its leaf xih .

• The possibility of τ given that a policy δ is applied from initial node D0 is defined by:

π(τ |δ,D0) =
{

min
πk∈πτ

πk if τ ∈ δ,
0 otherwise.

Following [Dubois and Prade, 1995], [Sabbadin et al., 1998] define as follows , the optimistic
and pessimistic utility degrees of a policy δ ∈ ∆:

uopt(δ) = max
τ∈δ

min(π(τ |δ,D0), u(τ)) (2.1)

upes(δ) = min
τ∈δ

max (1− π(τ |δ,D0), u(τ)) (2.2)

This approach is purely ordinal (only min and max operations are used to aggregate the eval-
uations of the possibility of events and the utility of states). We can check that the preference
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orderings �O between policies, derived either from uopt (O = uopt) or from upes (O = upes),
satisfy the principle of weak monotonicity:
∀Cj ∈ NC ,∀Di ∈ Succ(Cj), δ, δ′ ∈ ∆Di , δ” ∈ ∆Succ(Cj)\Di :

δ �O δ′ =⇒ δ + δ” �O δ′ + δ′′

where δ + δ” (resp. δ′ + δ′′) is the policy resulting from the composition δ (resp. δ′) with δ”.

2.2.2 Optimization of ΠDT s: Backward induction

Since optimistic and pessimistic utilities satisfy the crucial property of weak monotonicity, an op-
timal policy can be computed in polytime with respect to the size of the tree (the total number
of nodes) using a recursive method of Dynamic programming called backward search method
or backward induction method. [Sabbadin et al., 1998, Sabbadin, 2001] have proposed qualita-
tive counterparts of the stochastic dynamic programming algorithm backwards induction, denoted
BI-DT , for ΠDT s (see Algorithm 2.1, written in a recursive style) that optimizes the decisions
from the leaves of the tree to its root. Note that this algorithm does not generate all the best policies
but returns only one among them.

This backwards reasoning procedure is depicted in a recursive manner:

• when a chance node N ∈ NC is reached, optimistic (resp. pessimistic) utility is calculated
for each of its children (i.e. each successor decision node or leaf node). Note that the
optimistic utility of a leaf node is its utility. The optimistic utility obtained in N is then
calculated using the possibility degrees on all successors and their optimistic utility.

• When a decision node N ∈ ND is reached, we select a decision Cj among all the possible
ones leading to an optimal sub-policy w.r.t. �uopt . The choice is performed by comparing
the optimistic utilities obtained in each successor chance node of N .

Decision trees represent sequential decision problems under the assumption of complete ob-
servation. However, they have serious limitations in their ability to model complex situations,
especially when outcomes or events occur over a long time horizon. As a result, decision trees are
often replaced with the use of Markov Decision Processes (MDPs) [Puterman, 1994] which are
compact representations of sequential decision problems. They explicitly account for timing of
events, whereas time usually is less explicitly accounted in decision trees.
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Algorithm 2.1: BI-DT : Backward-Induction-ΠDT -uopt(N :Node)
Data: A ΠDT ; the policy, δ, is memorized as global variable
Result: Set δ for the tree rooted in N and returns its optimistic utility

1 begin
2 // Leaves
3 if N ∈ NLN then uopt ← u(N);
4 // Chance nodes
5 if N ∈ NC then
6 foreach Ni ∈ Succ(N) do
7 uiopt ← Backward-Induction-ΠDT − uopt(Ni);

8 uopt ← maxNi∈Succ(N) min(πN(Di), uiopt);

9 // Decision nodes
10 if N ∈ ND then
11 uopt ← 0;
12 foreach Cj ∈ Succ(N) do
13 u← Backward-Induction-ΠDT -uopt(Cj);
14 if u > uopt then
15 uopt ← u;
16 δ(N)← label((N,Cj));

17 return uopt;

2.3 Possibilistic Markov Decision Processes (ΠMDPs)

Possibilistic Markov decision processes (ΠMDPs) represents a qualitative version of probabilis-
tic MDPs. In these models, uncertainty about the consequences of actions is represented by
possibility distributions and rewards are qualitative [Sabbadin et al., 1998, Sabbadin, 1999, Sab-
badin, 2001, Perny et al., 2005].

Solving a ΠMDP amounts to finding an ’optimal’ action for any state of the world encoun-
tered, with respect to optimization criteria: optimistic and pessimistic utilities. In finite-horizon
ΠMDPs an optimal policy can be provided, using a possibilistic backwards induction algorithm,
proposed by [Sabbadin, 1999] as an adaptation of the classical stochastic one [Bellman, 1957a,Put-
erman, 1994]. However, in infinite-horizon ΠMDPs the most often used algorithms are pos-
sibilistic policy iteration algorithm [Sabbadin, 2001] (the possibilistic counterpart of stochastic
policy iteration [Howard, 1960]) and possibilistic value iteration algorithm [Sabbadin, 2001] (the
possibilistic counterpart of stochastic value iteration [Bellman, 1957a]).



CHAPTER 2. POSSIBILISTIC SEQUENTIAL DECISION-MAKING MODELS 31

2.3.1 Finite-horizon possibilistic Markov decision processes (Finite-
horizon ΠMDPs)

Finite-horizon ΠMDP is a mathematical framework for representing complex multi-stage deci-
sion problems with finite time horizon.

2.3.1.1 Definition

A Finite-horizonMDP [Sabbadin et al., 1998, Sabbadin, 2001] is defined by:

• A finite set of stages T = {0, . . . , h}. h is called the horizon of the problem.

• Finite state spaces, St, for each t = 0 . . . h ; S = S0∪ ...∪Sh denotes the set of all possible
states at every time steps.

• Sets As of available actions in state s ∈ St; A = AS0 ∪ ... ∪ ASh denotes the full action
space.

• The rewards u(s) that are obtained in the final states s ∈ Sh. In this Section we do not
consider intermediate satisfaction degrees.

In a possibilistic context, the uncertainty of the agent about the effect of an action a taken
in state s ∈ St−1 is represented by a possibility distribution π(.|s, a) : St → V . For s′ ∈ St,
π(s′|s, a) measures to what extent s′ is a plausible consequence of a in s. In the same way,
consequences are ordered in terms of levels of satisfaction by a qualitative utility function u :
Sh → V .

Such a ΠMDP can be represented by a labeled graph, where states are represented by circles,
actions by squares and each final state has an attached utility. Each edge linking an action to a state
denotes a transition, and is labeled by the possibility of that transition given the action is executed.

DT s and finite-horizonMDP are two close frameworks. A decision tree is a particular finite-
horizon Markov decision process, up to the notations. Decision nodes are states, and the chance
nodes that follow a decision node are the actions available in this state.

Example 2.3. Let us consider the problem introduced in Example 2.1 - it is possible to represent it
as a Finite-horizon ΠMDP . Figure 2.2 represents the ΠMDP , in the form of an acyclic graph,
when the horizon h = 2 (here, utilities are also shown).
We have: S0 = {R&U0}, S1 = {R&F1, R&U1, P&U1} and S2 = {R&F2, R&U2, P&F2, P&U2}
also ∀t = 0, 2, As∈St = {Adv, Sav}.

A policy in a Finite-horizonMDP is a function that maps each state to an admissible action
δ : S → A, s.t. δ(s) ∈ As. When applied from a state si0 ∈ S0, such a policy defines a list of



CHAPTER 2. POSSIBILISTIC SEQUENTIAL DECISION-MAKING MODELS 32

R&U0 

P&U1 

 P&F2 

R&U1 

 

P&U2 

Sav 

π =1 

π =0.2 

π =0.2 

π =0.5 

π =1 

π =0.2 

S0 

Adv 

R&F1 
π =1 

π =0.5 

R&U2 

π =1 

π =0.5 

Adv R&F2 

0.7 

Sav 
π =1 

Adv 

Sav 

Adv 

Sav 

π =1 

π =0.5 

π =1 

π =0.2 

π =1 

0.5 

0.5 

0.2 

S1 S2 

Figure 2.2: The finite-horizon ΠMDP (h = 2) of Example 2.3

trajectories, as for the decision trees case. A trajectory τ is a sequence of actions and states along
a path following (and excluding) a first state si0 to a final state sih ∈ Sh. Formally,

τ = (aj0, . . . , sik, ajk, . . . , sih),

where sik ∈ Sk and ajk = δ(sik). We suppose, without loss of generality, that all trajectories have
the same length h. If a trajectory has shorter length than h, neutral elements (0 or 1 as appropriate)
are added at the end.

Note that si0 is not part of the trajectory but given alongside theMDP model. aj0 is the first
action in the trajectory - the one prescribed by δ for si0-etc. The reward associated to τ is the
utility u(sih) obtained in the final state of the trajectory sih.
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The evaluation of a policy δ in state s0 using qualitative pessimistic utility is defined by the
qualitative minmax expectation of the degrees of satisfaction of the final states of the possible
trajectories, and the optimistic utility as the maxmin expectation of the same:

upes(s0, δ) = min
τ∈δ

max{1− π(τ |s0, δ), u(sih)} (2.3)

uopt(s0, δ) = max
τ∈δ

min{π(τ |s0, δ), u(sih)} (2.4)

The possibility π(τ |s0, δ) of τ given that policy δ is applied from initial state s0 is defined by:

π(τ |s0, δ) =
{

min
πk∈πτ

πk if τ ∈ δ,
0 otherwise.

These criteria can be optimized by choosing, for each state, an action that maximizes the
following counterparts of the Bellman equations [Sabbadin, 2001]:

• In the pessimistic case
upes(s) = maxa∈As min{u(s), min

s′∈St+1
max{1− π(s′|s, a), ut+1

pes (s′)}∀t < h, s ∈ St

upes(s) = u(s) ∀s ∈ Sh
(2.5)

• In the optimistic case:


uopt(s) = maxa∈As min{u(s), max

s′∈St+1
min(π(s′|s, a), uopt(s′))}∀t < h, s ∈ St

uopt(s) = u(s) ∀s ∈ Sh.
(2.6)

2.3.1.2 Optimization of finite-horizon ΠMDPs: Backward Induction

[Sabbadin et al., 1998, Sabbadin, 1999] have shown that any policy computed backwards by
successive applications of Equation 2.5 (resp. 2.6) is optimal according to upes (resp. uopt).

The principle of the optimistic version of this algorithm denoted BI-MDP (Algorithm 2.2,
the pessimistic version is similar) can be described as follows:
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• Envision being in the last time stage, for all the possible states, it decides the best action for
each state by calculating the maximal optimistic utility of that state,

• Then, suppose being in the next-to-last stage, for all the possible states, it decides the best
action for each state, given we know the optimal optimistic utility of being in various states
at the next time stage,

• This process is continued until reaching the present time stage.

Algorithm 2.2: BI-MDP : Backward-Induction-ΠMDP-uopt
Data: A ΠMDP
Result: Computes and returns an optimal policy δ

1 begin
2 t← h;
3 for s ∈ Sh do uopt(s)← u(s);
4 while t ≥ 1 do
5 t← t− 1;
6 foreach s ∈ St do
7 uopt(s)← max

a∈As
max
s′∈St+1

min{π(s′|s, a), uopt(s′)};

8 δ(s)← arg max
a∈As

{
max
s′∈St+1

min{π(s′|s, a), uopt(s′)
}

;

9 return δ;

2.3.2 Stationary Possibilistic Markov decision processes (stationary
ΠMDPs)

The previous section was devoted to the finite-horizon version of theMDP framework. In some
situations, we do not know when the process will end, or to control the system forever: theMDP
problem has to be expressed whatever the horizon h, or, more generally, for an infinite horizon. In
the present Section, we consider stationary problems, i.e. problems in which the set of states, the
available actions and the transition functions do not depend on the stage of the problem.

2.3.2.1 Definition

A stationary possibilistic Markov Decision Process (stationary ΠMDP) [Sabbadin, 2001] is de-
fined by:

• A finite set S of states.
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• A finite set A of actions, As denotes the set of actions available in state s;

• A utility function u: u(s) is the intermediate satisfaction degree obtained in state s ∈ S.

The uncertainty about the effect of an action a taken in state s, i.e. the transition function, is
represented by possibility distribution π(.|s, a): for any s′ ∈ S, π(s′|s, a) describing the uncer-
tainty about the possible next state s′ when the current state is s and the action taken is a (and then
getting the associated reward u(s′) ∈ V , the utility of being in state s′).

Example 2.4. Let us consider Figure 2.3 that shows a stationary ΠMDP that captures the prob-
lem of Example 2.1, formally described as follows:

• S = {R&U, R&F, P&U},

• AR&U = {Adv, Sav}, AR&F = {Sav}, AP&U = {Sav},

• π(P&U |R&U, Sav) = 0.2, π(R&U |R&U, Sav) = 1, π(R&F |R&U,Adv) = 1,
π(R&F |R&F, Sav) = 1, π(R&U |R&F, Sav) = 1,

• u(R&U) = 0.5, u(R&F ) = 0.7, u(P&U) = 0.3.

 R&U  R&F Adv Sav 
π =1 

π =1 

π =1 

Sav  P&U 
π =0.2 

π =1 

π =1 

Figure 2.3: The stationary ΠMDP of Example 2.4

Solving a stationary ΠMDP consists in finding a (stationary) policy, i.e. a function δ :
S → As, mapping states to actions, which is optimal with respect to a decision criterion. In the
possibilistic case, as in the probabilistic case, the idea is to compute the value of a policy from the
utility and the likelihood of its trajectories. Formally, let ∆ be the set of all policies encoded by a
possibilistic MDP. First, when the horizon is finite, each δ ∈ ∆ defines a list of scenarios called
trajectories. Each trajectory τ is a sequence of states and actions that can be written as follows:

τ = (s0, a0, s1, . . . , sh−1, ah−1, sh),
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where si (i = 0..h) is the ith state in the trajectory (i.e. si ∈ S at stage t = i), ai (i = 0..h−1)
is the ith action in the trajectory i.e. ai ∈ AS at stage t = i (i = 0..h− 1).

As in the case of finite-horizon ΠMDP , the possibility (resp. the utility) of τ given that
policy δ is applied from s0 is expressed by:

π(τ |s0, δ) = min
i=1..h

π(si|si−1, δ(si−1)) (2.7)

u(τ) = min
i=0..h

u(si) (2.8)

Optimistic and pessimistic utilities criteria [Sabbadin et al., 1998] can be optimized by choos-
ing, for each state, an action that maximizes the following counterparts of the Bellman equa-
tions [Bellman, 1957a, Sabbadin, 2001]:

uopt(s) = max
a∈As

min{u(s),max
s′∈S

min(π(s′|s, a), uopt(s′))} (2.9)

upes(s) = max
a∈As

min{u(s),min
s′∈S

max(1− π(s′|s, a), upes(s′))} (2.10)

This formulation is more general than the first one (finite-horizon ΠMDP) in the sense that
it applies to both the finite and the infinite case. It has allowed the definition of a (possibilistic)
value iteration algorithm and a policy iteration algorithm which converges to an optimal policy in
polytime.

2.3.2.2 Optimization of stationary ΠMDPs: Value iteration

In [Sabbadin, 2001], Sabbadin assumes the existence of an additional action stay that keeps the
system in the same state (or equivalently, an action do-nothing if the system does not evolve
by itself without any action applied). Under this assumption, possibilistic counterpart of the value
iteration algorithm is defined, denoted V I-MDP . It computes optimal policies from iterated mod-
ifications of possibilistic value function Q̃opt(s, a) (resp. Q̃pes(s, a)) that evaluates the optimistic
utility (resp. the pessimistic utility) of performing a in s.

The optimal possibilistic policy can be obtained from the solution of dynamic programming
equations expressed by:

• In the optimistic case:

Q̃opt(s, a) = max
s′∈S

min{(u(s′), π(s′|s, a)), uopt(s′)} (2.11)

where uopt(s) = maxaQopt(s, a) and Qopt(s, stay) = u(s).
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• In the pessimistic case:

Q̃pes(s, a) = min
s′∈S

min{u(s′),max{(1− π(s′|s, a)), upes(s′)}} (2.12)

where upes(s) = maxaQpes(s, a) and Qpes(s, stay) = u(s).

Therefore, a possibilistic version of the Value Iteration algorithm (Algorithm 2.3), that com-
putes Q̃opt(s, a) or Q̃pes(s, a), has been defined [Sabbadin, 2001]. This algorithm converges to
the actual value of Q̃opt (resp. Q̃pes) in a finite number of steps.

Algorithm 2.3: V I-MDP : Possibilistic (Optimistic) Value iteration
Data: A stationary ΠMDP
Result: Computes and returns an optimal policy δ

1 begin
2 foreach s ∈ S do
3 uopt(s)← u(s)
4 repeat
5 foreach s ∈ S do
6 foreach a ∈ A do
7 Q(s, a)← maxs′∈S min{(π(s′|s, a), uopt(s′)};
8 uopt(s)← maxaQ(s, a);
9 δ(s) = arg maxaQ(s, a);

10 until Q converges to Q̃opt;
11 // Q is epsilon close to Q̃opt

12 return δ;

2.3.2.3 Optimization of stationary ΠMDPs: Policy iteration

R. Sabbadin has proposed a possibilistic policy iteration algorithm (Algorithm 2.4), denoted here
PI-MDP , that alternates evaluation and improvement phases, as for its stochastic counter-part
[Sabbadin, 2001] (a pessimistic counterpart of Algorithm 2.4 is obtained by the use of the pes-
simistic utility evaluations, instead of the optimistic ones). First of all, this algorithm chooses an
initial policy arbitrary, then two steps follow:

• policy evaluation: it calculates the optimistic utility of each state given the current policy δ
until convergence,

• policy improvement: it updates the policy if an improvement is possible.

The stopping criterion for the possibilistic policy iteration algorithm is the equality of the
optimistic values of two successive policies δ and δ′ (Line 14).
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Algorithm 2.4: PI-MDP : Possibilistic (Optimistic) Policy iteration
Data: A stationary ΠMDP
Result: Computes and returns an optimal policy δ∗

1 begin
2 // Arbitrary initialization of δ on S
3 foreach s ∈ S do
4 δ(s)← ”Stay”
5 repeat
6 // Evaluation of δ;
7 repeat
8 foreach s ∈ S do
9 uδopt(s) = maxs′∈S min{π(s′|s, a).uδopt(s′)};

10 until uδopt converges;
11 // Improvement of δ;
12 foreach s ∈ S do
13 δ(s) = arg maxa∈A maxs′∈S min{π(s′|s, a).uδopt(s′)};
14 until δ converges to δ∗;
15 // Stabilization of the optimistic value of δ
16 return δ∗;

2.4 Summary

In this chapter we have proposed a short review of the possibilistic sequential decision-making
based on the possibilistic counterparts of decision trees and Markov decision processes. First, we
have presented possibilistic decision trees that offer a natural and explicit model to handle possi-
bilistic sequential decision problems. We have studied the optimization of policies for optimistic
or pessimistic utilities, in such models, using backward induction algorithm. Besides, we have
focused on the possibilistic Markov Decision Processes framework, and the three algorithms for
optimizing possibilistic utilities criteria: Backward induction, value iteration and policy iteration.

In the next Chapter, we detail the problem of drowning effect when comparing policies in se-
quential problems. We define lexicographic refinements that compare full policies, and not simply
their reductions. Chapter 4 provides a backward induction algorithm to compute a lexicographic
optimal policy in possibilistic decision trees as well as a backward induction algorithm to optimize
possibilistic (finite-horizon) Markov decision processes. We show also that these refinements can
be represented by infinitesimal expected utilities (Chapter 5). The case of stationary ΠMDP is
handled in Chapter 6.
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3.1 Introduction

Possibilistic decision criteria, especially pessimistic and optimistic utilities, are simple and realis-
tic as presented in Chapter 1, but they have some shortcomings: the principle of Pareto efficiency
is violated since these criteria suffer from the drowning effect [Fargier and Sabbadin, 2005].

In order to overcome the drowning effect, some refinements of possibilistic decision criteria
have been proposed in the non-sequential case i.e. one-step decision case (see Chapter 1). In
particular, [Fargier and Sabbadin, 2003,Fargier and Sabbadin, 2005] have proposed lexicographic
refinements of possibilistic utilities which can be represented by a form of expected utility. But,
these refinements are limited to one-step decision problems and do not apply to the sequential
decision problems that interest us. The present Chapter provides an extension of lexicographic
refinements to sequential decision-making, in order to apply them to decision trees and Markov
decision processes.

This chapter is structured as follows: Section 3.2 exposes the problem of drowning effect

39
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when optimizing possibilistic utilities criteria in sequential decision-making models. Section 3.3
proposes a way to compare policies using lexicographic procedures: first we detail the case of
evaluating decision models with utilities on final stage i.e. ΠDT s and finite-horizon ΠMDPs,
and then the case of models with intermediate utilities i.e. stationary ΠMDPs.

3.2 Drowning effect in possibilistic sequential decision-
making

As mentioned in Chapter 1, the pessimistic and optimistic utilities present a severe drawback,
known as the "drowning effect", due to the use of idempotent operations.

In this Section, we first illustrate the drowning effect of qualitative utilities, as well as its
consequences, in possibilistic decision trees and finite-horizon possibilistic Markov decision pro-
cesses. Then, we focus on stationary possibilistic Markov decision processes. When possibilistic
qualitative utilities are used, two policies that give an identical and extreme utility (either good, for
uopt or bad, for upes) in some plausible trajectory, may be undistinguished although having given
significantly different consequences in other possible trajectories. As shown by the following
counter-example.

Counter-example 3.1. Let us consider ΠDT of Example 2.1 (we recall it in Figure 3.1).

Let δ and δ′ be the two policies defined by:

• δ(D0) = Adv; δ(D1) = Adv; δ(D2) = Adv.

• δ′(D0) = Adv; δ′(D1) = Sav; δ′(D2) = Adv,

We can check that δ has 4 trajectories (τ1, τ2, τ5, τ6):

• τ1 = (Adv,R&U,Adv,R&U) with π(τ1|δ,D0) = 0.5 and u(τ1) = 0.5,

• τ2 = (Adv,R&U,Adv,R&F ) with π(τ2|δ,D0) = 0.5 and u(τ2) = 0.7,

• τ5 = (Adv,R&F,Adv,R&U) π(τ5|δ,D0) = 0.5 and u(τ5) = 0.5,

• τ6 = (Adv,R&F,Adv,R&F ) π(τ6|δ,D0) = 1 and u(τ6) = 0.5,

Using Equation 2.1 and 2.2, we get:

• uopt(δ) = max(min(0.5, 0.5),min(0.5, 0.7),min(0.5, 0.5),min(1, 0.5)) = 0.5,

• upes(δ) = min(max(0.5, 0.5),max(0.5, 0.7),max(0.5, 0.5),max(0, 0.5)) = 0.5.
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Figure 3.1: The ΠDT of Counter-example 3.1

The policy δ′ has also 4 trajectories (τ3, τ4, τ5, τ6):

• τ3 = (Adv,R&U, Sav, P&U) with π(τ3|δ′, D0) = 0.2 and u(τ3) = 0.3,

• τ4 = (Adv,R&U, Sav,R&U) with π(τ4|δ′, D0) = 0.5 and u(τ2) = 0.5,

• τ5 = (Adv,R&F,Adv,R&U) with π(τ5|δ′, D0) = 0.5 and u(τ5) = 0.5,

• τ6 = (Adv,R&F,Adv,R&F ) with π(τ6|δ′, D0) = 1 and u(τ6) = 0.5,

Hence, we have:

• uopt(δ′) = max(min(0.2, 0.3),min(0.5, 0.5),min(0.5, 0.5),min(1, 0.5)) = 0.5,
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• upes(δ) = min(max(0.8, 0.3),max(0.5, 0.5),max(0.5, 0.5),max(0, 0.5)) = 0.5.

Thus uopt(δ) = uopt(δ′) and upes(δ) = upes(δ′): δ, which provides at least utility 0.5 in all
trajectories, is not preferred to δ′ that provides clearly a bad utility (0.3) in some non-impossible
trajectory (τ3). τ4, which is good and totally possible "drowns" the bad consequence of δ′ in
τ3 in the optimistic comparison; in the pessimistic one, the bad utility of τ3 is drowned by its
low possibility, hence a global degree upes(δ′) that is equal to the one of δ (which, once again,
guarantees a utility degree of 0.5 at least).

The two possibilistic optimistic and pessimistic utilities thus may fail to satisfy the principle
of Pareto efficiency, which may be written as follows:

Definition 3.1. (Pareto efficiency)
For any optimization criterion O (here upes or uopt),∀δ, δ′ ∈ ∆,

δ �O δ′ if:
(i) ∀N ∈ Common(δ, δ′), δN �O δ′N and
(ii) ∃N ∈ Common(δ, δ′), δN �O δ′N .

where Common(δ, δ′) is the set of situations (decision nodes in DT s, states in the MDP
framework) for which both δ and δ′ provide an action and δN (resp. δ′N ) is the restriction of δ
(resp. δ′) to the subtree rooted in N .

Moreover, neither uopt nor upes fully satisfy the classical, Strict monotonicity principle, that
can be written as follows:

Definition 3.2. (Strict monotonicity)
For any optimization criterion O (here upes or uopt),
∀Cj ∈ NC , Di ∈ Succ(Cj), δ, δ′ ∈ ∆Di , δ” ∈ ∆Succ(Cj)\Di ,

δ �O δ′ ⇐⇒ δ + δ” �O δ′ + δ′′.

It may, indeed, happen that upes(δ) > upes(δ′) while upes(δ + δ”) = upes(δ′ + δ”) (or that
uopt(δ) > uopt(δ′) while uopt(δ + δ”) = uopt(δ′ + δ”)), as shown in the following Counter-
example.

Counter-example 3.2. Let us consider three policies δ, δ′ and δ′′, represented with the following
simple possibilistic lotteries, respectively:

• Lδ = 〈1/0.5, 1/0.4〉,

• Lδ′ = 〈1/0.4, 1/0.4〉,

• Lδ′′ = 〈1/0.5, 1/0.1〉.
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Let us consider L1 = 〈1/Lδ, 1/Lδ′′〉 and L2 = 〈1/Lδ′ , 1/Lδ′′〉. Using the reduction of
compound lotteries (see Section 1.3.2), we get:

• Reduction(L1) = 〈1/0.5, 1/0.4, 1/0.1〉 and

• Reduction(L2) = 〈1/0.4, 1/0.5, 1/0.1〉.

Then using Equation 1.8, we have uopt(Lδ) = 0.5 and uopt(Lδ′) = 0.4 i.e. δ �uopt δ′.

But uopt(Reduction(L1)) = 0.5 and uopt(Reduction(L2)) = 0.5, i.e. δ + δ′′ ≡uopt δ′ + δ′′.
This contradicts the strict monotonicity property.

Now, let us present an example that shows the drowning effect in finite-horizon ΠMDPs.

Counter-example 3.3. Figure 3.2 shows the finite-horizon ΠMDPs (with the horizon h = 2)
that represents an adaptation of the decision problem of Example 2.1. Note that here being Poor
and Unknown is an absorbing state (i.e. a state that, once entered, cannot be left).
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Figure 3.2: The finite-horizon πMDP of Counter-example 3.3

Let us consider the following two policies, δ and δ′:

• δ(R&U0) = Adv; δ(R&U1) = Sav; δ(R&F1) = Sav,
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• δ′(R&U0) = Adv; δ′(R&U1) = Adv; δ′(R&F1) = Sav.

δ has 4 trajectories, τ1, τ2, τ5, τ6 with:

• τ1 = (Adv,R&U,Sav, P&U2) with π(τ1|R&U, δ) = 0.2 and u(τ1) = 0.3,

• τ2 = (Adv,R&U1, Sav,R&U2) with π(τ2|R&U, δ) = 0.4 and u(τ2) = 0.5,

• τ5 = (Adv,R&F1, Sav,R&U2) with π(τ5|R&U, δ) = 1 and u(τ5) = 0.5;

• τ6 = (Adv,R&F1, Sav,R&F2) with π(τ6|R&U, δ) = 1 and u(τ6) = 0.5.

Hence uopt(δ) = 0.5.

δ′ is also composed of 4 trajectories (τ3, τ4, τ5, τ6) each leading to utility 0.5.
Hence uopt(δ′) = 0.5.

Thus uopt(δ) = uopt(δ′). However δ′ seems better than δ since it provides utility 0.5 for sure
while δ provides a bad utility (0.3) in some non impossible trajectory (τ1). τ2, which is good and
totally possible "drowns" the preference for δ′ in the optimistic comparison.

In the pessimistic case, δ and δ′ are still equivalent (upes(δ) = upes(δ′) = 0.5) and the
pessimistic criterion is not able to pick up the best one i.e. that is δ′.

We finally provide a counter-example that exemplifies the drowning effect in stationary ΠMDPs.

Counter-example 3.4. Consider the stationary ΠMDPs of Example 2.4 (we recall it in Figure
3.3); recall that u(R&U) = 0.5, u(R&F ) = 0.7, u(P&U) = 0.3. It admits two policies δ and
δ′:

• δ(R&U) = Sav; δ(P&U) = Stay; δ(R&F ) = Sav;

• δ′(R&U) = Adv; δ′(P&U) = Stay; δ′(R&F ) = Sav;

For horizon E = 2, δ has 3 trajectories (τ1, τ2, τ3) and δ′ has 2 trajectories (τ4, τ5) such that:

• τ1 = (R&U, Sav, P&U, Stay, P&U) with π(τ1|R&U, δ) = 0.2 and u(τ1) = 0.3,

• τ2 = (R&U, Sav,R&U, Sav, P&U) with π(τ2|R&U, δ) = 0.2 and u(τ2) = 0.3,

• τ3 = (R&U, Sav,R&U, Sav,R&U) with π(τ3|R&U, δ) = 1 and u(τ3) = 0.5,

• τ4 = (R&U,Adv,R&F, Sav,R&F ) with π(τ4|R&U, δ′) = 1 and u(τ4) = 0.5,

• τ5 = (R&U,Adv,R&F, Sav,R&U) with π(τ5|R&U, δ′) = 1 and u(τ5) = 0.5.

Thus uopt(δ) = uopt(δ′) = 0.5 although δ′ provides a good utility 0.5 for sure while δ provides
a bad utility (0.3) in some non impossible trajectories (τ1 and τ2). τ3 which is good and totally
possible "drowns" τ1 and τ2, thus δ is considered as good as δ′.
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Figure 3.3: The stationary πMDP of Counter-example 3.4

3.3 Lexicographic refinements in sequential decision-making
problems

As we have seen in Chapter 1, [Fargier and Sabbadin, 2003,Fargier and Sabbadin, 2005] have pro-
posed lexicographic refinements in order to overcome the drowning effect of possibilistic criteria
in one-stage decision problems. However, these refined criteria cannot be used in sequential de-
cision problems, where the drowning effect is also due to the reduction of compound possibilistic
policies into simple possibility distributions or into numbers i.e. optimistic or pessimistic utilities.

The purpose of the present work is to build efficient preference relations on policies, that agree
with the qualitative utilities when the latter can make a decision, and break ties when not - to build
refinements that satisfy the principle of Pareto efficiency.

Formally, in sequential decision framework, a preference relation �′ refines a preference rela-
tion � if and only if whatever δ, δ′, if δ � δ′ then δ �′ δ′.

In this section, we propose an extension of the lexicographic refinements to policies in sequen-
tial decision models, i.e. ΠDT s and ΠMDPs. We will first consider the case where we do not
have intermediate utilities, then the case of policies with intermediate utilities.

3.3.1 Problems without intermediate utilities

A straightforward way of applying lexicographic comparisons to sequential decision problem is to
associate to any policy δ the possibility distribution that it induces on the utility rewards (i.e. the
reduction of δ), as usually done in possibilistic (and probabilistic) DT s.

First, for any policy δ (or a sub policy) and any of its trajectories, τ = (aj0 , xi1 , aj1 , . . . , xih)
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in a ΠDT or τ = (aj0, ..., sik, ajk, sih) in a finite-horizon ΠMDPs, we associate a vector defined
by:

πτ = (π1, . . . , πh, uh).

This vector gathers the possibility and utility degrees encountered on the trajectory, formally:

• For the case of ΠDT s, uh is the utility u(xih) of the leaf of τ and πk = πCjk−1
(xik) (where

πCjk−1
is the possibility distribution at chance node Cjk−1) is the possibility of xik given

that action ajh−1 is executed.

• For the case of ΠMDPs, uh is the utility u(sih) obtained in the final state of the trajectory
sih. πk = π(sik|sik−1, ajk−1) denotes the possibility degree to reach sk applying action
ajk−1 from state sik−1.

Since a policy δ can be seen as a compound lottery, following the reduction of compound
lotteries procedure (see Equation 1.5), it is possible to reduce δ to a distribution πδ on the utility
degrees (i.e a simple lottery) defined by:

πδ(u) = max
πτ ,τ∈δ and uh=u

min
πk∈πτ

πk.

This principle of reduction is used, when qualitative decision theory is considered, by [Sab-
badin et al., 1998, Sabbadin, 2001] to compare policies: the pessimistic (resp. optimistic) utility
of a policy is simply the one of its reduction. Because the πδ are single stepped, one can think on
applying lexicographic comparisons as such, and can write:

δ Dlmax(lmin) δ
′ iff πδ Dlmax(lmin) πδ′ ,

δ Dlmin(lmax) δ
′ iff πδ Dlmin(lmax) πδ′ .

Dlmax(lmin) (resp. Dlmin(lmax)) refines�uopt (resp. �upes), but neither Dlmax(lmin) nor Dlmin(lmax)
do satisfy the principle of Pareto efficiency, as shown by the following counter-example.

Counter-example 3.5. Consider the ΠDT in Figure 3.4 that is a modified version of the problem
of Example 2.1.

Let us consider the two policies δ and δ′ defined by:

• δ(D0) = Adv, δ(D1) = Sav, δ(D2) = Adv,

• δ′(D0) = Adv, δ′ = (D1) = Adv, δ′D2
= Adv.

We have: Common(δ, δ′) = {D0, D1, D2}, δD0 = δ′D0
, δD2 = δ′D2

and δD1 dominates δ′D1
w.r.t.

lmax(lmin), since ((1, 0.1), (1, 0.9)) .lmax(lmin) ((1, 0.1)(0.5, 0.9)).

So, δ should be strictly preferred to δ′.

Let us compute the reduction of δ:
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Figure 3.4: A counter-example showing the non-efficiency of Dlmax(lmin)

• πδ(0.9) = πδ(0.1) = min(0.4, 1) = 0.4 and

• πδ(0.8) = min(1, 1) = 1,

and for δ′ we have:

• πδ′(0.9) = min(0.4, 0.5) = 0.4,

• πδ′(0.1) = min(0.4, 1) = 0.4 and

• πδ′(0.8) = min(1, 1) = 1.

Thus, δ and δ′ are indifferent for Dlmax(lmin), since both of them have the same reduction.
This contradicts Pareto efficiency.

The drowning effect here is due to the reduction of the policies, namely to the fact that the
possibility of a trajectory is drowned by the one of the least possible of its transitions. That is
why we propose to give up the principle of reduction and to build lexicographic comparisons on
policies considered in extenso.

Definition 3.3. (Leximax, Leximin relations on trajectories)
The comparison of trajectories can be seen as a comparison of vectors associated to trajectories.
For any πτ = (π1, . . . , πh, uh) and πτ ′ = (π′1, . . . , π′h, u′h), we define �lmin and �lmax orders
by:

τ �lmin τ ′ iff (π1, . . . , πh, uh) �lmin (π′1, . . . , π′h, u′h) (3.1)
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τ �lmax τ iff (1− π1, . . . , 1− πh, uh) �lmax (1− π′1, . . . , 1− π′h, u′h) (3.2)

Hence the proposition of the following preference relations1:

Definition 3.4. (Leximax(leximin), Leximin(leximax) relations on policies)
Let δ, δ′ ∈ ∆. Then:

δ �lmax(lmin) δ
′ iff ∀i, τλ(i) ∼lmin τ ′λ(i)

or ∃i∗, ∀i ≤ i∗, τλ(i) ∼lmin τ ′λ(i) and τλ(i∗) �lmin τ ′λ(i∗), (3.3)

δ �lmin(lmax) δ
′ iff ∀i, τσ(i) ∼lmax τ ′σ(i)

or ∀i, τσ(i) ∼lmax τ ′σ(i) or ∃i∗, ∀i ≤ i∗, τσ(i) ∼lmax τ ′σ(i) and τσ(i∗) �lmax τ ′σ(i∗), (3.4)

where τλ(i) (resp. τ ′λ(i)) is the ith best trajectory of δ (resp.δ′) according to �lmin and τσ(i)

(resp. τ ′σ(i)) is the ith worst trajectory of δ (resp.δ′) according to �lmax.

Hence, a policy can be represented by a matrix with N lines, s.t. N is the number of trajec-
tories, and M = h + 1 columns (h being the horizon of the decision model). Indeed, comparing
two policies w.r.t. �lmax(lmin) (resp. �lmin(lmax)) consists in first ordering the two corresponding
matrices of trajectories as follows:

• the elements of each trajectory in increasing order w.r.t �lmin (resp. in decreasing order
�lmax),

• then all the trajectories of each policy are arranged lexicographically top-down in decreas-
ing order (resp. top-down in increasing order).

Then, it is enough to lexicographically compare the two new matrices of trajectories, denoted
ρδ (resp. ρδ′), element by element. The first pair of different elements determines the best ma-
trix/policy. Note that the ordered matrix ρδ (resp. ρδ′) can be seen as the utility of applying the
policy δ (resp. δ′).

Formally, let ρ denotes a N × M matrix of elements of V . ∀ i ∈ 1..M ; ∀ j ∈ 1..N , ρij
denotes an element of ρ in line i and column j. Given two ordered matrices ρ and ρ′, we say that
ρ �lmaxlmin ρ′ iff ∃ i, j such that ∀ i′ < i, ∀ j′, ρi′,j′ = ρ′i′,j′ and ∀ j′ < j, ρi,j′ = ρ′i,j′ and
ρi,j > ρ′i,j . ρ ∼ ρ′ iff they are identical.

As a matter of fact, once the matrix of trajectories ρδ is reordered, the first element is always
equal to uopt(δ) (resp. to upes(δ) when applying lmin(lmax)):

1If the policies have different numbers of trajectories, neutral trajectories (vectors) are added at the
bottom of the shortest list of trajectories.
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Proposition 3.1.
Let δ be a policy and ρ be its ordered matrix w.r.t. �lmaxlmin . Then:

uopt(δ) = ρ1,1

Proof of Proposition 3.1.
Let ρ be the ordered matrix of δ. Since �lmax(lmin) refines �maxmin [Fargier and Sabbadin,
2005], we have:
ρ1,1 = maxi minj ρi,j
= maxi=1,n min(π1, . . . , πh, uh)
= maxi=1,n min(π1,min(π2,min(πh−1,min(πh, uh))))
= uopt(δ).

Example 3.1. Let us consider the Counter-example 3.1 with the same ΠDT (we recall it in Figure
3.5) and let us optimize it using the proposed lexicographic comparisons. We consider, once again,
the policies δ and δ′ defined by:

• δ(D0) = Adv; δ(D1) = Adv; δ(D2) = Adv.

• δ′(D0) = Adv; δ′(D1) = Sav; δ′(D2) = Adv,

As we have seen, δ has 4 trajectories (τ1, τ2, τ5, τ6):

• τ1 = (Adv,R&U,Adv,R&U) with πτ1 = (0.5, 0.5, 0.5),

• τ2 = (Adv,R&U,Adv,R&F ) with πτ2 = (0.5, 1, 0.7),

• τ5 = (Adv,R&F,Adv,R&U) with πτ5 = (1, 0.5, 0.5),

• τ6 = (Adv,R&F,Adv,R&F ) with πτ6 = (1, 1, 0.5).

So, the ordered matrix of trajectories is: ρδ =


0.5 1 1
0.5 0.7 1
0.5 0.5 1
0.5 0.5 0.5

.

δ′ has also 4 trajectories (τ3, τ4, τ5, τ6):

• τ3 = (Adv,R&U, Sav, P&U) with πτ3 = (0.5, 0.2, 0.3),

• τ4 = (Adv,R&U, Sav,R&U) with πτ4 = (0.5, 1, 0.5),

• τ5 = (Adv,R&F,Adv,R&U) with πτ5 = (1, 0.5, 0.5),
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Figure 3.5: The ΠDT of Example 3.1

• τ6 = (Adv,R&F,Adv,R&F ) with πτ6 = (1, 1, 0.5),

The ordered matrix of trajectories is: ρδ′ =


0.5 1 1
0.5 0.5 1
0.5 0.5 1
0.2 0.3 0.5

.

Given the two ordered matrices ρδ and ρδ′ , δ and δ′ are indifferent for optimistic utility since
the two first elements of the matrices are equal i.e. uopt(δ) = uopt(δ′) = 0.5. For lmax(lmin)
we compare the successive next elements until we find a pair of different values. In particular,
we have the second element of the second best trajectory of δ is strictly greater than the second
element of the second best trajectory of δ′ i.e. 0.7 > 0.5, while all the former elements are equal.
So, the second best trajectory of δ is strictly preferred to the second best trajectory of δ′ according
to �lmin. We deduce that δ is strictly preferred to δ′:
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δ �lmax(lmin) δ
′ since (0.5, 0.7, 1) �lmin (0.5, 0.5, 1).

We show now that, the proposed lexicographic criteria are relevant refinements and escape the
drowning effect:

Proposition 3.2. (�lmax(lmin) and �lmin(lmax) orders)

• �lmax(lmin) is complete, transitive and refines �uopt;

• �lmin(lmax) is complete, transitive and refines �upes .

Proof of Proposition 3.2.

• Completeness. It is a consequence of the completeness of �lmax and �lmin.

• Transitivity.

– We prove that �lmax(lmin) is transitive. The proof relies on the transitivity of �lmin.
Let us consider three policies, δ, δ′ and δ′′ and assume δ �lmax(lmin) δ

′ and δ′ �lmax(lmin)
δ′′. Since δ �lmax(lmin) δ

′ and δ′ �lmax(lmin) δ
′′, then we are in either following

cases:

1. ∀i, τλ(i) ∼lmin τ ′λ(i) ∼lmin τ
′′
λ(i). This happens when δ ∼lmax(lmin) δ

′ ∼lmax(lmin)
δ′′. And then, by transitivity of�lmin, we have ∀i, τλ(i) ∼lmin τ ′′λ(i) ⇔ δ ∼lmax(lmin)
δ′′.

2. When either δ �lmax(lmin) δ′ or δ′ �lmax(lmin) δ′′, then, by definition of
�lmax(lmin), there exists i∗, such that:
(a) ∀i < i∗, τλ(i) ∼lmin τ ′λ(i) ∼lmin τ

′′
λ(i),

(b) τλ(i∗) �lmin τ ′λ(i∗) �lmin τ
′′
λ(i∗) and

(c) either τλ(i∗) �lmin τ ′λ(i∗) or τ ′λ(i∗) �lmin τ
′′
λ(i∗), or both.

Then, once again by transitivity of �lmin, τλ(i∗) �lmin τ ′′λ(i∗).
So, δ �lmax(lmin) δ

′′.

So, points 1 and 2 imply, together, that δ �lmax(lmin) δ
′ and δ′ �lmax(lmin) δ

′′ imply
δ �lmax(lmin) δ

′′.

– Similarly, it can be checked that �lmin(lmax) is transitive. Let us consider three
policies, δ, δ′ and δ′′ and assume δ �lmin(lmax) δ

′ and δ′ �lmin(lmax) δ
′′. Since

δ �lmin(lmax) δ
′ and δ′ �lmin(lmax) δ

′′, then we are in either following cases:

1. ∀i, τσ(i) ∼lmax τ ′σ(i) ∼lmax τ
′′
σ(i).

This happens when δ ∼lmin(lmax) δ
′ ∼lmin(lmax) δ

′′. And then, by transitivity
of �lmax, we have ∀i, τσ(i) ∼lmax τ ′′σ(i) ⇔ δ ∼lmin(lmax) δ

′′.
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2. When either δ �lmin(lmax) δ′ or δ′ �lmin(lmax) δ′′, then, by definition of
�lmin(lmax), there exists i∗, such that:
(a) ∀i < i∗, τσ(i) ∼lmax τ ′σ(i) ∼lmax τ

′′
σ(i),

(b) τσ(i∗) �lmax τ ′σ(i∗) �lmax τ
′′
σ(i∗) and

(c) either τσ(i∗) �lmax τ ′σ(i∗) or τ ′σ(i∗) �lmax τ
′′
σ(i∗), or both.

Then, once again by transitivity of �lmax, τσ(i∗) �lmax τ ′′σ(i∗).
So, δ �lmin(lmax) δ

′′.

So, points 1 and 2 imply, together, that δ �lmin(lmax) δ
′ and δ′ �lmin(lmax) δ

′′ imply
δ �lmin(lmax) δ

′′.

• Refinement.

– We prove that �lmax(lmin) refines �uopt . Let us consider two policies δ and δ′. If
uopt(δ) > uopt(δ′)
⇔ max

τ∈δ
min{min

πk∈πτ
πk, uh} > max

τ ′∈δ′
min{ min

π′
k
∈πτ ′

π′k, u
′
h}

⇒ max
τ∈δ

min(π1, . . . , πh, uh) > max
τ ′∈δ′

min(π′1, . . . , π′h, u′h).

Since min(π1, . . . , πh, uh) > min(π′1, . . . , π′h, u′h)
⇒ (π1, . . . , πh, uh) �lmin (π′1, . . . , π′h, u′h) (leximin ordering refines min ordering),
then τλ(1) �lmin τ ′λ(1) ⇒ δ �lmax(lmin) δ

′ where τλ(1) (resp. τ ′λ(1)) is the best
trajectory of δ (resp.δ′) according to �lmin.

So by the definition of �lmax(lmin) we have δ �lmax(lmin) δ
′ . And we deduce that

�lmax(lmin) refines �uopt .

– We show in the same way that�lmin(lmax) refines�upes . Let us consider two policies
δ and δ′. If upes(δ) > upes(δ′)
⇔ min

τ∈δ
max{min

πk∈πτ
(1− πk), uh} > min

τ ′∈δ′
max{ min

π′
k
∈πτ ′

(1− π′k), u′h}

⇔ min
τ∈δ

max(1− π1, . . . , 1− πh, uh) > min
τ ′∈δ′

max(1− π′1, . . . , 1− π′h, u′h).

Since max(1− π1, . . . , 1− πh, uh) > max(1− π′1, . . . , 1− π′h, u′h)
⇒ (1−π1, . . . , 1−πh, uh) �lmax (1−π′1, . . . , 1−π′h, u′h) (leximax ordering refines
max ordering). Then τσ(1) �lmax τ ′σ(1) ⇒ δ �lmin(lmax) δ

′ where τσ(1) (resp.
τ ′σ(1)) is the worst trajectory of δ (resp.δ′) according to �lmax. So, by definition of
�lmin(lmax) we have δ �lmin(lmax) δ

′.

Proposition 3.3.
�lmax(lmin) and �lmin(lmax) both satisfy the principle of Pareto efficiency as well as strict mono-
tonicity.

Proof of Proposition 3.3.
(i) We first prove that �lmax(lmin) and �lmin(lmax) are strictly monotonic.
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Note that ∀Cj ∈ NC ,∀Di ∈ Succ(Cj), δ, δ′ ∈ ∆Di , δ
′′ ∈ ∆Succ(Cj)\Di . The trajectories of δ+δ′′

are composed of two disjoint sets of trajectories : One for δ and one for δ′′. The same holds for
δ′ + δ′′. Then, note that adding or removing identical trajectories to two sets of trajectories does
not change the �lmax(lmin) or the �lmin(lmax) ordering between these two sets.

To be more precise, assume, for example, that δ �lmax(lmin) δ
′.

Then, ∃i∗, ∀i < i∗, τλ(i) ∼lmin τ ′λ(i) and τλ(i∗) �lmin τ ′λ(i∗). The trajectories corresponding to
δ′′ are composed of trajectories which rank before τλ(i∗), and after τλ(i∗). Obviously, the ones
that rank before τλ(i∗) are added to both lists of trajectories, and thus simply delay i∗ while not
inducing a new preference. And the ones that rank after τλ(i∗) are not taken into consideration
in the comparison of δ + δ′′ and δ′ + δ′′. In the same way, by definition of �lmin(lmax) we get
δ �lmin(lmax) δ

′ i.e. ∃i∗, ∀i < i∗, τσ(i) ∼lmax τ ′σ(i) and τσ(i∗) �lmax τ ′σ(i∗). The same result as
for τλ(i∗) handles for τσ(i∗). Thus, �lmax(lmin) and �lmin(lmax) are strictly monotonic.
(ii) Now we prove that �lmax(lmin) satisfy The principle of Pareto efficiency. So, suppose that
δ �lmax(lmin) δ

′. Two cases arise:

• if ∀i, τλ(i) ∼lmin τ ′λ(i) and then δ ∼lmax(lmin) δ
′,

• if ∃i∗, s.t. ∀i < i∗, τλ(i) ∼lmin τ ′λ(i) and τλ(i∗) �lmin τ ′λ(i∗). Then, τλ(i∗) �lmin τ ′λ(i∗)
implies that there exist a pair of different (βi∗,k, β′i∗,k), where βi∗,k (resp. β′i∗,k) is an
element of τλ(i∗) (resp. τ ′λ(i∗)), that determines the best policy. Here we get βi∗,k > β′i∗,k
i.e. τλ(i∗) �lmin τ ′λ(i∗) and thus δ �lmax(lmin) δ

′.

In summary, if we have δ �lmax(lmin) δ
′ and ∃i∗, s.t. τλ(i∗) �lmin τ ′λ(i∗) we get δ �lmax(lmin)

δ′ which expresses exactly the principle of Pareto efficiency in the case �lmax(lmin).
(iii) Let us prove �lmin(lmax) satisfy The principle of Pareto efficiency. When considering the
�lmin(lmax) order, the same kind of result can be obtained.

So, suppose that δ �lmin(lmax) δ
′. Two cases arise:

• if ∀i, τσ(i) ∼lmax τ ′σ(i) and then δ ∼lmin(lmax) δ
′,

• if ∃i∗, s.t. ∀i < i∗, τσ(i) ∼lmax τ ′σ(i) and τσ(i∗) �lmax τ ′σ(i∗). Then, τσ(i∗) �lmax τ ′σ(i∗)
implies that there exist a pair of different (βi∗,k, β′i∗,k), where βi∗,k (resp. β′i∗,k) is an
element of τσ(i∗) (resp. τ ′σ(i∗)), determining the best policy. We get βi∗,k > β′i∗,k i.e.
τσ(i∗) �lmax τ ′σ(i∗) and thus δ �lmin(lmax) δ

′.

In summary, if we have δ �lmin(lmax) δ
′ and ∃i∗, s.t. τσ(i∗) �lmax τ ′σ(i∗) we get δ �lmin(lmax)

δ′ which expresses exactly the principle of Pareto efficiency in the case of �lmin(lmax).
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3.3.2 Problems with intermediate utilities

Let h be the horizon of the stationary ΠMDP , as in the previous Section a trajectory is a se-
quence of states and actions. A policy can thus be viewed as a matrix where each line cor-
responds to a distinct trajectory τ = (s0, a0, s1, . . . , sh−1, ah−1, sh) i.e. to a vector vτ =
(u0, π1, u1, π2, . . . , πh−1, uh). This allow us to define the comparison of trajectories and poli-
cies by 2:

τ �lmin τ ′ iff (u0, π1, . . . , πh, uh) �lmin (u′0, π′2, . . . , π′h, u′h) (3.5)

τ �lmax τ ′ iff (u0, 1− π1, . . . , 1− πh, uh) �lmax (u′0, 1− π′1, . . . 1− π′h, u′h) (3.6)

δ �lmax(lmin) δ
′iff ∀i, τλ(i) ∼lmin τ ′u(i)

or ∃i∗, ∀i < i∗, τλ(i) ∼lmin τ ′λ(i) and τλ(i∗) �lmin τ ′λ(i∗) (3.7)

δ �lmin(lmax) δ
′ iff ∀i, τσ(i) ∼lmax τ ′σ(i)

or ∃i∗, ∀i < i∗, τσ(i) ∼lmax τ ′σ(i) and τσ(i∗) �lmax τ ′σ(i∗) (3.8)

where τλ(i) (resp. τ ′λ(i)) is the ith best trajectory of δ (resp. δ′) according to �lmin and τσ(i)

(resp. τ ′σ(i)) is the ith worst trajectory of δ (resp. δ′) according to �lmax.

It is easy to show that using these definitions, we also get efficient refinements of uopt and
upes:

Proposition 3.4.

• If uopt(δ) > uopt(δ′) then δ �lmax(lmin) δ
′,

• If upes(δ) > upes(δ′) then δ �lmin(lmax) δ
′.

Proof of Proposition 3.4.

• We prove that �lmax(lmin) refines �uopt in sequential decision models with intermediate
utilities (stationary ΠMDP). Following Proof of Proposition 3.2, we consider two policies

2If a trajectory is shorter than h, neutral elements (1 for the optimistic case and 0 for the pessimistic one)
are added at the end. If the policies have different numbers of trajectories, neutral trajectories (vectors) are
added to the shortest one.
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δ and δ′.
If uopt(δ) > uopt(δ′)
⇔ max

τ∈δ
min{π(τ |s0, δ), u(τ)} > max

τ ′∈δ′
min{π(τ ′|s0, δ

′), u(τ ′)}
⇒ max

τ∈δ
min{min

i=1..h
π(si|si−1, δ(si−1)), min

i=1..h
u(si)} >

max
τ ′∈δ′

min{min
i=1..h

π′(si|si−1, δ
′(si−1)), min

i=1..h
u′(si)}

⇒ max
τ∈δ

min(u0, π1, u1, π2, . . . , πh−1, uh) > max
τ ′∈δ′

min(u′0, π′1, u′1, π′2, . . . , π′h−1, u
′
h).

Since min(u0, π1, u1, π2, . . . , πh−1, uh) > min(u′0, π′1, u′1, π′2, . . . , π′h−1, u
′
h)

⇒ (u0, π1, u1, π2, . . . , πh−1, uh) �lmin (u′0, π′1, u′1, π′2, . . . , π′h−1, u
′
h) (as leximin order-

ing refines min ordering), then τλ(1) �lmin τ ′λ(1) ⇒ δ �lmax(lmin) δ
′ where τλ(1) (resp.

τ ′λ(1)) is the best trajectory of δ (resp.δ′) according to �lmin.

Using the definition of �lmax(lmin) (Equation 3.3) we have δ �lmax(lmin) δ′. Thus,
�lmax(lmin) refines �uopt .

• We prove in the same way that �lmin(lmax) refines �upes . Considering two policies δ and
δ′ s.t. upes(δ) > upes(δ′)

⇔ min
τ∈δ

max{1− π(τ |s0, δ), u(τ)} > min
τ ′∈δ′

max{1− π(τ ′|s0, δ
′), u(τ ′)}

⇔ min
τ∈δ

max{min
i=1..h

(1− π(si|si−1, δ(si−1))), min
i=1..h

u(si)} >
min
τ ′∈δ′

max{min
i=1..h

(1− π′(si|si−1, δ
′(si−1))), min

i=1..h
u′(si)}

⇔ min
τ∈δ

max{min(u0, 1− π1, u1, 1− π2, . . . , 1− πh−1, uh)} >
min
τ ′∈δ′

max{(u′0, 1− π′1, u′1, 1− π′2, . . . , 1− π′h−1, u
′
h)}.

Since max(u0, 1− π1, u1, 1− π2, . . . , 1− πh−1, uh) >
max(u′0, 1− π′1, u′1, 1− π′2, . . . , 1− π′h−1, u

′
h)

⇒ (u0, 1− π1, u1, 1− π2, . . . , 1− πh−1, uh) �lmax
(u′0, 1− π′1, u′1, 1− π′2, . . . , 1− π′h−1, u

′
h) (as leximax ordering refines max ordering).

Then τσ(1) �lmax τ ′σ(1)1 ⇒ δ �lmin(lmax) δ
′ where τσ(1) (resp. τ ′σ(1)) is the worst

trajectory of δ (resp.δ′) according to �lmax. So, by definition of �lmin(lmax) (Equation
3.4) we have δ �lmin(lmax) δ

′ . We deduce that �lmin(lmax) refines �upes .

Proposition 3.5. Relations �lmin(lmax) and �lmax(lmin) are complete, transitive and satisfy the
principle of strict monotonicity.

Proof of Proposition 3.5.

• Completeness. It is a consequence of the completeness of �lmax and �lmin.
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• Transitivity. The proof can be deduced from Proof of Proposition 3.2 (second point) by
replacing πτ = (π1, . . . , πh, uh) by vτ = (u0, π1, u1, π2, . . . , πh−1, uh). Since πτ and vτ
are obviously two vectors of numbers in [0, 1], then by transitivity of �lmax and �lmin we
can conclude that �lmin(lmax) and �lmax(lmin) are transitive.

• Monotonicity. Using Proof of Proposition 3.2 (third point): when considering intermediate
utilities vτ are vectors of numbers that will be ordered just like πτ . So, δ + δ′′ contains two
disjoint sets of trajectories (i.e. vectors): the ones of δ and the ones of δ′′ (and similarly
for δ′ + δ′′). Then, adding or removing identical trajectories (i.e. vectors) to two sets of
trajectories does not change their comparison by �lmax(lmin) (resp. �lmin(lmax)) - while it
may transform a strict preference into an indifference if uopt (resp. upes) were used.

3.4 Summary

In this Chapter, we have discussed the limitations of possibilistic qualitative utilities, i.e. the
drowning effect in sequential decision-making. It appears that these criteria do not satisfy the
principle of Pareto efficiency nor the strict monotonicity. However, we have shown that it is
possible to define an extended version of lexicographic comparisons, (initially proposed for the
one-step decision problem), to improve discrimination in sequential decision-making. Properties
of the proposed lexicographic comparisons have important consequences; from a prescriptive point
of view, they highlight the rationality of lmax(lmin) and lmin(lmax) and suggest a probabilistic
interpretation presented Chapter 5. These properties allow us to define Dynamic Programming
algorithms for calculating lexicographic optimal policies- this is the topic of the next Chapter.
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4.1 Introduction

In the previous Chapter, we have proposed lexicographic criteria that satisfy the crucial proper-
ties of strict monotonicity and transitivity which allow us to define solving algorithms based on
Dynamic Programming to get lexicographic optimal policies. In the present Chapter, we propose
backward induction algorithms to compute lexicographic optimal strategies policies in ΠDT s and
finite-horizon ΠMDPs.

This Chapter is organized as follows: the next Section is devoted to the adaptation of Dynamic
Programming algorithm, namely backward induction, to the lexicographic criteria in ΠDT s. Sec-
tion 4.3 details the lexicographic backward induction algorithm to optimize policies in possibilistic
finite-horizon ΠMDPs. Finally, Section 4.4 presents an experimental study of these algorithms.
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The main results of this chapter are published in [Ben Amor et al., 2016a, Ben Amor et al.,
2016b].

4.2 Optimizing lexicographic criteria in ΠDT s

This Section rises the question of the policy optimization of lexicographic criteria (Definition 3.4)
in ΠDT s .

4.2.1 Lexicographic backward induction algorithm in ΠDT s

Our aim here is to adapt the backward induction for optimizing possibilistic utilities in ΠDT s (see
section 2.2.2) to lexicographic criteria.

The proposed lexicographic backward induction algorithm, so-called (LexBI-DT ), (Algo-
rithm 4.1 for the lmax(lmin) variant; the lmin(lmax) variant is similar) proceeds in the classical
way, by backward induction:

• When a chance node is reached, an optimal sub-policy is recursively built for each of its
children; these subpolicies are combined but the resulting policy is NOT reduced, contrarily
to what is classically done.

• When a decision node is reached, the program is called for each child and the best of them
is selected.

The difference between the lexicographic backward induction algorithm and the classical version
of Sabaddin (Algorithm 2.1) is that for the first one the lexicographic comparison of policies is
done on the basis of their trajectories, rather than optimistic or pessimistic utilities. To this extent,
the algorithm needs for each possible policy the matrix ρ that contains the following vectors:

• πτ = (π1, . . . , πh, uh), in the optimistic case, or

• πτ = (1− π1, . . . , 1− πh, uh), in the pessimistic case.

Hence, for line z corresponding to the z-th trajectory and stage t s.t. t = 0..hwe define an element
of the matrix denoted by ρz,t as:

ρz,t =


πt if t ≤ h and O = lmax

(
lmin

)
1− πt if t ≤ h and O = lmin

(
lmax

)
uh if t = h+ 1.

(4.1)
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Indeed, this algorithm is written in a recursive manner, and proceeds as follows:

• When node N reached is a chance node, an optimal sub-policy is recursively built for each
of its children Ni: successors of a chance node may be decision nodes Di or leaf nodes
LNi. These recursive calls return for each Ni a matrix ρNi that contains the πτ vectors of
the trajectories τ of this sub-policy. To make the lexicographic comparison of trajectories,
and thus of policies, we only need to compare their πτ vectors - hence we memorize the
matrices of numbers rather than explicit trajectories. The matrix corresponding to the trajec-
tories beginning at N , ρ is obtained by combining the ρNi according to πN , the possibility
distribution associated to N ; (this matrix is not reduced).

• When nodeN reached is a decision node, an optimal sub-policy is computed for every child
Cj . The best of them is selected, δ(N) receives the action corresponding to this chance node
and the corresponding ρ matrix is returned.

Algorithm 4.1: LexBI-DT : Backward-Induction-ΠDT -lmax(lmin)(N :Node)
Data: A ΠDT ; the policy, δ, is memorized as global variable
Result: Set δ for the tree rooted in N and returns the matrix ρ of the πτ vectors

corresponding its trajectories
1 begin
2 // Leaves
3 if N ∈ NU then ρ = [u(N)];
4 // Chance nodes
5 if N ∈ NC then
6 k = |Succ(N)|;
7 foreach Ni ∈ Succ(N) do
8 ρNi ← Backward-Induction-ΠDT -lmax(lmin)(Ni)
9 ρ← ConcatAndOrder(πN , ρN1 , ..., ρnk);

10 // Decision nodes
11 if N ∈ ND then
12 ρ← [0];
13 foreach Cj ∈ Succ(N) do
14 ρCj ← Backward-Induction-ΠDT -lmax(lmin)(Cj);
15 if ρCj �lmax(lmin) ρ then
16 ρ← ρCj ;
17 δ(N)← label(N,Cj);

18 return ρ;
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When N is a chance node, its matrix depends on N1, . . . , Nk (on the ρNi , recursively com-
puted) the successors of N , and on the possibility distribution on them. It is built by a call to the
function ConcatAndOrder(πN , ρN1 , . . . , ρNk) (outlined by Algorithm 4.2). This function adds
a column to each ρNi , filled with πN (Ni) the possibility degrees of getting Ni; the matrices are
vertically concatenated. In order to get faster lexicographic comparisons, the elements in the lines
are then ordered in decreasing (resp. increasing) order, and the lines are reordered by decreas-
ing (resp. increasing) order w.r.t. to lmax (resp. lmin). Once ρ has been reordered, ρ1,1, the
first element of ρ is equal to the optimistic utility (resp. the pessimistic utility) of the sub-policy
represented by ρ.

Algorithm 4.2: ConcatAndOrder(π, ρ1, . . . , ρk)
Data: k matrices ρ1, . . . , ρk and a distribution π on {1, . . . , k}
Result: ρ, the combination of ρ1, . . . , ρk according to π

1 // Notations:
2 // Lρ: number of lines of ρ,
3 // Cρ: number of columns of ρ,
4 // ρ(z): the line z in ρ,
5 // ρz,t: the element in line z and column t in ρ
6 begin
7 NbLines← ∑k

m=1 Lρm;
8 maxC ← maxm=1,k(Cρm);
9 Creates a matrix ρ with NbLines lines and maxC + 1 collumns

10 // Concatenation
11 z ← 0;
12 for m = 1, k do
13 for z′ = 1, Lρm do
14 z ← z + 1;
15 for t = 1, Cρm do ρz,t ← ρmz′,t;
16 for t = Cρm + 1,maxC do ρz,t ← 0;
17 ρz,maxC+1 ← π(m);

18 // Ordering the elements of each line by increasing
order

19 for z = 1, NbLines do
20 sortIncreasing(ρ(z),≥);

21 // Ordering the lines by decreasing order according
to lmax

22 sortDecreasing(ρ,≥lmax);
23 return ρ;

Because the ρ matrices are ordered, the lexicographic comparison of two decisions (line 15 of
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Algorithm 4.1) is performed by scanning the elements of their ρ matrices, line by line from the
first one. The first pair of different values determines the best matrix/chance node. If the matrices
have different numbers of lines, dummy lines are added at the bottom of the shortest one (filled
with 1 for the optimistic case, with 0 for the pessimistic one).

Example 4.1. Let us consider the counter-example 3.5 with the same ΠDT (we recall it in Figure
4.1). Main steps for the evaluation of this ΠDT using lexicographic backward induction (Algo-
rithm 4.1) w.r.t. lmax(lmin) criterion are as follows:

Sav 

 

 

Adv 

 

u(LN3)= 0.9 

u(LN4)= 0.1  

 

C2 

C4 

 

D2 

u(LN1)= 0.9 

u(LN2)= 0.1  

 
D1 

D0 C1 

 

C3 

 

  R&F: 0.4 

 

 R&U : 1 

 

 R&U: 1 
 

 R&F: 0.5 

 

  R&F: 1 

  P&F: 1 
 

 R&U: 1 

 

 R&F: 1 
 

u(LN5)= 0.8 

u(LN6)= 0.8  

 

Adv 

 

 

Adv 

LN1 

LN2 

LN3 

LN4 

LN5 

LN6 

Figure 4.1: The ΠDT of Example 4.1

• Initially, we have N = D0 with Succ(D0) = {C1}.

• ForC1, ρ
C1 = Backward-Induction-ΠDT -lmax(lmin)(C1) and Succ(C1) = {D1, D2}

• For N1 = D1, we have ρD1 = Backward-Induction-ΠDT -lmax(lmin)(D1) and
Succ(D1) = {C2, C3}:

– ForC2, we have ρC2 = ConcatAndOrder(πC2 , ρ
LN1 , ρLN2) = ((1, 1),

[
0.9
]
,
[
0.1
]
)

ρC2 =
[
0.9 1
0.1 1

]

– ForC3, we have ρC3 = ConcatAndOrder(πC3 , ρ
LN3 , ρLN4) = ((0.5, 1),

[
0.9
]
,
[
0.1
]
)

ρC3 =
[
0.5 0.9
0.1 1

]
.

⇒ Since ρC2 �lmax(lmin) ρ
C3 , So ρD1 =

[
0.9 1
0.1 1

]
and δ(D1) = {D1, Sav, C2}.
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• For N2 = D2, we have ρD2 = Backward-Induction-ΠDT -lmax(lmin)(D2) and
Succ(D2) = {C4}:

– ForC4, we have ρC4 = ConcatAndOrder(πC4 , ρ
LN5 , ρLN6) = ((1, 1),

[
0.8
]
,
[
0.8
]
)

ρC4 =
[
0.8 1
0.8 1

]

⇒ Since ρC4 �lmax(lmin)
[
0
]
, So ρD2 =

[
0.8 1
0.8 1

]
and δ(D2) = {D2, Adv, C4}.

• return to C1, we have ρC1 = ConcatAndOrder(πC1 , ρ
D1 , ρD2)

= ((0.4, 1),
[
0.9 1
0.1 1

]
,

[
0.8 1
0.8 1

]
) = (

[
0.4 0.9 1
0.4 0.1 1

]
,

[
1 0.8 1
1 0.8 1

]
) =


0.8 1 1
0.8 1 1
0.4 0.9 1
0.1 0.4 1



Since ρC1 �lmax(lmin)
[
0
]
, So ρD0 =


0.8 1 1
0.8 1 1
0.4 0.9 1
0.1 0.4 1

 and δ(D0) = {D0, Adv, C1}.

⇒ The optimal strategy returned is: δ = ({D0, Adv, C1}, {D1, Sav, C2}, {D2, Adv, C4}).

4.2.2 Complexity analysis

Even if working with matrices rather than numerical values, Algorithm 4.1 is polynomial w.r.t.
the size of the original tree. However, it is computationally more expensive than the algorithm
proposed by [Sabbadin et al., 1998] for the optimization of uopt/upes (Algorithm 2.1), since it
requires to memorize the trajectories that follow from the current policy (i.e. the ρ matrices).
Consider the branching factor of the tree b; the size of the tree is thus equal to b2h. Now, consider
the size of a matrix ρ: it is in the order of bh × (h + 1) in the worst case (i.e. at the end of the
backward induction) - the same order of magnitude as the one of the size of the tree.

Let us now study the time complexity. The complexity of ConcatAndOrder is based on op-
erations: the concatenation of b matrices which is linear and ordering matrices which depends
on the sorting algorithm: for instance, if we use QuickSort on an n × m matrix, then ordering
the elements within a line is performed in O(m · log(m)), and the inter-ranking of the lines is
done in O(n · log(n) · m) operations. Hence, the overall complexity of ordering matrices is in
O(n ·m · log(n ·m)).

At each step t, from t = h−1 to t = 1, there is a chance phase and a decision phase - b decision
nodes, each followed by b chance node. The chance phase is more expensive than the decision one
- it makes the same number of recursive calls than the decision phase, but the decision phase does
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not increase the size of the matrices it receives while the chance phase builds and orders, for each
of its b2 chance nodes a matrix that is bigger than the one it receives: it receives (for a given chance
node, again) b matrices with bh−t−1 lines and h− t− 1 columns and concat them in a matrix with
bh−t lines and h− t columns (concat). The ordering then costs bh−t · (h− t) · log(bh−t · (h− t))).
The comparison is cheaper, since it costs bh−t · (h− t) in the worst case.

So the worst time complexity at step t is a function Tt = b · bh−t · (h− t) · log(bh−t · (h− t)).
The order of magnitude of worst case complexity of the algorithm is thus:
M = Σ1

t=h−1 Tt = Σ1
t=h−1 b · bh−t · (h− t) · log(bh−t · (h− t)). Letting y = bh−t · (h− t), we

get: y =
{
bh−1 · (h− 1) at t = 1
b at t = h− 1

Thus M = Σbh−1·(h−1)
y=b b · y · log(y) then we can calculate this upper bound approximation as

follows: M = Σbh−1·(h−1)
y=b b · y · log(y) ≤

∫ bh−1·(h−1)
y=b b · y · log(y),

since the primitive of the function f = y · log(y) is F = 0.5× y2(log(y)− 0.5), we get:

⇒M ≤ [b · y2 · log(y)]b
h−1·(h−1)
y=b

⇒M ≤ b · (bh−1 · (h− 1))2 · log(bh−1 · (h− 1))− b · b2 · log(b),

⇒M ≤ b · (bh−1 · (h− 1))2 · log(bh−1 · (h− 1))

Hence, the time complexity is in O(b2h · (h− 1)2log((h− 1) · bh−1)) - it is polynomial with
respect to the horizon and the size of the tree (which, again, is in b2h).

4.3 Optimizing lexicographic criteria in finite-horizon
ΠMDPs

A first way to solve a finite-horizon ΠMDP would be to compute a DT that is equivalent to the
finite-horizon MDP (this is always possible, through the duplication of the nodes with several
predecessors) and to apply the algorithm presented in the previous Section. However, this ap-
proach may lead to algorithms which are exponential in time and space (w.r.t. the finite-horizon
MDP description), since the size of the DT s associated to a finite-horizonMDP may be expo-
nential in the size of theMDP . So there can be a combinatorial explosion. In this Section, we
propose an algorithm that calculates a lexicographic optimal policy on the finite-horizon ΠMDP
itself.
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4.3.1 Lexicographic backward induction algorithm in finite-horizon
ΠMDPs

The lexicographic variant of the backward induction algorithm, so-called (LexBI-MDP ), (see
Algorithm 4.3) performs the optimization of lmax(lmin) (the lmin(lmax) variant is similar) in
finite-horizon ΠMDPs.

As in the case of ΠDT s, the comparison of decisions (here, of actions a) is done on the basis
of the trajectories they induce, given the decisions made for the future state. To this extent, one
memorizes, for each state s for which a decision has been made, the matrix ρ(s) corresponding
to the trajectories obtained when the current policy is applied from s. For s ∈ St, ρ(s) is defined
as follows: for lmax(lmin) each line gathers the possibility degrees π(s′|a, s) of reaching the
following state s′ ∈ St+1, given that δ(s) = a is executed (resp. 1− π(s′|s, a) for lmin(lmax)),
combined with a trajectory in the matrix of the next state s′. Of course the matrices corresponding
to the final states simply contain their utilities.

Algorithm 4.3: LexBI-MDP : Backward-induction-ΠMDP-lmax(lmin)
Data: A possibilistic finite horizonMDP
Result: Computes and returns δ forMDP

1 begin
2 // Initialization
3 ∀s ∈ Sh, ρ(s)← [u(s)];
4 t← h;
5 // Backward induction
6 while t ≥ 1 do
7 Future← (ρ(s′), s′ ∈ St);
8 t← t− 1;
9 foreach s ∈ St do

10 ρ(s)← [0];
11 foreach a ∈ As do
12 M ← ConcatAndOrder(π(.|a, s), Future);
13 if M ≥lmax(lmin) ρ(s) then
14 ρ(s)←M ;
15 δ(s)← a;

16 return δ;

The principle of the backward induction algorithm can be summarized as follows:

• suppose being at period t (e.g. t = h − 1). Since the algorithm proceeds backwards, a
decision δ(s′) has been made for all future states (the s′ in St′ , t′ > t). We have to decide
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the best action for the states of St.

• for each state s ∈ St and each action a ∈ As we build the matrix M corresponding to
trajectories that would be obtained if a was chosen for s, using the ConcatAndOrder pro-
cedure described in the previous Section - M is built from π(.|s, a) and from the matrices
already computed for the s′.

• the matrix M is then compared with the best matrix ρ(s) found so far : if better, a become
the current best decision for s (δ(s)← a) and M becomes the new ρ(s). The lexicographic
comparison of matrices is the one described in Section 3.3.1 and is made easier by the fact
that the matrices have been ordered on the fly.

• the process is continued for each St′ , t′ = t− 1, . . . , 0 (by moving backward in time) until
we reach the present time period (t=0) and get an optimal policy.

Example 4.2. Main steps for the evaluation of the finite-horizon ΠMDP (see Figure 4.2 to recall
it) of Counter-exmple 3.3 using backward induction (Algorithm 4.3) w.r.t. lmax(lmin) criterion
are as follows:

R&U0 

R&F1 

R&U2 

P&U2 

R&U1 

 

R&F2 

Adv 

Sav 

Sav 

Adv 

π =0.4 

π =1 

π =1 

π =0.4 

π =1 

π =0.2 

π =1 

0.3 

0.5 

0.5 

t=0 t=1 t=2 

π =1 

Sav 

P&U1 
π =0.2 

π =1 

0.3 

Figure 4.2: The finite-horizon πMDP of Example 4.2

• t=2 (Initialization):
ρ(P&U2) = [0.3], ρ(R&U2) = [0.5], ρ(R&F2) = [0.5].
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• t=1: S1 = {R&U1, R&F1}
∗ s = R&U1: AR&U1,1 = {Sav,Adv} and ρ(R&U1)← [0],

• for a = Sav :
M ← ConcatAndOrder((0.2, 1), ρ(P&U2), ρ(R&U2))

= ConcatAndOrder((0.2, 1), [0.3], [0.5]) =
[
0.5 1
0.2 0.3

]
.

Since M >lmax(lmin) ρ(R&U1), ρ(R&U1)←M and δ1(R&U1)← Sav.

• for a = Adv :
M ← ConcatAndOrder((0.4, 1), ρ(R&U2), ρ(R&F2))

= ConcatAndOrder((0.4, 1), [0.5], [0.5]) =
[
0.5 1
0.4 0.5

]
.

Thus M >lmax(lmin) ρ(R&U1), ρ(R&U1)←M and δ1(R&U1)← Adv.

∗ s = R&F1, ASR&F1,1
= {Sav} and ρ(R&F1)← [0],

• for a = Sav :
M ← ConcatAndOrder((1, 1), ρ(R&U2), ρ(R&F2))

= ConcatAndOrder((1, 1), [0.5], [0.5]) =
[
0.5 1
0.5 1

]
.

Since M >lmax(lmin) ρ(R&F1), ρ(R&F1)←M and δ1(R&F1)← Sav.

• t=0: S0 = {R&U0}
∗ s = R&U0, AR&U0,0 = {Sav,Adv} and ρ(R&U0)← [0],

• for a = Sav :
M ← ConcatAndOrder((1, 0.2), ρ(R&U1), ρ(P&U1))

= ConcatAndOrder((1, 0.2),
[
0.5 1
0.4 0.5

]
, [0.3]) =


0.5 1 1
0.4 0.5 1
0 0.2 0.3
0 0 0.2

.

Since M >lmax(lmin) ρ(R&U0), ρ(R&U0)←M and δ0(R&U0)← Sav.

• for a = Adv :
M ← ConcatAndOrder((0.4, 1), ρ(R&U1), ρ(R&F1))

= ConcatAndOrder((0.4, 1),
[
0.5 1
0.4 0.5

]
,

[
0.5 1
0.5 1

]
) =


0.5 1 1
0.5 1 1
0.4 0.5 1
0.4 0.4 0.5

.

Since M >lmax(lmin) ρ(R&U0), ρ(R&U0)←M and δ0(R&U0)← Adv.
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=⇒ The optimal policy computed by lexicographic backward induction w.r.t. lmax(lmin) is:
δ(R&U0)Adv; δ(R&U1) = Adv; δ(R&F1) = Sav.

4.3.2 Complexity analysis

The backwards induction algorithm only makes a polynomial number (in the size of the MDP
definition) of calls to the ConcatAndOrder function: there are as many calls to this function as the
number of actions in the MDP, which is

∑h−1
t=1

∑
s∈St |As|. At each step t, for each state s in St:

for each action in |As|, b matrices of size bh−t−1 · (h − t − 1) are received, Concatenated as a
bh−t·(h−t) matrix, ordered - which costs bh−t·(h−t)log(bh−t.(h−t)) and compared with the best
matrix found so far - which costs bh−t·(h−t). Hence a time complexity inU = ∑h−1

t=1
∑
s∈St |As|·

bh−t ·(h−t)log(bh−t ·(h−t)). Denote n the (maximal) number of states in St and a the (maximal)
number of actions in |As|, we get U = n · a

∑h−1
t=1 b

h−t · (h − t) · log(bh−t · (h − t)) i.e. a time
complexity in O(n · a · (h− 1)2 · b2h−2 · log((h− 1) · bh−1)) 1.

If we consider a constant branching factor, each As contains b actions which in turn can lead
to b non-impossible states. Then we get a time complexity in O(b2h · (h−1)2 · log((h−1) · bh−1):
unsurprisingly, it is similar to the one got for ΠDT s. But recall that the DT corresponding to a
MDP can be exponential in the size of theMDP .

4.3.3 Bounded backward induction for lexicographic criteria

In fact, lexicographic comparisons, which take into account the whole matrix of subsequent
trajectories, overcome the drowning effect but are very costly - exponential in the size of the
finite-horizon ΠMDP . On the other hand selecting decisions on the basis of their sole opti-
mistic/pessimistic utility is cheap but not discriminant enough. Hence the idea to restrict the
reasoning to a sub-matrix - namely to the first l lines of the matrices of trajectories ρ(s), i.e.
πτ vectors of the l most important trajectories (the l best for the optimistic case, the l worst for
the pessimistic ones). Bounding the number of columns is not necessary, since the combinato-
rial explosion in Algorithm 4.3 is due to the number of lines in the matrices (because for the finite
horizon, the number of columns is bounded by h+1). Hence we propose the following preference:

δ(s) ≥lmaxlmin,l δ′(s) iff [ρ(s)]l ≥ [ρ′(s)]l (4.2)

≥lmaxlmin,+∞ corresponds to ≥lmaxlmin.

Proposition 4.1.
LetM be a matrix of trajectories, and l and l′ be any lines ofM such that l′ > l, then δ �lmaxlmin,l
δ′ ⇒ δ �lmaxlmin,l′ δ′.

1The details of the calculation are similar to the ones made for ΠDT s.
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Proof of Proposition 4.1.
Note that, for any t ∈ T , s ∈ St, we have:

[ρ(s)]l =




. . .

π(s′i|s, a)
. . .

π(s′i|s, a)

∣∣∣∣∣∣∣ ρ(s′i)

. . .




l

Let A be an ordered N ×M matrix (w.r.t. �lmaxlmin) s.t. A(i) denotes the line i.

Now, note that, if A and B are two ordered matrices:
[A]l >lmaxlmin [B]l if and only if ∃i∗ ≤ l, such that ∀i < i∗, A(i) =lmin B(i)
and A(i∗) >lmin B(i∗).

Clearly, in this case replacing A and B with ρ(s) when considering δ and ρ′(s) when consid-
ering δ′, if such a i∗ ≤ l exists for a given l, the same i∗ works for l′ > l.

Thus, �lmaxlmin,l′ refines �lmaxlmin,l.

It is interesting to use this procedure in the backward induction algorithm; that is why we pro-
pose a variant of of Algorithm 4.3, which we call "Bounded Lexicographic Backward Induction"
(BLex-BI-MDP ) by simply replacing line 14 by line 14’:

14′ : ρ(s)← [M ]l

where [M ]l denotes the restriction of M to its first l lines.

Clearly, this algorithm is not guaranteed to provide a lexi-optimal solution, but the policy is
always at least as good as the one provided by uopt (according to lmax(lmin)). Indeed, bound-
ing the matrices is done after they have been ordered. Hence M1,1 is equal to uopt in the un-
bounded case and because the bounding is done after reordering, this property still holds when
using bounded lexicographic backward induction. We deduce that the order on matrices (and thus
on policies) refines the one provided by classical optimistic backward induction algorithm. The
optimal policy for bounded lexicographic backward induction is optimal for the optimistic utility.
Actually, the greater l, the more refined the comparison over the policies. This comparison goes
to �lmax(lmin) when l goes to bh.

The same behavior obviously holds in the pessimistic case: the optimal policy for bounded
lexicographic backward induction is optimal for the pessimistic utility and the greater l, the more
refined the comparison over the policies and the comparison goes to �lmin(lmax) when l goes to
bh.
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The temporal complexity of bounded backward induction is decreased, compared to that of
the lexicographic backward induction. Indeed, the number of calls to ConcatAndOrder of the
algorithm does not change, however, the ConcatAndOrder algorithm is only called on sets of
matrices which have at most l lines, instead of bh. We deduce that the complexity of the algorithm
is bounded by = O(n · l · (h− 1)2 · log((h− 1) · l), where n is the (maximal) number of states in
St.

4.4 Experimental study

In this Section, we evaluate different solving algorithms proposed in this chapter. We have two
criteria for each of the pessimistic and optimistic approaches: the basic possibilistic one and the
lexicographic refinement. These criteria aim at solving the same decision problems: sequential
decision under possibilistic uncertainty, represented by a ΠDT or a finite-horizon ΠMDP .

We compare the algorithms with two measures:

• the CPU time.

• pairwise success rate: SuccessA
B

is the percentage of solutions provided by an algorithm
optimizing criterion A that are optimal with respect to criterion B; for instance, the less
Success uopt

lmax(lmin)
, the more important the drowning effect.

The algorithms corresponding to these criteria have been implemented in Java. The experi-
ments have been performed on an Intel Core i5 processor computer (1.70 GHz) with 8GB DDR3L
of RAM (all experiments in this section are made using the same computer).

4.4.1 Experimental results in ΠDT s

In what follows, we propose to compare the performance of Lexicographic Backward Induction
algorithm (Algorithm 4.1), so-called LexBI-DT , to the classical Backward Induction algorithm
(Algorithm 2.1), so-called BI-DT .

The tests were performed on randomly generated complete binary decision trees, from h = 2
to h = 7. The first node is a decision node: at each decision level from the root (i = 1) to the
last level (i = 7) the tree contains 4i−1 decision nodes. This means that with h = 2 (resp. 3, 4,
5, 6, 7), the number of decision nodes is equal to 5 (resp. 21, 85, 341, 1365, 5461) The utility
values are uniformly randomly drawn in the set V = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.
Conditional possibilities relative to chance nodes are normalized, one edge having possibility one
and the possibility degree of the other being uniformly drawn in L. For each value of h, 100
ΠDT s are generated.
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Figure 4.3 presents the average execution CPU time for the four criteria, the two optimistic
ones (Figure 4.5 (a)) and the two pessimistic ones (Figure 4.5 (a)). We observe that, whatever the
optimized criterion, the CPU time increases linearly w.r.t. the number of decision nodes, which is
in line with what we could expect. Furthermore, it remains affordable with big trees: the maximal
CPU time is lower than 1s for a ΠDT with 5461 decision nodes. It appears that uopt is always
faster than lmax(lmin). The same conclusions are drawn when comparing lmin(lmax) to upes.
These results are easy to explain: the manipulation of matrices is obviously more demanding than
the one of numbers.
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Figure 4.3: Average CPU time of (a) optimistic case and (b) possimistic case for ΠDT s

As to the success rate, the results are described in Figure 4.4. The percentage of solutions
optimal w.r.t. uopt (resp. for upes) that are also optimal w.r.t. lmax(lmin) (resp. lmin(lmax))
is never more than 82%, and decreases when the horizon increases: the drowning effect is not
negligible and increases with the length of the trajectories.

These experiments conclude in favor of the lexicographic refinements: the longer the horizon
the more significant the drowning effect of uopt and upes. LexBI-DT algorithm computes the
optimal solutions even when the horizon increases contrary to the classical BI-DT algorithm.
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Figure 4.4: Success rate for ΠDT s with h=2 to 7

4.4.2 Experimental results in finite-horizon ΠMDPs

For finite-horizon ΠMDPs, we propose to compare the performance of Bounded Lexicographic
Backward Induction, so-called BLex-BI-MDP , as an approximation of (unbounded) Lexico-
graphic Backward Induction (Algorithm 4.3), so-called LexBI-MDP , and also Backward In-
duction (Algorithm 2.2), so-called (BI-MDP ) for pessimistic and optimistic utilities (uopt and
upes), in randomly generated finite-horizon ΠMDPs for h = 2 to h = 7. In each stage, theMDP
contains 20 states and the number of actions in each state is equal to 4. The output of each action
is a distribution on two states randomly drawn (i.e. the branching factor is equal to 2). The utility
values are uniformly randomly drawn in the set V = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.
Conditional possibilities relative to decisions should be normalized. To this end, one choice is
fixed to possibility degree 1 and the possibility degree of the remaining one is uniformly drawn in
L. For each value of h, 100 finite-horizon ΠMDPs are generated.

Figure 4.5 presents the average execution CPU time for the three algorithms. We observe that
the CPU time increases linearly w.r.t. the horizon for BI-MDP for both uopt (Figure 4.5 (a)) and
upes (Figure 4.5 (b)). It seems to be also the case for BLex-BI-MDP . On the other hand, it
increases exponentially for LexBI-MDP .
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We also observe that BLex-BI-MDP , with l = 20, is slower than BI-MDP but the CPU
time remains affordable, as the maximal CPU time is 5ms for 100 finite-horizon ΠMDPs with 25
states when l = 20 and h = 7. Unsurprisingly, we can check that theBLex-BI-MD is faster than
LexBI-MDP especially when the horizon increases: the manipulation of l× (h+ 1)-matrices is
obviously less expensive than the one of full matrices. The saving increases with the horizon.
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Figure 4.5: Average CU time of (a) optimistic case and (b) possimistic case for finite-
horizon ΠMDPs

As to the success rate, the results of the optimistic versions of the algorithms are described
in Figure 4.6. The percentage of optimal solutions for uopt that are also optimal for lmax(lmin)
when considering the whole matrices is never more than 60%, and decreases when the horizon
increases. Indeed, if we take an arbitrary optimistic optimal policy, the higher the problem size
the lower its chance of being lexi-optimal. We observe that the drowning effect increases with the
length of the trajectories.

It also appears that BLex-BI-MDP provides a very good approximation for reasonable val-
ues of l. Of course, the greater l the greater the quality of the approximation. BLex-BI-MDP

provides the same optimal solution as the LexBI-MDP in about 80% of cases, with l = 100.
Moreover, even when the success rate ofBLex-BI-MDP decreases (when h increases), the qual-
ity of approximation is still good: never less than 70% of optimal actions returned, with l = 100.

These experiments conclude in favor of bounded lexicographic backward induction: its ap-
proximated solutions are comparable with the optimal policy in terms of quality for high l and
increase when l increases, while it is much faster than the classical unbounded version.
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Figure 4.6: Success rate for optimistic criteria in finite-horizon ΠMDPs

4.5 Summary

In this Chapter, we have proposed new planning algorithms (based on Dynamic Programming), for
ΠDT s and finite-horizon ΠMDPs. These algorithms allow to overcome the drowning effect by
calculating lexicographic optimal policies. The complexity of the backward induction algorithm
depends on the number of trajectories in the optimal policy - and is thus exponential in time and
space (with respect to the size of the decision model). We show that an approximate policy can be
computed in controlled, polynomial time and space using bounded matrices. Moreover, we have
performed experiments on ΠDT s and finite-horizon ΠMDPs built randomly in order to show
the discrimination power of lexicographic algorithms.

In the next Chapter, we show that, for ΠDT s and finite-horizon ΠMDPs, the lexicographic
criteria can be captured by an EU criterion, relying on big stepped probabilities and utilities.



CHAPTRE 5

Expected utility refinements in sequential
decision-making

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 EU-refinements in decision trees . . . . . . . . . . . . . . . . . . . . 75
5.3 Backward induction algorithm for EU-refinements . . . . . . . . . . 81
5.4 Experimental study . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 Introduction

As we have detailed in Section 1.5.2, [Fargier and Sabbadin, 2003, Fargier and Sabbadin, 2005]
have shown that, when the problem is not sequential, the comparison of possibilistic utility dis-
tributions by �lmax(lmin) and �lmin(lmax) can be captured by an expected utility, relying on in-
finitesimal probabilities and utilities.

In this Chapter, we show that such a result can be extended to finite-horizon sequential prob-
lems. We focus only on ΠDT s, since a finite-horizon ΠMDP can be translated into a set of
ΠDT s (one for each state). So, the comparison of the policies of a finite-horizon ΠMDP can be
refined using the same method as the one relative to ΠDT s.

The next Section develops our proposition, defining infinitesimal expected utilities, that refine
qualitative utilities, in decision trees. Besides, we show that the ’qualitative’ lexicographic criteria
presented in Chapter 3 can be represented by these expected utilities. Then, in Section 5.3, we

74
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propose an adaptation of backward induction algorithm in order to optimize these new EU-based
refinements. Finally, Section 5.4 is dedicated to the experimental study in order to verify the
quality of this latter algorithm comparing to the lexicographic backward induction one.

The main results of this chapter are published in [Ben Amor et al., 2015, Ben Amor et al.,
2016a].

5.2 EU-refinements in decision trees

In this section we aim to extend the work of [Fargier and Sabbadin, 2003, Fargier and Sabbadin,
2005], on the refinements of qualitative utilities by expected utilities, to the sequential case i.e. to
decision trees.

In order to refine possibilistic utilities in decision trees, we present here two criteria based on
infinitesimal expected utilities as refinements of optimistic and pessimistic utilities, in lotteries.
Thus we propose to transform the ΠDT into a probabilistic one and then we optimize the proba-
bilistic tree using a backward induction algorithm. The graphical components of the two trees are
identical and so are the sets of admissible policies.

5.2.1 EU-refinement of optimistic utility

In the optimistic case the probability and utility distributions are chosen in such a way that the
lmax(lmin) and EU criteria do provide the same preference on ∆. To this extent, we build a
transformation of the scale L, φ : V ⊆ [0, 1] → [0, 1], that maps each possibility distribution to
an additive distribution and each utility level into an additive one; this transformation is required
to satisfy the following condition:

(R) : ∀α, α′ ∈ V such that α > α′ : φ(α)h+1 > bhφ(α′),

where b is the branching factor of the tree and h its depth. Then, For any chance node Cj , a
local transformation φj is then derived from φ, such that φj satisfies both condition (R) and the
normalization condition of probability theory.

Using φ and φj , we define the two following functions:

• φ− s.t. ∀α ∈ V , φ−(α) = min{φ(α), minj φj(α))},

• φ+ s.t. ∀α ∈ V , φ+(α) = max{φ(α), maxj φj(α))}.

φ− and φ+ are required to satisfy the condition:

(R′) : ∀α, α′ ∈ V such that α > α′ : φ−(α)h+1 > bhφ+(α′),
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Then condition (R′) guarantees that if uopt(δ) = α > uopt(δ′) = α′, then a comparison based
on a sum-product approach on the new tree will also decide in favor of δ.

EUopt denotes the preference relation provided by the EU-criterion on the probabilistic tree
obtained by replacing each πj by φj ◦ πj and the utility function u by φ ◦ u. We show that:

Proposition 5.1.
If φ satisfies (R) and the derived φ+, φ− satisfy (R’), then �EUopt refines �uopt .

Proof of Proposition 5.1.
For any transformation function φ s.t. ∀(α, α′) ∈ V, α > α′ it holds that (R) : φ(α)h+1 >

bhφ(α′). Note that, by definition, φ+(α) ≥ φ(α) ≥ φ−(α), ∀α ∈ V .

Thus, by (R’),

φ−(α)h+1 > bhφ+(α′) ≥ bhφ−(α′),∀(α, α′) ∈ V, α > α′.

Let δ and δ′ be two strategies. Assume that uopt(δ) = α > uopt(δ′) = α′ and let us show that
EUopt(δ) > EUopt(δ′).

• uopt(δ) = α⇒ ∃τ∗ = (πj0(xi1), . . . , πjh−1(xih), u(xih)) in δ s.t.
min(πj0(xi1), . . . , πjh−1(xih), u(xih)) ≥ α.
Since EUopt(δ) = ∑

τ
(∏h

k=1 φk(πjk−1(xik)) ∗φ(µ(xik))) and all terms of the sum are posi-

tive or zero, by keeping only trajectory τ∗ in the sum, we get: EUopt(δ) ≥
∏h
k=1 φk(πjk−1(xik))∗

φ(µ(xik)) ≥ ∏h
k=1 φk(α) ∗ φ(α).

Since1 φ−(α) ≤ φk(α), ∀k,∀α ∈ L, EUopt(δ) ≥
∏h
k=1 φ

−(α) ∗ φ(α).
Then, since φ−(α) ≤ φ(α), EUopt(δ) ≥

∏h
k=1 φ

−(α) ∗ φ−(α).
Thus, we get:

EUopt(δ) ≥ φ−(α)h+1 (5.1)

• uopt(δ′) = α′ ⇒ ∀τ, min(πj′0(xi1), . . . , πj′
h−1

(xi′
h
), u(xi′

h
)) ≤ α′.

Let us denote EUτ the term of EUopt(δ′) corresponding to trajectory τ . We have EUτ ≤∏h
k=1 φk(α′) ∗ φ(α′) ≤ ∏h

k=1 φ
+(α′) ∗ φ(α′) ≤ ∏h

k=1 φ
+(α′) ∗ φ+(α′), since φ+(α′) =

max {φ(α′),maxk φk(α′)} ,∀α′ ∈ V .

Then, EUτ ≤ φ+(α′)h+1 ≤ φ+(α′) since 0 ≤ φ+(α′) ≤ 1.

Since δ′ generates at most bh trajectories, EUopt(δ′) ≤ bhEUτ and

EUopt(δ′) ≤ bh.φ+(α′). (5.2)

1Recall that φ−(α) = min {φ(α),mink φk(α)} .
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Finally, using (5.1), (5.2) and (R′), we get uopt(δ) > uopt(δ′)⇒ EUopt(δ) > EUopt(δ′).

Proposition 5.2.
δ �lmax(lmin) δ

′ iff δ �EUopt δ′,∀(δ, δ′) ∈ ∆.

Proof of Proposition 5.2.
For the sake of notational simplicity, we will associate any trajectory τ (resp. τ ′) with the vector
τOrd (resp. τ ′Ord) consisting in reordering (π1, . . . , πh, uh) (resp. (π′1, . . . , π′h, u′h)) in increasing
order.

Obviously, τ �lmin τ ′ iff τOrd �lmin τ ′Ord. Note that δ �lmax(lmin) δ
′ iff either

1. ∀i, τλ(i) ∼lmin τ ′λ(i) or

2. ∃i∗,∀i ≤ i∗, τλ(i) ∼lmin τ ′λ(i) and τλ(i∗) �lmin τ ′λ(i∗).

∀ αk ∈ τOrd (resp. α′k ∈ τ ′Ord) s.t. k = 1, h+ 1, note the following facts concerning pairs of
trajectories (τ, τ ′):

1. τ ∼lmin τ ′ ⇔
∏h+1
k=1 φ(αk) = ∏h+1

k=1 φ(α′k), since τ ∼lmin τ ′ ⇔ τOrd ∼lmin τ ′Ord.

Then: δ ∼lmax(lmin) δ
′ ⇔ τλ(i) ∼lmin τ ′λ(i),∀i.

⇒
∑
t

(∏h+1
k=1 φ(αk)) = ∑

t
(∏h+1

k=1 φ(α′k))
⇔ EUopt(δ) = EUopt(δ′).
Thus δ ∼lmax(lmin) δ

′ ⇔ EUopt(δ) = EUopt(δ′).

2. if δ >lmax(lmin) δ
′, then ∃i∗ s.t. τλ(i∗) �lmin τ ′λ(i∗), then ∃j∗, ∀j < j∗, αj = α′j and

αj∗ > α′j∗ . Then, let us compare the product of transformed possibilities/utilities along τ
and τ ′:

h+1∏
k=1

φ(αk)
φ(α′k)

=
h+1∏
k=j∗

φ(αk)
φ(α′k)

≥ φ(αj∗)
φ(α′j∗)

∗ φ(αj∗)h−j
∗

φ(φ(1V )h−j∗) (5.3)

(lower and upper bounds on trajectories degrees)

≥ φ(αj∗)h−j
∗+1

φ(α′j∗)
(φ(1V ) ≤ 1)

≥ φ(αj∗)h
φ(α′j∗)

(φ(αj∗) ≤ 1)

> bh. (From R)
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Then, since trajectories are ordered along �lmax(lmin), τ ′λ(i∗) �lmin τ ′λ(i),∀i > i∗, and
since there are no more than bh such trajectories τ ′λ(i), we get that EUopt(δ) > EUopt(δ′).
Thus δ �lmax(lmin) δ

′ ⇒ EUopt(δ) > EUopt(δ′).

So, we have just proved that δ �lmax(lmin) δ
′ ⇒ δ �EUopt δ′. Thus,�lmax(lmin) is equivalent

to �EUopt .

Example 5.1. We illustrate in the following an example of transformation of the decision tree of
Figure 5.1 with h = b = 2.

First, let us build a function φ satisfying (R’). For this purpose, it is sufficient to construct the
function φ : V → R as follows :
φ(1V ) = 1, φ(αi) < φ(αi+1)3

4 (if V = 1V , α1, . . . , αk = 0V ).
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Figure 5.1: The ΠDT of Example 5.1

Applying this function φ on the scale V = {0, 0.1, 0.4, 0.5, 0.8, 0.9, 1} we obtain:

• φ(1) = 1,

• φ(0.9) = 0.2,

• φ(0.8) = 0.001,

• φ(0.5) = 10−10,

• φ(0.4) = 10−30,

• φ(0.1) = 10−91.
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We obtain the transformed probabilistic decision tree of Figure 5.2, by normalizing the trans-
formed conditional distributions obtained in each node. For instance:

• for node C1 =


φ1(10−30) = 10−30

1+10−30 , and

φ1(1) = 1
1+10−30 .

• for node C2 =


φ2(1) = 1

1+1 , and

φ2(1) = 0.5,

• for node C3 =


φ3(10−10) = 10−10

1+10−10 , and

φ3(1) = 1
1+10−10 ,

• for node C4 =


φ4(1) = 0.5, and

φ4(1) = 0.5.
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Figure 5.2: Transformed probabilistic decision tree of ΠDT of Example 5.1

5.2.2 EU-refinement of pessimistic utility

In what follows, we focus on the pessimistic case. Consider the �lmin(lmax) comparison, the
utility degrees are not directly compared to possibility degrees π but to degrees 1− π. Hence, it is
possible to show that:
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Proposition 5.3.
LetDT inv the tree obtained from DT by using utility function u′ = 1−u on leaves. It holds that:
upes,DT (δ) ≥ upes,DT (δ′) iff uopt,DT inv(δ′) ≥ uopt,DT inv(δ)

Proof of Proposition 5.3.
Let Lδ (resp. Lδ′) be the equivalent simple lottery of the compound lottery representing the
strategy δ. Lδ = 〈π1/u1, ..., πi/ui, ..., πp/up〉 (resp. Lδ′ = 〈π′1/u′1, ..., π′i/u′i, ..., π′p/u′p〉) i.e.
πi = π(ui) (resp. π′i = π(u′i)) is the possibility that the strategy leads to the outcome utility ui
(resp. u′i).
Let us show that upes,DT (δ) ≥ upes,DT (δ′) ⇔ uopt,DT inv(δ) ≤ uopt,DT inv(δ′) where upes,DT (δ)
denotes the pessimistic utility of δ when considering the original decision treeDT and uopt,DT inv(δ)
denotes the optimistic utility of δ when considering the decision tree DT inv, obtained from DT
by using utility function u′ = 1− u.
We have, upes,DT (δ) ≥ upes,DT (δ′) ⇔ upes,DT (Lδ) ≥ upes,DT (Lδ′).
It has been shown in [Fargier and Sabbadin, 2005] that:
upes,DT (Lδ) ≥ upes,DT (Lδ′) ⇔ uopt,DT inv(Lδ′) ≥ uopt,DT inv(Lδ).

Hence, we deduce that: uopt,DT inv(δ′) ≥ uopt,DT inv(δ).

As a consequence, we build an EU-based equivalent of �lmin(lmax), denoted by �EUpes , by
replacing each possibility distribution πi in DT by the probability distribution φi ◦ πi, as for the
optimistic case and each utility degree u byφ(1)− φ(u). It is then possible to show that:

Proposition 5.4.
δ �lmin(lmax) δ

′ iff δ �EUpes δ′,∀(δ, δ′) ∈ ∆.

Proof of Proposition 5.4.
It is sufficient to show that:

δ �DTlmax(lmin) δ
′ ⇔ δ′ �DT

inv

lmin(lmax) δ, (5.4)

where �DT invlmin(lmax) is the pessimistic lexicographic comparison of strategies in the decision tree
where the utilities of all leaves have been reversed (u′(N) = 1− u(N)).

For any two strategies δ and δ′:

• if δ �DTlmax(lmin) δ
′ then ∃i∗, ∀i ≤ i∗, τλ(i) ∼lmin τ ′λ(i)

and τλ(i∗) �lmin τ ′λ(i∗) ⇔
(π1, . . . , πh, uh) �lmin (π′1, . . . , π′h, u′h).
Now let invert each degree in both trajectories, we get:
((1− π1), . . . , (1− πh), (1− uh)) ≺lmax ((1− π′1), . . . , (1− π′h), (1− u′h))
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⇔ ((1−π1), . . . , (1−πh), uh) ≺lmax ((1−π′1), . . . , (1−π′h), u′h) i.e. τσ(i∗) ≺lmax τ ′σ(i∗)

which is the �lmax relation when considering DT inv. We get δ′ �DT invlmin(lmax) δ.

• if δ ∼DTlmax(lmin) δ
′ then ∀i, τλ(i) ∼lmin τ ′λ(i) ⇔

(π1, . . . , πh, uh) ∼lmin (π′1, . . . , π′h, u′h).
If we invert each degree in both trajectories, we get:
((1− π1), . . . , (1− πh), (1− uh)) ∼lmax ((1− π′1), . . . , (1− π′h), (1− u′h)
⇔ ((1− π1), . . . , (1− πh), uh) ∼lmax ((1− π′1), . . . , (1− π′h), u′h) i.e. τσ(i) ∼lmax τ ′σ(i).

We get δ′ ∼DT invlmin(lmax) δ.

Thus, �EUpes is equivalent to �lmin(lmax).

Propositions 5.2 and 5.4 show that lexicographic comparisons have a probabilistic interpre-
tation - actually, using infinitesimal probabilities and utilities. This result comforts the idea, first
proposed by [Benferhat et al., 1999] and then by [Fargier and Sabbadin, 2005], of a bridge between
qualitative approaches and probabilities, through the notion of big stepped probabilities [Benfer-
hat et al., 1999,Snow, 1999]. But here we make a step further, since the proposed transformations
support sequential decision-making.

5.3 Backward induction algorithm for EU-refinements

Beyond this theoretical argument, this result suggests an alternative algorithm for the optimization
of lmax(lmin) (resp. lmin(lmax)). The proposed algorithm, denoted EU -BI (see Algorithm
5.1 for the optimistic version), simply transform the ΠDT into a probabilistic one, transforming u
into φ◦u and each πi into a probability distribution pi = φi◦πi, and use an adaptation of classical,
EU-based backward induction. This algorithm is optimistic (resp. pessimistic) i.e. optimizeEUopt
(resp. EUpes) if it uses an optimistic transformation (resp. pessimistic transformation) of the
decision tree. Note that the horizon h and the branching factor b are known in advance. In this
algorithm, we first transform the possibilistic scale V to a probabilistic one Vp = (φ ◦ V ) using
the adequate transformation function that we get using only h and b. It is important that we keep
the two vectors associated to the two scales, each value in V has its probabilistic counterpart in Vp
in same position.

The principle of EU-based backward induction is as follows:

• When a leaf node N is reached, its expected utility is uVp(N) the probabilistic utility in Vp
that matches u(N) the possibilistic utility in leaf N .
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• When each chance node is reached, an optimal sub-strategy is built for each of its children:
the EU of each sub-strategy is returned and the probability degree of having this children
is computed, it is simply the probability in Vp that matches πN (Yi) the possibilistic degree
of having Yi in chance node N . We also update the sum of the probability degrees in
this chance node (we will use it for normalizing the probability distribution). Then it is
possible to compute the expected utility of the current chance node: the sum-product of
the normalized probability of each children and the corresponding expected utility in next
stage.

• When a decision node N is reached, a decision δ(N) leading to a sub-strategy optimal is
selected among all the possible decisions Cj ∈ Succ(N), by compared the expected utility
of each sub-strategy.

Algorithm 5.1: EU -BI: Backward-Induction-DT -EU(N :Node)
Data: A probabilistic DT ; the policy, δ, is memorized as global variable
Result: Set δ for the tree rooted in N and returns its expected utility

1 begin
2 Vp ← transform(V, b, h)
3 // Leaves
4 if N ∈ NU then EU ← uVp(N);
5 // Chance nodes
6 if N ∈ NC then
7 k ← |Succ(N)|;
8 foreach Yi ∈ Succ(N) do
9 EU i ← Backward-Induction-DT -EU(Yi);

10 pi ← πVp(Yi);
11 Sum← Sum+ pi;

12 EU ← ∑
i=1,k ((pi/Sum)× EU i);

13 // Decision nodes
14 if N ∈ ND then
15 EU ← 0;
16 foreach Cj ∈ Succ(N) do
17 U ← Backward-Induction-DT -EU(Cj);
18 if U > EU then
19 EU ← U ;
20 δ(N)← label(N,Cj);

21 return EU ;

In a perfect world, the lexicographic approach and the big-stepped EU one solve the problem in
the same way and provide the same optimal policies - the difference being that the lexicographic
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backward induction is based on the comparison of matrices and the EU-backward induction is
based on the computation of expected utilities in R+. The point is that the latter handles very
small numbers; then either the program is based on an explicit handling of infinitesimals, and
proceeds just like the matrix-based comparison, or it lets the programming language handle these
numbers in its own way - and, given the precision of the computation, provides approximations.

5.4 Experimental study

In this Section we propose to compare the lexicographic criteria, and the EU approximations
presented in the previous section. We compare the 2 variants of algorithms with two measures:
the CPU time and the pairwise success rate (SuccessA

B
where A and B are two decision criteria).

We use the same experimental data of Chapter 4: 100 complete binary decision trees, for h = 2 to
h = 7, that are randomly generated.

The backward induction algorithms corresponding to the optimistic and pessimistic criteria
have been implemented in Java. As to the EU-based approaches, the transformation function
depends on the horizon h and the branching factor b (here b = 2). We used φ(1V ) = 1, and
φ(αi) = φ(αi+1)h+1

bh∗1.1 .

Tables 5.1 and 5.2 present the execution CPU time of the proposed algorithms for respec-
tively the optimistic criteria and the pessimistic criteria. Clearly, uopt is always faster than EUopt,
which is 1.5 or 2 times faster than lmax(lmin) The same conclusion is drawn when comparing
lmin(lmax) to upes and EUpes. These results are easy to explain:
(i) the manipulation of matrices is obviously more expensive than the one of numbers and
(ii) the handling of numbers by min and max operations is faster than sum-product manipulations
of very small numbers (infinitesimal).

Table 5.1: Average CPU time (in ms) for optimistic criteria in ΠDT s with h=2 to 7

Number of decision nodes
5 21 85 341 1365 5461

lmax(lmin) 2.5 6.3 11.4 62 80 649
EUopt 0.97 2.7 8.1 28.8 66 423
uopt 0.5 0.8 2.7 16.9 43 414

Results relative to the success rate are presented in Figure 5.3. We can see that EUopt (resp.
EUpes) performs well, as an approximation of lmax(lmin) (resp. lmin(lmax)), indeed the
percentage of solutions optimal for the former which are also optimal for the latter is greater than
65% in all cases, it is about 80% for h = 3 but it decreases when h increases. This is easily
explained by the fact that the probabilities are infinitesimals and converge to 0 when the length of
the branches (and thus the number of factors in the products) increases.
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Table 5.2: Average CPU time (in ms) for pessimistic criteria in ΠDT s with h=2 to 7

Number of decision nodes
5 21 85 341 1365 5461

lmin(lmax) 2.3 6 12.4 64 98 761
EUpes 1.17 3.7 7.7 46 72 488
upes 0.6 0.83 2.4 18 48 481

These experiments conclude in favor of the lexicographic refinements in their full definition.
When space and time are limited (or when h increases), it is interesting to use their approximations
by expected utilities: they are better in terms of CPU time average and comparable in terms of
average accuracy, but note that we lose about 20% of precision. The expected utilities criteria,
nevertheless, are more decisive than possibilistic utilities (uopt and upes), in all cases, and they are
as fast as these latter.

5.5 Summary

This Chapter is devoted to the extension of the work of [Fargier and Sabbadin, 2003] on the
refinement of the qualitative utilities by the expected utility to the case of the sequential decision.
This refinement allows to establish a link between the possibilistic decision trees and probabilistic
decision trees. The calculation of optimal policies by the refined expected utility can then be done
by a backward induction algorithm, on the probabilistic transformed tree.

In the context ofMDPs, the comparison of policies of a ΠMDP can be refined using the
same method. The decision tree corresponding to the MDP is constructed; the trajectories of
theMDP and those of the decision tree are in bijection. The rewards obtained in step h − 1 are
associated to the leaves of the tree. Then, it is possible to transform this decision tree using the
same φ satisfying φ(α)h+1 > bh+1φ(α′). The optimistic utility of a ΠMDP policy is equal to its
utility in the decision tree. For instance, if δ �uopt δ′ in the possibilisticMDP , δ �uopt δ′ in the
decision tree, and thus δ �EUopt δ′ which implies δ �EUopt δ′ in theMDP .

The next Chapter focuses on the optimization of stationaryMDPs w.r.t. lexicographic crite-
ria. We propose solving algorithms, based on the value iteration algorithm, to handle the finite-
horizon case as well as the infinite-horizon case.
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Optimizing lexicographic criteria in stationary ΠMDPs
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6.1 Introduction

Previously, we have handled lexicographic optimization in finite-horizon decision models in which
trajectories contained only one utility at the final step. However, as we have seen in Chapter 2,
in Stationary Possibilistic Markov Decision Processes (stationary ΠMDPs) we consider inter-
mediate utilities i.e. a satisfaction degree on each state s. So in this Chapter, we consider this
framework, and we define value iteration algorithms to get lexicographic optimal policies in the
finite-horizon and infinite horizon cases.

This Chapter is organized as follows: Section 6.2 presents some definitions needed all along
the chapter. Then, Section 6.3 is devoted to adaptations of value iteration algorithm for the lexico-
graphic criteria in fixed horizon stationary ΠMDPs. Section 6.4 presents our experimental study
of these algorithms. Finally, Section 6.5 extends the latter algorithm to the infinite-horizon case.

Principle results of this chapter are published in [Ben Amor et al., 2017].

86
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6.2 Refresher on stationary possibilistic Markov decision
processes

Before describing optimizing algorithms in detail, we recall some definitions from Chapter 2 and
3 on stationary ΠMDP and the basic notions of lexicographic criteria in this framework.

• Stationary ΠMDP is defined by:

– A finite set S of states.

– A finite set A of actions, As denotes the set of actions available in state s;

– A utility function u s.t. u(s) is the intermediate satisfaction degree obtained in state
s ∈ S.

– A transition function i.e. a possibility distribution on each action a ∈ As s.t. π(.|s, a)

In this model the states, the actions and the transition functions do not depend on the stage
of the problem.

• Given a stationary ΠMDP with horizon h, we can associate to any of its trajectories τ =
(s0, a0, s1, . . . , sh−1, ah−1, sh) the vector vτ = (u0, π1, u1, π2, . . . , πh−1, uh).

Different trajectories can be compared using lexicographic comparisons (Equation 3.3 and
3.3) as follows:

τ �lmin τ ′ iff (u0, π1, u1, . . . , πh, uh) �lmin (u′0, π′1, u′1, . . . , π′h, u′h)

τ �lmax τ ′ iff (u0, 1− π1, u1, . . . , 1− πh, uh) �lmax (u′0, 1− π′1, u′1, . . . 1− π′h, u′h)

The lexicographic criteria on policies are then defined by:
δ �lmax(lmin) δ

′ iff ∀i, τλ(i) ∼lmin τ ′u(i)

or ∃i∗, ∀i < i∗, τλ(i) ∼lmin τ ′λ(i) and τλ(i∗) �lmin τ ′λ(i∗)

δ �lmin(lmax) δ
′ iff ∀i, τσ(i) ∼lmax τ ′σ(i)

or ∃i∗, ∀i < i∗, τσ(i) ∼lmax τ ′σ(i) and τσ(i∗) �lmax τ ′σ(i∗)

where τλ(i) (resp. τ ′λ(i)) is the ith best trajectory of δ (resp. δ′) according to�lmin and τσ(i)

(resp. τ ′σ(i)) is the ith worst trajectory of δ (resp. δ′) according to �lmax.
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• The complementary ΠMDP , of a given ΠMDP (S,A, π, u), is defined by (S,A, π, ū)
where ū(s) = 1− u(s),∀s ∈ S. It simply gives complementary utilities. From the defini-
tions of �lmax and �lmin and using Proof of Proposition 5.4, we can check that:

τ �lmax τ ′ ⇔ τ̄ ′ �lmin τ̄ and δ �lmin(lmax) δ
′ ⇔ δ̄′ �lmax(lmin) δ̄

where τ̄ and δ̄ are obtained by replacing u with ū in the trajectory/ΠMDP .

Therefore, all results which we will prove in the following for �lmax(lmin) also hold for
�lmin(lmax), if we take care to apply them to complementary strategies. Since considering
�lmax(lmin) involves less cumbersome expressions (no 1 − ·), we will give the results for
this criterion.

6.3 Lexicographic value iteration for finite-horizon sta-
tionary ΠMDPs

We propose, in the following, a value iteration algorithm for the computation of lexicographic
optimal policies in the finite-horizon stationary ΠMDPs.

6.3.1 Fixed-horizon lexicographic value iteration

It is possible propose a Lexicographic Value Iteration Algorithm, denoted Lex-V I , (Algorithm
6.1 for the lmax(lmin) variant; the lmin(lmax) variant is similar) that computes a lexicographic
optimal policy in a finite number of iterations. This algorithm is an iterative procedure that updates
the utility of each state, represented by a finite matrix of trajectories, using the utilities of the
neighboring states, until a halting condition is reached.

At stage t, the procedure updates the utility of any states s ∈ S as follows:

• For each a ∈ As, a matrix Q(s, a), that evaluates the “utility” of performing a in s at
stage t, is built by a call to obtained by calling ConcatAndOrder-S(~π, ~u, {ρ1, . . . , ρk}),
outlined by Algorithm 6.2. This function combines the possibility π(s′|s, a) and the utilities
u(s′), of the states s′ that may follows s when a is executed, with the matrices U t−1(s′) of
trajectories provided by these s′. The obtained matrix is then ordered.

• The lmax(lmin) comparison is performed on the fly to memorize the best Q(s, a)

• The value of s at t, U t(s), is the one given by the action δt(s) = a which provides the best
Q(s, a). U t and δt are memorized (and U t−1 can be forgotten).
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Algorithm 6.1: Lex-V I: lmax(lmin)-Value Iteration
Data: A finite-horizon stationary ΠMDP and an horizon h
δ∗, the policy built by the algorithm, is a global variable

1 // δ a global variable starts as an empty set
Result: Computes and returns δ∗ for ΠMDP

2 begin
3 t← 0;
4 foreach s ∈ S do U t(s)← ((u(s)));
5 foreach s ∈ S, a ∈ As do TUs,a ← Ts,a ⊗ ((u(s′)), s′ ∈ succ(s, a)) ;
6 repeat
7 t← t+ 1;
8 foreach s ∈ S do
9 Q∗ ← ((0));

10 foreach a ∈ A do
11 Future← {U t−1(s′), s′ ∈ succ(s, a)}; // Gather the

matrices provided by the successors of s;
12 Q(s, a)← ConcatAndOrder-S(~π, ~u, Future);
13 if Q∗ ≤lmaxlmin Q(s, a) then
14 Q∗ ← Q(s, a);
15 δt(s)← a

16 U t(s)← Q∗

17 until t == h;
18 δ∗(s)← argmaxaQ(s, a)
19 return δ∗;

Time and space complexities of this algorithm are nevertheless expensive, since it memorizes
all the trajectories. At each step t its size may be about bt · (2 · t + 1), where b is the maximal
number of possible successors of an action. The overall complexity of the algorithm is O(|S| ·
|A| · |h| · bh · log(bh), since:

• The number of iterations is bounded by the size of the set of possible matrices of trajectories
i.e. |S| · |A| · |h|,

• One iteration of the algorithm requires composition, ordering and comparing operations on
b matrices. Since the composition and comparison of matrices are linear operations, the
complexity of one iteration in worst case (when considering the bigger matrices) is in
O(b · bh · (2 · h+ 1) · log(bh · (2 · h+ 1))) = O(bh · log(bh)).
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Algorithm 6.2: ConcatAndOrder-S(~π,~u, {ρ1, . . . , ρk})
Data: k matrices ρ1, . . . , ρk, a distribution π on {1, . . . , k}, a set of k utilities
Result: ρ, the combination of ρ1, . . . , ρk according to π and u

1 // Notations:
2 // Lρ: number of lines of ρ,
3 // Cρ: number of columns of ρ,
4 // ρ(z): the line z in ρ,
5 // ρz,t: the element in line z and column t in ρ
6 begin
7 NbLines← ∑k

m=1 Lρm;
8 maxC ← maxm=1,k(Cρm);
9 Creates a matrix ρ with NbLines lines and maxC + 1 columns

10 // Concatenation
11 z ← 0;
12 for m = 1, k do
13 for z′ = 1, Lρm do
14 z ← z + 1;
15 for t = 1, Cρm do ρz,t ← ρmz′,t;
16 for t = Cρm + 1,maxC do ρz,t ← 0;
17 ρz,maxC+1 ← π(m);
18 ρz,maxC+2 ← u(m);

19 // Ordering the elements of each line by increasing
order

20 for z = 1, NbLines do
21 sortIncreasing(ρ(z),≥);

22 // Ordering the lines by decreasing order according
to lmax

23 sortDecreasing(ρ,≥lmax);
24 return ρ;

Example 6.1. The main steps for the evaluation of the finite-horizon stationary ΠMDP (see
Figure 6.1) of Counter-example 3.4 using lexicographic value iteration (Algorithm 6.1) w.r.t.
lmax(lmin) criterion are as follows.

• We have:

– S = {R&U, R&F, P&U},
– A = {Adv, Sav, Stay} and

– u(R&U) = 0.5, u(R&F ) = 0.7, u(P&U) = 0.3.
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 R&U  R&F Adv Sav 
π =1 

π =1 

π =1 

Sav  P&U 
π =0.2 

π =1 

π =1 

Figure 6.1: The stationary finite-horizon πMDP of Example 6.1

Let us execute the algorithm for h = 3 iterations.

• h = 0: initialization:
U0(R&U) = [0.5], U0(R&F ) = [0.7], U0(P&U) = [0.3].

• h = 1:
for s = R&U

– for a = Sav:

Future =

[
0.3
0.5

]
,

Q(R&U, Sav) = ConcatAndOrder-S(~π = (0.2, 1), ~u = (0.3, 0.5),
[
0.3
]
,
[
0.5
]
)

=
[
0.5 0.5 1
0.2 0.3 0.3

]
.

– for a = Adv:
Future =

[
0.7
]
,

Q(R&U,Adv) = ConcatAndOrder-S(~π = (1), ~u = (0.7),
[
0.7
]
)

=
[
0.7 0.7 1

]
.

→ Since Q(R&U,Adv) �lmax(lmin) Q(R&U, Sav), so δ1(R&U) = Adv

and U1(R&U) =
[
0.7 0.7 1

]
.

* for s = R&F

– for a = Sav:

Future =

[
0.7
0.5

]
,
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Q(R&F, Sav) = ConcatAndOrder-S(~π = (1, 1), ~u = (0.7, 0.5),
[
0.7
]
,
[
0.5
]
)

=
[
0.7 0.7 1
0.5 0.5 1

]
.

→ Since Q(R&F, Sav) �lmax(lmin) [0], so δ1(R&F ) = Sav

and U1(R&F ) =
[
0.7 0.7 1
0.5 0.5 1

]
.

* for s = P&U

– for a = Stay:
Future =

[
0.3
]
,

Q(P&U, Stay) = ConcatAndOrder-S(~π = (1), ~u = (0.3),
[
0.3
]
)

=
[
0.3 0.3 1

]
.

→ Since Q(P&U, Stay) �lmax(lmin) [0], so δ1(P&U) = Stay

and U1(P&U) =
[
0.3 0.3 1

]
.

• h = 2:
for s = R&U

– for a = Sav:

Future =


[
0.3 0.3 1

][
0.5 0.5 1
0.2 0.3 0.3

],

Q(R&U, Sav) = ConcatAndOrder-S(~π = (0.2, 1), ~u = (0.3, 0.5),
[
0.3 0.3 1

]
,[

0.5 0.5 1
0.2 0.3 0.3

]
) =

0.5 0.5 0.5 1 1
0.2 0.3 0.3 0.5 1
0.2 0.3 0.3 0.3 1

.

– for a = Adv:

Future =

[
0.7 0.7 1
0.5 0.5 1

]
,

Q(R&U,Adv) = ConcatAndOrder-S(~π = (1), ~u = (0.7),
[
0.7 0.7 1
0.5 0.5 1

]
)

=
[
0.7 0.7 1 1
0.5 0.5 0.7 1

]
.

→ Since Q(R&U,Adv) �lmax(lmin) Q(R&U, Sav), so δ2(R&U) = Adv

and U2(R&U) =
[
0.7 0.7 0.7 1 1
0.5 0.5 0.7 1 1

]
.

* for s = R&F
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– for a = Sav:

Future =


[
0.7 0.7 0.7 1
0.5 0.5 1 1

]
[
0.7 0.7 1

]
,

Q(R&F, Sav) = ConcatAndOrder-S(~π = (1, 1), ~u = (0.7, 0.5),
[
0.7 0.7 0.7 1
0.5 0.5 1 1

]
,

[
0.7 0.7 1

]
) =

0.7 0.7 0.7 1 1
0.5 0.5 0.7 1 1
0.5 0.5 0.7 1 1

.

→ Since Q(R&F, Sav) �lmax(lmin) [0], so δ2(R&F ) = Sav

and U2(R&F ) =

0.7 0.7 0.7 1 1
0.5 0.5 0.7 1 1
0.5 0.5 0.7 1 1

.

* for s = P&U

– for a = Stay:
Future =

[
0.3 0.3 1

]
,

Q(P&U, Stay) = ConcatAndOrder-S(~π = (1), ~u = (0.3),
[
0.3 0.3 1

]
)

=
[
0.3 0.3 0.3 1 1

]
.

→ Since Q(P&U, Stay) �lmax(lmin) [0], so δ2(P&U) = Stay

and U2(P&U) =
[
0.3 0.3 0.3 1 1

]
.

=⇒ The stationary policy optimal w.r.t. lmax(lmin) is:
δ(R&U) = Adv; δ(R&F ) = Sav; δ(P&U) = Stay.

6.3.2 Bounded lexicographic value iteration

We have seen that making the choices based on the qualitative utility functionals is not discriminant
enough. Note that, at any stage t and for any state s, [U t(s)]1,1 (i.e. the top left value in U t(s)) is
precisely equal to uopt(s) at horizon t for the optimal policy. on the other hand, taking the whole
matrix is discriminant, but exponentially costly (O(|S| · |A| · |h| · bh · log(bh)). Hence we propose
to consider more than one line and one column, but less than the whole matrix -namely the first l
lines and c columns of the ordered matrix U t(s); hence the definition of the following preference:

δ ≥lmaxlmin,l,c δ′ iff [ρδ]l,c ≥ [ρδ′ ]l,c (6.1)

≥lmaxlmin,1,1 corresponds to �opt and ≥lmaxlmin,+∞,+∞ corresponds to ≥lmaxlmin.
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The combinatorial explosion in Algorithm 6.1 is due to the number of lines only, because at
finite horizon, the number of columns is bounded by 2 ·h+1. Hence we should bound the number
of considered lines. The following proposition shows that this approach is sound:

Proposition 6.1. (Refinement relations)

• For any l, c, l′ such that l′ > l, δ �lmaxlmin,l,c δ′ ⇒ δ �lmaxlmin,l′,c δ′.

• For any l, c, δ �opt δ′ ⇒ δ �lmaxlmin,l,c δ′.

Proposition 6.1 means that �lmaxlmin,l,c refines uopt and the order over the policies is refined
for a fixed c when l increases. It tends to �lmaxlmin when c = 2.h+ 1 and l tends to bh.

Proof of Proposition 6.1.
In order to make the proofs more explicit and compact, let us introduce the following notations and
operations defined on matrices of trajectories (typically, on U(s) representing trajectories issued
from s).

• Composition operation denoted ⊗:
U ⊗ (N1, . . . , Na): Let U be a a ⊗ b matrix and N1, . . . , Na be a series of a matrices of
dimension ni ⊗ c (they all share the same number of columns). The composition of U with
(N1, . . . , Na) denoted U ⊗ (N1, . . . , Na) is a matrix of dimension ( Σ

1≤i≤a
ni)⊗ (b+ c). For

any i ≤ a, j ≤ nj , the (Σi′<ini′) + j)th line of U ⊗ (N1, . . . , Na) is the concatenation of
the ith line of U and the jth line of Ni. The matrix U(s) is typically the concatenation of
the matrix U = ((π(s′|s, a), u(s′)), s′ ∈ succ(s, a)) with the matrices Ns′ = U(s′).

• Combination operation denoted ⊕:
U ⊕ V : Let U be a a⊗ b matrix and V be a n⊗ b matrix. The combination of U with V is
the matrix W = U ⊕ V of dimension (a+ n)× b s.t. ∀ i ∈ {1..(a+ n)}, ∀ j ∈ {1..b}:

Wi,j =


Ui,j if i ∈ {1..a},

V(i−a),j if i ∈ {(a+ 1)..(a+ n)}.

• Ordering operation: Let U be a n ×m matrix, U lmaxlmin is the matrix obtained by the
operation lmax(lmin): ordering the elements of the lines of U in increasing order and the
lines of U according to lmax (in decreasing order).

ConcatAndOrder−S function is simply defined as follows:
ConcatAndOrder-S(~π, ~u, {ρ1, . . . , ρk}) = (π, u)⊗ (ρ1, . . . , ρk)

= (((π1, u1)⊗ ρ1)⊕ ...⊕ ((πk, uk)⊗ ρk)).

Let us now give the Proof of Proposition 6.1:



CHAPTER 6. OPTIMIZING LEXICOGRAPHIC CRITERIA IN STATIONARY ΠMDPS 95

• Note that, for any t, s, we have:

[
U t(s)lmaxlmin

]
l,c

has the form




. . .

π(s′i|s, a), u(s′i)
. . .

π(s′i|s, a), u(s′i)

∣∣∣∣∣∣∣ U t−1(s′i)lmaxlmin

. . .



lmaxlmin
l,c

Formally,
[
U t(s)lmaxlmin

]
l,c

= [((π(s′1|s, a), u(s′1))⊗U t−1(s′1)lmaxlmin)⊕((π(s′2|s, a), u(s′2))⊗
U t−1(s′2)lmaxlmin)⊕...⊕((π(s′k|s, a), u(s′k))⊗U t−1(s′k)lmaxlmin)],

Let A be a n × m matrix, Almaxlmin(i,x:y) denote the part of the line i, of A, having y − x

elements from column x to y s.t. x < y ≤ m

Now, note that, if A and B are two matrices with exactly c columns:[
Almaxlmin

]
l,c
>lmaxlmin

[
Blmaxlmin

]
l,c

if and only if ∃i∗ ≤ l, such that ∀i < i∗, Almaxlmin(i) =lmin

Blmaxlmin
(i) and Almaxlmin(i∗) >lmin B

lmaxlmin
(i∗) .

Clearly, in this case replacingA andB withU t(s)lmaxlmin when considering δ andU ′t(s)lmaxlmin
when considering δ′, if such a i∗ ≤ l exists for a given l, the same i∗ works for l′ > l.

Thus, �lmaxlmin,l′,c refines �lmaxlmin,l,c.

Remark that the property does not hold for c. Increasing c does not refine the order
�lmaxlmin,l,c,t,s. Indeed, given c < c′, we can find a pair of matrices for which it holds
all together that:

– Almaxlmin(1,1:c) =lmin B
lmaxlmin
(1,1:c) ,

– Almaxlmin(2,1:c) >lmin B
lmaxlmin
(2,1:c) and

– Almaxlmin(1,1:c′) <lmin B
lmaxlmin
(i∗,1:c′) .

Thus, Almaxlmin �lmaxlmin,l=2,c B
lmaxlmin and Blmaxlmin �lmaxlmin,l=2,c′ A

lmaxlmin.
One can easily build a decision problem and two policies corresponding to matrices A and
B satisfying the above. Thus, increasing c does not lead to a more refined order.

• From the first point, above, it holds that

�lmaxlmin,l=1,c refines �lmaxlmin,l=1,c=1 and that �lmaxlmin,l,c refines �lmaxlmin,l=1,c.

So, �lmaxlmin,l,c refines �lmaxlmin,l=1,c=1, which is equivalent to the order induced by
uopt. Thus, optimal solutions of �lmaxlmin,l,c are also optimal for uopt, in all steps of the
stationary ΠMDP .
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Up to this point, the comparison by ≥lmaxlmin,l,c is made on the basis of the first l lines and
c columns of the full matrices of trajectories. This does obviously not reduce their size. The
important following Proposition allows us to make the l, c reduction of the ordered matrices at
each step (after each composition), and not only at the very end, thus keeping space and time
complexities polynomial.

Proposition 6.2. (Concatenation of reduced matrices of trajectories)
Let U be a a × b matrix and N1, . . . , Na be a series of a matrices of dimension ai × c. It holds
that:
[(U ⊗ (N1, . . . , Na))lmaxlmin]l,c = [(U ⊗ ([N lmaxlmin

1 ]l,c, . . . , [N lmaxlmin
a ]l,c))lmaxlmin)]l,c.

Proof of Proposition 6.2.
Note that[

(U ⊗ (N1, . . . , Na))lmaxlmin
]
l,c

= [(U1 ⊗N1)⊕ (U2 ⊗N2)⊕ ...⊕ (Uk ⊗Nk)]lmaxlmin,

Now, note the two following facts:

Fact 1: (A⊕B)lmaxlmin =
(
(A)lmaxlmin ⊕ (B)lmaxlmin

)lmaxlmin
, The reason is that:

Almaxlmin first reorders each line in lmin order, which can be done independently for each line
and then all ordered lines are ordered through lmax. This second step can be done separately for
each submatrix, provided that the lines are leximax-reordered once more, which is done by the
external lmax(lmin) operator.

Fact 2:
(
U(i) ⊗A

)lmaxlmin
=
(
U(i) ⊗ (A)lmaxlmin

)lmaxlmin
,

This second fact holds since adding identical elements to each line of a matrix does not modify
the leximin ordering of the lines. In the right hand term of the equality, the outer lmaxlmin
operator only inserts the terms of U(i) in all lines of matrix Almaxlmin.

Now, from Fact 1, we get:
(U ⊗ (N1, . . . , Na))lmaxlmin = [(U1 ⊗N1)lmaxlmin ⊕ (U2 ⊗N2)lmaxlmin ⊕ ...⊕

(Uk ⊗Nk)lmaxlmin]lmaxlmin,

And then, from Fact 2:
(U ⊗ (N1, . . . , Na))lmaxlmin = [(U1 ⊗ (N1)lmaxlmin)lmaxlmin ⊕ (U2 ⊗ (N2)lmaxlmin)lmaxlmin

⊕...⊕ (Uk ⊗ (Nk)lmaxlmin)lmaxlmin]lmaxlmin,

Now, using Fact 1 again, in the other direction of the equality:

(U ⊗ (N1, . . . , Na))lmaxlmin = [(U1⊗(N1)lmaxlmin)lmaxlmin⊕(U2⊗(N2)lmaxlmin)lmaxlmin
⊕...⊕ (Uk ⊗ (Nk)lmaxlmin)lmaxlmin]lmaxlmin

=
(
U ⊗ ((N1)lmaxlmin, . . . , (Na)lmaxlmin)

)lmaxlmin
(6.2)
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From (6.2), we have, of course,[
(U ⊗ (N1, . . . , Na))lmaxlmin

]
l,c

=
[(
U ⊗ ((N1)lmaxlmin, . . . , (Na)lmaxlmin)

)lmaxlmin]
l,c
.

[
(U × (N1, . . . , Na))lmaxlmin

]
l,c

=
[(
U × (N lmaxlmin

1 , . . . , N lmaxlmin
a )

)lmaxlmin]
l,c
.

Now, noticing that:

• The N lmaxlmin
i are lmax(min)-ordered, as well as the lines

(
U(i)

)
,

• the N lmaxlmin
i have exactly c columns and

• since the resulting (reordered) matrix has l lines, it cannot contain more than l lines of any
of the N lmaxlmin

i matrices.

We can safely replace the inner N lmaxlmin
i matrices with their sub-matrices

[
N lmaxlmin
i

]
l,c

and get the result.

In summary, the idea of our Algorithm, that we call Bounded Lexicographic Value Iteration
(BLex-V I), see Algorithm 6.3, is to compute policies that are close to lexi-optimality, by keeping
a sub matrix of each current value matrix - namely the first l lines and c columns.

Following the complexity analysis of Algorithm 6.1, the time complexity of (BLex-V I) is:
O(|S| · |A| · |h| · b · (l · c) · log(l · c)). Hence, this algorithm provides in in polynomial time a policy
that is always as least as good as the one provided by uopt (according to lmax(lmin)) and tends
to lexicographic optimality when c = 2 · h+ 1 and l tends to bh.
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Algorithm 6.3: BLex-V I: Bounded-lmax(lmin)-Value Iteration
Data: A stationary ΠMDP and an horizon h
δ∗, the policy built by the algorithm, is a global variable

1 // δ a global variable starts as an empty set
Result: Computes and returns δ∗ for ΠMDP

2 begin
3 t← 0;
4 foreach s ∈ S do U t(s)← ((u(s)));
5 foreach s ∈ S, a ∈ As do TUs,a ← Ts,a ⊗ ((u(s′)), s′ ∈ succ(s, a)) ;
6 repeat
7 t← t+ 1;
8 foreach s ∈ S do
9 Q∗ ← ((0));

10 foreach a ∈ A do
11 Future← (U t−1(s′), s′ ∈ succ(s, a)); // Gather the

matrices provided by the successors of s;
12 Q(s, a)← [ConcatAndOrder-S(~π, ~u, Future)]l,c;
13 if Q∗ ≤lmaxlmin Q(s, a) then
14 Q∗ ← Q(s, a);
15 δt(s)← a

16 U t(s)← Q∗

17 until t == h;
18 δ∗(s)← argmaxaQ(s, a)
19 return δ∗;

6.4 Experimental study

In this Section, we compare the performance of Bounded lexicographic value iteration so-called
BLex-V I (Algorithm 6.3) as an approximation of (unbounded) lexicographic value iteration so-
called Lex-V I (Algorithm 6.1), in the lmax(lmin) variant.

We evaluate the performance of the algorithms by carrying out simulations on randomly gen-
erated stationary ΠMDP with |S| = 25. The number of actions in each state is equal to 4. The
output of each action is a distribution on two states randomly drawn (i.e. the branching factor is
equal to 2). The utility values are uniformly randomly drawn in the set L = {0.1, 0.3, 0.5, 0.7, 1}.
Conditional possibilities relative to decisions should be normalized. To this end, one choice is
fixed to possibility degree 1 and the possibility degree of the other one is uniformly drawn in L.
For each experience, 100 stationary ΠMDP are generated.
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The two algorithms are compared w.r.t. 2 measures:
(i) CPU time and
(ii) Pairwise success rate (the same of the previous experiments): here it presents the percentage
of optimal solutions provided by Bounded value iteration with fixed (l, c) w.r.t. the lmax(lmin)
criterion in its full generality. The higher Success, the more important the effectiveness of cutting
matrices with BLex-V I; the lower this rate, the more important the drowning effect.

Figure 6.2 presents the average execution CPU time for the two algorithms. Obviously, for
both Lex-V I andBLex-V I , the execution time increases with the horizon. Also, we observe that
the CPU time of BLex-V I increases according to the values of (l, c) but it remains affordable, as
the maximal CPU time is lower than 1s for stationary ΠMDPs with 25 states and 4 actions when
(l, c) = (40, 40) and h = 25. Unsurprisingly, we can check that the BLex-V I (regardless of the
values of (l, c)) is faster than Lex-V I especially when the horizon increases: the manipulation of
l, c-matrices is obviously less expensive than the one of full matrices. The saving increases with
the horizon.
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Figure 6.2: Average CPU-time for optimistic criteria in stationary ΠMDPs

As with the success rate, the results are described in Figure 6.3. It appears that BLex-V I
provides a very good approximation especially when increasing (l, c). It provides the same opti-
mal solution as the Lex-V I in about 90% of cases, with an (l, c) = (200, 200). So, the bigger
the matrices the more efficient is the approximation, and the smaller the matrices the further the
drowning effect is present. Moreover, even when the success rate of BLex-V I decreases (when
h increases), the quality of approximation is still good: never less than 70% of optimal actions
returned, with h = 25.
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These experiments conclude in favor of bounded lexicographic value iteration: its approxi-
mated solutions are comparable in terms of quality for high (l, c) and increase when (l, c) increase,
while it is much faster than the unbounded version.
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Figure 6.3: Success rate for optimistic criteria in stationary ΠMDPs

6.5 Lexicogaphic value iteration for infinite-horizon sta-
tionary ΠMDPs

In the infinite-horizon case, the comparison of matrices of trajectories does not apply to rank-order
the policies. The length of the trajectories may be infinite, and also their number infinite as well.

This problem is well known in classical probabilisticMDPs where a discount factor is used
that attenuates the influence of later utility degrees - thus allowing the convergence of the solv-
ing algorithm (value iteration or policy iteration) [Puterman, 1994]. On the contrary, classical
ΠMDPs, proposed by [Sabbadin, 2001], do not need any discount factor. Indeed, the limitation
of uopt and upes to one number as a utility of a policy (i.e. l = c = 1) plays the role of a discount
factor and possibilistic Value Iteration (see Algorithm 2.3), based on the evaluation of qualita-
tive utilities, converges for infinite horizon ΠMDPs [Sabbadin, 2001]. However, decide using
uopt and upes (based on the first element of the matrix) is too drastic; it is nevertheless possible
to make the comparison using ≥lmaxlmin,l,c with l, c > 1. Thus, we propose below a Bounded
Lexicographic Value Iteration algorithm for infinite-horizon stationary ΠMDPs, denoted BLex-
IH-V I (see Algorithm 6.4). This algorithm converges when from a given stage t, the value of
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a policy is stable if computed with the bounded lmax(lmin) criterion. Let us denote U t(s) the
matrix issued from s at horizon t when δ is executed, it holds that:

Proposition 6.3. (Convergence of Bounded lexicographic value iteration)
∀ l, c, ∃ t such that, ∀ t′ ≥ t, (U t)lmaxlminl,c (s) = (U t′)lmaxlminl,c (s) ∀s. Hence, bounded lexico-
graphic value iteration converges for infinite-horizon stationary ΠMDPs.

Proof of Proposition 6.3.
In, bounded lexicographic value iteration, at each time step, U t(s) is composed of a set of trajecto-
ries τ it = 〈si0, ai0, si1, . . . , sit, ait, sit+1〉, which can be identified with the set of possibilities/utilities
of each transition (sit′ , ait′ , s′it′+1) s.t. t ≥ t′ ≥ 0, these are obtained from {〈πit′ , uit′〉}t′=0,t. Thus,
τ it has 2t elements. Let vi,αt counts the number of times a level α ∈ V has been obtained by πit′ or
uit′ during the trajectory τ it . Statistics < vi,1t , . . . , v

i,|V |
t > can be maintained for every trajectory.

As t increases all (vi,αt ), which are non-decreasing sequences, converge toward a finite or
infinite limit. We let

lim(i, α) =def lim
t→∞

(vi,αt ), s.t. lim(i, α) ∈ N ∪ {+∞}, ∀ τ it , α.

Thus, if we denote by Ui, the limit of the line vector in U t(s) corresponding to trajectory τ it when
t goes to infinity, we have:

Ui =

α1, . . . , α1︸ ︷︷ ︸
lim(i,1)

, α2, . . . , α2︸ ︷︷ ︸
lim(i,2)

, . . .

 .
Let us now consider U∗l,c, the l × c matrix made from the l first (in leximax order) line vectors
[Ui]1,c. Then, obviously,

lim
t→∞

[
U t(s)lmaxlmin

]
l,c

= U∗l,c.

Thus, bounded lexicographic value iteration algorithm converges.

Besides, we show now that if [U t(s)lmaxlmin]l,c = [U t−1(s)lmaxlmin]l,c, thus, ∀ , t′ ≥ t, we
have [U t′(s)lmaxlmin]l,c = [U t(s)lmaxlmin]l,c:

let us consider the following hypothesis:

H : [U t(s)lmaxlmin]l,c = [U t−1(s)lmaxlmin]l,c.

Considering H , let us calculate [U t+1(s)lmaxlmin]l,c:
Futuret+1 = (U t(s′), s′ ∈ succ(s, a)) = Futuret,
→ Qt+1(s, a) = [

(
TUs,a ⊗ Futuret

)lmaxlmin]l,c = [
(
TUs,a ⊗ Futuret−1)lmaxlmin]l,c = Qt(s, a).

We deduce that,
(
U t+1)lmaxlmin

l,c =
(
U t−1)lmaxlmin

l,c .
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The overall complexity of Bounded lmax(lmin)-Value Iteration algorithm isO(|V | ·(l ·c) · |S| ·
|A| · (l · c) · b · log(l · c)) = O(|V | · (l · c)2 · |S| · |A| · b · log(l · c)).

Algorithm 6.4: BLex-IH-V I: Bounded-infinite-horizon-lmax(lmin)-Value Itera-
tion

Data: A stationary ΠMDP and an horizon h
δ∗, the policy built by the algorithm, is a global variable

1 // δ a global variable starts as an empty set
Result: Computes and returns δ∗ for ΠMDP

2 begin
3 t← 0;
4 foreach s ∈ S do U t(s)← ((u(s)));
5 foreach s ∈ S, a ∈ As do TUs,a ← Ts,a ⊗ ((u(s′)), s′ ∈ succ(s, a)) ;
6 repeat
7 t← t+ 1;
8 foreach s ∈ S do
9 Q∗ ← ((0));

10 foreach a ∈ A do
11 Future← (U t−1(s′), s′ ∈ succ(s, a)); // Gather the

matrices provided by the successors of s;

12 Q(s, a)← [(TUs,a ⊗ Future)lmaxlmin]l,c;
13 if Q∗ ≤lmaxlmin Q(s, a) then
14 Q∗ ← Q(s, a);
15 δt(s)← a

16 U t(s)← Q∗

17 until (U t)lmaxlminl,c == (U t−1)lmaxlminl,c ;
18 δ∗(s)← argmaxaQ(s, a)
19 return δ∗;

6.6 Summary

In this Chapter, we have studied the lexicographic optimization of policies in stationary possibilis-
tic Markov decision processes.

First, considering finite-horizon stationary possibilistic Markov decision processes, we have
proposed a lexicographic value iteration algorithm for the computation of lexicographic optimal
policies, based on the whole matrices of trajectories. Since this algorithm is computationally ex-
pensive, we have proposed a bounded lexicographic value iteration algorithm as an approximation



CHAPTER 6. OPTIMIZING LEXICOGRAPHIC CRITERIA IN STATIONARY ΠMDPS103

of the full lexicographic procedure. The principle of this algorithm is to forget the less useful
part of the matrix of trajectories and to decide based on the best part i.e. the (l, c) sub-matrix.
When we fix the size of the matrices, the complexity of the algorithm becomes polynomial. We
have compared the bounded lexicographic algorithm and the classical lexicographic one on ran-
domly generated problems with different horizons and different values of (l, c). It appears that the
bounded variant is an interesting algorithm: it is very fast and it provides a good approximation,
with large (l, c).

For the infinite-horizon case, using the classical lexicographic value iteration algorithm, the
matrices of trajectories increase infinitely. Hence, we use the same idea of bounding matrices and
the only thing that changes is the condition of convergence, since we do not know the number of
iteration in advance. Moreover, we have proved that, using this algorithm, the complexity remains
polynomial in (l, c), even when the horizon is infinite. Note that it is possible to extend this work
to the pessimistic case, so we compute the pessimistic utility of each trajectory and compare these
utilities using lmin(lmax) criterion whereas lmax(lmin).



CONCLUSION
General conclusion

The contributions of this thesis are mainly related to the preliminary works of Fargier et Sabbadin
[Fargier and Sabbadin, 2003, Fargier and Sabbadin, 2005]. They have proposed refinements of
optimistic and pessimistic qualitative utilities using a special form of classical expected utility
equivalent to qualitative lexicographic ordering. The main objective of our work was to extend
these criteria for the sequential decision-making framework.

The problematic of this work, exposed in Chapter 3, is how to overcome the drowning effect
of qualitative utilities when comparing policies. Therefore, we have proposed two lexicographic
criteria that compare policies based on their corresponding matrices of trajectories. These com-
parisons satisfy the principle of efficiency and strict monotonicity. These properties allow us
to define lexicographic backward induction algorithms for possibilistic decision trees and for the
finite-horizon possibilistic Markov decision processes. We have proved that, for the two sequential
models, the lexicographic algorithms are discriminant and avoid the drowning effect of classical
possibilistic algorithms. The algorithms proposed are polynomial in the size of the model and al-
low to get an optimal discriminant policy. But the matrices of trajectories grow exponentially with
the horizon, so it is possible to bound the number of lines and to decide only using the bounded
part of the matrices. Hence, we propose a bounded version of the lexicographic backward induc-
tion which has polynomial complexity in the horizon and the number of lines and columns of the
bounded matrices. Then, we have experimentally compared the lexicographic algorithms (the two
version) proposed and the classical possibilistic algorithms. It appears that the backward induction
algorithm with bounded matrices is fast and provides very good approximations, especially when
the number of lines kept is high. This approximation algorithm has been extended (in Chapter
6) to stationary possibilistic Markov decision processes that have intermediate utilities, when the
horizon is finite or infinite.

On the theoretical side, we have proved that lexicographic criteria encode expected utility cri-
teria based on the transformation of the possibilistic model to probabilistic one, using big stepped
probabilities.

104
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As short term future work, various algorithmic extensions should be concerned such as:

• We may think about the adaptation of the classical Possibilistic Policy Iteration algorithm
(see Algorithm 2.4) [Sabbadin, 2001] for the lexicographic procedures, which is not too
difficult to realize

• In addition, as far as the infinite horizon case is concerned, other types of lexicographic
refinements could be proposed. One of these options could be to avoid the duplication of
the set of transitions that occur several times in a single trajectory and consider only those
which are observed.

• The next step is obviously to develop simulation-based algorithms for finding lexicographic
solutions in Markov decision process. Reinforcement Learning algorithms [Sutton and
Barto, 1998] allow to solve large size (probabilistic) Markov decision process by making
use of simulated trajectories of states to optimize a strategy. It is not immediate to de-
velop reinforcement learning algorithms for possibilistic Markov decision processes, since
no unique stochastic transition function corresponds to a possibility distribution. However,
uniform simulation of trajectories (with random choice of actions) may be used to generate
an approximation of the possibilistic decision tree (provided that both transition possibilities
and utility of the leaf are given with the simulated trajectory). So, interleaving simulations
and lexicographic dynamic programming may lead to reinforcement learning-type algo-
rithms for approximating lexicographic-optimal policies for (large) possibilistic Markov
decision processes. Such algorithms would use samplings of the trajectories instead of full
dynamic programming or quantile-based reinforcement learning approaches [Gilbert and
Weng, 2016].

The work presented in this thesis has answered several questions concerning discriminant
policies in sequential decision-making models. It thus opened up many promising research tracks:

• The axiomatization of the lexicographic criteria is possible and it may be envisaged in
further research. It would consist in the VNM axioms of rational decision since our work is
more close to lotteries framework and that we do not use the reduction of lotteries.

• In [Weng, 2005], Weng has proposed a refinement of binary possibilistic utilities (BPU)
and as a particular case, to classical, optimistic and pessimistic, possibilitistic utilities. This
refinement allows to improve the discrimination power ofBPU . But since in [Weng, 2005]
treatment indeed, two similar trajectories of the same strategy are merged, the resulting cri-
terion thus suffers from a drowning effect and does no satisfy strict monotonicity: as such,
it cannot be represented by an EU-based criterion which “counts” trajectories (weighted
by their probabilities). We actually do refine [Weng, 2005]’s criterion. Incorporating our
lexicographic refinements inBPU would lead to a more powerful refinement and suggest a
probabilistic interpretation of efficient BPU . It also leads to new algorithms that are more
discriminant than their original counterparts.
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• Another problem remains open: how to refine the coarse ranking produced by Sugeno
integral, especially when we consider sequential decision problems ? [Dubois and Fargier,
2007] proposes to use a mapping from the qualitative scale (of both utility and uncertainty)
to the reals, hence, Sugeno integral may be refined by a Choquet integral. In our opinion,
the extension of this work to sequential decision-making is a complicated task: first we have
to define what is it a Sugeno of a matrix of trajectories and how we calculate the Sugeno of
a compound lottery (or a policy). Then, we have to decide which solving algorithm shall
be used (dynamic programming, branch and bound, etc.), it depends on the axioms and
properties of the new refined criterion (Choquet integral or another one). Note that [Dubois
and Fargier, 2007]’s refined criterion of Sugeno integral is not yet axiomatized.

• Another line of research is to consider collective decision-making under possibilistic un-
certainty [Ben Amor et al., 2015b, Ben Amor et al., 2015a]. In fact, since it is based on
optimistic and pessimistic possibilistic utilities, it suffers from a lack of decisiveness. So, it
is interesting to look for collective lexicographic decision rules as an efficient counterpart
of collective qualitative ones, in order to found discriminant decisions, which satisfies the
collectivity, in sequential decision-making models such as possibilistic decision trees and
possibilistic Markov decision processes.

• Finally, our lexicographic approach is may be useful for optimizing policies in other pos-
sibilistic variants of sequential decision models, such as Partially Observable Markov De-
cision Processes (POMDPs) and Factored Markov Decision Processes (FMDPs). One may
also think about adapting the lexicographic criteria to possibilistic planning problems that
can be used to search optimal plan or a plan that lead to a goal state [da Costa Pereira et al.,
1997]. Note that, the integration of the discriminative lexicographic criteria is interesting
but it eventually makes these problems more complex.
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