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Abstract

In this paper, we develop a qualitative theory of
influence diagrams that can be used to model
and solve sequential decision making tasks when
only qualitative (or imprecise) information is
available. Our approach is based on an order-
of-magnitude approximation of both probabili-
ties and utilities and allows for specifying par-
tially ordered preferences via sets of utility val-
ues. We also propose a dedicated variable elim-
ination algorithm that can be applied for solving
order-of-magnitude influence diagrams.

1 INTRODUCTION

Influence diagrams have been widely used for the past three
decades as a graphical model to formulate and solve deci-
sion problems under uncertainty. The standard formulation
of an influence diagram consists of two types of informa-
tion: qualitative informationthat defines the structure of
the problem eg, the set of (discrete) chance variables de-
scribing the set of possible world configurations, the set of
available decisions, as well as the dependencies between
the variables, andquantitative information(also known as
the parametric structure) that, together with the qualitative
information, defines the model. The parametric structure
is composed of the conditional probability distributions as
well as the utility functions describing the decision maker’s
preferences. In general, the solution to an influence dia-
gram depends on both types of information. Quite often,
however, we may have precise knowledge of the qualitative
information but only very rough (or imprecise) estimates
of the quantitative parameters. In such cases, the standard
solution techniques cannot be applied directly, unless the
missing information is accounted for.

In this paper, we propose a qualitative theory for influence
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diagrams in which such partially specified sequential deci-
sion problems can be modeled and solved. In particular, we
introduce the order-of-magnitude influence diagram model
that uses an order-of-magnitude representation of the prob-
abilities and utilities. The model allows the decision maker
to specify partially ordered preferences via finite sets of
utility values. In this case, there will typically not be a
unique maximal value of the expected utility, but rather a
set of them. To compute this set and also the corresponding
decision policy we propose a dedicated variable elimina-
tion algorithm that performs efficient operations on sets of
utility values. Numerical experiments on selected classes
of influence diagrams show that as the quantitative infor-
mation becomes more precise, the qualitative decision pro-
cess becomes closer to the standard one.

The paper is organized as follows. Section 2 gives back-
ground on influence diagrams. In Section 3 we present
the order-of-magnitude calculus as a representation frame-
work for imprecise probabilities and utilities. Sections 4
and 5 describe the main operations over sets of order-of-
magnitude values and introduce the order-of-magnitude in-
fluence diagram model. In Section 6 we present the results
of our empirical evaluation. Section 7 overviews related
work, while Section 8 provides concluding remarks.

2 INFLUENCE DIAGRAMS

An influence diagramis defined by a tuple〈X,D,U, G〉,
whereX = {X1, . . . , Xn} is a set of oval-shaped nodes
labeled by thechance variableswhich specify the uncer-
tain decision environment,D = {D1, . . . , Dm} is a set of
rectangle-shaped nodes labeled by thedecision variables
which specify the possible decisions to be made in the do-
main, U = {U1, . . . , Ur} are diamond-shaped nodes la-
beled by theutility functionswhich represent the prefer-
ences of the decision maker, andG is a directed acyclic
graph containing all the nodesX ∪ D ∪ U. As in belief
networks, each chance variableXi ∈ X is associated with
a conditional probability table (CPT)Pi = P (Xi|pa(Xi)),
wherepa(Xi) ⊆ X ∪ D \ {Xi} are the parents ofXi in



Figure 1: The oil wildcatter influence diagram.

G. Similarly, each decision variableDk ∈ D has a parent
setpa(Dk) ⊆ X ∪D \ {Dk} in G, denoting the variables
whose values will be known at the time of the decision and
may affect directly the decision.Non-forgettingis typically
assumed for an influence diagram, meaning that a decision
node and its parents are parents to all subsequent decisions.
Finally, each utility nodeUj ∈ U is associated with a util-
ity function that depends only on the parentspa(Uj) of Uj .

The decision variables in an influence diagram are typically
assumed to be temporally ordered. LetD1, D2, ..., Dm be
the order in which the decisions are to be made. The chance
variables can be partitioned into a collection of disjoint sets
I0, I1, . . . , Im. For eachk, where0 < k < m, Ik is the
set of chance variables that are observed betweenDk and
Dk+1. I0 is the set of initial evidence variables that are
observed before the firstD1. Im is the set of chance vari-
ables left unobserved when the last decisionDm is made.
This induces a partial order≺ over X ∪ D, as follows:
I0 ≺ D1 ≺ I1 ≺ · · · ≺ Dm ≺ Im [5].

A decision policy(or strategy) for an influence diagram is
a list of decision rules∆ = (δ1, . . . , δm) consisting of one
rule for each decision variable. Adecision rulefor the de-
cisionDk ∈ D is a mappingδk : Ωpa(Dk) → ΩDk

, where
for a setS ⊆ X ∪ D, ΩS is the Cartesian product of the
individual domains of the variables inS. Solving an in-
fluence diagram is to find theoptimaldecision policy that
maximizes the expected utility. The maximum expected
utility (MEU) is equal to:

∑

I0

max
D1

· · ·
∑

Im−1

max
Dm

∑

Im





n
∏

i=1

Pi ×
r

∑

j=1

Uj



 (1)

Example 1 For illustration, consider the influence dia-
gram displayed in Figure 1 which is based on the classic
oil wildcatter decision problem [9]. An oil wildcatter must
decide either todrill or not to drill for oil at a specific site.

The wildcatter could do aseismic testthat will help deter-
mine thegeological structureof the site. The test results can
show aclosedreflection pattern (indication of significant
oil), an openpattern (indication of some oil), or adiffuse
pattern (almost no hope of oil). The probabilistic knowl-
edge consists of the CPTsP (O) andP (S|O, T ), while the
utility function is the sum ofU1(T ) andU2(D,O). The op-
timal policy is to perform the seismic test and to drill only
if the test results show an open or a closed pattern. The
maximum expected utility of this policy is 42.75.

Variable Elimination Several exact methods have been
proposed over the past decades for solving influence dia-
grams using local computations [10, 13, 11, 5, 3, 8]. These
methods adapted classicalvariable eliminationtechniques,
which compute a type of marginalization over a combina-
tion of local functions, in order to handle the multiple types
of information (probabilities and utilities), marginalization
(
∑

andmax) and combination (× for probabilities,+ for
utilities) involved in influence diagrams. Since the alterna-
tion of

∑

andmax in Eq. 1 does not commute in general, it
prevents the solution technique from eliminating variables
in any ordering. Therefore, the computation dictated by
Eq. 1 must be performed along alegal elimination order-
ing that respects≺, namely the reverse of the elimination
ordering is some extension of≺ to a total order [5, 3].

3 FOUNDATIONS

Our approach towards a qualitative theory for influence
diagrams is based on the qualitative decision theory pro-
posed by Wilson [14]. Wilson’s theory defines a set of ab-
stract quantities calledextended reals, denoted byR∗, that
are used to represent qualitative probabilities and utilities.
Each extended real is a rational functionp/q wherep and
q are polynomials inǫ with coefficients in the rationals,
whereǫ is a very small but unknown quantity so that the
extended reals can be used to represent information up toǫ
precision. For example, quantities such as1−ǫ andǫ might
be used for qualitative probabilitieslikely andunlikely re-
spectively, andǫ−1 for a high utility. These quantities can
then be combined using standard arithmetic operations be-
tween polynomials for computing expected qualitative util-
ities. The resulting utilities are then compared among each
other by means of a total order onR∗ that is defined in [14].

3.1 ORDER-OF-MAGNITUDE CALCULUS

Rather than using extended reals explicitly, we adopt a sim-
pler calculus that allows us to reason about the “order of
magnitude” of the extended reals [14]. We start with the
definition of an order-of-magnitude value that represents a
qualitative probability or utility value.

DEFINITION 1 An order-of-magnitude valueis a pair



〈σ, n〉, whereσ ∈ {+,−,±} is called thesignandn ∈ Z
is called theorder of magnitude, respectively.

Intuitively, for each integern we have an element〈+, n〉
meaning “of orderǫn”, and an element〈−, n〉 meaning “of
order−ǫn”. Moreover, if we add something of orderǫn

to something of order−ǫn then the result can be of order
±ǫm, for anym ≥ n. To ensure closure of the calculus
under addition, we therefore add the element〈±, n〉 repre-
senting this set of possibilities. In the following, we also
defineO = {〈σ, n〉 | n ∈ Z, σ ∈ {+,−,±}} ∪ {〈±,∞〉},
O± = {〈±, n〉 | n ∈ Z ∪ {∞}} andO+ = {〈+, n〉 | n ∈
Z∪{∞}}. The element〈±,∞〉 will sometimes be written
as 0, element〈+, 0〉 as 1, and element〈−, 0〉 as -1.

Standard arithmetic operations such as multiplication (×)
and addition (+) follow from the semantics of the order-of-
magnitude values [14] and are defined next.

DEFINITION 2 (multiplication) Let a, b ∈ O be such that
a = 〈σ,m〉 and b = 〈τ, n〉. We definea × b = 〈σ ⊗
τ,m+ n〉, where∞+ n = n+∞ = ∞ for n ∈ Z∪ {∞}
and⊗ is the natural multiplication of signs, namely it is the
commutative operation on{+,−,±} such that+⊗− = −,
+⊗+ = −⊗− = +, and∀σ ∈ {+,−,±}, σ ⊗± = ±.

This multiplication is associative and commutative, and
∀a ∈ O, a × 0 = 0 anda × 1 = a, respectively. Fur-
thermore, forb ∈ O \ O±, we defineb−1 to be the mul-
tiplicative inverse ofb, namely〈σ,m〉−1 = 〈σ,−m〉 for
σ ∈ {+,−}. Givena ∈ O, we definea/b = a× b−1.

DEFINITION 3 (addition) Let a, b ∈ O be such thata =
〈σ,m〉 and b = 〈τ, n〉. We definea + b to be: (1)〈σ,m〉
if m < n; (2) 〈τ, n〉 if m > n; (3) 〈σ ⊕ τ,m〉 if m = n,
where+⊕+ = +, −⊕− = −, and otherwise,σ⊕τ = ±.

Addition is associative and commutative, anda + 0 = a,
∀a ∈ O. For a, b ∈ O, let −b = −1 × b anda − b =
a+(−b). Clearly, we can write−〈σ,m〉 = 〈−σ,m〉, where
−(+) = −, −(−) = + and−(±) = ±. We also have the
distributivity: ∀a, b, c ∈ O, (a+ b)× c = a× c+ b× c.

3.2 ORDERING ON SETS OF
ORDER-OF-MAGNITUDE VALUES

We will use the following ordering over the elements ofO,
which is slightly stronger than that defined in [14].

DEFINITION 4 (ordering) Let a, b ∈ O be such thata =
〈σ,m〉 andb = 〈τ, n〉. We define the binary relation< on
O by a < b if and only if either: (1)σ = + and τ = +
andm ≤ n; or (2) σ = + andτ = ± andm ≤ n; or (3)
σ = + andτ = −; or (4) σ = ± andτ = − andm ≥ n;
or (5) σ = − andτ = − andm ≥ n.

Givena, b ∈ O, if a < b then we say thata dominatesb.
For A,B ⊆ O, we say thatA < B if every element of

B is dominated by some element ofA (so thatA contains
as least as large elements asB), namely if for all b ∈ B
there existsa ∈ A with a < b. As usual, we writea ≻ b
if and only if a < b and it is not the case thatb < a. It is
easy to see that< is apartial order onO and the following
monotonicity property holds:

PROPOSITION1 Let a, b, c ∈ O. If a < b thena + c <

b+ c, and ifa < b andc ∈ O+ thena× c < b× c.

Any finite set of order-of-magnitude values can therefore
be represented by its maximal elements with respect to<.

DEFINITION 5 (maximal set) Given a finite setA ⊆ O,
we define themaximal setofA, denoted bymax<(A), to be
the set consisting of the undominated elements in A, namely
max<(A) = {a ∈ A | ∄b ∈ A such thatb ≻ a}.

4 OPERATIONS ON SETS OF
ORDER-OF-MAGNITUDE VALUES

We introduce now the main operations that can be per-
formed over partially ordered finite sets of order-of-
magnitude values. In particular, we extend the addition (+)
and multiplication (×) operations from singleton to sets of
order-of-magnitude values as well as define a maximization
operation over such sets.

4.1 ADDITION, MULTIPLICATION AND
MAXIMIZATION

Given two finite setsA,B ⊆ O andq ∈ O+, we define
the summation and multiplication operations asA + B =
{a + b | a ∈ A, b ∈ B} and q × A = {q × a | a ∈
A}, respectively. The maximization operation is defined
by max(A,B) = max<(A ∪B).

In order to use the order-of-magnitude calculus to define
a qualitative version of influence diagrams we need to be
sure that each of+, × andmax is commutative and asso-
ciative, and also to give sufficient conditions such that the
following distributivity properties hold:

∀q, q1, q2 ∈ O+ and∀A,B,C ⊆ O

D1 q × (A+B) = (q ×A) + (q ×B)

D2 (q1 + q2)×A = (q1 ×A) + (q2 ×A)

D3 max(A,B) + C = max(A,C) + max(B,C)

It is easy to see that+, × andmax are commutative and
associative, and the distributivity properties (D1) and (D3)
hold as well. Unfortunately, the distributivity property (D2)
does not always hold for sets of order-of-magnitude values.
To give a simple example, letq1 = 〈+, 2〉, q2 = 〈+, 3〉 and
letA = {〈±, 1〉, 〈±, 4〉}. Then,(q1+q2)×A yields the set



{〈±, 3〉, 〈±, 6〉}, whereas(q1 × A) + (q2 × A) is equal to
{〈±, 3〉, 〈±, 4〉, 〈±, 6〉}. This property does however hold
for convex sets, as we will show next.

4.2 CONVEX SETS AND CONVEX CLOSURE

Based on Definition 5, every element of a finite setA ⊆
O is dominated by some maximal element inA. We can
therefore define an equivalence relation between finite sets
of order-of-magnitude values, as follows.

DEFINITION 6 (relation ≈) Given two finite setsA,B ⊆
O, we say thatA is ≈-equivalent withB, denoted byA ≈
B, if and only ifA < B andB < A.

Clearly,≈ is an equivalence relation, namely it is reflexive,
symmetric and transitive. We then have that:

PROPOSITION2 Let A,B,C ⊆ O be finite sets and let
q ∈ O+. The following properties hold: (1)A ≈ B if
and only ifmax<(A) = max<(B); (2) if A ≈ B then
A+ C ≈ B + C andq ×A ≈ q ×B.

We introduce next the notions of convex sets and convex
closure of sets of order-of-magnitude values.

DEFINITION 7 A set A ⊆ O is said to beconvex if
∀q1, q2 ∈ O+ with q1 + q2 = 1, and∀a, b ∈ A, we have
that (q1 × a) + (q2 × b) ∈ A. Theconvex closureC(A)
of a setA ⊆ O is defined to consist of every element of
the form

∑k

i=1(qi × ai), wherek is an arbitrary natural

number, eachai ∈ A, eachqi ∈ O+ and
∑k

i=1 qi = 1.

Consider two elements〈σ,m〉 and〈τ, n〉 in O, where we
can assume without loss of generality thatm ≤ n. Any
convex combination of these two elements is of the form
〈θ, l〉 wherel ∈ [m,n] and if l < n thenθ = σ; if l = n
thenθ = σ⊕τ or θ = τ . This implies that the convex com-
bination of a finite number of non-zero elements is finite
(since every elementa in the convex combination has its
order restricted to be within a finite range), and so, in par-
ticular can be represented by its maximal set. In fact, this
property holds even if we allow the zero element〈±,∞〉.
We can define now the following equivalence relation:

DEFINITION 8 (relation ≡) Given the finite setsA,B ⊆
O, we say thatA is ≡-equivalent withB, denoted byA ≡
B, if and only ifC(A) ≈ C(B).

Therefore, two sets of order-of-magnitude values are con-
sidered equivalent if, for every convex combination of ele-
ments of one, there is a convex combination of elements of
the other which is at least as good.

PROPOSITION3 Let A,B,C ⊆ O be finite sets and let
q ∈ O+. The following properties hold: (1)A ≡ B if and
only if max<(C(A)) = max<(C(B)); (2) if A ≡ B then
A+ C ≡ B + C, q ×A ≡ q ×B, andA ∪ C ≡ B ∪ C.

We can show now that any finite subset ofO is in fact≡-
equivalent with a set of order-of-magnitude values contain-
ing one or two elements, namely:

THEOREM 1 LetA be any finite subset ofO. Then either
A ≡ {a} for somea ∈ O, or ∃ m,n ∈ Z with m < n and
σ ∈ {+,−,±} such thatA ≡ {〈±,m〉, 〈σ, n〉}.

4.3 OPERATIONS ON EQUIVALENT SETS OF
ORDER-OF-MAGNITUDE VALUES

Theorem 1 allows us to efficiently perform the required
operations (ie, summation, multiplication and maximiza-
tion) on sets of order-of-magnitude values. We assume that
the subsetsO are either singleton sets or are of the form
{〈±,m〉, 〈σ, n〉}, wherem < n. We need to ensure that
the outputs are of this form as well. For a givena ∈ O, we
use the notationσ(a) andâ to denote the sign and the order
of magnitude ofa, respectively,

Multiplication GivenA ⊆ O of the required form, and
q ∈ O+, we need to generate a setA′ that is≡-equivalent
with q ×A. Write q as〈+, l〉. If A = {〈σ,m〉} thenq ×A
is just equal to the singleton set{〈σ, l+m〉}. Otherwise,A
is of the form{〈±,m〉, 〈σ, n〉}, wherem < n. Thenq×A
equals{〈±, l + m〉, 〈σ, l + n〉}, which is of the required
form, sincel +m < l + n.

Maximization Given the setsA1, A2, . . . , Ak ⊆ O, each
of them having the required form, we want to compute
a setA′ that is ≡-equivalent tomax(A1, . . . , Ak). Let
A = A1 ∪ · · · ∪ Ak and, forσ ∈ {+,−,±}, we define
mσ andnσ as follows: if there exists no elementa ∈ A
with σ(a) = σ then we say thatmσ andnσ are both unde-
fined; otherwise we have thatmσ = min{l : 〈σ, l〉 ∈ A}
andnσ = max{l : 〈σ, l〉 ∈ A}, respectively. The setA′ is
computed as follows: (1) ifm+ andm± are both undefined
(there are only negative elements) thenA′ = {〈−, n−〉};
(2) if m+ is defined and eitherm+ ≤ m± or m± is unde-
fined thenA′ = {〈+,m+〉}; (3) if m+ > m± (and both
are defined) thenA′ = {〈±,m±〉, 〈+,m+〉}; (4) if m+

is undefined (no positive elements) and eithern± ≥ n−

or n− is undefined thenA′ = {〈±,m±〉, 〈±, n±〉} ; and
(5) if m+ is undefined (there are no positive elements) and
n± < n− thenA′ = {〈±,m±〉, 〈−, n−〉}.

Summation Given the setsA1, A2, . . . , Ak ⊆ O of re-
quired form as before, we want to compute a setA′ that
is ≡-equivalent to(A1 + · · · + Ak). We can writeAi as
{ai, bi} where if ai 6= bi thenσ(ai) = ± and âi < b̂i.
Then,(A1 + · · ·+Ak) ≡ {a, b} wherea = a1 + · · ·+ ak
and b = b1 + · · · + bk. We can writeb more explicitly
as〈σ(b), b̂〉 whereb̂ = min(b̂1, . . . , b̂k), andσ(b) = + if
and only if all bi with minimum b̂i haveσ(bi) = +; else
σ(b) = − if all bi with minimum b̂i haveσ(bi) = −; else
σ(b) = ±. Similarly fora. If σ(a) 6= ± then{a, b} reduces
to a singleton becausea = b.



Example 2 Consider the setsA1 = {〈±, 3〉, 〈±, 4〉} and
A2 = {〈±, 3〉, 〈±, 6〉}. To generateA′ ≡ max(A1, A2),
we first computem± = 3 andn± = 6, and then we have
that A′ = {〈±, 3〉, 〈±, 6〉} which corresponds to the ex-
treme points of the input sets. Similarly, we can compute
the setA′′ ≡ (A1 +A2) as{〈±, 3〉, 〈±, 4〉}.

4.4 DISTRIBUTIVITY PROPERTIES REVISITED

In summary, we can show now that all three distributivity
properties hold with respect to the≡-equivalence relation
between finite sets of order-of-magnitude values.

THEOREM 2 ∀q, q1, q2 ∈ O+ and ∀A,B,C ⊆ O finite
sets we have that: (D1)q× (A+B) ≡ (q×A)+ (q×B);
and (D2)(q1 + q2)×A ≡ (q1 ×A) + (q2 ×A); and (D3)
max(A,B) + C ≡ max(A,C) + max(B,C).

5 ORDER-OF-MAGNITUDE INFLUENCE
DIAGRAMS

In this section, we introduce a new qualitative version of the
influence diagram model based on an order-of-magnitude
representation of the probabilities and utilities.

5.1 THE QUALITATIVE DECISION MODEL

An order-of-magnitude influence diagram(OOM-ID) is a
qualitative counterpart of the standard influence diagram
graphical model. The graphical structure of an OOM-ID
is identical to that of a standard ID, namely it is a directed
acyclic graph containingchance nodes(circles) for the ran-
dom discrete variablesX, decision nodes(rectangles) for
the decision variablesD, andutility nodes(diamonds) for
the local utility functionsU of the decision maker. The
directed arcs in the OOM-ID represent the same dependen-
cies between the variables as in the standard model. Each
chance nodeXi ∈ X is associated with a conditional prob-
ability distributionP o

i that maps every configuration of its
scope to a positive order-of-magnitude probability value,
namelyP o

i : ΩXi∪pa(Xi) → O+. The utility functions
Uo
j ∈ U represent partially ordered preferences which

are expressed by finite sets of order-of-magnitude values,
namelyUo

j : ΩQj
→ 2O, whereQj is the scope ofUj .

Solving an order-of-magnitude influence diagram is to find
the optimal policy∆ = (δ1, . . . , δm) that maximizes the
order-of-magnitude expected utility

∏n

i=1 P
o
i ×

∑r

j=1 U
o
j .

We define theoptimal policies setof an order-of-magnitude
influence diagram to be the set of all policies having the
same maximum order-of-magnitude expected utility.

5.2 AN EXAMPLE

Figure 2 displays the order-of-magnitude probability and
utility functions of an OOM-ID corresponding to the oil

Figure 2: Order-of-magnitude probability and utility func-
tions corresponding to the oil wildcatter influence diagram.

Table 1: Optimal policies sets for order-of-magnitude influ-
ence diagrams corresponding to the oil wildcatter problem.

decision rule OOM-ID
ǫ = 0.1 ǫ = 0.01 ǫ = 0.001

Test? {yes,no} {yes, no} {yes, no}
Drill? S=closed, T=yes yes yes {yes, no}

S=open, T=yes yes yes {yes, no}
S=diffuse, T=yes no {yes, no} {yes, no}
S=closed, T=no yes yes {yes, no}
S=open, T=no yes yes {yes, no}
S=diffuse, T=no yes yes {yes, no}

order-of-magnitude MEU 〈+,−1〉 〈+, 0〉 {〈±, 0〉, 〈+,∞〉}

wildcatter decision problem from Example 1. For our
purpose, we used an extension of Spohn’s mapping from
the original probability distributions and utility functions
to their corresponding order-of-magnitude approximation
[12, 2]. Specifically, given a small positiveǫ < 1, the
order-of-magnitude approximation of a probability value
p ∈ (0, 1] is 〈+, k〉 such thatk ∈ Z andǫk+1 < p ≤ ǫk,
while the order-of-magnitude approximation of a positive
utility value u > 0 is 〈+,−k〉 such thatǫ−k ≤ u <
ǫ−(k+1) (the case of negative utilities is symmetric). For
example, if we considerǫ = 0.1 then the probability
P (S = closed|O = dry, T = yes) = 0.01 is mapped to
〈+, 2〉, while the utilitiesU2(O = dry,D = yes) = −70
andU2(O = soaking,D = yes) = 200 are mapped to
〈−,−1〉 and〈+,−2〉, respectively.

Table 1 shows the optimal policies sets (including the max-
imum order-of-magnitude expected utility) obtained for
the order-of-magnitude influence diagrams corresponding
to ǫ ∈ {0.1, 0.01, 0.001}. When ǫ = 0.1, we can see
that there are two optimal policies having the same max-
imum order-of-magnitude expected utility, namely∆1 (for
T = yes) and∆2 (for T = no). Therefore, if the seismic
test is performed (T = yes) then drilling is to be done only
if the test results show an open or closed pattern. Otherwise
(T = no), the wildcatter will drill regardless of the test re-
sults. Ties like these at the decision variables are expected
given that the order-of-magnitude probabilities and utilities
represent abstractions of the real values. The expected util-
ities of ∆1 and∆2 in the original influence diagram are



42.75 and20.00, respectively.

Whenǫ = 0.01, we also see that both drilling options are
equally possible if the seismic test is performed and the
test results show a diffuse pattern. In this case, there are
four optimal policies having the same maximum order-of-
magnitude expected utility. Finally, whenǫ = 0.001, we
can see that all decision options are possible and the corre-
sponding optimal policies set contains 128 policies. The
explanation is that the order-of-magnitude influence dia-
gram contains in this case only trivial order-of-magnitude
values such as〈+, 0〉, 〈−, 0〉 and〈+,∞〉, respectively.

5.3 VARIABLE ELIMINATION

Theorem 2 ensures the soundness and correctness of a vari-
able elimination procedure using the summation (+), mul-
tiplication (×) and maximization (max) operations over
partially ordered sets of order-of-magnitude values, for
solving order-of-magnitude influence diagrams.

Therefore, a variable elimination algorithm that computes
the optimal policy of an order-of-magnitude influence dia-
gram (and also the maximum order-of-magnitude expected
utility) is described by Algorithm 1. The algorithm, called
ELIM-OOM-ID, is based on Dechter’sbucket elimination
framework for standard influence diagrams [3] and uses a
bucket structure constructed along alegal elimination or-
deringo = Y1, . . . Yt of the variables inX∪D. The bucket
data-structure, calledbuckets, associates each bucket with
a single variable. The bucket ofYp contains all input prob-
ability and utility functions whose highest variable isYp.

The algorithm processes each bucket, top-down from the
last to the first, by a variable elimination procedure that
computes new probability (denoted byλ) and utility (de-
noted byθ) components which are then placed in corre-
sponding lower buckets (lines 1–11). Theλp of a chance
bucket is generated by multiplying all probability compo-
nents and eliminating by summation the bucket variable.
Theθp of a chance bucket is computed as the average util-
ity of the bucket, normalized by the bucket’s compiledλp.
For a decision variable, we compute theλp andθp compo-
nents in a similar manner and eliminate the bucket variable
by maximization. In this case, the product of the proba-
bility components in the bucket is a constant when viewed
as a function of the bucket’s decision variable [5, 15] and
therefore, the compiledλp is a constant as well.

In the second, bottom-up phase, the algorithm computes an
optimal policy. The decision buckets are processed in re-
verse order, from the first variable to the last. Each decision
rule is generated by taking the argument of the maximiza-
tion operator applied over the combination of the probabil-
ity and utility components in the respective bucket, for each
configuration of the variables in the bucket’s scope (ie, the
union of the scopes of all functions in that bucket minus the

Algorithm 1 : ELIM-OOM-ID
Data: An OOM-ID 〈X,D,U, G〉, bucket structure along a legal

elimination ordering of the variableso
Result: An optimal policy∆
// top-down phase
for p = t downto 1do1

letΛp = {λ1, ..., λj} andΘp = {θ1, ..., θk} be the2
probability and utility components inbuckets[p]
if Yp is a chance variablethen3

λp ←
∑

Yp

∏j

i=1
λi4

θp ← (λp)−1 ×
∑

Yp
((
∏j

i=1
λi)× (

∑k

j=1
θj))5

else ifYp is a decision variablethen6

if Λp = ∅ then θp ← maxYp

∑k

j=1
θj7

else8

λp ← maxYp

∏j

i=1
λi9

θp ← maxYp((
∏j

i=1
λi)× (

∑k

j=1
θj))10

place eachλp andθp in the bucket of the highest-index11
variable in its scope

// bottom-up phase
for p = 1 to t do12

if Yp is a decision variablethen13

δp ← argmaxYp
((
∏j

i=1
λi)× (

∑k

j=1
θj))14

∆← ∆ ∪ δp15

return ∆16

bucket variableYp).

THEOREM 3 (complexity) Given an OOM-ID withn vari-
ables, algorithm ELIM-OOM-ID is time and spaceO(n ·
kw

∗

o ), wherew∗
o is the treewidth of the legal elimination

orderingo andk bounds the domain size of the variables.

6 EXPERIMENTS

In this section, we evaluate empirically the quality of the
decision policies obtained for order-of-magnitude influence
diagrams. All experiments were carried out on a 2.4GHz
quad-core processor with 8GB of RAM.

Methodology We experimented with random influence
diagrams described by the parameters〈nc, nd, k, p, r, a〉,
wherenc is the number of chance variables,nd is the num-
ber of decision variables,k is the maximum domain size,
p is the number of parents in the graph for each variable,r
is the number of root nodes anda is the arity of the utility
functions. The structure of the influence diagram is created
by randomly pickingnc + nd − r variables out ofnc + nd

and, for each, selectingp parents from their preceding vari-
ables, relative to some ordering, whilst ensuring that the
decision variables are connected by a directed path. A sin-
gle utility node witha parents picked randomly from the
chance and decision nodes is then added to the graph.

We generated two classes of random problems with pa-
rameters〈n, 5, 2, 2, 5, 5〉 and having either positive utilities
only or mixed (positive and negative) utilities. They are



denoted byP : 〈n, 5, 2, 2, 5, 5〉 andM : 〈n, 5, 2, 2, 5, 5〉,
respectively. In each case, 75% of the chance nodes were
assigned extreme CPTs which were populated with num-
bers drawn uniformly at random between10−5 and10−4,
whilst ensuring that the table is normalized. The remaining
CPTs were randomly filled using a uniform distribution be-
tween 0 and 1. For classP , the utilities are of the form10u,
whereu is an integer uniformly distributed between 0 and
5. For classM , the utilities are of the form+10u or−10u,
whereu is between 0 and 5, as before, and we have an
equal number of positive and negative utility values. Each
influence diagram instance was then converted into a corre-
sponding order-of-magnitude influence diagram using the
mapping of the probabilities and utilities described in Sec-
tion 5.2, for someǫ < 1. Intuitively, the smallerǫ is, the
coarser the order-of-magnitude approximation of the exact
probability and utility values (ie, more information is lost).

Measures of Performance To measure how close the de-
cision policies derived from the optimal policy set of an
order-of-magnitude influence diagram are to the optimal
policy of the corresponding standard influence diagram, we
use two relative errors, defined as follows. LetI be an in-
fluence diagram and letIǫ be the corresponding order-of-
magnitude approximation, for someǫ value. We samples
different policies, uniformly at random, from the optimal
policies set ofIǫ, and for each sampled policy we compute
its expected utility inI. Let∆med be a policy correspond-
ing to the median expected utilityvmed amongst the sam-
ples. We define the relative errorηmed = |(v − vmed)/v|,
wherev is the maximum expected utility of the optimal
policy in I. Similarly, we defineηmax = |(v − vmax)/v|,
where∆max is the best policy having the highest expected
utility vmax amongst the samples.

Results Figure 3 displays the distribution of the relative
errorsηmed (top) andηmax (bottom) obtained on order-
of-magnitude influence diagrams derived from classP (ie,
positive utilities), as a function of the problem size (given
by the number of variables), forǫ ∈ {0.5, 0.05, 0.005}.
Each data point and corresponding error bar represents the
25th, median and 75th percentiles obtained over 30 ran-
dom problem instances generated for the respective prob-
lem size. We can see thatηmed is the smallest (less than
10%) for ǫ = 0.5. However, asǫ decreases, the loss of
information due to the order-of-magnitude abstraction in-
creases and the corresponding relative errorsηmed increase
significantly. Notice that the best policy∆max derived
from the order-of-magnitude influence diagram was almost
identical to that of the corresponding standard influence di-
agram, for allǫ (ie, the errorηmax is virtually zero).

Figure 4 shows the distribution ofηmed (top) andηmax

(bottom) obtained on order-of-magnitude influence dia-
grams from classM (ie, mixed utilities). The pattern of
the results is similar to that from the previous case. How-
ever, in this case, the errors span over two or three orders of
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Figure 3: Results for classP influence diagrams. We show
the distribution of the relative errorsηmed (top) andηmax

(bottom) forǫ ∈ {0.5, 0.05, 0.005}. # of sampless = 100.

magnitude, especially forǫ = 0.05 and0.005. This is be-
cause the sampled policy space includes policies which are
quite different from each other and, although they have the
same maximum order-of-magnitude expected utility, their
expected utility in the corresponding standard influence di-
agram is significantly different. For this reason, we looked
in more detail at the distribution of the expected utility val-
ues of 100 policies sampled uniformly at random from the
optimal policies set of a classM OOM-ID instance with
45 variables, forǫ ∈ {0.5, 0.05, 0.005}. As expected, we
observed that the smallest sample variance is obtained for
ǫ = 0.5. For ǫ = 0.05 and ǫ = 0.005, the samples are
spread out even more from the mean, and the variance of
the expected utility is significantly larger. This explainsthe
large variations of the relative errorsηmed andηmax, espe-
cially for smallerǫ values (eg,ǫ = 0.05 andǫ = 0.005).

7 RELATED WORK

Several extensions of the standard influence diagram model
have been proposed in recent years to deal with imprecise
probabilistic and utility information. Garcia and Sabbadin
[4] introduced possibilistic influence diagrams to model
and solve decision making problems under qualitative un-
certainty in the framework of possibilistic theory. Praletet
al [8] considered a generalized influence diagram system
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Figure 4: Results for classM influence diagrams. We show
the distribution of the relative errorsηmed (top) andηmax

(bottom) forǫ ∈ {0.5, 0.05, 0.005}. # of sampless = 100.

which allows for some qualitative uncertainty formalisms
to be used together with totally ordered utility values only.
Lopez and Rodriguez [7] proposed an influence diagram
model based on random fuzzy variables to represent im-
precise information. Kikutiet al [6] allow credal sets of
probabilities to represent imprecise probabilistic informa-
tion and focus on precise utility. The work that is closest to
ours is that by Bonet and Pearl [1] who consider qualitative
MDPs and POMDPs based also on an order-of-magnitude
approximation of probabilities and totally ordered utilities.

8 CONCLUSION

The paper presents a qualitative influence diagram formal-
ism that allows reasoning with imprecise probabilities and
partially ordered imprecise utility values. Our proposed
order-of-magnitude influence diagram model is based on an
order-of-magnitude representation of the probabilities and
utilities. We also described a dedicated variable elimination
algorithm that performs efficient operations on partially or-
dered sets of utilities for solving this model.

We considered a straightforward variable elimination al-
gorithm. One way to improve it is to efficiently exploit
constraints (zero values of the uncertainty and utility func-
tions), building, for instance, on work by [8]. We also plan
to investigate other formalisms for reasoning with impre-
cise information, such as interval-valued utilities and multi-

attribute utility allowing trade-offs.
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