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bstract 

Possibilistic decision theory has been proposed twenty years ago and has had several extensions since then. Even though ap

aling for its ability to handle qualitative decision problems, possibilistic decision theory suffers from an important drawback. 

ualitative possibilistic utility criteria compare acts through min and max operators, which Jeads to a drowning effect. To over

me this Jack of decision power of the theory, several refinements have been proposed. Lexicographie refinements are particularly 

pealing since they allow to benefit from the Expected Utility background, while remaining qualitative. This article aims at extend

g lexicographie refinements to sequential decision problems i.e., to possibilistic decision trees and possibilistic Markov decision 

ocesses, when the horizon is finite. We present two criteria that refine qualitative possibilistic utilities and provide dynarnic 

ograrnming algorithrns for calculating Jexicographically optimal policies. 

ords: Possibilistic decision trees; Markov decision processes; Possibilistic qualitative utilities; Lexicographie comparisons 

Introduction

For many years, there has been an interest in the Artificial Intelligence community towards the foundations and 
mputational methods of decision making under uncertainty (see e.g. [l-5]). The usual paradigm of decision under 

certainty is based on the Expected Utility (EU) model [6,7]. Its extensions to sequential decision making are Deci

on Trees (DT) [8] and Markov Decision Processes (MDP) [9], which assume that the uncertain effects of actions can 

 represented by probability distributions and that utilities are additive. But the EU model is not tailored to problems 

here uncertainty and preferences are ordinal in nature. 
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Alternatives to the EU-based model have been proposed to handle ordinal preferences/uncertainty. Considering 
ordinal preferences but remaining within a probabilistic quantification of uncertainty has led to quantile-based ap-
proaches [10–12], to the use of reference points [13] or to approaches by pairwise comparison [14]. Purely ordinal 
approaches to decision under uncertainty have been considered by [15–20]. In particular, possibilistic DTs and pos-
sibilistic MDPs (see [1,21–25]) use a common ordinal scale to model both the preferences and the uncertainty about 
the consequences of actions. These two framework rely on the qualitative decision theory (i.e. possibility theory) 
proposed and axiomatized by Dubois and Prade [20,17] — the decision criteria are either the optimistic qualitative 
utility or its pessimistic counterpart. However, it is now well known that possibilistic decision criteria suffer from the 
drowning effect. Acts (and policies in sequential problems, i.e., sets of conditional or unconditional decisions) are 
compared through min and max operators, which implies that plausible enough bad or good consequences may blur 
the comparison between acts that would otherwise be clearly differentiable.

In order to overcome the drowning effect, Fargier and Sabbadin have proposed lexicographic refinements of possi-
bilistic criteria for non-sequential decision problems [26]. However, these refinements have not been extended yet to 
sequential decision under uncertainty, where the drowning effect is also due to the reduction of compound possibilis-
tic policies into simple possibility distributions on the consequences. The present paper1 proposes an extension of the 
lexicographic preference relations to finite horizon sequential problem, providing lexicographic possibilistic decision 
criteria that compare full policies (and not simply their reductions). This allow us to equip possibilistic decision trees 
and finite horizon Markov decision processes with backward induction algorithms that compute lexicographically 
optimal policies.

The paper is structured as follows: Section 2 presents possibilistic decision trees and finite-horizon possibilistic 
Markov decision processes in more details and highlights drowning effect. In Section 3, we define lexicographic 
orderings that refine the possibilistic decision criteria. Then, Section 4 proposes a dynamic programming algorithm 
for the computation of lexicographically optimal policies in possibilistic decision trees and in finite-horizon Markov 
decision processes. Section 5 shows that the lexicographic criteria proposed can be represented by expected utilities 
based on big-stepped probabilities/utilities. Finally, Section 6 presents experimental results.

2. Background and problematic

2.1. A short reminder on possibility theory

In decision-making problems, several types of uncertainty should be considered. Most of available decision mod-
els refer to probability theory for the representation of uncertainty [6,29]. Despite its success, probability theory is 
appropriate when all numerical informations are available or can be easily elicited. When information about uncer-
tainty cannot be quantified in a probabilistic way, several non-classical theories of uncertainty can be considered in 
order to deal with imperfect, ordinal information namely, fuzzy sets theory [30], evidence theory [31] and possibility 
theory [32,33] etc. In what follows, we will focus on possibility theory the fundamental purely ordinal uncertainty 
theory.

Possibility theory, issued from fuzzy sets theory, was developed by Dubois and Prade [33]. The basic component 
of possibility theory is the notion of possibility distribution. It is a representation of a state of knowledge of an agent 
regarding the state of the world. A possibility distribution is denoted by π and it is a mapping from the universe of 
discourse � to a bounded linearly ordered scale L exemplified by the unit interval [0, 1], we denote the function by: 
π : � → [0, 1].

For vector ω ∈ �, π(ω) = 1 means that realization ω is totally possible and π(ω) = 0 means that ω is an impossible 
state. It is generally assumed that there exist at least one state ω which is totally possible: π is said then to be 
normalized.

In the possibilistic framework, extreme forms of partial knowledge can be captured, namely:

• Complete knowledge i.e. ∃ ω0 s.t. π(ω0) = 1 and ∀ ω �= ω0, π(ω) = 0.
• Total ignorance i.e. ∀ω ∈ �, π(ω) = 1 (all values in � are possible).

1 This paper is an extended and revised version of a preliminary work presented in [27,28].



In possibilistic theory, there are two essential measures:

• Possibility measure: �(A) = supω∈A π(ω). �(A) is the possibility of an event A i.e. the degree of possibility of
having one of the elements of A (for adventurous decision maker).

• Necessity measure: N(A) = 1 − �(Ā) = 1 − supω/∈A π(ω). N(A) expresses the need for an event A i.e. the
certainty of having one of the elements of A (for cautious decision).

In possibilistic decision making, a decision can be seen as a possibility distribution over a finite set of out-
comes [20]. In a single stage decision making problem, a utility function maps each outcome to a utility value in 
a totally ordered set U = {u1, ..., un}. This function models the attractiveness of each outcome for the decision-maker.

While transition probabilities can be estimated through simulations of the process, transition possibilities may not. 
On the other hand, experts may be involved for the elicitation the possibility degrees and utilities of transitions. In the 
possibilistic framework, utility and uncertainty levels can be elicited jointly, by comparison of possibilistic lotteries, 
for example (e.g. by using certainty equivalent, as in [17]). Simulation can also be used jointly with expert evaluation 
when the underlying process is too costly to simulate a large number of times (large enough to get reliable estimates 
of probabilities): Simulation may be used to generate samples on which expert elicitation is applied.

2.2. Possibilistic decision trees

Decision trees (DTs) provide an explicit modeling of sequential decision problems by representing all possible 
scenarios [8,34]. The graphical component of a DT is a labeled directed tree <N , E > which contains three kinds of 
nodes (see Fig. 1):

• ND is the set of decision nodes (represented by squares);
• NC is the set of chance nodes (represented by circles);
• NU is the set of leaves, also called utility nodes.

Hence N =ND ∪NC ∪NU .
For any node N , Out(N) ⊆ E denotes its outgoing edges, Succ(N) the set of its children nodes (i.e. immediate 

successors) and Succ(N, e) the child of N that is reached by edge e ∈ Out(N). A DT represents a sequential decision 
problem in the following way:

• Leaf nodes correspond to states of the world in which a utility is obtained; the utility of a leaf node Li ∈ NU is
denoted u(Li). For the sake of simplicity we assume that utilities are attached to leaves only.

• Decision nodes correspond to states of the world in which a decision is to be made: Di ∈ND represents a decision
variable Yi . Its domain corresponds to the labels a of the edges starting from Di .
These edges lead to chance nodes, i.e., Succ(Di) ⊆ NC .

• A state variable Xj is assigned to each chance node Cj ∈ NC . Its domain corresponds to the labels x of the edges
starting from that node. Each edge starting from a chance node Cj represents an event Xj = x. For any Cj ∈NC ,
Succ(Cj ) ⊆ NU ∪ND i.e., after the execution of a decision, either a leaf node or a decision node is reached.

Given a decision tree DT, Start (DT ) denotes the set of its first decision nodes (it is a singleton containing the root
of the tree if this root is a decision node, or its successors if the root is a chance node). For the sake of simplicity, we 
suppose that all the paths from the root to a leaf in the tree have the same length. h, the horizon of the decision tree 
is the number of decision nodes along these paths. Given a node N ∈N , we shall also consider the subproblem DTN

defined by the tree rooted in N .
The joint knowledge on the state variables is not given in extenso, but through the labeling of the edges issued 

from chance nodes. In a possibilistic context, the uncertainty pertaining to the possible outcomes of each Xj is 
represented by a possibility distribution: each edge starting from Cj , representing an event Xj = x, is endowed with a 
number πCj

(x), the possibility π(Xj = x|past (Cj )) where past (Cj ) denotes all the value assignments to chance and 



decision nodes on the path from the root to Cj .2 A possibilistic ordered scale, L = {α0 = 0L < α1 < . . . < αl = 1L}, 
is used to evaluate the utilities and possibilities.

Solving a decision tree amounts to building a policy (or “strategy”), i.e., a function δ :ND 
→ A, where A is the set 
of possible actions, including a special “undefined” action ⊥, chosen for action nodes which are left unexplored by a 
given policy.

Admissible policies assign a chance node to each reachable decision node, i.e., must be:

• sound: ∀Di ∈ND, δ(Di) ∈ Out(Di) ∪ {⊥} ⊆ A, and
• complete: (i) ∀Di ∈ Start (DT ), δ(Di) �= ⊥ and

(ii) ∀Di s.t. δ(Di) �= ⊥, ∀N ∈ Succ(Succ(Di, δ(Di))) either δ(N) �= ⊥ or N ∈NU .

We denote by �N (or simply �, when there is no ambiguity) the set of admissible policies relative to the tree 
rooted in N . Each policy δ defines a connected subtree of DT , the branches of which represent possible scenarios, 
or trajectories. Formally, a trajectory τ = (aj0, xi1, aj1, . . . , ajh−1 , xih) is a sequence of value assignments to decision 
and chance variables along a path from a starting decision node (a node in Start (DT )) to a leaf. Y0 = aj0 is the first 
decision in the trajectory, xi1 the value taken by its first chance variable, Xj0 in this scenario, Yi1 = aj1 is the second 
decision, etc. For the sake of notational simplicity, we associate to each τ the vector πτ = (π1, . . . , πh, uτ ) that gathers 
the possibility and utility degrees encountered on the trajectory; formally, uτ is the utility u(xih) of the leaf of τ and 
πk = πCjk−1

(xik ) (where πCjk−1
is the possibility distribution at chance node Cjk−1) is the possibility of xik given that

action ajh−1 is executed.
We often identify a policy δ, the corresponding subtree and the set of its trajectories (hence the notation τ ∈ δ to 

mean that τ is a trajectory of δ). We also consider subtrees of the original DT, and thus sub-policies: let Cj be a 
chance node, Di1 , . . . , Dik its successors and, for l = 1, k, the policies δil ∈ �Dil

which solve the subproblem rooted
in Dil . In order to simplify the indices, we shall abuse of notations and designate by πτ = (π1, . . . , πh, uτ ) the vector 
associated to a trajectory that belong to a sub-policy.

Thus, δi1 + · · · + δik is the policy of �Cj
resulting from the composition of the δil : (δi1 + · · · + δik )(N) = δil (N)

iff N belongs to the subtree rooted in Dil .

Example 1. Let us suppose that a “Rich and Unknown” person runs a startup company. In every states they must 
choose between Saving money (Sav) or Advertising (Adv) and they may then get Rich (R) or Poor (P) and Famous 
(F) or Unknown (U). Fig. 1 shows the possibilistic decision tree (with horizon h = 2) that represents this sequential
decision problem. This tree has 8 possible policies and 16 trajectories:

τ1 = (Adv,R&U,Adv,R&U), τ2 = (Adv,R&U,Adv,R&F), τ3 = (Adv,R&U,Sav,P &U),

τ4 = (Adv,R&U,Sav,R&U), τ5 = (Adv,R&F,Adv,R&U), τ6 = (Adv,R&F,Adv,R&F), etc.

The evaluation of a policy, as proposed by [25], relies on the qualitative optimistic and pessimistic decision criteria 
axiomatized by [20]. The utility of the policy is computed on the basis of the transition possibilities and the utilities 
of its trajectories. For each trajectory τ = (aj0, xi1, aj1, . . . , xih), with associated vector πτ = (π1, . . . , πh, uτ ):

• Its utility, u(τ), is the utility uτ of its leaf.
• The possibility of τ given that a policy δ is applied from initial node D0 is defined by:

π(τ |δ,D0) =
{

minπk∈πτ πk if τ ∈ δ,

0 otherwise.

Following [20], Fargier et al. define the optimistic and pessimistic utility degrees of a policy δ ∈ � [25]:

uopt (δ) = max
τ∈δ

min(π(τ |δ,D0), u(τ )) (1)

2 As in classical probabilistic decision trees, it is assumed that π(Xj = x|past (Cj )) only depends on the variables in past (Cj ) and often only 
on the decision made in the preceding node and on the state of the preceding chance node.
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Fig. 1. The possibilistic decision tree of Example 1. 

Upes(o) = min max ( l  - n(rlo, Do), u(r)) 
rEo 

(2) 

This approach is purely ordinal (only min and max operations are used to aggregate the evaluations of the possibility 

 events and the utility of states). We can check that the preference orderings �o between policies, derived either 

om Uopt ( 0 = Uopt) or from u pes ( 0 = u pes ), satisfy the principle of weak monotonicity: 

VCj ENc, VD; E Succ(Cj), o, 0
1 

E flo;, 0
11 

E flsucc(Cj)\D;: 

o �o 01 

==> o +011 

�o o' +011 

This property guarantees that dynamic programming [35] applies, and provides an optimal policy in time polyno

ial with the size of the tree: [24,25] have proposed qualitative counterparts of the stochastic dynarnic prograrnming 

gorithm backwards induction for decision trees (see Algorithm l, written in a recursive style) that optimizes the 

cisions from the leaves of the tree to its root. 

Decision trees represent sequential decision problems under the assumption of complete observation [8,34]. How

er, DTs have serious limitations in their ability to mode! complex situations, especially when the horizon is long: the 

mber of nodes at step t � h is about b1
, b being the branching factor of the tree. This is why DTs are often replaced 

ith the use of Markov Decision Processes (MDP) [9] which offer a more compact representations of sequential 
cision problems. 



Algorithm 1: Backward-Induction-DT-uopt(N :Node).
Data: A possibilistic DT; the policy, δ, is memorized as global variable
Result: Set δ for the tree rooted in N and returns its optimistic utility

1 begin
2 // Leaves
3 if N ∈ NU then uopt ← u(N)

4 // Chance nodes
5 if N ∈ NC then
6 foreach Di ∈ Succ(N) do
7 ui

opt ← Backward-Induction-DT -uopt(Di);

8 uopt ← maxDi∈Succ(N) min(πN (Di), ui
opt );

9 // Decision nodes
10 if N ∈ ND then
11 uopt ← 0;
12 foreach Cj ∈ Succ(N) do
13 u ← Backward-Induction-DT -uopt(Cj );
14 if u > uopt then
15 uopt ← u;
16 δ(N) ← label(N, Cj );

17 return uopt ;

2.3. Possibilistic Markov decision processes

A possibilistic finite-horizon Markov decision process < T, S, A, π, u > [24] is defined by:

• A finite set of stages T = {0, . . . , h}; h is called the horizon of the problem.
• Finite state spaces, St , for each t = 0 . . . h; S = S0 ∪ ... ∪ Sh denotes the set of all possible states at every time

steps.
• Sets As of available actions in state s ∈ St ; A = AS0 ∪ ... ∪ ASh

denotes the full action space.
• In a possibilistic context, the uncertainty of the agent about the effect of an action a taken in state s ∈ St−1 is

represented by a possibility distribution π(.|s, a) : St → L, where, L = {0L < . . . < 1L} is a possibilistic ordered
scale. For s′ ∈ St , π(s′|s, a) measures to what extent s′ is a plausible consequence of a in s. In the same way,
consequences are ordered in terms of levels of satisfaction by a qualitative utility function u : Sh → L.

• The rewards u(s) that are obtained in the final states s ∈ Sh. In this article we do not consider intermediate
satisfaction degrees. However, our results could be easily extended to handle them.

Decision trees and finite-horizon Markov decision processes are two frameworks that are very close to each other.
A finite-horizon (possibilistic) MDP can be translated into a decision tree by representing explicitly every possible 
trajectories. However, the number of such trajectories may be exponential in the horizon (O((|S| × |A|)h)) and so 
is the size of the DT representation of the finite horizon MDP. Thus, a naive application of the backwards induction 
algorithm to a DT translation of a MDP is inefficient. Fortunately, [24] has shown that a backwards induction algorithm 
could be defined for possibilistic MDP, which complexity is only polynomial in the representation size of the MDP 
(similarly to the stochastic MDP case).

Example 2. Let us consider the problem introduced in Example 1 — it is possible to represent it as a possi-
bilistic finite-horizon MDP. Fig. 2 represents the possibilistic MDP, in the form of an acyclic graph, when the 
horizon h = 2 (here, utilities are also shown). We have: S0 = {R&U0}, S1 = {R&F1, R&U1, P &U1} and S2 =
{R&F2, R&U2, P &F2, P &U2} also ∀t = 0,2, s ∈ StAs = {Adv, Sav}.

Solving a finite-horizon MDP consists in finding an (optimal) policy i.e., is a function that maps each state to an 
admissible action δ: S → A, s.t. δ(s) ∈ As .
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Fig. 2. Example of finite-horizon possibilistic MDP (h = 2). 

When applied from a state Sio E So, such a policy defines a list of trajectories, as for the decision trees case.
 trajectory t" is a sequence of actions and states along a path following (and excluding) a first state SiQ to a final state
h E Sh. Formally,3 

t" = (ajo, ... , Sik, ajk, ... , s;h), where s;k E Sk and ajk = 8(s;k). 
Note that s;o is not part of the trajectory but given alongside the MDP model. a jO is the first action in the trajectory
the one prescribed by 8 for SiQ, etc. The reward associated to t" is the utility u, = u(sih) obtained in the final

ate of the trajectory Sih• For the sake of notational simplicity, we will associate to each trajectory t" the vector
, = (1r1, ... , 7rh, u,) where 7rk = n(sik lsik-1, ajk-1) denotes the possibility degree to reach Sk applying action ajk-1
om state Sik-1.
The qualitative pessimistic utility of a policy 8 in state so is defined by the qualitative minmax expectation of

e degrees of satisfaction of the final states of the possible trajectories, and the optimistic utility as the maxmin 

pectation of the same: 

Upes(so, 8) = min max{l - TT(.lso, 8), u.} 
tE8 

u0p1(so, 8) = max min{TT(.lso, 8), u.}
tE8 

he possibility TT(tlso, 8) of. given that policy 8 is applied from initial state sois defined by:

if t"E8, 
otherwise. 

(3) 

(4) 

These criteria can be optimized by choosing, for each state, an action that maximizes the following counterparts of 
e Bellman equations [24]: 

• In the pessimistic case:

Upes(s) = max min{u(s), min max{l - n(s'ls, a), u�!; (s')}}Vt < h, s E S1 

aEAs s'ESt+I 

Upes(s) = u(s) Vs E sh 

(5)
 We suppose, without Joss of generality, that ail trajectories have the same Iength /1.



• In the optimistic case:

uopt (s) = max
a∈As

min{u(s), max
s′∈St+1

min(π(s′|s, a), uopt (s
′))}∀t < h, s ∈ St (6)

uopt (s) = u(s) ∀s ∈ Sh.

[24,36] have shown that any policy computed backwards by successive applications of equation (5) (resp. (6)) is 
optimal according to upes (resp. uopt ). As a matter of fact, any policy returned by the possibilistic backward induction 
algorithm (Algorithm 2) is optimal with respect to uopt .

Algorithm 2: Backward-Induction-MDP-uopt.
Data: A possibilistic MDP

Result: Computes and returns an optimal policy δ
1 begin
2 t ← h;
3 for s ∈ Sh do uopt (s) ← u(s)

4 while t ≥ 1 do
5 t ← t − 1;
6 foreach s ∈ St do
7 uopt (s) ← max

a∈As

max
s′∈St+1

min{π(s′|s, a), uopt (s
′)};

8 δ(s) ← arg max
a∈As

{
max

s′∈St+1
min{π(s′|s, a), uopt (s

′)
}

;

9 return δ;

2.4. The possibilistic drowning effect

The basic pessimistic and optimistic utilities present a severe drawback, known as the “drowning effect”, due to 
the use of idempotent operations. In particular, when two policies give an identical and extreme (either good, for uopt

or bad, for upes ) utility in some plausible trajectory, they may be undistinguished although having given significantly 
different consequences in other possible trajectories. In what follows we illustrate the drowning effect of qualitative 
utilities on possibilistic decision trees (the same counter example holds for finite-horizon MDPs, using the modeling 
proposed in Fig. 2).

Example 3. Let δ and δ′ be the two policies of Example 1 defined by:

δ(D0) = δ′(D0) = Adv; δ(D1) = Sav; δ′(D1) = Adv; δ(D2) = δ′(D2) = Adv.

δ has 4 trajectories, τ3, τ4, τ5, τ6 with π(τ3|D0, δ) = 0.2 and u(τ3) = 0.3; π(τ4|D0, δ) = 0.5 and u(τ4) = 0.5; 
π(τ5|D0, δ) = 0.5 and u(τ5) = 0.5; π(τ6|D0, δ) = 1 and u(τ6) = 0.5. Hence uopt (δ) = upes(δ) = 0.5. δ′ is also 
composed of 4 trajectories (τ1, τ2, τ5, τ6). As before, we can show that uopt (δ

′) = upes(δ
′) = 0.5.

Thus uopt (δ) = uopt (δ
′) and upes(δ) = upes(δ

′): δ′, which provides at least utility 0.5 in all trajectories, is not 
preferred to δ that provides a bad utility (0.3) in some non-impossible trajectory (τ3). τ4, which is good and possible 
“drowns” the bad consequence of δ in τ3 in the optimistic comparison; in the pessimistic one, the bad utility of τ3
is drowned by its low possibility, hence a global degree upes(δ) that is equal to the one of δ′ (which, once again, 
guarantees a utility degree of 0.5 at least).

The two possibilistic criteria, thus, may fail to satisfy the principle of Pareto efficiency, that may be written as 
follows, for any optimization criterion O (here upes or uopt ):

∀δ, δ′ ∈ �, if (i) ∀N ∈ Common(δ, δ′), δN �O δ′
N and (ii) ∃N ∈ Common(δN , δ′

N),

δN �O δ′
N, then δ �O δ′,



where Common(δ, δ′) is the set of situations (decision nodes in decision trees, states in the MDP framework) for 
which both δ and δ′ provide an action and δD (resp. δ′

D) is the restriction of δ (resp. δ′) to the subtree rooted in D.
Moreover, neither uopt nor upes fully satisfy the classical, strict, monotonicity principle, that can be written as 

follows, for any optimization criterion O

∀Cj ∈NC,Di ∈ Succ(Cj ), δ, δ
′ ∈ �Di

, δ′′ ∈ �Succ(Cj )\Di
,

δ �O δ′ ⇐⇒ δ + δ′′ �O δ′ + δ′′.

It may indeed happen that upes(δ) > upes(δ
′) while upes(δ + δ′′) = upes(δ

′ + δ′′) (or that uopt (δ) > uopt (δ
′) while 

uopt (δ + δ′′) = uopt (δ
′ + δ′′)).

The purpose of the present work is to build efficient preference relations that agree with the qualitative utilities 
when the latter can make a decision, and break ties when not — to build refinements4 that satisfy the principle of 
Pareto efficiency.

In order to overcome the drowning effect, Fargier and Sabbadin have proposed lexicographic refinements of possi-
bilistic criteria for non-sequential decision problems [26]. However, these refined criteria cannot be used in sequential
decision problems, where the drowning effect is also due to the reduction of compound possibilistic policies into sim-
ple possibility distributions. In the next section, we propose an extension of these lexicographic preference relations 
to finite horizon sequential problems.

3. Escaping the drowning effect by lexicographic comparisons

The possibilistic drowning effect is due to the use of min and max operations. In ordinal aggregations, this drawback 
is well known and it has been overcome by means of leximin and leximax comparisons [37]. More formally, for any 
two vectors t and t ′:

• t �lmin t ′ iff ∀i, tσ (i) = t ′σ(i) or ∃i∗, ∀i < i∗, tσ (i) = t ′σ(i) and tσ (i∗) > t ′σ(i∗)
• t �lmax t ′ iff ∀i, tλ(i) = t ′λ(i) or ∃i∗, ∀i < i∗, tλ(i) = t ′λ(i) and tλ(i∗) > t ′λ(i∗)

where, for any vector v (here, v = t or v = t ′), vλ(i) (resp. vσ(i)) is the ith best (resp. worst) element of v.
The lexicographic refinements of the preference relations induced by uopt and upes have been considered by [26]

for non-sequential problems.
In a one step decision problem each decision can indeed be identified with a possibility distribution π over the 

states (i.e., utility degrees), i.e., a vector of pairs (π(u), u). Then it is possible to write:

• π �lmax(lmin) π ′ iff ∀i, (π(u), u)λ(i) ∼lmin (π ′(u), u)λ(i) or
∃i∗, ∀i < i∗, (π(u), u)λ(i) ∼lmin (π ′(u), u)λ(i) and (π(u), u)λ(i∗) �lmin (π ′(u), u)λ(i∗).

• π �lmin(lmax) π ′ iff ∀i, (1 − π(u), u)σ(i) ∼lmax (1 − π ′(u), u)σ(i) or
∃i∗, ∀i < i∗, (1 − π(u), u)σ(i) ∼lmax (1 − π ′(u), u)σ(i) and (1 − π(u), u)σ(i∗) �lmax (1 − π ′(u), u)σ(i∗).

where (π(u), u)λ(i) is the ith best pair among the (π(u), u), according to lmin and (1 − π(u), u)σ(i) is the ith worst 
pair among the (1 − π(u), u), according to lmax.

A straightforward way of applying lexicographic comparisons to sequential decision is to associate to any policy 
the possibility distribution that it induces on the utility rewards, as usually done in possibilistic (and probabilistic) 
decision trees. We call this possibility distribution the reduction of δ.

Formally, for a policy δ and any of its trajectories (τ = (aj0, xi1, aj1, . . . , xih) in a DT or τ = (aj0, ..., sik, ajk, sih)
in a MDP with starting state si0), the vector πτ = (π1, . . . , πh, uτ ) has been defined, that gathers the possibility and 
utility degrees encountered on the trajectory. The possibility of τ is equal to min

πk=1,...,h∈πτ

πk and the possibility of getting 

4 Formally, a relation �′ refines a relation � if and only if whatever δ, δ′ , if δ � δ′ then δ �′ δ′: whenever � strictly prefers δ to δ′ , �′ makes the 
same decision; but it can be more decisive and break ties — it may happen that δ ∼ δ′ and δ �′ δ′ .
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Fig. 3. A counter example showing that 12:.imax(Jmin) does not satisfy Pareto efficiency.

 is the possibly of the set of trajectories of 8 that provide this utility degree. Hence, for any 8, the reduction of 8 is 
e distribution ns on the utility degrees, defined by: 

ns(u) = max min nk, 
,Eli, Ur=U lCkElCr 

This is the principle of reduction that is used when qualitative decision theory is used by [24,25] to compare 
licies: the pessimistic (resp. optimistic) utility of a policy is simply the one of its reduction. Because the ns are 

ngle stepped, one can think on applying lexicographie comparisons as such, and can write: 

8 12'.tmax(lmin) 8' iff ns 12'.tmax(lmin) 7rs1
, 

8 12'.tmin(lmax) 8' iff ns 12'.tmin(lmax) ns,. 

tmax(lmin) (resp. 12:tmin(lmax)) refines ?:uopt (resp. ?:up_,), but neither 12:tmax(lmin) nor 12:tmin(lmax) do satisfy Pareto 
ciency, as shown by the following counterexample. 

xample 4. Consider a modified version of Example 1 (Fig. 3). 8 and 8' are the two policies defined by: 
Do) = 8'(Do) = Adv, 8(D 1 ) = Sav, 8' = (D1 ) = Adv, 8(D2) = 8'(D2) = Adv. Common(8, 8') = {Do, D 1 , D2 }, 

0 
= 8�

0
, 80i = 8�2 and 8v

1 
dominates 8�

1 
with respect to lmax(lmin), since ((!, 0.1), (!, 0.9)) t>tmax(lmin) 

1, 0.1)(0.5, 0.9)). 8 should then be strictly preferred to 8'. Let us compute the reduction of 8: ns(0.9) = ns(0. I) =
in(0.4, 1) = 0.4 and ns(0.8) = min(!, 1) = 1 and for 8' we have n8,(0.9) = min(0.4, 0.5) = 0.4, 11:8,(0.I) =

in(0.4, 1) = 0.4 and 11:8,(0.8) = min(l ,  1) = 1: 8 and 8' are indifferent for 12:tmax(lmin)• This contradicts Pareto
ciency. 

The drowning effect here is due to the reduction of the policies, namely to the fact that the possibility of a trajectory 
 drowned by the one of the least possible of its transitions. That is why we propose to give up the principle of 
duction and to build lexicographie comparisons on policies considered in extenso. For any n, = (n1, ••• , nh, u,) 
d n,, = (n;, ... , nfi, u�), we define ?:tmin and ?:tmax by: 

• ?" ?:tmin •
1 iff (11:1, ... , 71:h, u,) ?:tmin (n;, ... , nfi, u�) 

• ?" ?:tmax 1:
1 iff (1 - 11:1, ••• , 1 - 7rh, u,) ?:tmax ( 1  - n;, ... , 1 - nfi, u�) 

ence the proposition of the following preference relations: 

• r1 "ffV" ' 3"* v· ·• ' d ' • o ?:tmax(lmin) o l z, •À(i) ~tmin "À(i) or l , l � l , "À(i) ~1mi11 •,.(
/) an "À(i•) >-tmin •,.(

/*)'
• r1 iffV" ' v· ' 3"* v· "* ' d • o ?:tmin(lmax) o l, •cr (i) ~1max "cr(i) or l, •o(i) ~1max "cr (i) or l , l � l , •cr (i) ~tmax "o(i) an •cr(i*) >-tmax 
"cr (i*)• 



where τλ(i) (resp. τ ′
λ(i)) is the ith best trajectory of δ (resp. δ′) according to �lmin and τσ(i) (resp. τ ′

σ(i)) is the ith 
worst trajectory of δ (resp. δ′) according to �lmax .

These relations are relevant refinements and escape the drowning effect — they are those we are looking for:

Proposition 1. �lmax(lmin) is complete, transitive and refines �uopt ; �lmin(lmax) is complete, transitive and refines 
�upes .

Proposition 2. �lmax(lmin) and �lmin(lmax) both satisfy the principle of Pareto efficiency as well as strict monotonicity.

Propositions 1 and 2 have important consequences. From a prescriptive point of view, they outline the rationality 
of lmax(lmin) and lmin(lmax). Moreover, the fact that these preference relations are weak orders and satisfy strict 
monotonicity suggest a probabilistic interpretation, which we develop in Section 5. From a practical point of view, 
Propositions 1 and 2 allow us to define a backward induction algorithm to get lexicographically optimal solutions. 
This is the topic of the next section.

4. Dynamic programming for lexicographic criteria

4.1. Dynamic programming for lexicographic criteria in possibilistic DTs

The algorithm we propose proceeds in the classical way, by backward induction (see Algorithm 3 for the 
lmax(lmin) variant (the lmin(lmax) variant is similar). The difference is that the lexicographic comparison of 
policies is done on the basis of their trajectories. To this extend, the algorithm needs, for each possible policy, the 
matrix ρ of the vectors πτ = (π1, . . . , πh, uτ ) of its trajectories (in the optimistic case) or the one of the vectors 
(1 − π1, . . . , 1 − πh, uτ ) (in the pessimistic case). Formally, for line z corresponding to the zth trajectory and for a 
criterion O:

ρz,t =
⎧⎨
⎩

πt if t ≤ h and O = lmax
(
lmin

)
1 − πt if t ≤ h and O = lmin

(
lmax

)
uτ if t = h + 1.

Algorithm 3: Backward-Induction-DT-lmax(lmin)(N :Node).
Data: A possibilistic DT; the policy, δ, is memorized as global variable
Result: Set δ for the tree rooted in N and returns the matrix ρ of the πτ vectors corresponding its trajectories

1 begin
2 // Leaves
3 if N ∈ NU then ρ = [u(N)]
4 // Chance nodes
5 if N ∈ NC then
6 foreach Di ∈ Succ(N) do
7 ρDi ← Backward-Induction-DT -lmax(lmin)(Di)

8 ρ ← ConcatAndOrder(πN , ρD1 , ..., ρDk );
9 // with k = |Succ(N)|;

10 // Decision nodes
11 if N ∈ ND then
12 ρ ← [0];
13 foreach Cj ∈ Succ(N) do
14 ρ

Cj ← Backward-Induction-DT -lmax(lmin)(Cj );

15 if ρ
Cj �lmax(lmin) ρ then

16 ρ ← ρ
Cj ;

17 δ(N) ← label(N, Cj );

18 return ρ;



 

The algorithm is written in a recursive manner, and proceeds as follows: when the node N reached is a chance node, 
an optimal sub-policy is recursively built for each of its children Di — these recursive calls return for each Di a matrix 
ρDi that contains the πτ vectors of the trajectories τ of this sub-policy.5 The matrix corresponding to the trajectories 
beginning at N , namely ρ is obtained by combining the ρDi according to πN , the possibility distribution associated 
to N ; this matrix is not reduced contrarily to what is classically done. When a decision node is reached, an optimal 
sub-policy is computed for every child Cj . The best of them is selected, δ(N) receives the action corresponding to 
this chance node and the corresponding ρ matrix is returned.

If N is a chance node, its matrix depends on the ones of its successors, D1, . . . , Dk (on the ρDi , recursively com-
puted) and on the possibility distribution on them. It is built by calling function ConcatAndOrder(πN, ρD1, . . . , ρDk).
This function adds a column to each ρDi , filled with πN(Di) the possibility degrees of getting Di when choosing the 
action represented by N ; the matrices are vertically concatenated. In order to get faster lexicographic comparisons, the 
elements in the lines are then ordered in decreasing (resp. increasing) order, and the lines (the rows) are reordered by 
decreasing (resp. increasing) order with respect to lmax (resp. lmin). As a matter of fact, once ρ has been reordered, 
ρ1,1, the first element of ρ, is always equal to the optimistic utility (resp. the pessimistic utility) of the sub-policy 
represented by ρ.

Procedure “ConcatAndOrder” is given by Algorithm 4. Given a matrix ρ, we use these notations:

• Lρ : number of lines of ρ,
• Cρ : number of columns of ρ,
• ρi : the line i in ρ,
• ρij : the element in line i and column j in ρ.

Algorithm 4: ConcatAndOrder(π , ρ1, . . . , ρk).

Data: k matrices ρ1, . . . , ρk and a distribution π on {1, . . . , k}
Result: ρ, the combination of ρ1, . . . , ρk according to π

1 begin
2 NbLines ← ∑k

m=1 Lρm ;
3 maxC ← maxm=1,k(Cρm);
4 Creates a matrix ρ with NbLines lines and maxC + 1 columns
5 // Concatenation
6 i ← 0;
7 for m = 1, k do
8 for i′ = 1, Lρm do
9 i ← i + 1;

10 for j = 1, Cρm do ρi,j ← ρm
i′j

11 for j = Cρm + 1, maxC do ρi,j ← 0
12 ρi,maxC+1 ← π(m);

13 // Ordering the elements of each line by increasing order
14 for i = 1, NbLines do
15 sortIncreasing(ρi , ≥);

16 // Ordering the lines by decreasing order according to lmax
17 sortDecreasing(ρ, ≥lmax);
18 return ρ;

Because the ρ matrices are ordered, the lexicographic comparison of two decisions (line 15) is performed by 
scanning the elements of their ρ matrices, line by line from the first one. The first pair of different values determines 
the best matrix/chance node.

5 To make the lexicographic comparison of trajectories, and thus of policies, we only need to compare their πτ vectors — hence we memorize 
the matrices of numbers rather than explicit trajectories.



If a trajectory is shorter than the horizon h, neutral elements (1 for the optimistic case and 0 for the pessimistic 
one) are added at the end. If the policies (or sub-policies) have different numbers of trajectories, we compare the two 
matrices based on the number of trajectories of the shortest matrix, then two cases arise:

• if we have a strict preference between the two matrices, we get a strict preference between the policies (or between
the sub-policies);

• if we have an indifference, we deduce that the shortest matrix is the best one w.r.t. the lexicographic criterion,
since it expresses less uncertainty in the corresponding policy (or in the sub-policy).

If the matrices have different numbers of lines, neutral lines are added at the bottom of the shortest one (filled with
0 for the optimistic case, with 1 for the pessimistic one).

Since it requires to memorize the trajectories that follow from the current policy (i.e., the ρ matrices). Let b be the 
branching factor of the tree; the size of the tree is thus equal to b2h. Now, consider the size of a matrix ρ: it is in the 
order of bh × (h + 1) in the worst case (i.e., at the end of the backward induction) — the same order of magnitude as 
the one of the size of the tree.

Let us now study the time complexity. The complexity of ordering matrices depends on the sorting algorithm: 
for instance, if we use QuickSort on an n × m matrix, then ordering the elements within a line is performed in 
O(m · log(m)), and the inter-ranking of the lines is done in O(n · log(n) ·m) operations. Hence, the overall complexity 
of ordering matrices is in O(n · m · log(n · m)).

At each step t , from t = h − 1 to t = 1, there is a chance phase and a decision phase — b decision nodes, each 
followed by b chance nodes. The chance phase is more expensive than the decision one — it makes the same number 
of recursive calls than the decision phase, but the decision phase does not increase the size of the matrices it receives 
while the chance phase builds and orders, for each of its b2 chance nodes a matrix that is bigger than the one it receives: 
it receives (for a given chance node, again) b matrices bh−t−1 lines and h − t − 1 columns and concatenate them in 
a matrix with bh−t lines and h − t columns (concat). The ordering then costs bh−t · (h − t) · log(bh−t · (h − t)). The 
comparison is cheaper, since it costs bh−t · (h − t) in the worst case. So the worst time complexity at step t is a function 
Tt = b · bh−t · (h − t) · log(bh−t · (h − t)). The order of magnitude of worst case complexity of the algorithm is thus 
U = 1

t=h−1 Tt = 1
t=h−1 b ·bh−t · (h − t) · log(bh−t · (h − t)). Letting y = bh−t · (h − t), we get y = bh−1 · (h −1) at

t = 1 and y = b at t = h − 1. Thus U = 
bh−1·(h−1)
y=b b · y · log(y), i.e., U = b2 · (bh−1 · (h − 1))2 · log(bh−1 · (h − 1)): 

the time complexity is in O(b2h · (h − 1)2log((h − 1) · bh−1) — it is polynomial with respect to the horizon and the 
size of the tree (which, again, is in b2h).

4.2. Dynamic programming for lexicographic criteria in possibilistic MDPs

A first way to solve a finite-horizon possibilistic Markov Decision Process would be to compute a Decision Tree 
that is equivalent to the MDP (this is always possible, through the duplication of the nodes with several predecessors) 
and to apply the algorithm presented in the previous section. However, as already mentioned this approach may 
lead to algorithms which are exponential in time and space (with respect to the MDP description), since the size of 
the decision trees associated to a MDP may be exponential in the size of the MDP. In this section, we propose an 
algorithm that calculates a lexicographically optimal policy by a backward induction on the MDP itself. Algorithm 5
below performs the optimization of lmax(lmin) (the lmin(lmax) variant is similar).

As in the case of possibilistic decision trees (Section 4.1), the comparison of decisions (here, of actions a) is 
done on the basis of the trajectories they induce, given the decisions made for the future state. To this extent, one 
memorizes, for each state s for which a decision has been made, the matrix ρ(s) corresponding to the trajectories 
obtained when the current policy is applied from s. For s ∈ St , ρ(s) is defined as follows: for lmax(lmin) each line 
gathers the possibility degrees π(s′|a, s) of reaching the following state s′ ∈ St+1, given that δ(s) = a is executed 
(resp. 1 − π(s′|s, a) for lmin(lmax)), combined with a trajectory in the matrix of the next state s′. The matrices 
corresponding to the final states simply contain their utility.

The principle of the backward induction algorithm can be summarized as follows: suppose being at period t (e.g. 
t = h − 1). Since the algorithm proceeds backwards, a decision δ(s′) has been made for all future states (the s′ in 
St ′, t ′ > t). We have to decide the best action for the states of St . For each state s ∈ St and each action a ∈ As we build
the matrix M corresponding to trajectories that would be obtained if a was chosen for s, using the ConcatAndOrder



Algorithm 5: Backward-induction-MDP-lmax(lmin).
Data: A possibilistic finite horizon MDP
Result: Computes and returns δ for MDP

1 begin
2 // Initialization
3 ∀s ∈ Sh, ρ(s) ← [u(s)];
4 t ← h;
5 // Backward induction
6 while t ≥ 1 do
7 Future ← {ρ(s′), s′ ∈ St };
8 t ← t − 1;
9 foreach s ∈ St do

10 ρ(s) ← [0];
11 foreach a ∈ As do
12 M ← ConcatAndOrder(π(.|a, s), Future);
13 if M ≥lmax(lmin) ρ(s) then
14 ρ(s) ← M ;
15 δ(s) ← a;

16 return δ;

procedure described in the previous section — M is built from π(.|s, a) and from the matrices already computed 
for the s′. M is then compared with the best matrix ρ(s) found so far: if better, a becomes the current best decision 
for s (δ(s) ← a) and M becomes the new ρ(s). The lexicographic comparison of matrices is the one described in 
Section 3 and is made easier by the fact that the matrices have been ordered on the fly. The process is continued for 
each St ′, t ′ = t − 1, . . . , 0 (by moving backward in time) until we reach the present time period (t = 0) and get an
optimal policy.

The backwards induction algorithm only makes a polynomial number (in the size of the MDP definition) of calls to 
the ConcatAndOrder function: there are as many number of calls to this function as the number of actions in the MDP, 
which is 

∑h−1
t=1

∑
s∈St

|As |. At each step t , for each state s in St : for each action in |As |, b matrices of size bh−t−1 ·
(h − t −1) are received. Concatenated as a bh−t · (h − t) matrix, ordered — which costs bh−t · (h − t)log(bh−t .(h − t))

and compared with the best matrix found so far — which costs bh−t · (h − t). Hence, we have a time complexity in 
U = ∑h−1

t=1
∑

s∈St
|As | · bh−t · (h − t)log(bh−t · (h − t)). Denote n the (maximal) number of states in St and a the 

(maximal) number of actions in |As|, we get U = n · a ∑h−1
t=1 bh−t · (h − t) · log(bh−t · (h − t)) i.e., a time complexity

in O(n · a · (h − 1)2 · bh−1 · log((h − 1) · bh−1)).6

In summary, lexicographic comparisons, which take into account the whole matrix of subsequent trajectories, 
overcome the drowning effect but are very costly — exponential in the size of the MDP. On the other hand selecting 
decisions on the basis of their sole optimistic/pessimistic utility is cheap but not discriminant enough. Hence the idea 
to restrict the reasoning to a sub-matrix — namely to the first l lines of the matrices of trajectories, i.e., πτ vectors 
of the l most important trajectories (the l best for the optimistic case, the l worst for the pessimistic ones). Bounding 
the number of columns is not necessary, since the combinatorial explosion in Algorithm 5 is due to the number of 
lines in the matrices (because for the finite horizon, the number of columns is bounded by h + 1). We get variant of 
Algorithm 5, which we call “Bounded Lexicographic Backward Induction” (BL-BI) by simply replacing line 14 by 
line 14′:

14′ : ρ(s) ← 〈M〉l
where 〈M〉l denote the restriction of M to its first l lines.

Clearly, this algorithm is not guaranteed to provide a lexicographically optimal solution, but the policy is always 
at least as good as the one provided by uopt (according to lmax(lmin)). Indeed, bounding the matrices is done after
they have been ordered. Hence M1,1 is equal to uopt in the unbounded case and because the bounding is done after 

6 The details of the calculation are similar to the ones made for decision trees.



reordering, this property still holds when using BL-BI . Hence the order on matrices (and thus on policies) refines the 
one provided by classical optimistic BI algorithm. The optimal policy for Bounded Lexicographic Backward Induction 
is optimal for the optimistic utility. Actually, the greater l, the more refined the comparison over the policies. This 
comparison tends to �lmax(lmin) when l tends to bh. The same holds in the pessimistic case: the optimal policy for 
Bounded Lexicographic Backward Induction is optimal for the pessimistic utility and the greater l, the more refined 
the comparison over the policies and the comparison tends to �lmin(lmax) l tends to bh.

The temporal complexity of Bounded Lexicographic Backward Induction is decreased, compared to that of the 
Lexicographic Backward Induction. Indeed, the number of calls to ConcatAndOrder of the algorithm does not change. 
However, the ConcatAndOrder algorithm is only called on sets of matrices which have at most l lines, instead of bh. 
We deduce that the complexity of the algorithm is bounded by = O(n · l · (h − 1)2 · log((h − 1) · l), where n is the 
(maximal) number of states in St and a is the (maximal) number of actions in |As|.

5. Lexicographic comparisons on decision trees and expected utility

When the problem is not sequential, it has been shown that the comparison of possibilistic lotteries (i.e., a possi-
bilistic distribution on utility degrees) by �lmax(lmin) and �lmin(lmax) satisfy the axioms of EU. Fargier and Sabbadin 
have indeed shown that these decision criteria can be captured by an EU criterion — namely, relying on big-stepped 
probabilities and utilities [26]. In what follows, we claim that such a result can be extended to decision trees (and, 
because a finite horizon MDP can always be transformed into an equivalent decision tree, to MDPs).

The proof relies on a transformation of the possibilistic decision tree into a probabilistic one. The graphical com-
ponents are identical and so are the sets of admissible policies. In the optimistic case the probability and utility 
distributions are chosen in such a way that the lmax(lmin) and EU criteria provide the same preference relation 
on �. To this extent, we build a transformation function φ : L ⊆ [0, 1] → [0, 1] that maps each possibility degree to 
an additive probability and each utility level to an additive one.

For any chance node Cj , a local transformation φj is derived from φ, such that φj satisfies the normalization 
condition. In addition, φ and φj required to satisfy the following condition:

(R′) : ∀α,α′ ∈ L such that α > α′ : φ−(α)h+1 > bhφ+(α′),

where φ− and φ+ are two functions defined as follows:

• φ−(α) = min{φ(α), minj φj (α)}, ∀α ∈ L,
• φ+(α) = max{φ(α), maxj φj (α)}, ∀α ∈ L.

Condition (R′) guarantees that if uopt (δ) = α > uopt (δ
′) = α′, then a comparison based on a sum-product approach 

on the new probabilistic tree will also decide in favor of δ.
EUopt denotes the preference relation provided by the EU-criterion on the probabilistic tree obtained by replacing 

each πj by φj ◦ πj and the utility function u by φ ◦ u. We show that:

Proposition 3. If (R′) holds, then �EUopt refines �uopt .

Proposition 4. δ �lmax(lmin) δ′ iff δ �EUopt δ′, ∀(δ, δ′) ∈ �.

Example 5. We illustrate in the following an example of transformation of the decision tree of Fig. 3 with h = b = 2. 
First, let us build a function φ satisfying (R′). For this purpose, it is sufficient to construct the function φ: L → R as 
follows:

φ(1L) = 1, φ(αi) <
φ(αi+1)

3

4
(if V = 1L,α1, . . . , αk = 0L).

Using the transformation function φ, we get: φ(1) = 1, φ(0.9) = 0.2, φ(0.8) = 0.001, φ(0.5) = 10−10, φ(0.4) =
10−30, φ(0.1) = 10−91.

We obtain the transformed conditional distributions by normalizing on each node and according to (R′). For in-
stance:
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Fig. 4. Transformed probabilistic decision tree of possibilistic decision tree of (counter) - Example 4. 

-30 10-30 1 for node C1, </>1 (10 ) = 1+10_30 and </>1 (1) = t+J0-30,

for node C2, </>2(1) = 1!1 
and </>2(1) = 0.5, 

-10 10-JO 1 for node C3, </>3(10 ) = l+JO-io and <{>3(1) = t+JO-io•
for node C4, <{>4(l) = 0.5 and <{>4(1) = 0.5. 
Hence, we get the probabilistic decision tree presented in Fig. 4. 

The construction is a little more complex if we consider the "?:::.tmin(lmax) comparison, where the utility degrees are 
t directly compared to possibility degrees n but to degrees l - n. However it is possible to rely on the results 
tained for the optimistic case, since the optimistic and pessimistic utilities are dual of each other. 

roposition 5. Let DTinv be the tree obtainedfrom DT by using utility function u' = l - u on leaves. It holds that: 
es,DT(ô) :::'.: Upes,DT(o') iff uopt,DTinv(o') :::'.: Uopt,DTinv(o). 

As a consequence, we build an EU-based equivalent of "?:::.tmin(lmax), denoted °?:::.EUpes• by replacing each possibility 
stribution 11:; in DT by the probability distribution <{>; o 11:;, as for the optimistic case and each utility degree u

</>(l) -<f>(u). It is then possible to show that: 

roposition 6. o "?:::.tmin(lmax) 01 ijf o °?:::.EU pes 0
1

, V(o, 8') E /),., 

Propositions 4 and 6 show that lexicographic-comparisons have a probabilistic interpretation - actually, using 
g-stepped probabilities and utilities. This result comfort the idea, first proposed by [38] and then by [26], of a bridge 
tween qualitative approaches and probabilistic ones, through the notion of big-stepped probabilities [38,39]. We 
ake here a step further by identifying transformations that support sequential decision making. 
Beyond this theoretical argument, this result suggests an alternative algorithm for the optimization of lmax(lmin) 

esp. lmin(lmax)): simply transform the possibilistic decision tree into a probabilistic one and use a classical, EU
sed algorithm of dynamic programming. In a perfect world, both approaches solve the problem in the same way and 
ovide the same optimal policies - the difference being that the first one is based on the comparison of matrices, the 
cond one on expected utilities in R+ . The point is that the latter handles very small numbers because of big-stepped 
obabilities/utilities; then either the program is based on an explicit handling of small numbers, and proceeds just 
e the matrix-based comparison, or it lets the programming language handle these numbers in its own way - and, 
ven the precision of the computation, provides approximations. 
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We have three criteria for each of the pessimistic and optimistic approaches: the basic possibilistic ones, the lexico
aphie refinements, and the EU approximations of the latter presented in Section 5. Ali of these criteria aim at solving
e same kind of decision problems: sequential decision under possibilistic uncertainty, represented by a possibilistic
cision tree or a finite-horizon possibilistic MDP. We compare the algorithms with two measures: the CPU time and

pairwise success rate: Success .!!. is the percentage of policies provided by an algorithm optimizing criterion A that
e optimal with respect to criterion B; for instance, the lower Success ___::f!E!__. "o , , the more important the drowning
ect.
The algorithms corresponding to these criteria have been implemented in Java. The experiments have been per

rmed on an Intel Core i5 processor computer ( l .70 GHz) with 8 GB DDR3L of RAM.

1. Experimental results on possibi listic decision trees 

The tests were performed on randomly generated complete binary decision trees, from h = 2 to h = 7. The
st node is a decision node: at each decision level from the root (i = l )  to the last level (i = 7) the tree con
ins 2ï-l decision nodes. This means that with h = 2 (resp. 3, 4, 5, 6, 7), the number of decision nodes is
ual to 5 (resp. 21, 85, 341, 1365, 5461) The utility values are sampled uniformly and randomly in the set
= {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, l}. Conditional possibilities relative to chance nodes are normalized, one
ge having possibility one and the possibility degree of the other being uniformly sampled in L. For each value of h,

0 DTs are generated. As to the EU-based approaches, the transformation fonction depends on the horizon h and the
anching factor b (here b = 2). We used </>(IL)= 1, </>(a;)= <t><:k';•/:+i , each </>j being obtained by normalization of
 on Ci.

Fig. 5 presents the average execution CPU time for the six criteria (the three optimistic ones and the three pes
mistic ones). We observe that, whatever the optimized criterion, the CPU time increases linearly with respect to the
mber of decision nodes, which is in line with what we could expect. Furthermore, it remains affordable with big

ees: the maximal CPU time is lower than 3125 ms for the DTs with 5461 decision nodes. It appears that Uopt is
ways faster than EUopt, which is 1.5 or 2 times faster than lmax(lmin). The same conclusions are drawn when
mparing lmin(lmax) to Upes and EUpes• These results are easy to explain: (i) the manipulation of matrices is
ore expensive than the one of numbers and (ii) the handling of numbers by min and max operations is faster than
m-product manipulations of small numbers.
As to the success rate, the results are described in Fig. 6. The percentage of policies optimal for Uopt (resp. for u pes) 

at are also optimal for lmax(lmin) (resp. lmin(lmax)) is never more than 82%, and decreases when the horizon
creases: the drowning effect is not negligible and increases with the length of the trajectories. Moreover EUopt 
esp. EUpes) does not perform well as an approximation of lmax(lmin) (resp. lmin(lmax)): the percentage of
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Fig. 6. Success rate for li = 2 to 7. 

67% 
65% 

; 

� 

licies optimal for the former which are also optimal for the latter is lower than 80% in all cases, and decreases when 

increases. 

This is easily explained by the fact that the probabilities are small numbers and tend to O when the length of the 

anches (and thus the number of factors in the products) increase, as suggested in Section 5, leading to numerical 

proximations due to machine precision. 

These experiments conclude in favor of the lexicographie refinements in their full definition - their approximation 

 expected utilities are comparable in terms of CPU efficiency but not precise enough. The EU criteria nevertheless 

er a suitable approximation than Uopt and u pes when space is limited (or when h increases).

2. Experimental results on possibilistic Markov decision processes 

We propose to compare the performance of Bounded Lexicographie Backward Induction (BL-Bl) as an ap

oximation of (unbounded) Lexicographie Backward Induction (U L-BI). We also compare it to the classical 

ackward Induction algorithms classically used to for pessirnistic and optimistic utilities (BI -uopt and BI -u pes) 
 randomly generated possibilistic MDPs for h = 2 to h = 1. In each stage, the MDP contains 20 states and the 

mber of actions in each state is equal to 4. The output of each action is a distribution on two states randomly 

mpled (i.e., the branching factor is equal to 2). The utility values are uniformly randomly sampled in the set 

 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, !}. Conditional possibilities relative to decisions should be normalized. 

 this end, one edge receives the possibility degree 1 and the possibility degree of the remaining ones is uniformly 

mpled in L. For each value of h, 100 possibilistic MDPs are generated. 

Fig. 7 presents the average execution CPU time for the three algorithms. We observe that the CPU time increases 

early with respect to the horizon for BI - Uopt and BI - Upes• It seems to be also the case for BL-BI. On the

her hand, it increases exponentially for U L-B I. We also observe that the CPU time of B L-B I is affordable, with a 

aximal value of 625 ms for the MDPs with 20 states when l = 20 and h = 5. Unsurprisingly, we can check that the 

 L-B I is faster than U L-B I especially when the horizon increases: the manipulation of l x (h + 1 )-matrices is Jess 

pensive than the one of full matrices. The saving increases with the horizon. 

Asto the success rate, the results for the optimistic case are described in Fig. 8. The percentage of optimal policies 

r Uopt that are also optimal for lmax(lmin) when considering the whole matrices is never more than 60%, and

creases when the horizon increases. Indeed, if we take an arbitrary optimistic optimal policy, the higher the problem 

ze the lower its chance of being lexicographically optimal. We observe that the drowning effect increases with the 
ngth of the trajectories. 
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It also appears that B L-B l provides a very good approximation for reasonable values of l. Of course, the greater l

e greater the quality of the approximation. When l = 100 BL-Bl provides a lexi optimal strategy in about 80% of 

ses. Moreover, even when the success rate of BL-Bl decreases (when h increases), the quality of approximation is 

ill good: when h l = l 00 never less than 70% of the strategies returned are lexi optional. 

These experiments conclude in favor of bounded backward induction: the policies it returns are lexi - optimal 

licies in terms of quality for high l while it is much faster than the unbounded version. 

Its approximated solutions are comparable with the optimal policy in terms of quality for high l and increase when 

increase, while it is much faster than the unbounded version.

Conclusion

This article has proposed an extension to sequential decision problems of the lexicographie refinements of qualita

e utilities proposed by [26], namely to finite horizon possibilistic decision trees and possibilistic Markov decision 

ocesses. On the theoretical side, this work generalizes to sequential problems the links established in [26] between 

ssibilistic utilities and expected utilities. On the practical one, it allows to overcome the drowning effect at work 

 possibilistic decision trees and MDPs and provides dynamic programming algorithms for calculating lexicograph

ally optimal policies. 

Notice that the lexicographie refinements studied in this paper perform better that the refinement of binary possi

listic utilities (BPU) proposed in [ 16] for Binary Possibilistic Utilities and as a particular case, to classical, optimistic 

d pessimistic, possibilistic utilities. In [16]'s treatment, two similar trajectories of the same policy are merged. The 
sulting criterion thus suffers from a drowning effect and does not satisfy strict monotonicity: as such, it cannot be 



represented by an EU-based criterion which “counts” trajectories (weighted by their probabilities). We actually refine 
[16]’s criterion. Incorporating our lexicographic refinements in BPU would lead to a more powerful refinement and 
suggests a probabilistic interpretation of efficient BPU. It also leads to new planning algorithms that are more decisive 
than their original counterparts.

The extensions of this work are twofold. First, we shall study undefined/infinite horizon problems — typically 
infinite-horizon possibilistic MDPs — and propose Lexicographic Value Iteration and Policy Iteration algorithms, 
that we already begun to address in [40] but it is beyond the scope of the present paper. As far as the infinite horizon 
case is concerned, other types of lexicographic refinements shall also be proposed. One of these options could be to 
avoid the duplication of the set of transitions that occur several times in a single trajectory and consider only those 
which are observed.

The second perspective of this work, not unrelated, is to develop simulation-based algorithms for finding lexico-
graphic solutions to MDPs. Reinforcement Learning algorithms [41] allow to solve large size MDPs by making use of 
simulated trajectories of states and actions. It is not immediate to develop RL algorithms for possibilistic MDPs, since 
no unique stochastic transition function corresponds to a possibility distribution [42]. However, uniform simulation 
of trajectories (with random choice of actions) may be used to generate an approximation of the possibilistic decision 
tree (provided that both transition possibilities and utility of the leaf are given with the simulated trajectory). So, in-
terleaving simulations and lexicographic dynamic programming may lead to RL-type algorithms for approximating 
lexicographically optimal policies for (large) possibilistic MDPs.

Appendix. Proofs of propositions

Proof of Proposition 1

• Completeness. It is a consequence of the completeness of �lmax and �lmin [43].
• Transitivity. We prove that �lmax(lmin) is transitive. The proof relies on the transitivity of �lmin. Let us con-

sider three policies, δ, δ′ and δ′′ and assume δ �lmax(lmin) δ′ and δ′ �lmax(lmin) δ′′. Since δ �lmax(lmin) δ′ and
δ′ �lmax(lmin) δ′′, then we are in either of the following cases:
1. ∀i, τλ(i) ∼lmin τ ′

λ(i) ∼lmin τ ′′
λ(i). This happens when δ ∼lmax(lmin) δ′ ∼lmax(lmin) δ′′. And then by transitivity of

�lmin, we have ∀i, τλ(i) ∼lmin τ ′′
λ(i) ⇔ δ ∼lmax(lmin) δ′′.

2. When either δ �lmax(lmin) δ′ or δ′ �lmax(lmin) δ′′, then by definition of �lmax(lmin), there exists i∗, such that,
(a) ∀i < i∗, τλ(i) ∼lmin τ ′

λ(i) ∼lmin τ ′′
λ(i), (b) τλ(i∗) �lmin τ ′

λ(i∗) �lmin τ ′′
λ(i∗) and (c), either τλ(i∗) �lmin τ ′

λ(i∗) or
τ ′
λ(i∗) �lmin τ ′′

λ(i∗), or both. Then, once again by transitivity of �lmin, τλ(i∗) �lmin τ ′′
λ(i∗). So, δ �lmax(lmin) δ′′.

So, points 1 and 2 imply, together, that δ �lmax(lmin) δ′ and δ′ �lmax(lmin) δ′′ imply δ �lmax(lmin) δ′′.
• Similarly, it can be checked that �lmin(lmax) is transitive. Let us consider three policies, δ, δ′ and δ′′ and assume

δ �lmin(lmax) δ′ and δ′ �lmin(lmax) δ′′. Since δ �lmin(lmax) δ′ and δ′ �lmin(lmax) δ′′, then we are in either following
cases:
1. ∀i, τσ(i) ∼lmax τ ′

σ(i) ∼lmax τ ′′
σ(i). This happens when δ ∼lmin(lmax) δ′ ∼lmin(lmax) δ′′. And then by transitivity

of �lmax , we have ∀i, τσ(i) ∼lmax τ ′′
σ(i) ⇔ δ ∼lmin(lmax) δ′′.

2. When either δ �lmin(lmax) δ′ or δ′ �lmin(lmax) δ′′, then by definition of �lmin(lmax), there exists i∗, such
that, (a) ∀i < i∗, τσ(i) ∼lmax τ ′

σ(i) ∼lmax τ ′′
σ(i), (b) τσ(i∗) �lmax τ ′

σ(i∗) �lmax τ ′′
σ(i∗) and (c), either τσ(i∗) �lmax

τ ′
σ(i∗) or τ ′

σ(i∗) �lmax τ ′′
σ(i∗), or both. Then, once again by transitivity of �lmax , τσ(i∗) �lmax τ ′′

σ(i∗). So,
δ �lmin(lmax) δ′′.

So, points 1 and 2 imply, together, that δ �lmin(lmax) δ′ and δ′ �lmin(lmax) δ′′ imply δ �lmin(lmax) δ′′.
• Refinement. We prove that �lmax(lmin) refines �uopt . Let us consider two policies δ and δ′. If uopt (δ) > uopt (δ

′)

⇔ max
τ∈δ

min{ min
πk∈πτ

πk,uτ } > max
τ ′∈δ′ min{ min

π ′
k∈πτ ′

π ′
k, u

′
h}

⇒ max
τ∈δ

min(π1, . . . , πh,uτ ) > max
τ ′∈δ′ min(π ′

1, . . . , π
′
h,u

′
h).

Since min(π1, . . . , πh, uτ ) > min(π ′
1, . . . , π

′
h, u

′
h)

⇒ (π1, . . . , πh,uτ ) �lmin (π ′
1, . . . , π

′
h,u

′
h)



(leximin ordering refines min ordering), so, τλ(1) �lmin τ ′
λ(1) ⇒ δ �lmax(lmin) δ′ where τλ(1) (resp. τ ′

λ(1)) is the
best trajectory of δ (resp. δ′) according to �lmin.
So by the definition of �lmax(lmin) we have δ �lmax(lmin) δ′ . And we deduce that �lmax(lmin) refines �uopt .

• We show in the same way that �lmin(lmax) refines �upes . Let us consider two policies δ and δ′. upes(δ) > upes(δ
′)

⇔ min
τ∈δ

max{ min
πk∈πτ

(1 − πk),uτ } > min
τ ′∈δ′ max{ min

π ′
k∈πτ ′

(1 − π ′
k), u

′
h}

⇔ min
τ∈δ

max{min(1 − π1, . . . ,1 − πh,uτ )) > min
τ ′∈δ′ max(1 − π ′

1, . . . ,1 − π ′
h,u

′
h).

Since max(1 − π1, . . . , 1 − πh, uτ ) > max(1 − π ′
1, . . . , 1 − π ′

h, u
′
h)

⇒ (1 − π1, . . . ,1 − πh,uτ )) �lmax (1 − π ′
1, . . . ,1 − π ′

h,u
′
h)

(leximax ordering refines max ordering). Then τσ(1) �lmax τ ′
σ(1) ⇒ δ �lmin(lmax) δ′ where τσ(1) (resp. τ ′

σ(1)) is
the worst trajectory of δ (resp. δ′) according to �lmax . So, by definition of �lmin(lmax) we have δ �lmin(lmax) δ′ .

Proof of Proposition 2

(i) We first prove that �lmax(lmin) and �lmin(lmax) are strictly monotonic. Note that ∀Cj ∈ NC, ∀Di ∈ Succ(Cj ), δ,

δ′ ∈ �Di
, δ′′ ∈ �Succ(Cj )\Di

, the trajectories of δ + δ′′ are composed of two disjoint sets of trajectories: One for δ
and one for δ′′. The same holds for δ′ + δ′′. Then, note that adding or removing identical trajectories to two sets
of trajectories does not change the �lmax(lmin) or the �lmin(lmax) ordering between these two sets.
To be more precise, assume, for example, that δ �lmax(lmin) δ′. Then, ∃i∗, ∀i < i∗, τλ(i) ∼lmin τ ′

λ(i) and
τλ(i∗) �lmin τ ′

λ(i∗). The trajectories corresponding to δ′′ are composed of trajectories which rank before τλ(i∗),
and after τλ(i∗). Obviously, the ones that rank before τλ(i∗) are added to both lists of trajectories, and thus simply
delay i∗ while not inducing a new preference. And the ones that rank after τλ(i∗) are not taken into consideration
in the comparison of δ + δ′′ and δ′ + δ′′. In the same way, by definition of �lmin(lmax) we get δ �lmin(lmax) δ′
i.e., ∃i∗, ∀i < i∗, τσ(i) ∼lmax τ ′

σ(i) and τσ(i∗) �lmax τ ′
σ(i∗). The same result as for τλ(i∗) applies to τσ(i∗). Thus,

�lmax(lmin) and �lmin(lmax) are strictly monotonic.
(ii) Now we prove that �lmax(lmin) satisfy the principle of Pareto efficiency. So, suppose that δ �lmax(lmin) δ′. Two

cases arise:
• if ∀i, τλ(i) ∼lmin τ ′

λ(i) and then δ ∼lmax(lmin) δ′,
• if ∃i∗, s.t. ∀i < i∗, τλ(i) ∼lmin τ ′

λ(i) and τλ(i∗) �lmin τ ′
λ(i∗). Then, τλ(i∗) �lmin τ ′

λ(i∗) implies that there exist a 
pair of different (βi∗,k, β ′

i∗,k), where βi∗,k (resp. β ′
i∗,k) is an element of τλ(i∗) (resp. τ ′

λ(i∗)), that determines the
best policy. Here we get βi∗,k > β ′

i∗,k i.e., τλ(i∗) �lmin τ ′
λ(i∗) and thus δ �lmax(lmin) δ′.

In summary, if we have δ �lmax(lmin) δ′ and ∃i∗, s.t. τλ(i∗) �lmin τ ′
λ(i∗) we get δ �lmax(lmin) δ′ which expresses

exactly the principle of Pareto efficiency in the case �lmax(lmin).
(iii) Let us prove �lmin(lmax) satisfy the principle of Pareto efficiency. When considering the �lmin(lmax) order, the

same kind of result as for the �lmax(lmin) can be obtained.
So, suppose that δ �lmin(lmax) δ′. Two cases arise:
• if ∀i, τσ(i) ∼lmax τ ′

σ(i) and then δ ∼lmin(lmax) δ′,
• if ∃i∗, s.t. ∀i < i∗, τσ(i) ∼lmax τ ′

σ(i) and τσ(i∗) �lmax τ ′
σ(i∗). Then, τσ(i∗) �lmax τ ′

σ(i∗) implies that there exist 
a pair of different (βi∗,k, β ′

i∗,k), where βi∗,k (resp. β ′
i∗,k) is an element of τσ(i∗) (resp. τ ′

σ(i∗)), determining the
best policy. We get βi∗,k > β ′

i∗,k i.e., τσ(i∗) �lmax τ ′
σ(i∗) and thus δ �lmin(lmax) δ′.

In summary, if we have δ �lmin(lmax) δ′ and ∃i∗, s.t. τσ(i∗) �lmax τ ′
σ(i∗) we get δ �lmin(lmax) δ′ which expresses

exactly the principle of Pareto efficiency in the case of �lmin(lmax).

Proof of Proposition 3
For any transformation function φ s.t. ∀(α, α′) ∈ L, α > α′ it holds that φ−(α)h+1 > bhφ−(α′). Let δ and δ′ be 

two strategies. Assume that uopt (δ) = α > uopt (δ
′) = α′ and let us show that EUopt(δ) > EUopt (δ

′).



• uopt (δ) = α ⇒ ∃τ ∗ = (πj0(xi1), . . . , πjh−1(xih), u(xih)) in δ s.t.

min(πj0(xi1), . . . , πjh−1(xih), u(xih)) ≥ α.

Then EUopt (δ) = ∑
τ

(
∏h

k=1 φk(πjk−1(xik )) ∗ φ(μ(xik ))).

By keeping only trajectory τ ∗ in the sum, we get:

EUopt (δ) ≥
h∏

k=1

φk(α) ∗ φ(α).

Since7 φ−(α) ≤ φk(α), ∀k, α > α′, EUopt (δ) ≥ ∏h
k=1 φ−(α) ∗ φ(α).

Then, since φ−(α) ≤ φ(α), EUopt (δ) ≥ ∏h
k=1 φ−(α) ∗ φ−(α).

Thus, we get:

EUopt (δ) ≥ φ−(α)h+1 (7)

• uopt (δ
′) = α′ ⇒ ∀τ, min(πj ′

0
(xi1), . . . , πj ′

h−1
(xi′h), u(xi′h)) ≤ α′.

We have EUτ = ∏h
k=1 φk(α

′) ∗ φ(α′) ≤ ∏h
k=1 φ+(α′) ∗ φ(α′) ≤ ∏h

k=1 φ+(α′) ∗ φ+(α′), since φ+(α) ≥ φ(α) ≥
φk(α), ∀k, α > α′.
Then, EUτ ≤ φ+(min(πj ′

0
(xi1), . . . , πj ′

h−1
(xi′h), u(xi′h))) 

∏h
k=1 φ+(α′) ∗ φ+(α′) ≤ φ+(min(πj ′

0
(xi1), . . . ,

πj ′
h−1

(xi′h), u(xi′h))) ≤ φ+(α′) for bh trajectory of δ′. Thus,

EUopt (δ
′) ≤ bh.φ+(α′). (8)

Finally, using (1), (2) and (R′), we get uopt (δ) > uopt (δ
′) ⇒ EUopt (δ) > EUopt (δ

′).

Proof of Proposition 4
For the sake of notational simplicity, we will associate any trajectory τ (resp. τ ′) with the vector �α =

(α1, . . . , αk, . . . , αh+1) (resp. �α′ = (α′
1, . . . , α

′
k, . . . , α

′
h+1)) consisting in reordering (π1, . . . , πh, uτ ) (resp. (π ′

1, . . . ,

π ′
h, u

′
τ )) in increasing order. Obviously, τ �lmin τ ′ iff �α �lmin

�α′. Note that δ �lmax(lmin) δ′ iff either

1. ∀i, τλ(i) ∼lmin τ ′
λ(i) or

2. ∃i∗, ∀i ≤ i∗, τλ(i) ∼lmin τ ′
λ(i) and τλ(i∗) �lmin τ ′

λ(i∗).

Note the following facts concerning pairs of trajectories, (τ, τ ′):

1. τ ∼lmin τ ′ ⇔ ∏h+1
k=1 φk(αk) = ∏h+1

k=1 φk(α
′
k), where φk+1 ≡ φ since τ ∼lmin τ ′ ↔ �α = �α′.

Then: δ ∼=lmax(lmin) δ′ ⇔ τλ(i) ∼lmin τ ′
λ(i), ∀i.

⇒
∑

t

(

h+1∏
k=1

φk(αk) =
∑

t

(

h+1∏
k=1

φk(α
′
k)

⇔ EUopt (δ) = EUopt (δ
′).

Thus δ ∼=lmax(lmin) δ′

⇒ EUopt (δ) = EUopt (δ
′).

2. If δ >lmax(lmin) δ′ ⇔ ∃i∗ s.t. τλ(i∗) �lmin τ ′
λ(i∗), then ∃j∗, ∀j < j∗, αj = α′

j and αj∗ > α′
j∗ . Then, let us compare

the product of transformed possibilities/utilities along τ and τ ′:

7 φ−(α) ≤ φk(α) ≤ φ(α).



h+1∏
k=1

φ(αk)

φ(α′
k)

=
h+1∏
k=j∗

φ(αk)

φ(α′
k)

≥ φ(αj∗)

φ(α′
j∗)

∗ φ(αj∗)h−j∗

φ(φ(1L)h−j∗
)

(9)

(lower and upper bounds on trajectories degrees)

≥ φ(αj∗)h−j∗+1

φ(α′
j∗)

(φ(1L) ≤ 1)

≥ φ(αj∗)h

φ(α′
j∗)

(φ(αj∗) ≤ 1)

> bh. (From R)

Then, since trajectories are ordered along �lmax(lmin), τ ′
λ(i∗) �lmin τ ′

λ(i), ∀i > i∗, and since there are no more than

bh such trajectories τ ′
λ(i), we get that EUopt (δ) > EUopt (δ

′). Thus δ �lmax(lmin) δ′ ⇒ EUopt (δ) > EUopt (δ
′).

So, we have just proved that δ �lmax(lmin) δ′ ⇒ δ �EUopt δ′. Thus, �lmax(lmin) is equivalent to �EUopt .

Proof of Proposition 5
Let lδ (resp. lδ′ ) be the equivalent simple lottery of the compound lottery representing the policy δ. lδ =

〈π1/u1, ..., πi/ui, ..., πp/up〉 (resp. lδ′ = 〈π ′
1/u

′
1, ..., π

′
i /u

′
i , ..., π

′
p/u′

p〉) i.e., πi = π(ui) (resp. π ′
i = π(u′

i )) is the pos-
sibility that the policy leads to the outcome utility ui (resp. u′

i ).
Let us show that upes,DT (δ) ≥ upes,DT (δ′) ⇔ u

opt,DT inv (δ) ≤ u
opt,DT inv (δ′) where upes,DT (δ) denotes the pes-

simistic utility of δ when considering the original decision tree DT and u
opt,DT inv (δ) denotes the optimistic utility of

δ when considering the decision tree DT inv , obtained from DT by using utility function u′ = 1 − u.

upes,DT (δ) ≥ upes,DT (δ′)
⇔ upes,DT (lδ) ≥ upes,DT (lδ′)

⇔ min max(n(πi), ui) ≥ min max(n(π ′
i ), u

′
i )

⇔ n(min max(n(π ′
i ), u

′
i )) ≥ n(min max(n(πi), ui))

⇔ maxn(max((n(π ′
i ), u

′
i ))) ≥ maxn(max((n(πi), ui)))

⇔ max min(n(n(π ′
i ), n(u′

i ))) ≥ max min(n(n(πi), n(ui)))

⇔ max min(π ′
i , n(u′

i )) ≥ max min(πi, n(ui))

⇔ u
opt,DT inv (lδ′) ≥ u

opt,DT inv (lδ)

⇔ u
opt,DT inv (δ′) ≥ u

opt,DT inv (δ).

Proof of Proposition 6
It is sufficient to show that:

δ �DT
lmax(lmin) δ′ ⇔ δ′ �DT inv

lmin(lmax) δ, (10)

where �DT inv

lmin(lmax) is the pessimistic lexicographic comparison of policies in the decision tree where the utilities of all 
leaves have been reversed (ū(N) = 1 − u(N)).

For any two policies δ and δ′:

• if δ �DT
lmax(lmin) δ′ then ∃i∗, ∀i ≤ i∗, τλ(i) ∼lmin τ ′

λ(i)and τλ(i∗) �lmin τ ′
λ(i∗) ⇔ (π1, . . . , πh, uτ ) �lmin (π ′

1, . . . ,
π ′ , u′

τ ).
h



Now let us invert each degree in both trajectories, we get:

((1 − π1), . . . , (1 − πh), (1 − uτ )) ≺lmax ((1 − π ′
1), . . . , (1 − π ′

h), (1 − u′
h))

⇔ ((1 − π1), . . . , (1 − πh)), ūh) ≺lmax ((1 − π ′
1), . . . , (1 − π ′

h), ū
′
h)

i.e., τσ(i∗) ≺lmax τ ′
σ(i∗) which is the �lmax relation when considering DT inv . We get δ′ �DT inv

lmin(lmax) δ.

• If δ ∼=DT
lmax(lmin) δ′ then ∀i, τλ(i) ∼lmin τ ′

λ(i) ⇔
(π1, . . . , πh,uτ ) ∼=lmin (π ′

1, . . . , π
′
h,u

′
τ ).

If we inverse each degree in both trajectories, we get:

((1 − π1), . . . , (1 − πh), (1 − uτ )) ∼=lmax ((1 − π ′
1, . . . , (1 − π ′

h), (1 − u′
τ ))

⇔ ((1 − π1), . . . , (1 − πh), ūh) ∼=lmax ((1 − π ′
1), . . . , (1 − π ′

h), ū
′
h)

i.e., τσ(i)
∼=lmax τ ′

σ(i). We get δ′ ∼=DT inv

lmin(lmax) δ.

Thus, �EUpes is equivalent to �lmin(lmax).
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