678 research outputs found

    Threads and Or-Parallelism Unified

    Full text link
    One of the main advantages of Logic Programming (LP) is that it provides an excellent framework for the parallel execution of programs. In this work we investigate novel techniques to efficiently exploit parallelism from real-world applications in low cost multi-core architectures. To achieve these goals, we revive and redesign the YapOr system to exploit or-parallelism based on a multi-threaded implementation. Our new approach takes full advantage of the state-of-the-art fast and optimized YAP Prolog engine and shares the underlying execution environment, scheduler and most of the data structures used to support YapOr's model. Initial experiments with our new approach consistently achieve almost linear speedups for most of the applications, proving itself as a good alternative for exploiting implicit parallelism in the currently available low cost multi-core architectures.Comment: 17 pages, 21 figures, International Conference on Logic Programming (ICLP 2010

    A new Java Thread model for concurrent programming of real-time systems

    Get PDF
    The Java â„¢ Virtual Machine (JVM) provides a high degree of platform independence, but being an interpreter, Java has a poor system performance. New compiler techniques and Java processors will gradually improve the performance of Java, but despite these developments, Java is still far from real-time. We propose the Communicating Java Threads (CJT) model, which eliminates several shortcomings, such as Java's non-deterministic behavior, Java's monitor weakness, and lack of reactiveness for real-time and embedded systems. CJT is based on CSP providing channels, composition constructs, and scheduling of processes. The CJT Java class library, which provides all necessary classes on top of Java, is readily available to interested users. The main power of the method is that it integrates these features in a natural way and in no way conflicts with other paradigms, such as PersonalJava â„¢, EmbeddedJava â„¢, JavaBeans â„¢, CORBA, and PVM. All activities, reported in this paper, are carried out as part of the JavaPP project

    A study of thread-local garbage collection for multi-core systems

    Get PDF
    With multi-processor systems in widespread use, and programmers increasingly writing programs that exploit multiple processors, scalability of application performance is more of an issue. Increasing the number of processors available to an application by a factor does not necessarily boost that application's performance by that factor. More processors can actually harm performance. One cause of poor scalability is memory bandwidth becoming saturated as processors contend with each other for memory bus use. More multi-core systems have a non-uniform memory architecture and placement of threads and the data they use is important in tackling this problem. Garbage collection is a memory load and store intensive activity, and whilst well known techniques such as concurrent and parallel garbage collection aim to increase performance with multi-core systems, they do not address the memory bottleneck problem. One garbage collection technique that can address this problem is thread-local heap garbage collection. Smaller, more frequent, garbage collection cycles are performed so that intensive memory activity is distributed. This thesis evaluates a novel thread-local heap garbage collector for Java, that is designed to improve the effectiveness of this thread-independent garbage collection

    Intelligent cell memory system for real time engineering applications

    Get PDF

    Transactional Sapphire: Lessons in High Performance, On-the-fly Garbage Collection

    Get PDF
    Constructing a high-performance garbage collector is hard. Constructing a fully concurrent 'on-the-fly', compacting collector is much more so. We describe our experience of implementing the Sapphire algorithm as the first on-the-fly, parallel, replication copying, garbage collector for the Jikes RVM Java virtual machine. In part, we explain our innovations such as copying with hardware and software transactions, on-the-fly management of Java's reference types and simple, yet correct, lock-free management of volatile fields in a replicating collector. We fully evaluate, for the first time, and using realistic benchmarks, Sapphire's performance and suitability as a low latency collector. An important contribution of this work is a detailed description of our experience of building an on-the-fly copying collector for a complete JVM with some assurance that it is correct. A key aspect of this is model checking of critical components of this complicated and highly concurrent system

    SICStus MT - A Multithreaded Execution Environment for SICStus Prolog

    Get PDF
    The development of intelligent software agents and other complex applications which continuously interact with their environments has been one of the reasons why explicit concurrency has become a necessity in a modern Prolog system today. Such applications need to perform several tasks which may be very different with respect to how they are implemented in Prolog. Performing these tasks simultaneously is very tedious without language support. This paper describes the design, implementation and evaluation of a prototype multithreaded execution environment for SICStus Prolog. The threads are dynamically managed using a small and compact set of Prolog primitives implemented in a portable way, requiring almost no support from the underlying operating system
    • …
    corecore