
A STUDY OF THREAD-LOCAL GARBAGE
COLLECTION FOR MULTI-CORE SYSTEMS

A THESIS SUBMITTED TO

THE UNIVERSITY OF KENT

IN THE SUBJECT OF COMPUTER SCIENCE

FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY.

By
Matthew Robert Mole

February 2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/46521302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

With multi-processor systems in widespread use, and programmers increas-

ingly writing programs that exploit multiple processors, scalability of applica-

tion performance is more of an issue. Increasing the number of processors avail-

able to an application by a factor does not necessarily boost that application’s

performance by that factor. More processors can actually harm performance.

One cause of poor scalability is memory bandwidth becoming saturated as pro-

cessors contend with each other for memory bus use. More multi-core systems

have a non-uniform memory architecture and placement of threads and the data

they use is important in tackling this problem. Garbage collection is a mem-

ory load and store intensive activity, and whilst well known techniques such

as concurrent and parallel garbage collection aim to increase performance with

multi-core systems, they do not address the memory bottleneck problem. One

garbage collection technique that can address this problem is thread-local heap

garbage collection. Smaller, more frequent, garbage collection cycles are per-

formed so that intensive memory activity is distributed. This thesis evaluates a

novel thread-local heap garbage collector for Java, that is designed to improve

the effectiveness of this thread-independent garbage collection.

ii

Acknowledgements

So many people have been involved in my journey from undergraduate to PhD

student and beyond.

I have had the pleasure of working with wonderful colleagues: Carl, Carlos,

Ed, Edd, Márjory, Martin, Thomas, Tomáš, Tomoharu and Patrick, who have

always been available for a discussion. I must also acknowledge the support

of Alex, Dan, Gant, Karl, Kristy, Matthew, Steven and Thomas. Kristy Siu and

Thomas Baker in particular have emboldened me throughout. A month after

my thesis defence, I married the love of my life, Gant Chinavicharana.

I would like to thank Microsoft Research Cambridge for an enjoyable three

month internship. Thanks go to my mum Mandy, my dad Stephen, and grandma

Della for supporting my education all these years. I owe you so much. I also

owe much to my siblings Richard and Rebecca. Thank you to Fred Barnes,

Rogério de Lemos and Sally Fincher for their advice throughout my PhD. I

would like to also extend thanks to the administrative staff in the department.

Finally, this work would not have been possible without my knowledgable su-

pervisor Richard Jones. It is with good reason you are widely respected by staff

and students in the department. I shall miss our weekly lunch meetings.

This work is dedicated to David Clarke and Silvia Mole, in loving memory.

iii

Contents

Abstract ii

Acknowledgements iii

List of Tables vii

List of Figures ix

List of Listings x

1 Introduction 1

1.1 Research Statement and Contributions 6

1.2 Thesis Outline . 9

2 Garbage Collection 11

2.1 Introduction . 11

2.2 Fundamentals of Garbage Collection 11

2.3 Algorithm Categories . 13

2.4 Virtual Machine Structure . 16

2.5 Fundamental Algorithms . 18

iv

2.5.1 Mark Sweep . 19

2.5.2 Semi-space Copying . 22

2.5.3 Immix . 25

2.5.4 Incremental GC . 26

2.5.5 Generational GC . 27

2.6 Parallel GC . 30

2.7 Concurrent GC . 32

2.8 Barriers . 37

2.9 Summary . 39

3 Thread-Local Heap GC 41

3.1 Introduction . 41

3.2 Non-Uniform Memory Architecture 41

3.3 Thread-Local Heaps . 45

3.3.1 Identifying Shared Objects 47

3.4 Summary . 58

4 Patterns of Sharing 60

4.1 Introduction . 60

4.2 Tools . 60

4.2.1 DaCapo Benchmarking Suites 61

4.2.2 Jikes RVM . 64

4.3 Thread Relationships . 65

4.3.1 Study Method . 65

4.3.2 Analysis . 77

4.4 Summary . 98

v

5 Precise Thread-Local Implementation 103

5.1 Introduction . 103

5.2 Feasibility Study Findings . 103

5.3 Thread-Local Heap Algorithm Design 106

5.4 Thread-Local Heap Algorithm Implementation 111

5.4.1 Heap Structure . 112

5.4.2 Object Structure . 113

5.4.3 Invariant Maintenance . 114

5.4.4 Thread-Independent Collection 122

5.4.5 Globaliser Thread . 124

5.5 Summary . 128

6 Results 130

6.1 Experiment Set-up . 130

6.1.1 Hardware and Software . 130

6.1.2 Measurement Gathering . 131

6.2 Results . 135

6.3 Summary . 147

7 Further Work and Thesis Conclusion 149

7.1 Further Work . 149

7.2 Thesis Conclusion . 152

Bibliography 156

vi

List of Tables

2.1 A summary of Garbage Collection in use. 39

4.1 A description of the DaCapo 2006 suite benchmarks. 62

4.2 A description of the DaCapo 2009 suite benchmarks. 63

4.3 Object header words used for the feasibility study. 68

4.4 Java bytecodes which require barrier invocation. 70

5.1 Object header works for the thread-local heap algorithm. 114

5.2 Assertion checks that can be made every barrier invocation. . . . 122

6.1 An estimate of how much barriers, that result in no action, cost. . 137

6.2 An estimate of how many barriers result in no action. 137

6.3 An estimate of execution time improvement if some barriers are

eliminated. 139

vii

List of Figures

2.1 An example of reference counting. 14

2.2 An example of reference counting with cycles. 16

2.3 A linked-list data structure in the heap. 32

2.4 Dangling references caused by incorrect concurrent GC. 34

3.1 Dimensions to compare thread-local heap collectors that dynam-

ically determine an object’s sharing status. 52

4.1 An example of feasibility study’s underestimation of domani-

style sharing. 76

4.2 A comparison of local and shared objects allocated by each thread. 80

4.3 A comparison of shared objects allocated by each thread. 82

4.4 A comparison of local and shared objects allocated in each space. 86

4.5 A comparison of shared objects allocated in each space. 88

4.6 An overview of objects at each garbage collection cycle. 91

4.7 An overview of types used for each benchmark. 95

4.8 Percentage of shared objects for each type versus the cumulative

number of local objects. 97

4.9 An overview of thread-sharing patterns. 99

viii

4.10 An overview of thread-sharing patterns, grouped by number of

threads. 101

5.1 Allowed and disallowed references for the proposed thread-local

heap algorithm. 109

6.1 Output of numactl –hardware on the experiment machine. 132

6.2 Output of lscpu on the experiment machine. 133

6.3 Output of uname -a. 133

6.4 A diagram of NUMA node connectivity on the experiment ma-

chine. 134

6.5 A breakdown of barrier activities per thread. 138

6.6 An overview of thread-independent garbage collection perfor-

mance over execution. 141

6.7 An overview of thread-independent garbage collection throughput.142

6.8 A look at maximum extent of remset size. 145

6.9 A look at remset size throughout execution. 146

6.10 A comparison of parallel GC versus the thread-local heap imple-

mentation GC. 148

ix

Listings

3.1 An example of static analysis imprecision. 47

4.1 Object allocation pseudocode. 71

4.2 Read/Write counter increment pseudocode. 72

4.3 Barrier pseudocode. 73

4.4 Benchmark example that triggers all barriers. 74

4.5 Bytecode generated from benchmark example that triggers all

barriers. 75

5.1 Pseudocode for object shading. 116

5.2 Pseudocode for object globalising. 116

5.3 Pseudocode for barriers. 117

5.4 Example code that causes re-entrant barriers. 120

x

Chapter 1

Introduction

Developers have a large selection of programming languages to choose from.

These programming languages differ in many ways, including whether they

are general purpose or domain specific, strongly or dynamically typed, and

programming paradigm. Programming languages can also have different ways

of transforming source code into machine code that the computer can execute.

Some languages are compiled directly into assembly language. Other languages

are compiled into an intermediate language. These languages provide a vir-

tual machine that interprets the intermediate language instructions and con-

verts them into assembly language instructions. There are many advantages to

this approach, one of the most significant being portability — a program can

be compiled into its intermediate language and distributed to many platforms,

and executed on many platforms as long as it has a virtual machine.

Another significant benefit that virtual machines can take advantage of is au-

tomatic memory management. Languages with explicit memory management,

the alternative to automatic memory management, require the programmer to

1

CHAPTER 1. INTRODUCTION 2

allocate all memory used by the application as well as releasing the memory

once it is no longer needed. Allocation is trivial, as it is performed when the ap-

plication requires memory. The programmer has to ensure that enough memory

is allocated. Releasing memory is more challenging, as the programmer has to

ensure that:

1. memory allocated is freed;

2. memory allocated is freed at most once;

3. memory freed will definitely never be used (at least until the address is

allocated to again).

If the programmer violates point one, memory leaks occur. Memory is al-

located but never released, and so an application’s total memory consumption

continues to grow until the application finishes or terminates as it has used too

much memory. Memory leaks are problematic, but it may be possible for an

application to complete successfully without releasing all of its allocated mem-

ory. Long running applications and those that allocate large amounts of data are

more prone to failure as a result of memory leaks. If points two and three are vi-

olated, more serious symptoms may occur. If memory is used after release, the

result is unpredictable and dependent on the language implementation. One

possible outcome is that the application crashes because accessing an invalid

memory address leads to a segmentation or similar fault. An arguably worse

outcome is that the application proceeds when it accesses the invalid memory

location, using incorrect values in computation and producing incorrect results

with no indication of anything wrong.

CHAPTER 1. INTRODUCTION 3

Garbage collection, a form of automatic memory management, removes the

burden of memory management from the programmer. It is an automated pro-

cess to release memory that will release allocated memory once, only once and

only when it is impossible for the application to use that allocated memory

again.

An application allocates memory in the heap. This thesis is concerned with

garbage collection for Java, where applications allocate memory in the form of

objects. Each object consists of metadata (such as its type, hashcode, and lock-

ing information in case synchronised accesses and mutations to the object are

required) and payload (the contents of each field). The application continues to

allocate objects until it is unable to as the heap memory has been exhausted. At

this point, a garbage collector thread steps in, blocking the application from pro-

gressing and frees up memory for the application to use for further allocations.

This is done by determining which objects in the heap can be referenced by the

application and assumes all objects that cannot be referenced by the application

are reclaimable. The application manipulates references to objects. It creates

new references to objects and removes references to them. If all references to an

object are removed that object cannot be referenced by the application and so

can freed. Similarly, if all references to an object are from objects that themselves

cannot be referenced, that object can be freed. Once garbage collection has freed

memory, the application resumes and the allocation can now go ahead.

Programmers are increasingly exploiting multi-processor systems to improve

performance for their applications. Some programming languages, such as

Java, provide libraries and built-in functions to help exploit these systems.

There are many garbage collection algorithms that also exploit multi-processor

CHAPTER 1. INTRODUCTION 4

systems in order to improve garbage collection performance. Concurrent garbage

collection improves performance by allowing garbage collection to run simul-

taneously with the application. It is important that any changes made by the

application to the heap during garbage collection, are made transparent to the

garbage collector. The disadvantage with concurrent garbage collection is mem-

ory cannot be reclaimed until garbage collection finishes. Parallel garbage col-

lection improves performance by dividing the task of determining which ob-

jects are still referable to by the application between two or more garbage col-

lector threads. However this does not address the problem of poor responsive-

ness, caused by the application from being blocked from progressing for long

periods.

It is widely known that increasing the number of processors in a system by

a factor does not necessary increase performance by that factor. This is espe-

cially true for garbage collection, a memory intense activity in which memory

bandwidth becomes a bottleneck. With concurrent and parallel garbage collec-

tion, on which processor(s) the garbage collector(s) are placed must be carefully

considered, to reduce traffic on inter-processor memory buses.

Thread-local heap garbage collection has the potential of being the best of

both worlds. Each application thread keeps track of which objects it has allo-

cated. If an object it allocates remains local to it (i.e. references to the object

are not accessible to other threads), the application (or a paired garbage col-

lector thread) can determine solely whether the object remains accessible to it.

All objects allocated by a thread that do have other-thread-accessible references

to them and the transitive closure of these objects, are not reclaimable solely

by evaluating a single application thread. If all a thread’s allocated objects can

CHAPTER 1. INTRODUCTION 5

be determined accessible or not, then the inaccessible objects can be reclaimed.

This allows:

• garbage collection of a part of the heap with a single application thread

blocked.

• multiple garbage collectors to run independent of one another (little or no

synchronisation needed).

• increased responsiveness, as single application threads are blocked for

shorter periods of time.

As well as being a best of both worlds solution, thread-local heap garbage

collection could demonstrate good scalability by reducing garbage collection’s

reliance on memory bandwidth, by improving locality of objects and distribut-

ing memory intense activity over execution. Frequent smaller garbage collec-

tions may be beneficial to infrequent larger collections. By performing smaller,

thread-local garbage collections, thread-local heap garbage collection solves the

problem that garbage collection tends to scale poorly because of memory band-

width limitations.

Consider the following application: An application, such as a web server

receives requests. The main application thread spawns new threads to handle

these requests. Each spawned thread performs actions required and then ter-

minates. Each spawned thread operates independently of one another, with

very few objects shared between threads. Thread-local heap garbage collec-

tion would be able to take advantage of this fact to deliver scalable garbage

collection with minimal pauses in execution caused by stop-the-world phases.

CHAPTER 1. INTRODUCTION 6

This scenario need not be restricted to web servers, any application that spawns

many, independent threads would benefit.

Thread-local heap garbage collection implementations typically vary by their

treatment and identification of non-local objects. All, to differing extents, are

conservative — lowering overhead by treating some local objects as accessi-

ble by multiple threads. The most precise is implemented for a functional lan-

guage [60] which takes benefit from applications allocating a large proportion

of immutable objects. There are no current implementations of a precise thread-

local heap garbage collection for Java.

1.1 Research Statement and Contributions

This thesis describes in detail a novel thread-local heap garbage collector algo-

rithm that determines which objects remain local with greater precision than

thread-local heap algorithms in published literature. An object is local if only

the thread that allocated it uses it, and no other threads can access it. An im-

precise thread-local heap garbage collector may conservatively treat some local

objects as shared to simplify implementation or reduce overheads. This thesis

poses the questions:

1. How accurately do existing thread-local heap garbage collector mechanisms iden-

tify object sharing between threads?

2. Can we design a less conservative, but still safe, abstraction for determining

whether objects are shared or likely to be?

3. Can we construct an efficient thread-local heap garbage collector for Java?

CHAPTER 1. INTRODUCTION 7

Garbage collection is a memory intensive activity as every live object in

the heap is visited, pulled into cache, marked as live (depending on algorithm

used), scanned for outgoing references and any changes flushed back to mem-

ory. With multi-processor systems, the bottleneck for garbage collection scal-

ability is the memory bandwidth. This bottleneck occurs when multiple pro-

cessors contend on the same bus for access to main memory. For garbage col-

lection to be scalable, it should be distributed throughout application execution

rather than performed at distinct cycles that maximise memory bus contention.

There are other garbage collection algorithms that exploit multi-processor sys-

tems to increase performance. However, these algorithms either do not address

scalability or do not prevent the memory bandwidth bottleneck from occur-

ring [35,36,56,79]. Additionally, by performing garbage collection in distinct cy-

cles, for large heaps the delay between allocation failure (triggered garbage col-

lection) and subsequent allocation success (when garbage collection has freed

memory) is non-trivial and affects responsiveness.

This thesis poses further questions about multi-processor performance:

4. How well does the novel thread-local heap garbage collection implementation for

Java scale on a non-uniform memory architecture system?

5. To what extent does thread-local heap garbage collection reduce long-delay-inducing

full-heap garbage collection cycles?

The research contributions of this thesis are:

• A feasibility study is conducted to determine whether a precise thread-

local heap garbage collector could be performant. The feasibility study

CHAPTER 1. INTRODUCTION 8

compares an approximation of a Domani-style transitive closure promo-

tion [29] versus a more precise design where read and write barriers are

used to capture the exact moment an object is used by a second thread.

• With results from the feasibility study, we show, that for the DaCapo bench-

mark suite [80], transitive closure style promotions are a gross exagger-

ation of objects used by multiple threads, and that the assumption that

the transitive closure is promoting objects that would themselves become

shared anyway may not necessarily be true.

• We present a novel design for a precise thread-local heap garbage collec-

tor that categories objects as either local, at-risk of being shared, or shared.

While at-risk objects are no longer local, they can continue to maintain ref-

erences to local objects, unlike shared objects. As soon as a second thread

attempts to access or mutate the contents of an at-risk object’s field, the

object becomes shared.

• We implemented the novel thread-local heap design in Java, which is to

the best of our knowledge the first such precise thread-local heap imple-

mentation for Java.

• The scalability of the implementation was tested using the DaCapo bench-

mark suite, and any extra overhead incurred by mutator threads as a result

of write and read barriers was measured.

• We outline opportunities further work, including possible ways to reduce

the overheads imposed by read and write barriers — in particular fo-

cussing on the reduction of overheads on objects already shared and with

CHAPTER 1. INTRODUCTION 9

no need for further barrier actions.

1.2 Thesis Outline

Chapters 2 and 3 explain garbage collection, a form of automatic memory man-

agement. Garbage collection has decades of research behind it and many al-

gorithms have been developed, and implemented in many languages. A chal-

lenge for garbage collection is scaling the process to future machines with a

large number of cores.

When designing and implementing a garbage collection algorithm many de-

cisions must be made. Garbage collectors do not just take responsibility for

reclaiming dead objects, they also may take some responsibility for object allo-

cation, heap mutation, and depending on the complexity of garbage collector,

even other areas of virtual machine implementation.

This thesis conducts a review of thread-local heap garbage collector designs

(Chapters 2 and 3) and introduces a novel design for Java (Chapter 5). It seeks

to answer what key implementation decisions must be made for a complete,

correct implementation in a Java Virtual Machine. Some guidance can be taken

by the implementation of other thread-local heap collectors, although typically

research papers on the subject are heavy on design and light on any implemen-

tation problems and solutions. Additionally, many thread-local heap collectors

are designed for a language other than Java, so inspiration taken from these

collectors may have to be adapted for Java.

Another important question that this thesis addresses is how the heap demo-

graphics affect the performance of the novel thread-local heap garbage collector,

CHAPTER 1. INTRODUCTION 10

as well as what optimisations can be made. In Chapter 4 this thesis provides in-

sights into objects that are used by multiple threads as opposed to objects used

by just one. With these insights, the thread-local heap garbage collector could

be made more efficient and hint at possible future optimisations not just for

thread-local heap garbage collection but perhaps for other garbage collection

algorithms.

One key benefit of thread-local heap garbage collectors over other garbage

collectors is the potential for better scalability for multi-threaded Java applica-

tions. This thesis answers how a Java thread-local heap garbage collection im-

plementation scales versus a commonly used garbage collector. Chapters 2 and

3 outline the limitations suffered by other types of garbage collector and Chap-

ter 6 evaluates whether thread-local heap garbage collection suffers from such

limitations and whether it is a good candidate for scalable garbage collection in

the future.

Chapter 2

Garbage Collection

2.1 Introduction

This chapter defines garbage collection — it outlines how memory is identified

as reclaimable and then reclaimed, defines terminology used throughout the

thesis and impresses on the reader how important the correctness of garbage

collection is — especially for more complicated algorithms. Commonly used

algorithms are outlined and advantages and disadvantages of each approach

described. Also introduced in this chapter is how garbage collectors attempt to

increase performance by taking advantage of multi-processor systems.

2.2 Fundamentals of Garbage Collection

Garbage collection takes the burden of reclamation of memory from the pro-

grammer but imposes additional costs. Designers of garbage collection libraries

and process virtual machines (such as the Java Virtual Machine) have a variety

11

CHAPTER 2. GARBAGE COLLECTION 12

of garbage collection algorithms to choose from, each with benefits and draw-

backs, and some even expose this choice to the user [72].

For the algorithms and concepts presented in this thesis, garbage collection

will operate on objects, evaluating whether they could be usable by the program

or whether they can be reclaimed and their memory reused for other purposes.

Objects and their web of references can be imagined as a directed graph. Objects

are nodes and references are directed edges. References are not only stored in

objects, but also in local variables and static variables, which means there can

be references from outside the directed graph, to nodes in the directed graph.

Definition: Root and Reachability. A root is a reference from outside the di-

rected graph to an object in the directed graph. An object A is said to be reachable

from object or root B, if there is a reference from B to A or if a chain of references

can be followed from B through other objects to A.

One way to determine whether an object is reclaimable is to identify which

objects are still in use by the program — a hard problem. Garbage collection

takes an alternative approach, identifying which objects in the directed graph

are reachable from outside the directed graph (roots). As such, any objects not

reachable from outside the directed graph cannot ever be used by the program

and therefore can be reclaimed. Determining reachability is a much easier prob-

lem to solve than determining whether an object is due to be used by a program.

Definition: Live and Dead Objects. An object is said to be live if it is reachable

from at least one program root. Simply, any object that is not live is dead.

It is often useful to refer to an object and all other objects that are reachable

from that object. For example, it is useful to say that if an object is live, then

CHAPTER 2. GARBAGE COLLECTION 13

all objects that are reachable from that object either directly or indirectly by

following a chain of references through other objects, are also live.

A downside of garbage collection is the retention of objects in the directed

graph (because they are reachable from the roots) that may not ever be used by

the program in its future.

The directed graph is not necessarily connected — many directed graphs may

occur in the boundaries of the program.

2.3 Algorithm Categories

Garbage collection algorithms can be divided into two categories — direct al-

gorithms that store information on references to each object throughout the

object’s lifetime and indirect algorithms that periodically traverse the directed

graph to determine which objects are reachable from the roots [48].

The most common direct algorithm is reference counting. A counter is as-

sociated with each object in the directed graph that represents the number of

references pointing to it. Figure 2.1 shows an example of three nodes, with two

nodes having exactly one incoming reference and one node with three refer-

ences to it.

Whenever a reference is created to an object, the object’s counter must be

incremented. Whenever a reference to an object is removed, the object’s counter

must be decremented. When an object’s counter reaches zero, the object can be

reclaimed as it is no longer reachable.

Reference counting has the advantage of being able to reclaim memory as

soon as an object is no longer reachable (assuming the object doesn’t require

CHAPTER 2. GARBAGE COLLECTION 14

Figure 2.1: A directed graph of nodes, where some nodes have
references to other nodes and each node has a counter of refer-
ences to it.

1 1

3

root root

finalisation1), but has the disadvantage of being fragile — corruption of the

counter could render an object unreclaimable or worse, cause an object that is

still being used by the program to be reclaimed.

Direct algorithms impose overhead through program execution as every ref-

erence mutation must be checked to see if a counter update is needed. Updating

the reference count must be performed with care for multi-threaded programs,

ensuring counter correctness if multiple threads change it simultaneously.

Indirect algorithms (also known as tracing collectors) perform periodic garbage

collection cycles, traversing the directed graph. Each cycle redetermines which

objects are reachable and hence by subtraction, which objects are garbage. How-

ever, because garbage collection is performed at distinct phases rather than dis-

tributed throughout program execution, there is a larger delay between objects

being inaccessible and being reclaimed.

This thesis is concerned with indirect algorithms. The thesis’ contribution

expands on earlier work which describes a new category of indirect algorithm.

1A technique in Java that allows execution of code before an object is reclaimed.

CHAPTER 2. GARBAGE COLLECTION 15

Most concurrent high performance garbage collectors are indirect, and are de-

scribed throughout this chapter. Although this thesis targets indirect algorithms,

some concepts designed for indirect algorithms have been used to improve di-

rect algorithms [53].

Definition: Mutator and Collector threads. Application threads are known as

mutator threads as they allocate objects and mutate the directed object graph as a

result of their execution. The garbage collector uses collector threads. Collector

threads are forbidden from manipulating the directed object graph in such a

way that could affect the results of computation.

Cycles are a common occurrence in a program’s directed object graph (Fig-

ure 2.2). Garbage collection algorithms must treat cycles carefully. Failing to do

so could lead to non-termination or inefficient collection.

Direct and indirect algorithms handle cycles differently. Indirect algorithms

are able to almost effortlessly handle cycles by avoiding traversing through ob-

jects already encountered, but can suffer from non-termination if this is not done

correctly. Direct algorithms struggle to handle cycles in comparison. For exam-

ple, with reference counting, objects may have at least one incoming reference,

but no references from outside the cycle. Thus, the cycle of objects will never be

reclaimed as the counter of any object will not drop to zero. Reference count im-

plementations have typically had a tracing collector acting as a ‘back-up’, which

runs periodically to reclaim cycles of objects [30, 31].

With direct algorithms, an object is either alive or dead, and it is easy to

check whether an object is alive by checking the data associated with it. Indirect

algorithms introduce a collection cycle, with an object starting out as initially

CHAPTER 2. GARBAGE COLLECTION 16

Figure 2.2: A cycle of nodes, where each node is referred to
by one node and refers to one node, with no references from
outside the cycle to the cycle.

1 1

1

undiscovered and ending up as being classified either alive or dead.

2.4 Virtual Machine Structure

Garbage collectors are pervasive amongst programming languages and paradigms,

including object-oriented languages (Python [31], Java [74]), functional languages

(Haskell [34], Lisp [61]) and even languages that have traditionally been bul-

warks of explicit memory management such as C [52,82]. Hybrid memory man-

agement is available, where the user provides hints to a managed runtime that

objects could be reclaimed, in an attempt to have the best of both worlds [83].

Java is the focus of this thesis — it is a widely used language, shares features

with other garbage collected languages and shows a strong potential for future

research and development.

Java is a managed-runtime language. A Java program is compiled into byte-

code and requires a virtual machine to execute this bytecode. There are many

Java Virtual Machines available [73, 76, 81, 93] and they share similar partitions

of memory:

CHAPTER 2. GARBAGE COLLECTION 17

Definition: Heap. An area of memory is required for long lived data that sur-

vives across method calls and could be shared between threads. This area is

known as the heap. The directed object graph referred to earlier resides here.

Objects are created (allocated) in the heap whenever a new2 bytecode instruc-

tion is executed [71].

Definition: Stack. Every thread requires a stack which keeps track of local vari-

ables, method calls, operands and results from certain instructions, amongst

other things [70]. The stack is organised into frames, which are created when

method invocation occurs and removed when a method returns.

As stack frames are destroyed when a method returns, it is only possible to

store values that are used within the scope of the method on the stack. Any

data that must persist longer than the lifetime of the stack will be stored in the

heap. Each stack can contain references to the heap and any location where this

occurs is a root.

Definition: Static Field. A Java program can make use of static fields. These

fields persist across method calls and are accessible to all mutator threads. A

static field can be a primitive data type (integers, booleans) or a reference into

the heap. A static field that is a reference into the heap is a root.

The virtual machine may require other partitions of memory, perhaps to

store virtual machine specific data. Additionally, object references might have

escaped out of the bounds of Java using the Java Native Interface. Depending

on virtual machine implementation, these partitions may yield more roots.

2or variant of new: anewarray, multianewarray, newarray as of Java SE 7 [71].

CHAPTER 2. GARBAGE COLLECTION 18

Some garbage collectors may require that changes to heap objects be con-

ducted in a synchronised manner in order to keep a coherent view of the heap.

Definition: Barrier. To ensure this, a virtual machine may offer a barrier mech-

anism. A barrier is an injection of code, around operations that access the heap

object graph [11,12,42,78,100]. The code injected performs an action, for exam-

ple making the garbage collector aware of any changes to the object graph.

An example when barriers are necessary is for direct garbage collection, such

as reference counting. Before a change is made to the object heap graph (such

as creation of a new reference), the reference count of the target object must be

updated

2.5 Fundamental Algorithms

There are many types of indirect garbage collection algorithms — amongst the

earliest were ‘mark-sweep’ style collectors, that used two distinct phases to de-

termine which objects are dead and then reclaim them, and ‘copying’ collectors

that move live objects between portions of the heap and can reclaim the left

behind dead objects that were not moved. Some collectors are based on ob-

servations on object behaviour — ‘generational’ collectors have a staging area

for newly allocated objects that have a higher mortality rate than longer lived

objects. Each approach has advantages and disadvantages.

CHAPTER 2. GARBAGE COLLECTION 19

2.5.1 Mark Sweep

The Mark-Sweep algorithm was first designed for LISP by John McCarthy [61].

The same algorithm has been implemented for many languages, including Java.

When available memory is exhausted, a two-phase process begins. Firstly, the

entire heap object graph is traversed to determine which objects are live.

Definition: Marking. Whenever an object is encountered during traversal, it

is marked so that it is treated as live until the beginning of the next garbage

collection cycle.

What constitutes ‘marked’ is implementation dependent - one of the sim-

plest methods is to store extra bits per object that denotes whether or not that

object is live. These extra bits can be stored in the object header or separate

from the object (stored as a bitmap). It is important that objects considered

marked in a previous garbage collection are treated as unmarked in the cur-

rent garbage collection, so that objects that have become unreachable since that

previous garbage collection cycle are reclaimable.

Heap traversal is trivial. Initially all objects referred to by a root are marked

as live and placed on a work list. This list contains all objects that have been

encountered during traversal but have not yet been scanned for outgoing ref-

erences to other objects. It is even possible to specialise object scanning for

optimal cases [32].

Traversal continues with one object from the work list being removed and

scanned for outgoing references. Any objects found during this scanning pro-

cess are themselves marked and added to the list. The exception to this is hinted

above - if an object is already marked it is not added to the list. When an object

CHAPTER 2. GARBAGE COLLECTION 20

has been scanned for outgoing references it will not need to be placed on the list

again.

Traversal terminates when the list is empty. All objects in the heap graph will

have been visited and all live objects will be marked. Objects that are garbage

will not have been marked and can be safely reclaimed.

Each live object may not be fully processed in one go, it is added to a work

list when encountered and is processed later. For this reason, it useful to have a

notation to reason about the state of each object during garbage collection.

Definition: Tricolour Notation. This notation is known as the tricolour notation

and is widely used to represent object status during indirect garbage collection

[26, 78]. During collection, each object falls into one of the following categories

of colours:

• A black object has been encountered by heap traversal and all of its refer-

ences have been traversed.

• A grey object has been encountered by heap traversal but all of its refer-

ences have not yet been traversed.

• A white object has not been encountered.

Objects begin garbage collection as white, and live ones progress to grey

and finally to black. Once an object has become black, it will not regress back to

white, and for typical algorithms will not regress to grey. Some garbage collec-

tors may introduce even more intermediate steps, and so the notation may be

expanded to cover those.

CHAPTER 2. GARBAGE COLLECTION 21

Once traversal has completed the second stage begins, and all marked ob-

jects are simply ignored by the garbage collector. The heap is scanned in a linear

fashion (either from high addresses to low addresses or vice versa) and all ob-

jects encountered that are not marked are reclaimed.

Some garbage collectors do not perform the sweep stage straight away, to

reduce the length of time of a single garbage collection cycle. Instead, small

amounts of the sweep are performed on allocation — whether objects are alive

or dead persists until the next garbage collection cycle, and when allocation

fails because there is no free space, the allocator first checks to see if there are

any pages that can be swept.

Mark-sweep algorithms can suffer from fragmentation of memory in the

heap. When objects are reclaimed they leave gaps in memory. It is possible

that the heap may have enough free space for a very large object to be allocated

but no contiguous free gaps in memory to accommodate the object. This may

be particularly common if a heap is made up of a large number of small objects

of which plenty are reclaimed, but leaving lots of small gaps in memory and

very little adjacent gaps that can be coalesced.

One solution to this problem is to group objects of a similar size together,

so that when an object is reclaimed it leaves behind a gap in memory that a

similarly sized object will be allocated to later. Differently sized objects will be

allocated elsewhere in the heap, so that the gap in memory is not divided by

smaller objects.

Definition: Size-class. A size-class is a partition of memory in the heap that

CHAPTER 2. GARBAGE COLLECTION 22

groups objects of a similar size [15]. A size-class is divided into cells and ev-

ery size-class maintains a list of free cells.

When an object is reclaimed in a size-class, its now-free cell is added to a free

list of cells. When an object is allocated, its size is checked to see which size-class

it falls into and it is allocated into one of the free cells in that size-class.

With an algorithm susceptible to fragmentation and with a fragmented heap,

size-classes can reduce the time taken to identify a free space in memory to

allocate an object; rather than potentially scanning the heap for a free slot, the

object size is checked and the appropriate size-class is consulted. Additionally,

by grouping similar sized objects together, the chance that smaller objects split

up larger gaps of memory is reduced.

A disadvantage of size-classes is the wastage of memory of storing objects

in a slightly larger cell, but this can be mitigated with with a larger number of

size-classes to reduce the wastage.

2.5.2 Semi-space Copying

Although using size-classes can help reduce fragmentation it does not solve

the problem entirely. Gaps in memory left by reclaimed objects may be more

organised and grouped by size, but an allocator may have difficulty finding

space to allocate very large objects. If a particular size-class has a lot of its objects

reclaimed, more objects of that size can be allocated, but an application may

require a series of large object allocations.

A Semi-space Copying collector evacuates all live objects encountered during

CHAPTER 2. GARBAGE COLLECTION 23

tracing into new pages, putting evacuated objects next to each other and do-

ing so compacts all live objects into as few pages as possible [18]. Reclamation

of memory is also simpler, merely handing back all pages that used to contain

objects, but whose objects were evacuated elsewhere. This approach has the

disadvantage that there must be free pages to evacuated live objects to, so per-

forming garbage collection once all pages have been exhausted would be too

late.

Typically a semi-space copying garbage collector has two portions of the

heap — one that contains objects and where objects are allocated into (known

as the ‘from-space’) and an empty space that is reserved for use in garbage col-

lection (known as the ‘to-space’).

A semi-space copying collector has a marking phase similar to a mark-sweep

collector - identifying which objects are reachable from the roots of the applica-

tion. Rather then marking an object when it is visited, the object is copied to

somewhere else in the heap. For a typical copying garbage collector the ob-

ject currently resides in ‘from-space’ and will be copied to the ‘to-space’. After

the mark phase of copying collection, all live objects will have been copied to

the to-space and their originals and dead objects will reside in the from-space.

Therefore, a disadvantage of copying collection is that it requires a worst-case

heap size of double the size of from-space, if all objects in from-space were live.

Some algorithms allow a much smaller copy reserve – requiring much less than

double the heap size, providing a fallback compaction collector if the copy re-

serve is not sufficient [62].

However, merely copying the objects is not correct - object references within

objects and the roots must be updated to reflect the new location of the objects.

CHAPTER 2. GARBAGE COLLECTION 24

Objects that were copied will eventually be reclaimed en masse, and references

that were not updated would point to reclaimed memory. As objects are copied,

a forwarding pointer is set, that tracks where the from-space object was copied

to. When objects are scanned for outgoing references, the forwarding pointers

are consulted to update reference fields in the object.

An advantage of semi-space copying collection is that all objects in to-space

are compacted to avoid fragmentation, and the reclamation of memory is sim-

ply handing back the pages belonging to the from-space.

Once garbage collection has completed, the from-space and to-space are

switched, so that the to-space during collection becomes the from-space after

collection, where objects are allocated into, and the empty from-space becomes

the to-space ready for the next collection cycle.

The method of heap traversal during a collector’s marking phase has an

impact on locality. When an object is traversed and marked, it’s outgoing ref-

erences need to be determined. If encountered references are added to a FIFO

queue, the heap is scanned in a breadth-first manner. If references are added to a

FILO stack, the heap is scanned in a depth-first manner. Using either a queue or

stack to track the work list can result in poor locality – especially if a copying col-

lector moves a group of objects that are used together and breaks them up. In-

stead for copying collectors, a ‘copy hierarchy’ order is recommended, travers-

ing and copying groups of objects at a time, increasing the chance that groups

of objects that are used together will remain together for best locality [89].

Semi-space copying garbage collection has the obvious disadvantage of re-

quiring double the virtual address space than mark-sweep collectors, as objects

are copied from one space to another.

CHAPTER 2. GARBAGE COLLECTION 25

By copying objects between spaces, fragmentation is eliminated after every

garbage collection cycle. Other algorithms also use copying of objects to elimi-

nate fragmentation. For example, Immix is a garbage collector which may copy

objects to reduce fragmentation but does not necessarily eliminate fragmenta-

tion.

2.5.3 Immix

Mark-sweep algorithms suffer from fragmentation but are time and space ef-

ficient, and copying algorithms have a higher spatial overhead in order to be

performant but eliminate fragmentation and have a quick memory reclamation

phase [13]. Immix is a garbage collection algorithm that attempts to get the

best of both worlds — performing a mark phase to determine live objects but

reclaiming memory many objects at a time. Additionally, Immix can perform

copying on small parts of the heap if it determines fragmentation could be a

problem.

Immix organises the heap in two ways: firstly the heap is divided into blocks.

Furthermore, blocks are divided into lines, into which objects are allocated. Ob-

jects can span lines but not blocks. By dividing the heap this way, the garbage

collector can keep track at a coarse granularity of which blocks contain live ob-

jects, and at a finer granularity — which lines contain live objects. Performance

is more sensitive to line size than block size, with a suggested line size of 128

bytes [13]. The sweeping phase of a mark-sweep collector will scan the heap,

typically linearly, test the mark information for each object and reclaim dead

objects. Immix differs by keeping track of which blocks and lines contain live

CHAPTER 2. GARBAGE COLLECTION 26

objects during the mark phase and:

• reclaims whole blocks if they contain no live objects; or

• recycles blocks if they contain one or more lines with no live objects; or

• considers blocks unavailable if all lines are full with live objects.

This process is much more coarse grained than the sweep phase of mark-

sweep, but allows the application to resume sooner than with fine grained

sweeping. When the application allocates a new object, it does so in a recy-

cled block if available, allocating into lines with no live objects. If a recycled

block is not available, allocation into completely reclaimed blocks begins.

In order to reduce the impact of gaps in recycled blocks, Immix can choose

to copy objects out of lines.

Immix additionally supports object pinning. Some applications may require

that an object never be moved, perhaps for performance reasons [13]. Whilst

pinned objects can be reclaimed if dead, they will never be copied, and will

therefore could prevent a whole block from being reclaimed if they are the sole

live object in a block.

2.5.4 Incremental GC

Traditional garbage collection pauses the mutators for a relatively long period

of time and performs all garbage collection work in cycles, each cycle traversing

the whole heap and reclaiming all dead objects. However garbage collection is

not restricted to these cycles. Individual phases, such as the marking of objects

as live, or reclamation of objects can be performed apart, with mutator activity

CHAPTER 2. GARBAGE COLLECTION 27

in between. Also, the phases themselves can be split, with the collector thread

interleaving with the mutator thread. Any changes in the heap must be commu-

nicated to the garbage collector so it is aware of new objects and modified/new

references and does not incorrectly reclaim live objects. Allowing the mutator

to interleave alongside the garbage collector is known as incremental garbage

collection [6, 7, 16, 17, 23, 99].

One scenario where this is useful is real-time systems, where pausing the

mutator for a long period could cause a miss of soft or hard deadlines, or very

interactive systems where lag would be noticeable to the user if a mutator could

not respond timely [9].

An example of incremental garbage collection is lazy sweeping, an alterna-

tive mark-sweep algorithm, where a mutator performs some reclamation on

behalf of the garbage collector. Rather than reclaiming all dead objects straight

away after marking, a collector could hand back control to the mutators. When

the mutators need to allocate objects, they reclaim enough contiguous dead ob-

jects, and allocate in the freed space [44].

2.5.5 Generational GC

The heap is a heterogenous structure. It contains objects of different properties,

including different sizes, types, thread allocation and crucially, lifetimes.

Treating all objects the same during garbage collection may be inefficient. A

garbage collector may get improved performance by treating some objects dif-

ferently than others, depending on a property. For example, with some garbage

CHAPTER 2. GARBAGE COLLECTION 28

collectors, it may be beneficial to treat large objects over a page in size differ-

ently than smaller objects.

It was found that garbage collection could be improved if garbage collectors

target newly allocated objects before targeting the heap as a whole. A higher

proportion of newly allocated objects tended to be reclaimed than objects that

have survived multiple garbage collections already [40,41,99]. The observation

that an object’s likelihood of surviving garbage collection corresponds to its age

is known as the generational hypothesis.

The generational hypothesis was split into two observations, known as the

strong and weak generational hypothesis. The weak generational hypothesis is

specific to newly allocated objects, and states that most objects will die young.

The strong generational hypothesis refers to older objects; that the older an ob-

ject is the less likely it is to die.

Garbage collectors can take advantage of the weak generational hypothesis

by allocating objects into a nursery portion of the heap, and moving objects

from the nursery to the rest of the heap once an object has survived one or more

garbage collections [41, 55, 66, 95]. When a garbage collection is necessary, a

collector can either garbage collect just the nursery or collect the full heap.

Collecting just the nursery is quicker because only a subset of the heap is

traced, but fewer objects are reclaimed than a full heap collection. However,

as most of the objects die, a higher proportion of the objects will be reclaimed,

and multiple nursery collections may offer a higher throughput than a single

full heap collection. Furthermore, generational collection avoids the repeated

processing of long-lived objects.

A periodic full heap collection may be necessary if the nursery is unable to

CHAPTER 2. GARBAGE COLLECTION 29

evacuate survived objects from the nursery to the rest of the heap. Therefore,

applications that allocate a significant amount of long-lived objects may find

limited benefit from generational collection.

Generational collectors require additional roots for a nursery collection. Re-

call that roots are references from outside the heap into the heap. If we imagine

that the nursery is a sub-heap, there may be references from outside, into the

sub-heap. These references may come from the rest of the heap from older lived

objects. Therefore a generational garbage collector needs to keep track of refer-

ences from the old heap into the nursery.

Definition: Remembered Set. A collection of object references maintained to

ensure garbage collection correctness is typically called a remembered set, or rem-

set for short. For generational garbage collection, details about references from

outside the nursery to the nursery are maintained in a remset.

Two factors that help tune generational collection are the size of the nursery

in proportion to other generations, and the number of garbage collections an

object in the nursery must survive before being promoted to the older genera-

tions [98]. There are many policies to choose nursery size, including [38]:

• proportionally, where the nursery is a fixed proportion of the heap size,

and by increasing the heap you increase the nursery.

• by availability, where the nursery occupies the available space in a fixed

heap left by the older generations [3].

• ergonomically, where the nursery grows or shrinks in a variable sized

heap to fit targets [96–98].

CHAPTER 2. GARBAGE COLLECTION 30

Some generational implementations bypass the nursery altogether and al-

low pretenuring of objects to the old generation, often based on a prior knowl-

edge of object lifetimes. If it is known that an object will live for a long period

and will survive nursery collection, it is beneficial to allocate this object directly

into the old generation, reducing unnecessary nursery collection [49, 58].

For nursery collection, traditional root discovery (linearly scanning possible

root locations) would be an expensive operation, requiring traversing all objects

in the heap, so instead a virtual machine’s barrier mechanism is exploited to

detect references to the nursery as they are made.

2.6 Parallel GC

In the past, parallel garbage collection referred to one or more collector threads

running alongside application threads, with the hope of exploiting multiple

CPUs to speed up program execution time [1,7,14,68,91]. In modern times, the

definition of parallel garbage collection now specifically refers to more than one

collector thread involved in garbage collection — that is, the collector threads

are working together in parallel to complete garbage collection [8, 19, 43, 45, 59,

69, 87, 88].

These multiple collector threads can share the heap traversal, potentially al-

lowing garbage collection to complete sooner and reducing the stop-the-world

pause time. A best-case (perfectly scalable) scenario could see throughput in-

creased by the number of processors working on garbage collection, although

this is unlikely as there are overheads that are not scalable.

A key difficulty in parallel garbage collection is dividing the work evenly,

CHAPTER 2. GARBAGE COLLECTION 31

allowing each thread to complete as much work as possible with as little stalling

(due to waiting for work or contention on locks) as possible. It is ideal that

parallel collector threads work on different objects at any one point in collection,

and for some implementations it may be essential for correctness.

One area where poor division of work has an effect is parallel marking. Con-

sider a heap filled entirely with a linked list - objects referring to exactly one

other object. With this knowledge, a naı̈ve but effective division of work would

be to divide the linked list into portions, one per collector thread, and let the

collectors mark objects in their portion.

However the garbage collector has no prior knowledge about the layout of

the heap and which objects refer to which, so cannot make these decisions. Ob-

jects in the heap differ and so assumptions on the heap graph being balanced

cannot be made. Instead, the collectors have to react to what work is encoun-

tered. If a collector thread finds a transitive closure it is working on is partic-

ularly large and another thread has been given a transitive closure that turns

out to be very small, an ideal algorithm would allow the idle thread to take

work from the busier thread. During garbage collection, a collector thread who

is blocked owing to a lack of work is known as stalled [87]. It was found that

common Java benchmarks produce poor heap graphs for scalability of mark-

ing [8]. To maximise efficiency of parallel marking, stalling needs to be kept to a

minimum whilst also keeping overheads on mechanisms preventing stalls to a

minimum. Figure 2.3 shows a worse case heap graph (a linked-list) that would

cause all but one processor to stall during parallel marking. An efficient par-

allel marking implementation would need to handle such a worse case, where

collector threads are starved of work.

CHAPTER 2. GARBAGE COLLECTION 32

Figure 2.3: A linked-list data structure in the heap.

Heap Collector Work Stacks

null null

null null null

null null null

Collector Thread 1

Collector Thread 3

Collector Thread 2

Special care must be taken if some algorithms are made parallel this way.

For example, a parallel copying collector must ensure that should two collector

threads encounter an object at the same time, that only one copy is made in the

to-space and that all forwarding pointers are handled correctly.

2.7 Concurrent GC

Parallel collection is useful to speed up garbage collection, however some users

may wish the reduction or elimination of the stop-the-world pause — if perhaps

long pauses are noticeable to the user. Early versions of Android suffered from

noticeable pauses, and Google are tackling this with a key metric in mind. Their

goal is to reduce pause times to under 16.66 microseconds (the time between

frames on a 60fps display). A high performing collector (Generational Immix) in

Jikes RVM takes on average 22 milliseconds to complete one garbage collection

CHAPTER 2. GARBAGE COLLECTION 33

cycle3, reclaiming on average 31 megabytes. Other companies also may wish

to reduce the time the application is blocked, such as financial institutions and

those conducting business on the web.

A concurrent garbage collector allows the application to run alongside garbage

collection, and may only require a stop-the-world pause for root detection [43,

79,88,94]. The advantage is that users are less likely to experience pauses as the

application continues to run, but this is only exploitable with processors free

for the collector to run on. Whilst incremental garbage collection reduces pause

times as well, mutators can be required to assist the garbage collector or may be

paused more often.

A disadvantage with concurrent garbage collection is that as soon as the

application needs to allocate an object, it will be blocked if the heap is full, pre-

venting any benefits. This can be tackled simply by triggering collection be-

fore memory is exhausted, allowing applications to allocate some objects with

the hope there is enough memory to prevent application threads from fully ex-

hausting heap memory.

Allowing the application to mutate the heap during garbage collection in-

troduces a new set of problems for the correctness of garbage collection. All

algorithms discussed prior to concurrent garbage collection assumed that the

heap did not change throughout collection, affording the collector to process

each object at most once. If objects can change behind the collector’s back, these

objects must be revisited to check for any live objects that may now be reach-

able.

Figure 2.4 illustrates the problem with the application mutating references

364 core ubuntu machine, running sunflow from the 2009 dacapo benchmark suite.

CHAPTER 2. GARBAGE COLLECTION 34

Heap
A B C

D E F

(a) GC in progress.

Heap
A B C

D E F

(b) Reference creation.

Heap
A B C

D E F

(c) After reclamation.

Figure 2.4: A heap in the midst of concurrent collection, with
object A being fully processed and its children D and E on the
work queue. If an application thread creates a reference from A
to B, B will be falsely reclaimed.

without the collector’s knowledge. If a reference is created from object A to

object B by the application (Figure 2.4b), after A has been fully processed, B will

be falsely reclaimed as object A will not be revisited and the collector will not

know about the reference to object B (Figure 2.4c).

The tricolour notation helps to reason about the state of the heap at any point

in concurrent garbage collection. With two categories of threads operating on

the heap in two different ways, the colours define the states that every object

falls into and the links between the states.

With the Java virtual machine structure in mind and knowing that some

objects may have to be revisited, we can refine the tricolour notation:

• A black object has been marked, and all of its outgoing references have

been marked.

• A grey object has been marked, but not all of its outgoing references have

been marked. A grey object may have been black at some point but re-

gressed to grey.

• A white object has not been marked.

CHAPTER 2. GARBAGE COLLECTION 35

The above definition allows black objects to regress to grey (forcing their

revisitation), but black and grey objects still cannot regress to white during

garbage collection. All objects regress back to white after a garbage collection

cycle ends.

With the above definition of object state categories, the requirements of a

safe concurrent collector can be formalised into two invariants [78]:

• The strong invariant: There are no pointers from black to white objects

• The weak invariant: Any references from black to white objects are only

valid if the white object is reachable (either directly or indirectly) from a

grey object.

A concurrent collection is safe if at least one of the invariants remain satis-

fied.

There are many barriers that ensure correct concurrent collection, and all are

valid as long as they satisfy either of the invariants. Three common barriers in-

clude Dijkstra’s incremental-update barrier [26,78], Steele’s incremental-update

barrier [78,91] and Yuasa’s snapshot-at-the-beginning barrier [78,101]. All three

barriers are write barriers as they react to reference manipulations in the heap.

The incremental-update barriers are a variation of each other. They both re-

act to a reference modification and result in an object being placed on a work

queue to be revisited. When a reference from a black object is created or mu-

tated, Dijkstra’s barrier ensures invariant compliance by placing the new refer-

ent on the work queue (turning it grey) if the referent is white. This ensures

that black-to-white references cannot exist, because the target white object is

immediately shaded to grey.

CHAPTER 2. GARBAGE COLLECTION 36

The snapshot-at-the-beginning barrier takes a different perspective to the

incremental-update barriers. Rather then enforcing the strong invariant, the

Yuasa barrier enforces the weak invariant. When an reference is changed, it

remembers the object that the reference used to point to, shading it grey if it

is white. By marking old objects this way, we are preserving them to the end

of garbage collection. Assuming all objects are allocated either grey or black

during garbage collection, if a reference from a black object to a white object

is made, the white object must be referred to by at least one other object (or a

root that hasn’t been discovered yet). By preserving all objects present at the

beginning of collection, we are preserving all paths to live white objects.

To gain benefits from concurrent garbage collection, a collection cycle must

be started before the heap is full, allowing mutators to still allocate objects and

work. One problem with allocating objects as grey is that the mutator could po-

tentially allocate objects quicker than the collector could traverse them, eventu-

ally meaning that the mutators run out of heap space and the mutators end up

blocking on allocation — similar to a ‘stop-the-world’ pause. Allocating objects

as black would solve this problem, at the cost of extra barriers invoked if the

application creates references from these black objects to white objects.

When the mutator makes changes to the heap during garbage collection, it

can not only create new objects but create garbage as well. If a black or grey ob-

ject dies, it will survive garbage collection as it has been marked. Even worse,

the entire transitive closure of a dead grey object could survive garbage collec-

tion - even if there are no references from elsewhere to objects in the transitive

closure. These objects are known as floating garbage. Whilst dead objects sur-

viving a garbage collection cycle may be a bad thing, reducing throughput, the

CHAPTER 2. GARBAGE COLLECTION 37

objects will be reclaimed during the next garbage collection cycle as they will

have regressed to white after the cycle.

Tracing algorithms that require ‘stop-the-world’ pauses have all assumed

that all mutators need to pause together. On the fly garbage collection allows

mutators to pause at their convenience and independent of other mutators,

rather than pausing at the same time. When instructed to pause by a collec-

tor thread, a mutator can only pause at certain points in its execution, known

as safe points. Mutator threads could be paused for longer than necessary if

the majority of mutator threads are already paused and have to wait for even

a single mutator to pause. On the fly collection solves this waiting by allowing

threads to pause independently, perform any root scanning they need to, and

then continue execution [5, 27, 29]. Concurrent garbage collection could exploit

on-the-fly collection to reduce the time mutators are paused.

2.8 Barriers

As seen in the detail about concurrent garbage collection, write barriers are a

commonly used method to ensure the garbage collector is aware of changes

to the heap by mutators. Reference counting implementations may also use

write barriers to update object reference counters. The three write barriers de-

scribed so far are Steele’s incremental update, Dijkstra’s incremental update and

Yuasa’s snapshot-at-the-beginning [26,78, 91,101]. The incremental update bar-

riers preserve the strong invariant by ensuring no black-to-white references.

Steele’s barrier turns a black object grey if it would hold a reference to a white

object and Dijkstra’s barrier shades the new referent grey if a reference to it

CHAPTER 2. GARBAGE COLLECTION 38

was written into a field of a black object’s. Yuasa’s barrier preserves the weak

invariant.

Just as write barriers react to object field writes, read barriers react to object

field accesses. Some garbage collectors require read barriers as part of their

implementation. Read barriers are used by the Appel et al. and Baker collectors

[4, 7] to preserve the strong tricolour invariant.

Just as objects have colours, it can be useful to give mutators a colour too.

• A black mutator has its roots scanned for references into the heap once. As

the roots are not scanned again, any references created from roots to heap

objects should ensure the heap object:

– is black or grey (the collector is aware of the object)

– or that the collector will eventually become aware of the object by

following a chain of live objects.

• A grey mutator may have its roots scanned multiple times during a garbage

collection cycle. A mutator is often free to create new roots without con-

cern of correctness, knowing the roots will be rescanned eventually. A

typical concurrent garbage collector will stop all mutator threads to scan

a grey mutator’s roots one last time to trace from any new roots.

Whilst objects can be considered white, grey or black, mutators can only be

considered grey or black. A mutator’s colour refers to whether or not a reference

from a root is followed once or multiple times. A white mutator implies that

root references are never followed — not a useful trait for an indirect garbage

collector.

CHAPTER 2. GARBAGE COLLECTION 39

Table 2.1: A summary of Garbage Collection in use.

Language GCs used Notes
PHP Reference Counting Cycles not handled in PHP <= 5.2 [37].
Python Reference Counting Cycles handled [31].

Reference counting chosen over tracing
algorithms because extensions make root

determination difficult [86].
Java Multiple Supports Garbage First [24], Concurrent
(Oracle Hotspot) Mark-Sweep, Parallel Compacting and

more [75]. Tunable with parameters.
Ruby Incremental GC Introduced in Ruby 2.2 [85].
C Mark-Sweep Allows removal of free calls and

replaces alloc with GC alloc [15].
Also supports Generational and

Incremental GC with OS support.
Javascript Mark-Sweep All modern browsers provide a

tracing GC [67]. Older versions of
Internet Explorer used Reference counting.

Acting in a similar way to read barriers, memory protection has been used

by the Appel et al. garbage collector to detect when a mutator thread tries to

delete a reference from the field of a grey object. As soon as a page trap occurs,

the trap handler blackens the grey object that triggered the trap and shades all

its child objects.

2.9 Summary

Garbage Collection has been researched ever since the first garbage collector

was invented by John McCarthy [61]. The first garbage collector was written

for Lisp, and since then garbage collectors have been implemented for a large

and growing number of languages, including Java, Python, Haskell, and even

languages where explicit memory allocation is dominant such as C [31, 34, 52,

CHAPTER 2. GARBAGE COLLECTION 40

74]. Table 2.1 shows some garbage collection algorithms in use by widely used

programming languages.

There are two main categories of garbage collector, those that determine

which objects are live by tracing the heap graph periodically, and those that

associate information with objects and track each and every reference update.

This thesis is concerned with the tracing category of garbage collection. Tra-

ditional tracing garbage collectors include mark-sweep collectors and copying

collectors. Modern garbage collectors are often based on these traditional collec-

tors. Multi-core systems have been a reality for decades, and massively multi-

core systems are no longer the preserves of the future. Just like applications,

garbage collectors can exploit multiple processors if designed to do so, for per-

formance benefits. These fundamental algorithms above have been improved

with techniques such as parallel garbage collection, concurrent garbage collec-

tion and generational garbage collection.

Chapter 3

Thread-Local Heap GC

3.1 Introduction

This chapter introduces non-uniform memory architecture (NUMA) systems

and describes how garbage collector strategies must be optimised for different

tiers of memory access. Thread-local heap garbage collection is introduced as

a garbage collector strategy that could perform better than other garbage col-

lectors in a NUMA multi-processor environment, and several thread-local heap

garbage collector designs compared.

3.2 Non-Uniform Memory Architecture

As increasing processor clock speed is becoming increasingly difficult, proces-

sor manufacturers are instead looking to multiple processors on a single chip

for increased performance [33]. This increased performance has been gained

through the ability to run applications, and parts of applications, in parallel.

41

CHAPTER 3. THREAD-LOCAL HEAP GC 42

With smaller computers, including personal desktop computers, running 8 or

fewer cores, processor manufacturers have been employing symmetric multi-

processor systems - many processors (also known as cores) that share a single

bus to access main memory. Ignoring the effects of cache and bus contention,

each processor can access memory at the same rate as the other processors.

However, symmetric multiprocessor systems scale poorly because the single

bus that serves processors becomes congested. Instead, non-uniform memory

access architectures offer better scalability with multiple tiers of memory at the

cost of differing memory access times.

Typical non-uniform memory access architectures allow each processor its

own local memory, and access to other processor’s local memory through an

interconnect between processors [54]. Intel’s interconnect offering is called the

QuickPath Interconnect [22] and AMD’s interconnect is called HyperTransport

[21]. The interconnect is point-to-point between processors, but not every pro-

cessor may necessarily be linked to every other processor, therefore to access a

remote processor’s memory, multiple interconnect hops may be required [54].

As remote memory access requires the traversal of one or more processor

interconnects and negotiation with a remote processor, remote memory access

is more expensive than local memory access. This is in terms of latency and

memory bandwidth.

A number of studies have tried to quantify the cost of remote accesses ver-

sus local accesses. This is difficult to do in full detail as there are a number of

variables that affect performance — interconnects, local memory and remote

memory must be tested at various stages of congestion. Finally remote mem-

ory accesses can vary in the number of interconnect hops, so varying number of

CHAPTER 3. THREAD-LOCAL HEAP GC 43

hops should be measured as well.

Studies into latency with local access versus remote access have found that

there is at least a 2X slowdown penalty for remote access [35,36,39,56,65]. These

studies have focused on small machines (2 processors with 4 cores each) or

fully-connected processors so the cost of multiple interconnect hops was not

evaluated. This demonstrates that data locality is important for non-uniform

memory access architectures - making sure as much data the thread needs is

kept local to its processor as possible.

Comparing local and remote access cost is only part of the story, Majo and

Gross completed a study into how data and thread placement affects perfor-

mance [57]. Whilst the assumption that data locality is extremely important for

performance is correct, they found that when a processor becomes congested

and cache congestion is high, it is better to move some data to remote nodes.

With the NUMA machines in the study, each processor die has multiple pro-

cessors, each with their own cache. These processors share another level of

cache on the die. If data locality is maximised keeping all threads’ data on local

memory, cache contention is likely to be high which would cause a performance

penalty. Majo and Gross found that a balance must be kept between maximising

data locality and minimising cache contention — memory bandwidth actually

increased if a processor’s memory was accessed by that processor’s local cores

as well as from remote processors.

Memory controllers in the Intel Nehalem architecture (used in the study)

contain a Global Queue, which attempts to ensure fairness when handling mem-

ory requests from local and remote processors. Majo and Gross found that the

Nehalem architecture is biased towards remote memory accesses, perhaps in

CHAPTER 3. THREAD-LOCAL HEAP GC 44

order not to exacerbate the high cost of remote accesses. By balancing local and

remote memory accesses, performance degradation from Global Queue con-

tention is minimised [57].

Garbage collection is a memory load and store intensive process, which also

has an impact on cache performance. For a simple stop-the-world mark-sweep

garbage collector, every live object in the heap will be loaded from main mem-

ory, via levels of cache, at least once and perhaps multiple times. To be scalable,

garbage collection must demonstrate good locality, as memory accesses on re-

mote processors are slower. However, a scalable garbage collector must also

be aware of the affect locality has on the cache. Instead, it may be beneficial to

break up the garbage collection process into many garbage collectors that oper-

ate on local memory, but which do not necessarily run at the same time. Con-

sequently, one processor may be performing cache intensive garbage collection,

but another processor that uses the same cache may perform less memory load

and store intensive application execution. Thread-local heap garbage collection

is one such garbage collection strategy that allows threads to independently

garbage collect a portion of the heap whilst other threads continue application

execution.

Definition: Scalability. For the purpose of this thesis, scalability refers to the

drop in application execution time as the number of available processors in-

creases. Virtual machine startup and shutdown is not included in the measure-

ment of application execution time, but garbage collection activity is. A scalable

garbage collector must make use of as many processors available as possible

without impacting too greatly on the application.

CHAPTER 3. THREAD-LOCAL HEAP GC 45

3.3 Thread-Local Heaps

Generational collectors segregate objects by age with the aim that by concen-

trating garbage collection on young objects, more objects will be reclaimed in a

shorter period of time. Thread-local heap collectors similarly segregate objects,

but by allocating thread rather than by age.

Definition: Allocating and Remote Thread. An object’s allocating thread is the

thread that creates the object. This is regardless of whether the object is used

by that thread, or whether the thread hands control of the object to some other

thread. In contrast, a remote thread is any other thread that isn’t the allocating

thread.

As objects are segregated by thread, each thread has its own heap partition.

When a thread allocates objects, the object is allocated in this heap partition,

with some implementation specific exceptions.

Definition: Thread-local Heaplet. Each per-thread partition is known as a thread-

local heaplet. Some thread-local heap collectors evolved from generational col-

lectors and so thread-local heaplets are also known as private nurseries.

Some threads co-operate, and can share objects between them. Additionally,

references to objects can be assigned to places that by definition are accessible

to all threads.

Definition: Shared Heaplet. Any parts of the heap that are not partitioned as

a thread-local are known collectively as the shared heaplet.

CHAPTER 3. THREAD-LOCAL HEAP GC 46

Concurrent garbage collection and parallel garbage collection improve over-

all performance by exploiting multiple processor systems. Parallel garbage col-

lectors split garbage collection work between multiple collector threads in an

attempt to reduce garbage collection time. However parallel collection does

not address the problem that garbage collection is memory intensive and that

the inter-processor buses can become a bottleneck. Also, parallel garbage col-

lection may still suffer from poor responsiveness as mutator threads could be

blocked for comparatively long periods of time. Concurrent garbage collection

improves on responsiveness by allowing mutator threads to run simultaneously

with garbage collection, but also does not address memory bandwidth issues.

For these reasons, parallel and concurrent garbage collectors are unlikely to

scale as well a garbage collector that does address the memory bottleneck. One

such garbage collection strategy is known as thread-local heap garbage collection.

The goal of thread-local heap garbage collection is to perform garbage collector

on a subset of the heap. These smaller garbage collections require only a single

thread to block and are comparatively quick, providing good responsiveness.

A garbage collection operating over a subset of the heap will also hand back re-

claimed memory quicker than a garbage collector that has to traverse the whole

heap (albeit less memory will be reclaimed per collection). By operating over a

subset of the heap, fewer objects are reclaimed so these smaller garbage collec-

tions needs to be performed more frequently. Another advantage of thread-local

heap garbage collection over parallel garbage collection is that multiple smaller

collections can operate independently of one another, whereas parallel collector

threads may require periodic synchronisation.

CHAPTER 3. THREAD-LOCAL HEAP GC 47

3.3.1 Identifying Shared Objects

The goal of thread-local heap garbage collection is to allow threads to reclaim

their own dead objects. In order to be able to determine that an object is dead,

the garbage collector must be certain that there are no references from live ob-

jects or roots to that object. For a local object O, only other local live objects

allocated by the same thread or the thread’s stack can hold references to O.

With shared objects however, the whole heap must be traversed to check for

references to them, because the allocating thread has lost control of reference

creation to that object. The more shared objects there are in a heap, the less

volume of memory reclaimable by allocating threads.

Different thread-local heap garbage collectors classify shared objects differ-

ently, ranging in precision and cost of invariant preserving maintenance.

Static determination One such classification is to treat any object that could

ever potentially be reached by multiple threads as a shared object. This is an

imprecise classification as it may cause objects that could be local to be treated

as shared. This classification arises from static analysis, which must determine

the consequences of following each branch as it cannot predict which branch

is taken during execution. The major disadvantage of this definition is that if

there is a single execution branch that causes an object to become shared than

the object is deemed shared across all execution branches. Listing 3.1 shows an

example method that causes an object to escape when a boolean is true. If the

boolean is non-deterministic, static analysis would conclude that any objects

passed to the method are shared.

CHAPTER 3. THREAD-LOCAL HEAP GC 48

Listing 3.1: An example in Java of an object escaping depend-

ing on a boolean. Due to the boolean b, static analysis may be

unable determine that o is a shared object.

public void method(Object o, boolean b) {

i f (b) {

Thread t = new Thread(o);

t.start ();

}

}

One thread-local heap collector that uses static analysis is Steensgaard’s col-

lector for Java [92]. Steensgaard’s static analysis is an escape analysis and a

simple extension of Ruf’s flow-insensitive escape analysis that removes unnec-

essary synchronisation [84].

Escape analysis has traditionally been used for stack allocation (allocating

an object in a method’s stack frame if the object remains local to the thread and

does not survive for longer than the lifetime of the method), and determining

whether more than one thread accesses an object. The former is useful as stack

allocation is cheaper than heap allocation and the latter is useful for eliminating

synchronisation and thread-local heaps [20]. Ruf’s escape analysis builds per-

method summaries, computing the effect the method has on the parameters and

whether any of the statements could cause any values to escape the method or

the executing thread. This information is stored in a structure known as an alias

set.

CHAPTER 3. THREAD-LOCAL HEAP GC 49

Steensgaard’s alias set stores a whether an object was created by the method

or its callees, the set of threads that may access an object, whether the object can

be reached from a global root and a mapping from fields to alias sets of possible

values.

Analysis of every method also produces an alias context, recording the alias

sets for each parameter, the alias set for the return value and the alias set for any

exceptions.

Steensgaard’s analysis is flow-insensitive, so within a method, statements

are presumed to execute in any order. This helps to minimise analysis space

usage - grouping potentially aliased values together [84].

A call graph is constructed, which is traversed from bottom-up. When com-

pleted, the alias set for each new statement is consulted and, if the object can

be reached from a global root and the set of threads that may access an object

is non-singleton, then the object is shared and must be allocated in the shared

heaplet.

Steensgaard does not assume an object is shared if it is merely reachable from

a global root. Global roots, such as static fields, may only be accessed by a sin-

gle thread, so treating targets of global roots as shared is conservative. Instead,

more than one thread has to demonstrate the potential to access a global root

for that root to cause objects to become shared. At the end of the analysis, ob-

jects are deemed definitely local or potentially shared. Allocation is specialised

to allow allocation of thread-local objects, and objects deemed at risk of being

shared, differently.

Jones et al. [47] refined the Steensgaard analysis with support for partial pro-

gram analysis and dynamic class loading. With dynamic class loading, classes

CHAPTER 3. THREAD-LOCAL HEAP GC 50

can be loaded at run-time, meaning when a method invocation takes place on

a target object, it could be impossible to know the type of the target object and

which method would actually be invoked. Without knowing what the invoked

method does to objects, escape analysis cannot precisely determine whether the

method causes passed parameters to escape. Therefore, the worst case is as-

sumed — and parameters are deemed shared. Jones et al. instead opt for the

best case: assume the parameters remain local, but be prepared for the pos-

sibility of them becoming shared. A new thread-local region is created per

thread to house objects, where the shared status is ambiguous, known as ‘op-

timistically local’ objects. When a new class is loaded, it is checked to see if it

causes any optimistically-local objects to become shared. If the assumption that

optimistically-local objects do not escape their allocating thread is violated, than

Jones et al. treat the optimistically local region as a shared region. Conversely,

if the assumption holds, optimistically-local objects remain treated as local.

Jones et al. found that across benchmarks1, 2 to 6 percent of object allocation

sites were local, 30 to 48 percent were optimistically local and 46 to 67 percent

were shared. The analysis completed quickly, between 1 and 22 seconds for the

benchmarks, with small space overhead between 5 and 30MB.

The major benefit of static analysis is that it is performed outside of execu-

tion and once per program, imposing no additional overhead on execution, with

the obvious downside of imprecision that goes with it. Another disadvantage

is that static analysis judges sharing status by allocating site, not by individual

object. If during analysis an allocation site is deemed shared, any objects that

are allocated there are treated as shared from allocation - even if the object may

1compress and javac in Specjvm98, VolanoMark and Specjbb2000.

CHAPTER 3. THREAD-LOCAL HEAP GC 51

only become shared at the very end of its lifetime [29, 47].

Dynamic determination Static analysis is a conservative way to determine

which objects are shared between threads. It judges this by allocation site, not

per object, so that even if the vast majority of objects allocated on a site are local,

all these objects must be considered global [29].

Another way to classify objects as shared is by monitoring changes to refer-

ences during program execution. If the thread-local heap invariant is violated

by a reference change that is about to happen, the thread-local heap collector

implementation has a chance to make modifications to fix the invariant before

allowing the reference change to go ahead.

There are many different implementations that take this approach to deter-

mining shared objects [2, 27–29, 60, 64] and they fundamentally vary on how

precise they are at classifying objects as shared. The most precise classification

would be to track which threads were using an object, including when a thread

relinquishes accessibility of that object, and treat that object (and only that ob-

ject) as shared for as long as it is accessible by multiple threads. Figure 3.1

describes the three key dimensions where dynamic thread-local heap collectors

vary on precision.

The overhead on regressing shared objects back to local (dimension 1) is

prohibitively expensive and so no current thread-local collector supports this.

A naı̈ve implementation might allow this to happen during full heap collection

by keeping track of which threads have references to each object and then prop-

agating this information through the heap whilst traversing. The downside is,

each thread would need to traverse all objects it has access to, meaning each

CHAPTER 3. THREAD-LOCAL HEAP GC 52

Figure 3.1: Dimensions to compare thread-local heap collectors
that dynamically determine an object’s sharing status.

1. Shared objects are allowed to regress back to local if becoming accessible
by a single thread, versus shared objects are permanently shared.

2. When an object becomes shared, its transitive closure is also treated as
shared, versus a single object becomes shared at a time.

3. An object is treated as shared as soon as it is accessible to multiple threads,
versus an object only being treated as shared if multiple threads actually
demonstrate usage of that object.

object can be traversed many times during a collection cycle rather than once -

substantially increasing the cost of full heap collection.

The second dimension is commonly used to compare thread-local heap garbage

collectors. Whilst treating a whole transitive closure as shared when its par-

ent object becomes shared is patently imprecise, it may be desirable for perfor-

mance reasons — especially if the transitive closure is going to become shared

itself at a later point.

Two thread-local heap garbage collectors that treat an object’s transitive clo-

sure as shared are the Domani et al. collector for Java [29] and the Doligez et al.

collector for ML [27, 28].

The Domani et al. [29] collector dynamically determines which objects are

shared by monitoring reference changes. It achieves this by using a write bar-

rier to intercept reference writes and performs a check to see if writing the ref-

erence would cause the target object to become shared. Each object has a bit in

a separate bitmap that denotes whether the object is shared or not. When an

reference write that would violate the thread-local heap invariant is made, the

CHAPTER 3. THREAD-LOCAL HEAP GC 53

shared bit for the target object is set and the shared bit for all objects in the tran-

sitive closure are set too. This requires a garbage collection style trace (partial

heap traversal). Shared objects are not moved out of the thread-local heap, they

are merely pinned in place and can only be removed by full heap collection. As

Domani et al. does not support shared objects regressing back into local, this bit

stays set once set. Bitmap marking is susceptible to false sharing [25] but this is

likely not to be a problem as most object sharing bits in a cache line will belong

to local objects of the same thread.

All objects are allocated into a small per-thread heaplet (in the order of 1MB)

with the exception of special types of objects that are always allocated into the

shared heaplet2. Synchronisation with other threads on allocation is not re-

quired, as only a single thread can allocate into each thread-local heaplet, just

as with local allocation buffers.

Domani et al. takes a different approach to the physical layout of the heap.

Conceptually each thread has a local heaplet and there is a global shared heaplet.

However physically, local and shared objects intermingle in the heap. After a

write barrier trigger, evacuating shared objects out of thread-local heaplets can

be an expensive process, as all references to that object must be updated and

this is non-trivial.

When a thread’s thread-local heaplet is full, a thread can either perform

thread-local collection on its heaplet without requiring the co-operation of other

threads, or can expand the local heaplet. Per-thread garbage collection is per-

formed using a mark-sweep collector. This requires the co-operation of only

2Threads, for example, are considered shared and any values passed to a thread on creation
should also be considered shared.

CHAPTER 3. THREAD-LOCAL HEAP GC 54

the single allocating thread. As the single thread is the only thread scanned

for roots, only that thread’s local objects - in its thread-local heaplet - can be

reclaimed. During the marking phase, the mark bit and the shared bit are both

checked when an object is encountered. All objects without the shared bit set

are local. A shared object is always treated as marked and does not need to be

scanned for outgoing references as they all refer to shared objects. When all live

objects in a thread’s local heaplet have been traversed, the heaplet is swept and

any reclaimed memory is added to that thread’s local free list, ready to be used

for allocation at a later stage.

Whilst each thread can perform local garbage collection on its local heaplet,

periodically a full heap collection is needed to reclaim objects in the shared

heaplet. This full heap collection uses all roots — including all thread stacks

and static fields. Unlike with thread-local collection, local and shared objects

are candidates for reclamation in a full heap collection, and for shared objects

the whole object graph must be traversed to determine which of these are live.

As threads cannot interfere with another thread’s objects, it is safe to perform

concurrent thread-local collections, however it is not safe to perform thread-

local collections concurrently with full heap collections, so thread-local collec-

tions must complete before a full heap collection can go ahead.

Over the course of program execution, the Domani et al. collector is sus-

ceptible to a large number of shared objects fragmenting thread-local heaplets.

An extension to the collector allows for compaction, where shared objects are

moved out of areas of the heap dominated by thread-local objects and moved

together. This requires two passes of the heap, one to identify forward point-

ing references, and one to identify backward pointing references and move the

CHAPTER 3. THREAD-LOCAL HEAP GC 55

objects.

Another thread-local collector that dynamically determines shared objects

is the Doligez, Leroy, Gonthier collector [27, 28] for Concurrent Caml Light (a

dialect of ML [63,77]). This thread-local collector aims to minimise memory bus

traffic on the assumption that a thread’s immediately newly allocated objects

account for a large proportion of the thread’s work.

Each thread’s local heaplet is small, typically 32KB, with the goal to keep

each heaplet in cache. It is assumed that the scheduler pins threads to the pro-

cessor closest to its cache. With such a small local heaplet and fast cache, local

heaplet collection is extremely fast in comparison to full heap collection, but

many more of them are required to free memory on par with a full heap collec-

tion.

The Doligez et al. collector is able to take advantage of languages features,

including being able to duplicate immutable objects with no semantic corrup-

tion, as all copies of immutable objects are identical. Programs in ML allocate

more immutable objects than in Java.

Immutable objects are allocated in the thread-local heaplet, and when the

heaplet is full, alive immutable objects are copied to the shared heaplet. By

evacuating all live objects out of the local heaplet, the heaplet becomes empty

after collection and allocation is cheap and efficient bump pointer allocation

(allocation of objects sequentially rather than allocating objects in free gaps in

memory). Doligez et al. compare their collector to a generational collector,

but instead of a stop-the-world synchronisation required for minor collection, a

thread can garbage collect its thread-local heaplet without the co-operation of

other mutator threads.

CHAPTER 3. THREAD-LOCAL HEAP GC 56

As typical with all thread-local heap collectors, no references from the shared

heaplet to the private heaps are allowed. If such a reference was created the

immutable object in the private heap is duplicated and a reference stored to that

instead. If duplicated objects contain references to other objects in the private

heap, the entire transitive closure is duplicated.

Mutable objects are directly allocated into the shared heaplet.

As with the Doligez et al. collector, Anderson’s thread-local heap collector

also has frequent thread-local collections. Whenever a thread-local collection

occurs, all live objects in the thread-local heaplet are promoted to the shared

heap, regardless of whether objects are local or shared. This empties the thread-

local heaplet for allocation. When an invariant breaking write (from outside the

thread-local heaplet to the thread-local heaplet) occurs, thread-local collection

is triggered.

With such frequent thread-local collections, mutator stack scanning becomes

a proportionally large overhead in execution time. To minimise this, Anderson’s

thread-local collector only scans stack frames that have changed since last col-

lection, as older stack frames cannot refer to objects in the thread-local heaplet.

The final dimension (Figure 3.1) is one that has recently begun to be evalu-

ated in the field. Most dynamic thread-local heap collectors [2,27–29] assume an

object is shared if a reference to that object escapes to another thread, however

that thread may not even use that reference [60].

Marlow et al.’s thread-local heap collector [60] is aimed at reducing the allo-

cation wall problem — where object allocation impacts scalability of Java pro-

grams because allocation causes a significant amount of memory bus write traf-

fic [102]. To combat this each thread will allocate to a small thread-local heaplet,

CHAPTER 3. THREAD-LOCAL HEAP GC 57

smaller than a processor’s L2 cache size. This reduces memory write back traffic

assuming that when the thread-local heaplet is full, the vast majority of objects

die here and that time between local collections is sufficient to allow objects

to die. As the local heaplet is so small, local collections are likely to be very

frequent.

To further reduce the impact of memory bus write traffic, the thread-local

heap implementation allows references from the shared heap to local heaplets,

which violates the thread-local heaplet invariants. This allows more objects to

remain in the thread-local heaplet and for longer, as objects are not immediately

promoted out of the local heaplet into the shared heaplet. However, to patch the

violation, a read barrier is necessary to track when another thread tries to gain

access to another thread’s local objects by following these invariant breaking

shared to local heaplet references. The read barrier allows the postponement of

invariant preserving promotion, and will promote objects only when they are

used by multiple threads.

Marlow et al.’s collector is designed for Haskell [34], a functional language.

Just like Doligez et al.’s collector, immutable and mutable objects are treated dif-

ferently. Mutable objects are allocated to a ‘sticky heap’ partition of the thread-

local heaplet. When mutable objects become shared, they are not moved like

immutable objects are, but a global bit associated with that object is set so that

thread-local collection knows not to interfere with and reclaim the object. Ow-

ing to the implementation complexity, mutable objects do not have a read bar-

rier and so must be promoted to the shared heap (by flipping the global bit)

straight away when a write occurs. This is mitigated by the fact that the vast

majority of objects are immutable.

CHAPTER 3. THREAD-LOCAL HEAP GC 58

An example of a thread-local heap that evacuates shared objects out of thread-

local spaces is Sivaramakrishnan et al.’s collector for a dialect of ML [90]. A

write barrier is used to detect when a reference is written from a shared object

to a local object, and the local object is moved out of the thread-local heap. There

may be existing references to the object’s old location, so a reference to the new

location is left at the old location, and a read barrier detects any attempts to

access the object at the old location, and instead accesses the object at the new

location.

However the authors were concerned about the read barrier being a signifi-

cant overhead, so the paper investigates methods of reducing the cost.

One such way investigated is to delay any writes that require evacuation of

an object if garbage collection is soon to occur. During the next collection cycle,

the object can be moved and forwarding pointers updated during the course of

collection (when it is easy to do so), and after collection the write can go ahead

to the new location. This approach only works if few threads are stalled this

way at any time and other threads are available for execution.

3.4 Summary

Thread-local heap garbage collection is a candidate for improving scalability

of garbage collection in a massively multi-core environment. Allowing threads

to garbage collect their own objects with little synchronisation and with im-

proved locality is desirable, and should improve scalability. There are many

thread-local heap garbage collectors for functional languages such as ML and

Haskell but relatively few for Java, despite Java being a widely used. This may

CHAPTER 3. THREAD-LOCAL HEAP GC 59

be because programs written in functional languages typically allocate far more

immutable objects than Java programs, allowing easier evacuation of shared

objects out of thread-local heaps.

One such thread-local heap garbage collector for Java suffers from conser-

vativeness. When an object becomes shared, its whole transitive is treated as

shared along with it. This imprecision may incur a high overhead not only

in terms of evacuating the objects out of the thread-local space, but also pre-

venting any objects from being reclaimed by thread-local garbage collection if

those objects subsequently die. However, the imprecision may be an optimisa-

tion, if objects in the transitive closure end up being used by multiple threads

themselves. Bulk evacuation of these objects may prove to be more efficient

exploiting locality.

Whether Java applications can benefit from a more precise thread-local heap

garbage collector is yet to be investigated. Chapter 4 emulates both a precise

and a Domani style bulk-evacuation thread-local garbage collector to evaluate

just how imprecise Domani’s collector is.

Chapter 4

Patterns of Sharing

4.1 Introduction

All current thread-local heap implementations suffer from the same problem,

with varying degrees – precision of sharing. Even Marlow et. al’s collector, the

most precise implementation at current, handles mutable objects imprecisely.

To implement a more precise thread-local heap collector in Java, mutable ob-

jects must be handled as precisely as immutable objects are. To investigate this

further, a feasibility study is completed to ensure the effort of designing and

implementing a precise thread-local heap collector in Java will yield improve-

ments over less precise collectors.

4.2 Tools

In order to complete a feasibility study, a virtual machine is required to mea-

sure sharing of objects between threads and benchmarks that are indicative of

60

CHAPTER 4. PATTERNS OF SHARING 61

real-world problems are needed to ensure the measurements are fair and mean-

ingful.

4.2.1 DaCapo Benchmarking Suites

Java is an expressive language that allows a wide range of applications to be

developed. It is a portable language, with the application compiled down to

a bytecode representation which is interpreted by a Java Virtual Machine. Its

portability is one of the reasons it is widely used on many platforms, including

applications on desktop computers, mobile platforms and on servers. It sup-

ports multi-threaded applications for concurrency and provides a large stan-

dard library, providing network and Internet APIs, encryption, file storage, data

structures and much more.

As Java supports such a wide ranging application portfolio, a suitable bench-

mark suite is required to test as many aspects of the language as possible. The

DaCapo benchmarking suite [10,80] for Java consists of real world applications

that allocate non-trivial numbers and volume of objects, with the aim of testing

garbage collectors, amongst other things.

Tables 4.1 and 4.2 show the benchmarks provided by the DaCapo suites and

give a description of what each benchmark does and the real-life workload it

represents, as well as an indication of the size of benchmark – including the

amount of objects allocated and number of classes loaded.

CHAPTER 4. PATTERNS OF SHARING 62

Table 4.1: A description of the DaCapo 2006 suite benchmarks
and an indication on object allocation and classes loaded. These
numbers include virtual machine object allocations and classed
loaded. Summarises the workload description taken from the
Dacapo website [80].

Bench– Description of Objects Volume Classes Multi-
mark workload allocated allocated loaded threaded?

(000s) (MiBs)
antlr Parses language gram-

mar files
4,675 247 1850 No

bloat Performs analysis and
optimisations on java
bytecode

34,237 1155 2013 No

eclipse Executes JDT perfor-
mance tests for the
Eclipse IDE

54,105 3056 3587 Yes

fop Parses and formats an
XSL-FO file

2,745 129 2528 No

hsqldb Executes JDBC-bench-
like benchmark based
on a banking applica-
tion

5,377 176 1973 Very

jython Performs the pybench
Python benchmark

20,250 1145 5363 No

luindex Uses lucene to index
Shakespeare and the
King James Bible

15,619 477 1848 Barely

lusearch Uses lucene to perform
keyword searches of
Shakespeare and the
King James Bible

18,824 2031 1838 Yes

pmd Analyses Java classes
for problems

34,932 799 2333 No

xalan Transforms XML docu-
ments into HTML

6,687 909 2253 Yes

CHAPTER 4. PATTERNS OF SHARING 63

Table 4.2: A description of the DaCapo 2009 suite benchmarks
and an indication on object allocation and classes loaded. These
numbers include virtual machine object allocations and classed
loaded. Summarises the workload description taken from the
Dacapo website [80].

Bench– Description of Objects Volume Classes Multi-
mark workload allocated allocated loaded threaded?

(000s) (MiBs)
avrora Simulates programs run

on AVR microcontrollers
2,677 100 2228 Yes

jython Performs the pybench
Python benchmark

44,463 2088 5425 Yes

luindex Uses lucene to index
Shakespeare and the King
James Bible

989 68 1969 Yes

lusearch Uses lucene to perform
keyword searches of
Shakespeare and the King
James Bible

13,580 5203 1879 Very

pmd Analyses Java classes for
problems

13,319 614 2756 Very

sunflow Renders images using ray-
tracing

62,255 2071 1955 Very

xalan Transforms XML docu-
ments into HTML

8,899 1104 2362 Very

CHAPTER 4. PATTERNS OF SHARING 64

4.2.2 Jikes RVM

In order to test different garbage collectors, a virtual machine that allows mod-

ification is used. Jikes RVM is an open source virtual machine with complete

access to all relevant parts of the virtual machine — including the compiler,

thread scheduling and memory management subsystems. The version of Jikes

RVM extended for this project was the version available from sourceforce using

mercurial1, commit made on 2013-03-18 18:18:49 -0400 with the version message

“Fixes for concurrency bugs in classloader code reported in rvm-researchers

mailing list on 3/18/2013 by Tomoharu.3.1.3”. This is a few commits ahead of

the version 3.1.3 release.

Jikes RVM is especially celebrated for its separation of memory manage-

ment from the rest of the virtual machine, with the aim of making it easier to

develop, modify and measure different garbage collectors. For this reason it

is widely used in the garbage collection field. It supports two compilers — a

baseline compiler which performs simple compilation and an optimising com-

piler which produces more efficient code using compiler optimisations. Jikes

RVM is a meta-circular virtual machine — the virtual machine itself is written

in Java and requires bootstrapping to initialise. A bootimage, composed from

Java objects, is created when the virtual machine is built, compiled with a Java

compiler. On virtual machine execution, this bootimage is loaded into memory

during initialisation.

1Available at http://sourceforge.net/projects/jikesrvm/ or by executing ‘hg clone
http://hg.code.sf.net/p/jikesrvm/code jikesrvm’.

http://sourceforge.net/projects/jikesrvm/

CHAPTER 4. PATTERNS OF SHARING 65

4.3 Thread Relationships

4.3.1 Study Method

To measure the conservativeness of different thread-local heap implementa-

tions, modifications must be made to a Java virtual machine to allow more de-

tailed tracking of object state. The first thread-local heap implementation being

measured is similar to Domani’s thread-local heap collector [29], that treats an

object’s transitive closure as shared when it becomes shared itself. A Domani

style transitive closure was approximated — periodically a triggered garbage

collection cycle would determine the set of objects each thread could reach. This

way we can determine the transitive closure of shared objects efficiently, group-

ing the work into periodic collections rather than determining the transitive

closure of each shared object when it becomes shared. This way, we are sac-

rificing some accuracy, meaning that this implementation underestimates the

number of objects treated as shared. The underestimation comes from the de-

lay between when a Domani-style shared bit setting transitive closure would be

triggered, and when the periodic garbage collector triggers. We are comparing

this implementation to a second thread-local heap implementation that is more

precise — treating an object as shared if:

1. a reference to that object escapes by:

• a reference being written from a shared object to it.

• a reference being written from a static field to it.

2. and two or more threads use that object by:

CHAPTER 4. PATTERNS OF SHARING 66

• writing a value into its field or writing a reference to it into another

object’s field.

• reading a value from its field

• writing it to a static field

• reading it from a static field

The two implementations have different overheads, but this experiment only

focuses on comparing the difference in precision, not in execution. The hypoth-

esis being tested is that treating the transitive closure of an object as shared is

imprecise and demonstrating how imprecise it is. To implement both thread-

local heap implementations, Java bytecode putfields and getfields (which

write a value to an object’s field and read a value from an object’s field) must

be intercepted and garbage collection modified. Jikes RVM fulfils these require-

ments, allowing the modification of object layout and has extensive support for

capturing putstatic, getstatic, putfield and getfield operations immedi-

ately before they occur and allowing a reaction — known as barriers. Jikes RVM

separates memory management, including garbage collection, from the rest of

the internals of the virtual machine, which eases the modification of garbage

collection.

In order to track which threads have used or can reach each object, per-

object data must be stored that can be modified at any time and read back when

the data needs to be retrieved. Additionally, multiple threads could potentially

modify this data at the same time, so it must be concurrently stable. To min-

imise the impact on executing applications, this data must be as compact as

possible. A larger object header will cause more garbage collection cycles, but

CHAPTER 4. PATTERNS OF SHARING 67

the study already triggers more garbage collection cycles than typical for each

benchmark. Additionally, some performance penalty caused by barriers is ac-

ceptable, as application behaviour is being measured — not performance. The

format chosen for this was adding twenty words to each object’s header, increas-

ing each object’s size by 80 bytes. This overhead on object header is purely for

statistical gathering, and would not be needed in a thread-local heap garbage

collector implementation. Table 4.3 shows the object header used for this exper-

iment. These words in the object header allow the setting of information and the

retrieval of object information at any time between allocation of the object up

to its reclamation. To support concurrent modification, words can be modified

with compare and swap operations.

Any important part of the experiment is identifying the thread that allocates

each object. An allocating thread is always said to have reached an object or

used an object, so its corresponding bits in the object’s header are always set.

When a thread uses an object either through a putfield, getfield, putstatic

or getstatic operation, the executing thread’s bit is set in the object’s barrier

header words. The invokevirtual operation, a method invocation on an ob-

ject, is not considered a use of an object as the object is already marked as

shared by a getfield or getstatic operation before a thread can perform an

invokevirtual operation on it. This is done with a compare and swap to ensure

concurrent stability (Listing 4.1). Listing 4.4 shows an example Java class, that

utilises putfield, getfield, putstatic and getstatic operations, as shown

by the compiled class (Listing 4.5). When lines 2, 3 and 4 of the constructor

are executed (resulting in a putstatic and two putfield operations), barrier

CHAPTER 4. PATTERNS OF SHARING 68

Table 4.3: Object header words, including words added for the
feasibility study in red. Every object allocated by Jikes RVM will
contain these words in addition to object fields as specified by
its class.

Word Description
Array length A word indicating the length of an array. If this

object is not an array, this is the object’s first field
instead.

TIB Pointer A pointer to the Type Information Block, which
holds the information on the object, including its
type, and virtual methods.

Hash and Lock Word A word that stores an object’s hash code and
thin lock bits (for monitorEnter and monitorExit
bytecodes).

Unused A required padding word.
Barrier 0-31

Six words storing which threads have used this
object. One bit per thread, supporting a
maximum of 192 threads.

Barrier 32-63
Barrier 64-95
Barrier 96-127
Barrier 128-159
Barrier 160-191
Reachability 0-31

Six words storing which threads have ever
reached this object during a garbage collection
cycle. One bit per thread, supporting a
maximum of 192 threads.

Reachability 32-63
Reachability 64-95
Reachability 96-127
Reachability 128-159
Reachability 160-191
Object ID A unique object ID.
Reads The number of field reads from this object.

Writes The number of field writes to the object.

Thread information Stores the thread ID that allocated the object, as
well as information required for the reachability
tracing mechanism.

Temporal information The time an object was allocated, became shared
by reachability or barriers (if it ever did) and at
which GC it was reclaimed.

CHAPTER 4. PATTERNS OF SHARING 69

methods objectPutStatic, objectPutField, primitivePutField are called re-

spectively. When benchmark methods getStaticField, getObjectField and

getPrimitiveField are called, the barrier methods objectGetStatic, objectGetField

and primitiveGetField are, as a result, called respectively. Therefore, as a

result of any of these methods being called, the BarrierBenchmark object will

have the executing thread’s bit set in its header. Additionally in the construc-

tor, as a result of the objectPutField and objectGetField, the Strings will

have the executing thread’s bit set. Finally, array operations must be consid-

ered too. Array stores and loads of both primitive and reference types result

in a barrier method being called. The iaload bytecode generated as a result of

the getFirstArrayElement method will lead to the primitiveGetField barrier

method being called.

Table 4.4 shows a table of bytecodes and barrier methods that are called.

When the barrier method completes successfully, the bytecode operation con-

tinues, either performing the read or write as expected.

With the barrier methods in place, objects that are used by multiple threads

or that have direct references escape to multiple threads can be tracked. The

other thread-local heap implementation involves approximating which objects

are reachable from each thread.

At each garbage collection cycle, before any objects are reclaimed, each indi-

vidual thread’s roots (object references in static fields and the thread’s stack) are

discovered independently and the transitive closure of these roots are traced.

Any objects encountered during this trace have the corresponding thread ID bit

set in the reachability words in that object’s header (see Table 4.4). At the end

CHAPTER 4. PATTERNS OF SHARING 70

Table 4.4: A table of Java bytecodes which when interpreted re-
quire a barrier invocation. Pseudocode for each barrier is avail-
able in Listing 4.3. When an object is allocated, Listing 4.1 shows
pseudocode for the method invoked.

Bytecode Barrier invoked
aaload ReferenceGetField.

iaload

PrimitiveGetField.

faload

caload

saload

baload

laload

daload

aastore ReferencePutField.

iastore

PrimitivePutField.

fastore

castore

sastore

bastore

lastore

dastore

getstatic If operand is a reference static field,
ObjectGetStatic is called.

putstatic If operand is a reference static field,
ObjectPutStatic is called.

getfield If operand is a reference field, ObjectGetField
otherwise PrimitiveGetField is called.

putfield If operand is a reference field, ObjectPutField
otherwise PrimitivePutField is called.

new No specific barrier called, but object has the
allocating thread’s bit set on allocation.newarray

multianewarray

CHAPTER 4. PATTERNS OF SHARING 71

Listing 4.1: Pseudocode for the method invoked on object allo-
cation. A thread has gained a reference to an object or has used
an object. Its bit is set in one of the object header words with a
compare and swap.

public void mark(Object o, i n t threadID) {

// Returns the address of the word containing

// the appropriate bit that needs to be set.

HeaderWord word = selectBarrierHeaderWord(o, threadID);

while(t r u e) {

i n t value = word.getValue ();

// Set the corresponding bit in the word that refers

// to the threadID. selectHeaderWord has already

// narrowed down the threadID to the correct 32 bit word.

i f (cas(word , value , value | (1 << (threadID % 32)))) {

break;

}

}

}

of this trace, all objects visited (all of the objects this particular thread can ac-

cess) will have the appropriate reachability bit set in the object header, although

some objects may not have been changed if the appropriate bit was already set

in a previous garbage collection cycle.

For every object, these reachability bits can be compared with the bits in the

object header set by the barrier in order to determine whether an approximation

of a Domani-style thread-local heap garbage collector is imprecise and if so,

indicate how imprecise.

Periodic garbage collections to determine reachability are only an approxi-

mation of the objects a thread can reach, as it is a snapshot at garbage collec-

tion points rather than monitoring reachability over the whole program con-

tinuously. Figure 4.1 demonstrates how the approximation underestimates the

CHAPTER 4. PATTERNS OF SHARING 72

Listing 4.2: Pseudocode for the methods that increment the
reads and writes counter. These counters track the number of
times a field in the object is read from and written to. If the in-
crement to a counter causes it to overflow, execution halts. With
one word, execution halts occurred as 32 bits was not enough to
hold the counter value. Two words (64 bits) is sufficient for the
benchmarks tested.

public void increaseReadCounter(Object o, i n t threadID) {

// HeaderWord is 64 bits / 2 words

HeaderWord word = selectReadCounterWords(o);

while(t r u e) {

i n t value = word.getValue ();

// cas() fails if the value would overflow.

i f (cas(word , value , value + 1)) {

break;

}

}

}

public void increaseWriteCounter(Object o, i n t threadID) {

// HeaderWord is 64 bits / 2 words.

HeaderWord word = selectWriteCounterWords(o);

while(t r u e) {

i n t value = word.getValue ();

// cas() fails if the value would overflow.

i f (cas(word , value , value + 1)) {

break;

}

}

}

CHAPTER 4. PATTERNS OF SHARING 73

Listing 4.3: When a putstatic, putfield, getfield or
getstatic Java bytecode is encountered, barrier code is exe-
cuted. This barrier code sets the appropriate bit in an object
header and may increase a counter for reads and writes to an
object. Pseudocode for ‘mark’ is available in Listing 4.1 and ‘in-
creaseReadCounter’ and ‘increaseWriteCounter’ is available in
Listing 4.2.

public void primitiveGetField(Object src) {

mark(src , getExecutingThreadID ());

increaseReadCounter(src);

}

public void primitivePutField(Object src) {

mark(src , getExecutingThreadID ());

increaseWriteCounter(src);

}

public void objectPutField(Object src , Object value) {

mark(src , getExecutingThreadID ());

mark(value , getExecutingThreadID ());

increaseWriteCounter(src);

}

public void objectGetField(Object src) {

mark(src , getExecutingThreadID ());

increaseReadCounter(src);

}

public void objectPutStatic(Object tgt) {

mark(tgt , getExecutingThreadID ());

increaseWriteCounter(tgt);

}

public ObjectReference objectGetStatic(Object value) {

mark(value , getExecutingThreadID ());

increaseReadCounter(value);

}

CHAPTER 4. PATTERNS OF SHARING 74

Listing 4.4: A small benchmark that results in all types of barri-
ers being called - Array field reads and writes, primitive field
reads and writes, reference field reads and writes and reads
from and writes to static fields. Lines highlighted in red have
their compiled counterpart shown in Listing 4.5.

public c l a s s BarrierBenchmark {

public BarrierBenchmark () {

t h i s .arrayField = new i n t [10];
BarrierBenchmark.staticField = "";

this.objectField = "";

primitiveField = 0;

}

public i n t primitiveField;

public i n t [] arrayField;

public s t a t i c String staticField;

public String objectField;

public i n t getFirstArrayElement () {

re turn arrayField [0];

}

public String getStaticField () {

re turn BarrierBenchmark.staticField;

}

public String getObjectField () {

re turn objectField;

}

public i n t getPrimitiveField () {

re turn primitiveField;

}

}

CHAPTER 4. PATTERNS OF SHARING 75

Listing 4.5: The resulting bytecode from the compiled bench-
mark, Listing 4.4. Lines in red are bytecode generated when the
red lines in Listing 4.4 are compiled.

Compiled from "BarrierBenchmark.java"

public c l a s s BarrierBenchmark extends java.lang.Object{

public i n t primitiveField;

public i n t [] arrayField;

public s t a t i c java.lang.String staticField;

public java.lang.String objectField;

public BarrierBenchmark ();

Code:

0: aload_0

1: invokespecial #1;

4: aload_0

5: bipush 10

7: newarray i n t
9: putfield #2; // Field [I

12: ldc #3; // String

14: putstatic #4; //Field Ljava/lang/String;

17: aload_0

18: ldc #3; // String

20: putfield #5; //Field Ljava/lang/String;

23: aload_0

24: iconst_0

25: putfield #6; //Field I

28: re turn
public i n t getFirstArrayElement ();

Code:

0: aload_0

1: getfield #2; // Field arrayField :[I

4: iconst_0

5: iaload

6: ireturn

public java.lang.String getStaticField ();

Code:

0: getstatic #4; //Field Ljava/lang/String;

3: areturn

public java.lang.String getObjectField ();

Code:

0: aload_0

1: getfield #5; // Field Ljava/lang/String;

4: areturn

public i n t getPrimitiveField ();

Code:

0: aload_0

1: getfield #6; // Field I

4: areturn

}

CHAPTER 4. PATTERNS OF SHARING 76

Figure 4.1: An example heap for demonstrating how the fea-
sibility study underestimates shared objects identified by a
Domani-style transitive closure trace. Should object A be-
come shared, the transitive closure (B, D, E, F) is traced
and also marked shared. The feasibility study approximates
Domani-style traces by periodically performing garbage collec-
tion. There is a delay between object A becoming shared and
this periodic garbage collection being performed. If the refer-
ence between objects E and B is removed in this delay, the pe-
riodic garbage collection would only determine D, E, and F as
shared.

Heap
A B C

D E F

number of shared objects determined by Domani-style traces. To mitigate this,

garbage collections are triggered every 20MB of object allocation. Even with

garbage collections performed at small intervals, it is still possible that an ob-

ject could be made reachable from a thread, then made unreachable from that

thread, all within a short interval that does not straddle a garbage collection

cycle, thereby not registering as being shared by being reachable.

With the two thread-local heap implementations, when an object is reclaimed,

it has a lot of associated data with it, including all the threads that reached it at

garbage collections, and threads that triggered the barrier mechanism. When-

ever an object is reclaimed, before the memory it occupies is zeroed, its data is

logged to a persistent file. Additionally, at the end of program execution, all

live objects have their data logged too, and are treated as dead, as the program

CHAPTER 4. PATTERNS OF SHARING 77

will terminate.

Together with per object data, the instrumentation logs garbage collection

information, heap partition information, thread information and type informa-

tion.

JikesRVM allows customisation of heap partitions it calls ‘spaces’. The im-

plementation uses at least seven partitions — two are used for virtual machine

objects (one for objects created when the virtual machine was compiled, and

one for objects created at runtime), two code partitions (for small and large

amounts of compiled code), a meta-data partition for objects that the garbage

collector requires for its operation (pre-allocated before the application runs), a

non-moving partition for objects that will never be copied, and one or more par-

titions whose number and use depend on the garbage collector used. Jikes RVM

uses a configuration flag that can be set to select a particular garbage collection

algorithm. The feasibility study uses the mark-sweep configuration, which has

a partition with size-classes for allocation of the bulk of application objects and

a partition for large objects. As objects in the meta-data partition and the two

virtual machine partitions are immortal and are never under scrutiny of the

garbage collector, we do not measure these objects.

4.3.2 Analysis

Figure 4.2 shows, for select benchmarks, the proportion of each thread’s objects

that remained local throughout execution (in red), were reachable from multi-

ple threads but were not actively used by other threads (in orange) and those

that were used by two or more threads (in green). One stacked bar is shown per

CHAPTER 4. PATTERNS OF SHARING 78

thread, with the proportion of local, reachable shared and used shared adding

up to 100%. It is immediately obvious that benchmarks have a varying number

of threads, with some benchmarks being essentially single-threaded (the first

thread shown in each graph is a virtual machine thread) and some benchmarks

spawning many threads. All single-threaded benchmarks measured show the

same pattern, with the vast majority of objects remaining local to the bench-

mark thread. Very few objects will have been shared with the virtual machine

thread, and these objects will be created on behalf of the virtual machine thread,

such as compiled code. The multi-threaded benchmarks show very little pattern

amongst them. The graphs show that it would be incorrect to predict which

threads are likely to create shared objects — hsqldb 2006s later spawned threads

allocate more objects that become shared than earlier spawned threads, but this

is not the case with avrora 2009 and pmd 2009 where shared objects are similarly

allocated by all threads, or sunflow 2009 where shared objects are allocated by

earlier spawned threads.

As suggested by earlier work on thread-local heap collection, the proportion

of objects that remain local to their allocating thread is extremely large for most

threads. For example, highly parallel benchmarks such as lusearch 2009 (Figure

4.2i) and sunflow 2009 (Figure 4.2k) see over 90% of objects on average remaining

local to their allocating thread.

It is clear that for some benchmarks there is a large discrepancy between

those objects treated as shared because they were reachable (orange and green

bars together) versus those objects that were actually used by more than one

thread (green bars). As local objects are often the dominant category across

threads, Figure 4.3 strips out local objects, allowing an easier overview of the

CHAPTER 4. PATTERNS OF SHARING 79

difference between sharing by reachability and sharing by actual usage.

Just as with local objects included, the benchmarks vary in the proportion of

sharing by reachability and sharing by actual usage. Some benchmarks show

large imprecision where the orange bars dominate shared objects. Benchmarks

such as lusearch 2006, xalan 2006, jython 2009, luindex 2009, pmd 2009 and xalan

2009 demonstrate clearly that a more precise thread-local heap collector would

cut the numbers of objects deemed shared, potentially reducing the cumulative

overhead on transitioning local objects to becoming shared objects. For exam-

ple, a thread-local heap collector that evacuated shared objects out of thread-

local spaces would mean fewer objects needed copying.

Some benchmarks may not be suitable for more precise thread-local heap

garbage collection, with a majority of shared by reachability objects being used

by multiple threads. For these benchmarks, the extra overhead in maintaining

more precise thread-local heap invariants dwarfs any of the benefits. Examples

of such benchmarks (other than single threaded benchmarks) are lusearch 2006

and xalan 2009.

Figure 4.2 shows proportions of objects allocated by each thread. Another

way to view the data is to group objects by where in the heap they are allo-

cated, especially as in JikesRVM, objects are allocated in spaces depending on

demographical information about them. Figure 4.4 shows the proportion of

local objects, objects used by multiple threads, and those reachable from mul-

tiple threads but not used by multiple threads (with the red, green and orange

colour scheme as with the other graphs), residing in each space. Some thread-

local heap garbage collectors support copying objects out of the thread-local

heap but this implementation does not, meaning that objects reside in the same

CHAPTER 4. PATTERNS OF SHARING 80

threads

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(a) bloat 2006

threads

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(b) eclipse 2006

threads

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(c) hsqldb 2006

threads

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(d) lusearch 2006

threads

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(e) xalan 2006

threads

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(f) avrora 2009

Figure 4.2: A comparison of local and shared objects allocated
by each thread. Percentage of objects that: remain local to their
allocating thread (red), are found to be used by multiple threads
(green) and those that are reachable from multiple threads but
aren’t used by multiple threads (orange). Each stacked bar rep-
resents one thread, with the first bar representing a thread be-
longing to the virtual machine.

CHAPTER 4. PATTERNS OF SHARING 81

threads

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(g) jython 2009

threads

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(h) luindex 2009

threads

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(i) lusearch 2009

threads

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(j) pmd 2009

threads

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(k) sunflow 2009

threads

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(l) xalan 2009

Figure 4.2: A comparison of local and shared objects allocated
by each thread. Percentage of objects that: remain local to their
allocating thread (red), are found to be used by multiple threads
(green) and those that are reachable from multiple threads but
aren’t used by multiple threads (orange). Each stacked bar rep-
resents one thread, with the first bar representing a thread be-
longing to the virtual machine.

CHAPTER 4. PATTERNS OF SHARING 82

threads

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(a) bloat 2006

threads

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(b) eclipse 2006

threads

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(c) hsqldb 2006

threads

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(d) lusearch 2006

threads

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(e) xalan 2006

threads

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(f) avrora 2009

Figure 4.3: A comparison of shared objects allocated by each
thread. Percentage of objects that: are found to be used by mul-
tiple threads (green) and those that are reachable from multi-
ple threads but aren’t used by multiple threads (orange). Each
stacked bar represents one thread, with the first bar represent-
ing a thread belonging to the virtual machine.

CHAPTER 4. PATTERNS OF SHARING 83

threads

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(g) jython 2009

threads

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(h) luindex 2009

threads

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(i) lusearch 2009

threads

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(j) pmd 2009

threads

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(k) sunflow 2009

threads

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(l) xalan 2009

Figure 4.3: A comparison of shared objects allocated by each
thread. Percentage of objects that: are found to be used by mul-
tiple threads (green) and those that are reachable from multi-
ple threads but aren’t used by multiple threads (orange). Each
stacked bar represents one thread, with the first bar represent-
ing a thread belonging to the virtual machine.

CHAPTER 4. PATTERNS OF SHARING 84

space throughout execution.

There are five spaces used in this feasibility study —

1. ms — The mark-sweep space where objects allocated by benchmark threads

reside and some virtual machine objects reside. Objects in this space ac-

count for the bulk of all objects (by number).

2. los — Objects that would usually be allocated in the mark-sweep space

but are over 8 kilobytes size are instead allocated in the large-object space.

These objects can span multiple pages and so the mark-sweep space would

be an inefficient place to allocate them.

3. n.move — Some objects created by the virtual machine must remain at

the same virtual address as the compiler has compiled assumptions about

their location. A separate space is used in case a garbage collection imple-

mentation supports copying.

4. s.code — When the compiler generates code, it is stored in a space dedi-

cated for it.

5. l.code — As with the large-object space, compiled code that meets a thresh-

old is stored in the large-code space. This is because the small-code space

is implemented in the same way as the mark-sweep space.

A sixth space is actually present in the virtual machine, but it stores objects

relevant to garbage collection and so is not tracked by this study.

Other than hsqldb 2006, local objects dominate the mark-sweep space across

all benchmarks. The large-object space is different, with some benchmarks hav-

ing local objects dominate and others have a larger proportion of shared objects

CHAPTER 4. PATTERNS OF SHARING 85

and local objects dominate to a lesser degree. Commonly across all benchmarks,

the virtual machine spaces are dominated by shared objects, although most ob-

jects are treated as shared only if the implementation allows objects reachable

from shared objects to also be treated as shared. A more precise thread-local

collector would only treat objects covered by the green bars as shared, as only

those objects have been used by two or more threads. All orange bars effectively

become red, which would dramatically changing the graphs.

Out of all benchmarks, hsqldb 2006 stands out, having a majority of objects

in the mark-sweep space reachable from multiple threads but very few of them

actually used by multiple threads. This demonstrates the problem with sharing-

by-reachability and some thread-local heap collectors would perform poorly if

hsqldb 2006 was executing [29].

Stripping out the local objects (Figure 4.5) supports earlier figures, showing

how imprecise sharing-by-reachability is, with orange bars typically the major-

ity across all spaces and all benchmarks.

The thread and space graphs show clearly that imprecise thread-local heap

garbage collection incurs overhead in treating objects as shared even though a

good number of those objects would have better benefitted from remaining lo-

cal. Keeping as many objects local as possible potentially allows more objects to

be reclaimed as a result of thread-local garbage collection rather than requiring

intrusive full-heap garbage collection.

Figure 4.6 shows the numbers of local and shared objects that survived after

each garbage collection cycle (red and green respectively) as well as local and

shared objects that were reclaimed that cycle (purple and blue respectively).

These graphs are a measurement of precise thread-local heap garbage collection,

CHAPTER 4. PATTERNS OF SHARING 86

los n.move s.code l.code ms

spaces

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(a) bloat 2006

los n.move s.code l.code ms

spaces

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(b) eclipse 2006

los n.move s.code l.code ms

spaces

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(c) hsqldb 2006

los n.move s.code l.code ms

spaces

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(d) lusearch 2006

los n.move s.code l.code ms

spaces

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(e) xalan 2006

los n.move s.code l.code ms

spaces

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(f) avrora 2009

Figure 4.4: A comparison of local and shared objects allocated
in each space. Percentage of objects in each space that: remain
local to their allocating thread (red), are found to be used by
multiple threads (green) and those that are reachable from mul-
tiple threads but aren’t used by multiple threads (orange). Each
stacked bar represents one space — ms (the main space where
benchmarks allocate objects), los (for large objects), non-moving
space for virtual machine objects and two spaces to store com-
piled code.

CHAPTER 4. PATTERNS OF SHARING 87

los n.move s.code l.code ms

spaces

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(g) jython 2009

los n.move s.code l.code ms

spaces

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(h) luindex 2009

los n.move s.code l.code ms

spaces

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(i) lusearch 2009

los n.move s.code l.code ms

spaces

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(j) pmd 2009

los n.move s.code l.code ms

spaces

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(k) sunflow 2009

los n.move s.code l.code ms

spaces

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(l) xalan 2009

Figure 4.4: A comparison of local and shared objects allocated
in each space. Percentage of objects in each space that: remain
local to their allocating thread (red), are found to be used by
multiple threads (green) and those that are reachable from mul-
tiple threads but aren’t used by multiple threads (orange). Each
stacked bar represents one space — ms (the main space where
benchmarks allocate objects), los (for large objects), non-moving
space for virtual machine objects and two spaces to store com-
piled code.

CHAPTER 4. PATTERNS OF SHARING 88

los n.move s.code l.code ms

spaces

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(a) bloat 2006

los n.move s.code l.code ms

spaces

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(b) eclipse 2006

los n.move s.code l.code ms

spaces

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(c) hsqldb 2006

los n.move s.code l.code ms

spaces

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(d) lusearch 2006

los n.move s.code l.code ms

spaces

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(e) xalan 2006

los n.move s.code l.code ms

spaces

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(f) avrora 2009

Figure 4.5: A comparison of shared objects allocated in each
space. Percentage of objects that: are found to be used by mul-
tiple threads (green) against those that are reachable from mul-
tiple threads but aren’t used by multiple threads (orange). Each
stacked bar represents one space — ms (the main space where
benchmarks allocate objects), los (for large objects), non-moving
space for virtual machine objects and two spaces to store com-
piled code.

CHAPTER 4. PATTERNS OF SHARING 89

los n.move s.code l.code ms

spaces

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(g) jython 2009

los n.move s.code l.code ms

spaces

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(h) luindex 2009

los n.move s.code l.code ms

spaces

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(i) lusearch 2009

los n.move s.code l.code ms

spaces

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(j) pmd 2009

los n.move s.code l.code ms

spaces

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(k) sunflow 2009

los n.move s.code l.code ms

spaces

%
 o

f s
ha

re
d

ob
je

ct
s

0

20

40

60

80

100

(l) xalan 2009

Figure 4.5: A comparison of shared objects allocated in each
space. Percentage of objects that: are found to be used by mul-
tiple threads (green) against those that are reachable from mul-
tiple threads but aren’t used by multiple threads (orange). Each
stacked bar represents one space — ms (the main space where
benchmarks allocate objects), los (for large objects), non-moving
space for virtual machine objects and two spaces to store com-
piled code.

CHAPTER 4. PATTERNS OF SHARING 90

so objects that would have fallen under the orange category in previous graphs

are treated as local.

Shared objects are indeed reclaimed on garbage collection cycles but very

few of them are. This is partly because there are relatively few shared objects to

begin with, but also because shared objects tend to live a much longer lifespan

than local objects.

Whilst the number of local objects can change throughout execution, the

numbers of shared objects remain relatively stable. There is no clear indication

if any of the benchmarks go through any stages where shared objects are more

likely to be allocated or reclaimed, so just as with the per-thread graphs, there

seems no mileage in changing allocation based on execution progress.

However, the graphs are a good reinforcement that focusing garbage collec-

tion on local objects may yield higher throughput, and that thread-local heap

collection may act similarly to a generational garbage collector — targeting

garbage collection on areas of the heap that reclaim more memory in a shorter

period of time.

Another way to categorise the data is on a per-type basis. Every object allo-

cated has a specific type be it a scalar type (i.e. java.lang.String) or an array type

(java.lang.String[]). All objects of a certain type are not equal, some will remain

local to their allocating thread whilst some may be used by multiple threads.

Figure 4.7 shows the proportion of objects in each of the three sharing categories

mentioned frequently above. The graphs are sorted in classloading order — the

earlier a type was first used, the further left it appears on the x-axis. Some types

mostly create objects that remain local to their allocating thread, whilst some

types mostly create objects that are used by multiple threads. This suggests that

CHAPTER 4. PATTERNS OF SHARING 91

GC cycles

nu
m

be
r

of
 o

bj
ec

ts
0

20
00

00
60

00
00

10
00

00
0

(a) bloat 2006

GC cycles

nu
m

be
r

of
 o

bj
ec

ts
0

50
00

00
10

00
00

0
15

00
00

0

(b) eclipse 2006

GC cycles

nu
m

be
r

of
 o

bj
ec

ts
0

10
00

00
0

20
00

00
0

30
00

00
0

(c) hsqldb 2006

GC cycles

nu
m

be
r

of
 o

bj
ec

ts
0e

+
00

2e
+

05
4e

+
05

(d) lusearch 2006

GC cycles

nu
m

be
r

of
 o

bj
ec

ts
0e

+
00

2e
+

05
4e

+
05

6e
+

05

(e) xalan 2006

GC cycles

nu
m

be
r

of
 o

bj
ec

ts
0e

+
00

2e
+

05
4e

+
05

6e
+

05

(f) avrora 2009

Figure 4.6: An overview of objects at every garbage collection
cycle, including: number of local and shared-by-usage objects
that survived garbage collection (red and green respectively)
and local and shared-by-usage objects that were reclaimed each
garbage collection (purple and blue respectively). Each stacked
bar represents one garbage collection cycle.

CHAPTER 4. PATTERNS OF SHARING 92

GC cycles

nu
m

be
r

of
 o

bj
ec

ts
0

50
00

00
15

00
00

0

(g) jython 2009

GC cycles

nu
m

be
r

of
 o

bj
ec

ts
0e

+
00

1e
+

05
2e

+
05

3e
+

05
4e

+
05

5e
+

05

(h) luindex 2009

GC cycles

nu
m

be
r

of
 o

bj
ec

ts
0e

+
00

1e
+

05
2e

+
05

3e
+

05
4e

+
05

5e
+

05

(i) lusearch 2009

GC cycles

nu
m

be
r

of
 o

bj
ec

ts
0

50
00

00
15

00
00

0

(j) pmd 2009

GC cycles

nu
m

be
r

of
 o

bj
ec

ts
0e

+
00

2e
+

05
4e

+
05

6e
+

05
8e

+
05

1e
+

06

(k) sunflow 2009

GC cycles

nu
m

be
r

of
 o

bj
ec

ts
0e

+
00

2e
+

05
4e

+
05

6e
+

05

(l) xalan 2009

Figure 4.6: An overview of objects at every garbage collection
cycle, including: number of local and shared-by-usage objects
that survived garbage collection (red and green respectively)
and local and shared-by-usage objects that were reclaimed each
garbage collection (purple and blue respectively). Each stacked
bar represents one garbage collection cycle.

CHAPTER 4. PATTERNS OF SHARING 93

a technique used in generational garbage collection may provide some bene-

fit to thread-local garbage collection. In a generational collector, the process of

tenuring each object has a cost, as an object survives one or more nursery collec-

tions (each time being copied) before ending up in a mature space. Some objects

may benefit from pre-tenuring (allocation straight into the mature space) if it is

evident they will survive for a long time. If all or most objects of a type are

shared, it may be beneficial to allocate objects of this type as shared, eliminating

the overhead of the turning that object shared later.

As indicated by the graphs, there is no pattern of which types mostly allocate

shared objects. It is therefore not possible to naı̈vely treat later used types or

early used types as shared. A more complex mechanism will be required if such

‘pre-sharing’ were to be implemented. Firstly the types that mostly allocate

shared objects would need to be identified.

Figure 4.8 shows a version of the per-type graphs, but sorted by the per-

centage of shared objects, and with all benchmarks merged. The objective is

to identify a set of types that would benefit from having their objects allocated

directly as shared. By ranking types by percentage of shared objects, it is clear

that over 1000 types would benefit from pre-sharing as the almost all objects of

these types are shared. Pre-allocating objects as shared has been studied before

— Domani et al. pre-share objects to reduce the overhead of treating objects as

shared [29]. However, it may be beneficial to pre-share all objects of a certain

type even if a small proportion of them remain local. Pre-sharing this way in-

troduces a lack of precision as local objects will be treated as shared objects, but

if the numbers of local objects affected are low, it could be worth paying the lack

of precision price. Plotted on the same graph is the cumulative number of local

CHAPTER 4. PATTERNS OF SHARING 94

objects that would be affected by this lack of precision.

Based on Figure 4.8, pre-sharing objects of around 1400 types would have a

minimal impact in precision, but will reduce the overhead of treating objects as

shared later in execution.

One area that has yet to be investigated in thread-local heap garbage col-

lection is how closely threads co-operate — whether one shared heap can be

replaced with multiple shared heaps, each with a set of threads that can use

each other’s objects as if they were local. To perform garbage collection on a

shared heap with a limited set of co-operating threads, only those co-operating

threads need to be stopped.

In order for distinct spaces for co-operating threads to be worthwhile, enough

objects must be allocated into each space. Figure 4.9 shows each possible pairing

of two or more threads into groups. Each bar represents a group of threads that

all used at least one object. For example, antlr 2006 had a group of threads that

co-operated on over 2,500 objects and bloat 2006 had a group of threads that all

used over 200,000 objects. Given that DaCapo benchmarks typically allocate in

total over a million objects, very few of these seem to be used by co-operating

groups of threads. The most promising benchmarks are bloat 2006 and eclipse

2006 who both have a thread group that shares 200,000 objects between them.

To get a better insight of which threads are co-operating together, Figure 4.10

shows how many threads are involved in each thread grouping, and combin-

ing groups of the same size, how many objects each group size accounts for.

For most benchmarks it is clear that two threads often work closely together,

sharing some of their objects with their partner thread. With the exception of

avrora 2009, the trend is, as the thread group size increases, fewer objects are

CHAPTER 4. PATTERNS OF SHARING 95

types

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(a) bloat 2006

types

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(b) eclipse 2006

types

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(c) hsqldb 2006

types

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(d) lusearch 2006

types

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(e) xalan 2006

types

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(f) avrora 2009

Figure 4.7: An overview of types used for each benchmark.
Each stacked bar represents the proportion of objects of a type
that remain local throughout execution (red), are used by multi-
ple threads (green), and those that are reachable from multiple
threads but aren’t used by multiple threads (orange).

CHAPTER 4. PATTERNS OF SHARING 96

types

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(g) jython 2009

types

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(h) luindex 2009

types

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(i) lusearch 2009

types

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(j) pmd 2009

types

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(k) sunflow 2009

types

%
 o

f o
bj

ec
ts

0

20

40

60

80

100

(l) xalan 2009

Figure 4.7: An overview of types used for each benchmark.
Each stacked bar represents the proportion of objects of a type
that remain local throughout execution (red), are used by multi-
ple threads (green), and those that are reachable from multiple
threads but aren’t used by multiple threads (orange).

CHAPTER 4. PATTERNS OF SHARING 97

0 500 1000 1500

Types, ranked by % of objects becoming shared

%
 o

f o
bj

ec
ts

 a
llo

ca
te

d
th

at
 b

ec
om

e
sh

ar
ed

 (
bl

ue
)

0

20

40

60

80

100

cu
m

ul
at

iv
e

no
. o

bj
ec

ts
 r

em
ai

ni
ng

 lo
ca

l (
re

d)
0.0e+00

2.0e+06

4.0e+06

6.0e+06

8.0e+06

1.0e+07

1.2e+07

Figure 4.8: A combination of the % of objects shared of each
type (across all benchmarks) versus the cumulative number of
objects that remain local for each type. The x-axis is ranked by
the percentage of shared objects for each type.

CHAPTER 4. PATTERNS OF SHARING 98

co-operated.

JikesRVM does not support Java EE, in which relatively short lived view-

scoped and request-scoped objects remain thread-independent and a smaller

number of longer lived application-scoped objects are shared. The DaCapo

benchmark suite has some multi-threaded benchmarks but lacks benchmarks

with threads that closely co-operate with each other. Benchmarks that might

generate threads that co-operate closely are those exploiting Java EE features.

Given that there is an overhead involved in creating and maintaining sep-

arate shared heap partitions for groups of threads and very few objects are el-

igible for allocation in them, it seems not worthwhile to further divide up the

heap into separate thread group spaces.

4.4 Summary

This chapter described the implementation of a feasibility study and presented

the results. The feasibility study compared an approximation of a Domani-style

transitive closure promotion of shared objects, versus a mechanism that handles

the promotion of each object individually. The results conclusively show that

an imprecise Domani-style garbage collector ends up treating a lot of local ob-

jects as shared (assuming these local objects would becoming shared themselves

later) even though those objects remain local until the end of execution or their

reclamation. The thesis also tested whether certain threads always co-operated

with each other. There was no strong pattern observed, and so treating a pair of

threads as one thread for the purposes of thread-local heap garbage collection

may not yield benefits.

CHAPTER 4. PATTERNS OF SHARING 99

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

10
0

10
00

0

(a) bloat 2006

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

10
0

10
00

0

(b) eclipse 2006

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

5
50

50
0

50
00

(c) hsqldb 2006

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

5
50

50
0

50
00

(d) lusearch 2006

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

10
10

0
10

00
10

00
0

(e) xalan 2006

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

10
0

10
00

0

(f) avrora 2009

Figure 4.9: An overview of thread-sharing patterns. Each bar
is a thread group with two or more thread participants, and the
numbers of objects that these threads have used co-operatively.

CHAPTER 4. PATTERNS OF SHARING 100

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

10
0

10
00

0

(g) jython 2009

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

10
10

0
10

00
10

00
0

(h) luindex 2009

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

5
10

50
50

0

(i) lusearch 2009

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

5
50

50
0

50
00

(j) pmd 2009

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

10
10

0
10

00
10

00
0

(k) sunflow 2009

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

10
10

0
10

00
10

00
0

(l) xalan 2009

Figure 4.9: An overview of thread-sharing patterns. Each bar
is a thread group with two or more thread participants, and the
numbers of objects that these threads have used co-operatively.

CHAPTER 4. PATTERNS OF SHARING 101

2 3 4 5 6

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

10
0

10
00

0

(a) bloat 2006

2 4 6 8 10 13 16 19 22

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

10
0

10
00

0

(b) eclipse 2006

2 8 15 24 33 42 51 60 69 78 87

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

10
10

0
10

00
10

00
0

(c) hsqldb 2006

2 5 8 11 15 19 23 27 31 35

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

10
10

0
10

00
10

00
0

(d) lusearch 2006

2 3 4 5 6 7 8 9 11 13

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

10
10

0
10

00
10

00
0

(e) xalan 2006

2 3 4 5 6 7 8 9 10 12

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

10
0

10
00

0

(f) avrora 2009

Figure 4.10: An overview of thread-sharing patterns. Each bar
represents the numbers of threads involved in each pattern and
how many objects are used by that many threads.

CHAPTER 4. PATTERNS OF SHARING 102

2 3 4 5 6 7 8

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

10
0

10
00

0

(g) jython 2009

2 3 4 5 6 7

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

10
10

0
10

00
10

00
0

(h) luindex 2009

2 7 13 20 27 34 41 48 55 62 69

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

10
10

0
10

00
10

00
0

(i) lusearch 2009

2 7 13 20 27 34 41 48 55 62 69

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

10
0

10
00

0

(j) pmd 2009

2 13 26 39 52 65 79 92 109 125

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

10
10

0
10

00
10

00
0

(k) sunflow 2009

2 7 13 20 27 34 41 48 55 62 69

thread groups

nu
m

be
r

of
 o

bj
ec

ts
1

10
10

0
10

00
10

00
0

(l) xalan 2009

Figure 4.10: An overview of thread-sharing patterns. Each bar
represents the numbers of threads involved in each pattern and
how many objects are used by that many threads.

Chapter 5

Precise Thread-Local

Implementation

5.1 Introduction

This chapter details a novel thread-local heap garbage collector design and im-

plementation for Java. This design is precise, treating each object as shared only

when it is actually used my multiple threads, as opposed to bulk promotion of

transitive closures or using offline static analysis to determine if objects could

ever become shared.

5.2 Feasibility Study Findings

The results in Chapter 4 show that although Java applications differ in amounts

and types of objects allocated, a large proportion of objects allocated by appli-

cation threads remained used only by their allocating thread. This motivates

103

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 104

the design and implementation of a thread-local heap garbage collection algo-

rithm for Java that is more precise then previous implementations both for Java

and other languages. Further, how objects are determined as shared is likely

to have an impact on performance. An imprecise thread-local heap garbage

collector that conservatively treats a whole transitive closure as shared once an

object becomes shared may have lower overheads for detecting when objects

become shared (Domani et al. have only a write barrier for example), but it

has higher overheads on handling more shared objects. Not only is there an in-

creased cost in treating/marking objects as shared, having more shared objects

means thread-local collection can reclaim less memory. An imprecise thread-

local heap algorithm may be desirable if the implementor is worried about the

cost of maintaining precision, but Chapter 4 has demonstrated that these costs

may be a price worth paying if thread-local collection reclaims more memory

and reduces the need for memory intensive full-heap garbage collection.

Not all applications may benefit from a precise thread-local heap garbage

collector. Single threaded applications and those that create a large proportion

of shared objects may not be suitable. Popular Java Virtual Machines expose

multiple garbage collection options so that experienced users can choose the

optimal garbage collector. A more general mechanism might be available which

selects which garbage collection algorithm to use based on application proper-

ties. Applications that are likely to benefit the most from a more precise thread-

local heap garbage collection are massively multi-core applications that share

relatively little information between threads and whose threads work indepen-

dently. One example would be transactional applications: threads are spawned

to handle a particular task, perform that task, and then terminate or work on

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 105

the next task. These threads are independent and their thread-local heap is a

good candidate for thread-local garbage collection.

By distributing garbage collection across execution and performing smaller,

more frequent thread-local garbage collection, threads will be paused for shorter

periods, improving application responsiveness. Thread-local garbage collection

does not need stop-the-whole-world pauses — only a single thread needs to be

paused for a thread-local collection.

Thread-local heap garbage collection has the potential to scale better than

concurrent garbage collection.

Concurrent garbage collection requires stop-the-world pauses to determine

roots and to check for termination whereas thread-local heap’s goal is to min-

imise stop-the-world pauses. Also, concurrent garbage collection creates float-

ing garbage. Mutator threads manipulate the heap simultaneous to the garbage

collector tracing the heap. In order to preserve potentially live objects, concur-

rent garbage collectors use a barrier mechanism whereby the mutator threads

shade objects to guarantee that they will be visited by the garbage collector

[26, 78, 91, 101]. Additionally, some objects may be pre-allocated as live — even

if the object dies shortly after allocation. Some concurrent garbage collectors

use an on-the-fly mechanism to reduce the overall time mutator threads are

paused. Instead of requiring all mutators to pause together, mutators can pause

individually, allow the collector to perform any required activity, then resume.

However, on-the-fly pauses are hard to implement correctly as they require a

complicated set of handshakes between mutators and collectors [46].

Whilst concurrent garbage collection allows mutator threads to run simul-

taneous to collector threads — reducing the impact of long pauses, it does not

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 106

scale well to very large heap sizes. No memory can be reclaimed until all live

objects have been traced. In contrast, by performing frequent thread-local heap

garbage collections over a subset of the heap, some memory can be reclaimed

quickly. Finally, concurrent garbage collection does not fully address the prob-

lem with garbage collection being a memory intensive activity. All garbage

collection activity is still performed in cycles, rather than being fully distributed

throughout application execution. Therefore, with many processor systems and

large heap sizes, concurrent garbage collection may not scale well.

Definition: Thread-independent and Full-heap GC. Thread-local heap garbage

collection introduces a new type of garbage collection. When a thread wishes

to acquire new pages in which to allocate its objects into, it may decided to per-

form thread-independent garbage collection in which it halts execution whilst its

thread-local heap is traced for objects to reclaim. This form of garbage collection

is called thread-independent as other threads are free to continue execution or

even perform their own thread-independent garbage collection without impact

from the halted thread. Alternatively, if the heap is full, a thread will request a

full-heap garbage collection in which all threads are blocked and the whole heap

is traced for objects to reclaim.

5.3 Thread-Local Heap Algorithm Design

After the completion of the feasibility study, some Java applications may benefit

from a precise thread-local heap garbage collector. Moreover, it is believed such

a collector would be scalable.

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 107

It is important to have a clear design for a thread-local heap garbage collec-

tor, as with all garbage collection algorithms, as a single error or unconsidered

state can often causes a crash which the virtual machine cannot recover from.

If an algorithm is poorly designed and erroneous, race hazards can cause inter-

mittent failures.

In order to ensure correctness, all thread-local heap garbage collectors must

obey one invariant: references from outside a thread-local heap into a thread-

local heap must either be disallowed (unless the reference source is the allo-

cating thread’s stack) or tracked and treated as roots by the appropriate thread

during thread-local garbage collection. For example, Domani et al. disallow

these category of references. As soon as a reference is created that violates the

invariant, the target object and its whole transitive closure are treated as shared,

upholding the invariant [29]. Anderson’s thread-local heap algorithm invali-

dates the whole thread-local heap, treating it as shared when the invariant is

violated [2]. The thread whose thread-local heap was invalidated creates a new

thread-local heap and begins allocating new local objects there.

Rather than disallowing references into a thread-local heap, a precise thread-

local heap algorithm could keep track of such references, using them as roots for

thread-independent garbage collection. An object that is the target of an invari-

ant breaking reference may very well only ever be used by its allocating thread

— even if a reference to it has escaped. Only once the object is used by multi-

ple threads should it be deemed shared. By keeping track of invariant breaking

references rather than disallowing them and taking evasive action, objects that

would otherwise be deemed shared are being kept local.

Similarly to the tricolour notation, an object’s sharing status can be captured

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 108

as one of three states and given a colour:

• A white or local object has no escaping references to it and remains usable

only by its allocating thread. Unless specifically allocated another colour,

objects are allocated white by default.

• A grey or at risk object has had a reference to it escape so other threads

could access it, but no threads have yet done so.

• A black or shared object has been used by a thread other than its allocating

thread.

Rather than disallow references from outside a thread-local heap to local

objects, the target object is treated as at risk. A reference to it has escaped so

that other threads may access the object, but no other threads have done so yet.

Whilst the grey object is no longer truly local and cannot be reclaimed by thread-

independent garbage collection, it can maintain references to local objects in the

same thread-local heap. Should these local objects die, they remain reclaimable

by thread-independent garbage collection unlike with an imprecise thread-local

garbage collector.

Figure 5.1 shows a logical view of a thread-local heap, with the shared ob-

jects and local objects, and at risk objects acting as a buffer zone between them.

Permitted references (Figure 5.1a) and references that are disallowed (Figure

5.1b) are shown.

To recap, an object’s allocating thread is the thread that creates the object and

all other threads are known as remote threads. The only way a remote thread can

access an allocating thread’s object is if the allocating thread allows a reference

to it to escape to other threads.

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 109

Allocating
Thread

Remote
Thread

(a) Permitted references.

Allocating
Thread

Remote
Thread

(b) Invariant breaking references.

Figure 5.1: Allowed references (a) and disallowed references (b)
for a thread-local heap for the algorithm design proposed.

The single thread-local invariant that disallows references from black to white

objects can be maintained by three rules:

1. Introducing risk: When a reference from S to T is written, and S is black

and T is white, turn T grey.

2. Demonstrating multi-threaded use: When any of a grey object’s reference

fields are read or written to by a remote thread, turn that object black.

3. Propagating risk: Should an object O become black, any children (objects

referred to by O in its fields) that are white should be turned grey.

The rules and sharing state definitions differ from those in Chapter 4. The

above definition allows references to local objects to escape without that object

being considered shared, whereas the definition in Chapter 4 had no notion of

at risk objects.

It is important that any implementation based on the above object sharing

definition ensure correctness. For example, at no point should a reference from

a black object to a white object be created (violating the invariant) without rule

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 110

one being applied. Additionally, when rule two is applied, rule three typically

should be applied as well. The application of the rules can be checked when

barriers are invoked and during full-heap garbage collection.

With a precise object sharing definition set out, attention must be turned to

thread-independent garbage collection policy. Generational garbage collectors

improve performance by targeting objects that are more likely to be reclaimable.

Thread-local heap garbage collection similarly targets objects. By focussing at-

tention on local objects, a thread-local collector can act independently of other

threads, has fewer roots to determine and has a smaller trace to perform.

As memory access times are not identical in systems with a non-uniform

memory architecture, scheduling of threads and their data becomes more of an

issue. An unlikely poor thread scheduling scenario is if all threads — muta-

tor and collector — were placed on the same NUMA node or socket. A more

realistic scheduling scenario would see thread’s allocated to processors in a bal-

anced way. A scalable garbage collector should perform well for all typical

thread scheduling scenarios. It is unlikely that any garbage collector would

scale well for worst-case unrealistic scheduling, but insights may be learned if

tested. When comparing stop-the-world approaches with a thread-local heap

implementation approach, mutators have an affinity set to a particular proces-

sor, in a round robin manner.

There is a cost to treating objects as shared. Some thread-local heap im-

plementations copy objects, others trace a transitive closure. It is important to

keep this cost to a minimum whilst still upholding the precision of the thread-

local heap garbage collector proposed above. Figure 4.8 in Chapter 4 shows that

some types of objects always end up becoming shared. The cost of treating these

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 111

objects from local to shared could be eliminated if these objects were allocated

directly as black (shared) instead of allocated as white (local). Inevitably, some

objects will incur a cost when they become shared and this cannot be avoided.

To keep costs to a minimum, local objects that become shared are not copied

out of the memory area the thread-local heap occupies. Instead, the thread that

allocated the object is made aware of the change in object sharing status, so that

each thread is aware at all times of every shared object in its thread-local heap.

5.4 Thread-Local Heap Algorithm Implementation

The design above has been translated into an implementation, modifying the

Jikes RVM Java virtual machine. The following details have to be considered:

• Representation of object sharing status. How are objects identified as local,

at risk or shared?

• Partition of heap to represent thread-local heaps.

• Detection of escaped references to white objects.

• Detection of remote threads using grey objects.

• Implementation detail of thread-independent garbage collection, includ-

ing:

– When should thread-independent garbage collections be triggered?

– How are thread-local roots determined? How are references from

grey and black objects, to white objects in a thread-local heap tracked?

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 112

– How will local live objects be determined and how will local dead

objects be reclaimed?

• How to allocate some objects directly as black to reduce costs.

5.4.1 Heap Structure

A Jikes RVM heap typically consists of a number of spaces for different cate-

gories of objects. These spaces divide the heap. Each space is able to grow as

more objects are allocated into it and at every full-heap garbage collection, each

space reclaims dead objects and may hand back pages for other spaces to use.

Chapter 4 outlines how Jikes RVM partitions the heap into spaces. The

garbage collector configured chooses how to further partition the heap for ap-

plication allocated objects.

A space is created per thread to represent the thread-local heap. There is a

slight spatial overhead to partitioning the heap into multiple spaces rather than

having a single large space for application allocated objects, but heap space is

not wasted. Thread-local spaces begin empty and are expanded only when it

has no free memory and an allocation requires it to expand. It is important to

note that when a thread-local space expands, it expands by pages at a time.

Expanding a space requires synchronisation, and by expanding by pages at a

time rather than by object sizes, synchronisation is reduced.

Definition: Thread-local Allocation Buffer. A thread-local allocation buffer is an

optimisation to reduce contention when allocating objects. Without it, every

time a thread allocates an object and requests memory for that object, a syn-

chronisation mechanism would be required so that the same memory isn’t used

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 113

by multiple threads. Instead, the thread requests (with synchronisation) much

more memory then is required for that object and continues to allocate fur-

ther objects to that memory region (without synchronisation as the thread has

unique access to the reserved memory) until the memory is exhausted. The

memory reserve gained to allow unsynchronised object allocated is known as

a thread-local allocation buffer. When a thread-local allocation buffer is ex-

hausted, more memory is requested, with synchronisation, to expand the thread-

local allocation buffer.

When a thread allocates an object, by default, it is allocated into its thread-

local heap space and allocated as white. If the object is particularly large (over

eight kilobytes), the object is instead allocated in a large object space and allo-

cated as black. Large objects are typically more likely to be shared than smaller

objects. Objects allocated in any heap space that isn’t a thread-local space are

allocated as black. Some types have a majority of objects end up shared. Ob-

jects of these types may be allocated directly as black, to eliminate the cost in

changing a white object to grey, and then to black.

5.4.2 Object Structure

It is important that the thread-local heap garbage collection implementation add

as little spatial overhead to objects as possible. The object header must be ex-

panded to keep track of that object’s colour and which thread allocated the ob-

ject. Table 5.1 shows the object header, including added words highlighted in

red.

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 114

Table 5.1: Each object allocated has a header containing the fol-
lowing five words. Words added to support the thread-local
implementation are highlighted in red.

Word Description
Array length A word indicating the length of an array. If this

object is not an array, this is the object’s first field
instead.

TIB Pointer A pointer to the Type Information Block, which
holds the information on the object, including its
type, and virtual methods.

Hash and Lock Word A word that stores an object’s hash code and
thin lock bits (for monitorEnter and monitorExit
bytecodes).

Unused A required padding word.
Object Status Holds thread-local heap information, including

object colour (2 bits) and the address of the allo-
cating thread (30 bits).

5.4.3 Invariant Maintenance

The goal of the thread-local heap invariant is to ensure that all local objects are

only accessible by their allocating thread. Any local objects that have a reference

to them escape to other threads must no longer be considered local.

There are a number of ways in which a reference to an object can escape:

1. A reference to a local (white) object is written to a field of a shared (black)

object.

2. A reference to a local (white) object is written to a static field.

3. A reference to a local (white) object is passed as a parameter to a thread

on creation.

All three actions above must be performed by the allocating thread. There is a

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 115

fourth way that a reference can escape which does not need to be performed by

the allocating thread:

4. A reference exists from an at risk (grey) object to a local (white) object, and

the at risk object becomes shared (black).

As discussed earlier, rather than treating all objects that escape their allo-

cating thread as shared, objects are first considered ‘at risk’. Three rules were

outlined in order to enforce the invariant, prevent references from black to white

objects. To recap:

1. On a reference write, where the source object is black and the target is

white: turn target grey.

2. On a reference field read or write, by a remote thread: turn reference field’s

object black.

3. When an object becomes black, turn all children grey.

A mechanism that allows the enforcement of the above rules before refer-

ence manipulations take place, is one employed earlier in the thesis (Chapter

4), known as barriers. When a reference manipulation that could require the

application of the one rules occurs, checks are made and any rules applied be-

fore the reference manipulation goes ahead. By applying invariant preserving

rules before invariant violating reference manipulations occur, the invariant is

upheld.

Definition: Shading and Globalising Objects. Turning an object from white

to grey is known as shading the object, and turning an object from grey to black

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 116

is known as globalising an object. An application of rule 1 results in an object be-

ing shaded. An application of rule 2 results in an object being globalised. When

rule 2 is applied, rule 3 may be applied at the same time, and multiple objects

could be shaded.

As an allocating thread’s grey and black objects are used as roots for thread-

independent garbage collection, when an object is shaded the allocating thread

must keep track of the object. Only an object’s allocating thread can shade an

object. Objects allocated as black must also be kept track of.

Listing 5.1: Pseudocode for the shade method — a method that

turns a white object into a grey object and keeps track of the

object for root determination.

public void shade(Object o) {

i f (getObjectColour(o) == WHITE) {

setObjectColour(o, GREY);

rememberRoot(o);

}

}

Listing 5.2: Pseudocode for the globalise method — a method

that turns a grey object into a black object — and its dependent

method, shadeChildren, that has the effect of shading every out-

going reference.

public void globalise(Object o) {

// Race hazard: A thread may write a reference

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 117

// to a white object whilst children are being

// scanned. To ensure all outgoing references

// are shaded , shadeChildren before and after

// the object is coloured black.

shadeChildren(o);

setObjectColour(o, BLACK)

shadeChildren(o);

}

public void shadeChildren(Object o) {

Object [] outgoingRefs = getChildren(o);

f o r (i n t i = 0; i < outgoingRefs.length; i++) {

shade(child);

}

}

Pseudocode for the shading and globalising operations is presented in List-

ings 5.1 and 5.2.

There are five bytecodes that manipulate references, possibly requiring in-

variant preservation: aastore, aaload, getfield, putfield and putstatic. Pseu-

docode demonstrating these barriers is shown in Listing 5.3. Both aastore

and putfield bytecodes result in the fieldWriteBarrier method being called,

aaload and getfield bytecodes result in the fieldReadBarrier method being

called and the putstatic bytecode result in the staticFieldWriteBarrier be-

ing called.

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 118

Listing 5.3: Pseudocode for three barrier methods.

fieldReadBarrier is called immediately before aaload

and getfield operations. fieldWriteBarrier is called

immediately before aastore and putfield operations.

staticFieldWriteBarrier is called immediately before

putstatic operations. The isMine(O) method returns true if

the executing thread allocated the object O, otherwise it returns

false.

// aaload , getfield

public void fieldReadBarrier(Object src) {

i f (src == null) re turn ;

i f (! isMine(src) && getObjectColour(src) == GREY) {

requestGlobalise(src);

}

}

// aastore , putfield

public void fieldWriteBarrier(Object src , Object tgt) {

i f (src == null) re turn ;

i f (isMine(src)) {

i f (getObjectColour(src) == BLACK) {

shade(tgt);

}

}

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 119

e l s e i f (getObjectColour(src) == GREY) {

requestGlobalise(src);

shade(tgt);

}

e l s e i f (getObjectColour(src) == BLACK) {

shade(tgt);

}

}

// putstatic

public void staticFieldWriteBarrier(Object tgt) {

i f (tgt == null) re turn ;

i f (isMine(tgt) && getObjectColour(tgt) == WHITE) {

shade(tgt);

}

}

Certain virtual machine operations do not require barriers and invoking bar-

riers may cause problems. For example, some instrumentation added to mea-

sure correctness, performance and general properties of the implementation

should not trigger barriers — we do not want to measure statistical gathering,

just the activities of the virtual machine with the thread-local heap changes. Ad-

ditionally, shading and globalising should not result in the triggering of further

barriers. If this were to occur, no execution progress would be made as each

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 120

barrier recursively results in another barrier invocation until the stack is ex-

hausted. Listing 5.4 is an example of Java code that would allow this to happen.

The statement highlighted in red would compile down to a getfield bytecode

for the field logger, as well as a method call. For every getfield bytecode, an-

other would be generated and the virtual machine would be stuck in a recursive

loop.

Rather than restrict the use of certain bytecodes within barrier methods and

their method dependencies, an annotation was adopted that would stop a bar-

rier interception from being added just before getfield, putfield and putstatic

bytecode interpretations. Any method given the @NoInstrument annotation

would not generate barriers as a result of these bytecodes. This annotation was

added to barrier method dependencies as well as to methods used for measur-

ing the virtual machine.

Listing 5.4: An example extract of barrier source code that re-

sults in recursive getfield bytecode interpretations.

p r i v a t e Logger logger;

// Called whenever a getfield bytecode is intercepted

public void fieldReadBarrier(Object src) {

logger.log(src);

...

}

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 121

An important consideration of a thread-local heap implementation is its cor-

rectness. A disadvantage with the implementation that is common with refer-

ence counting garbage collectors is the fragility of the object state. If the imple-

mentation incorrectly allows an object to escape its allocating thread without

shading the object, it becomes possible that a white object is wrongly reclaimed

during thread-independent garbage collection even though it is referred to by

other threads.

A dynamic way to ensure correctness is to continuously check that object

state is as expected. This can be done in many areas of virtual machine im-

plementation — the three most important areas to apply checks are the barrier

mechanism, thread-independent garbage collection and full-heap garbage col-

lection.

Table 5.2 shows the checks that can be made in the barrier mechanism. If

a check fails, the thread-independent heap implementation is erroneous and

needs reviewing. When thread-independent garbage collection occurs, all black

and grey objects in the thread-local space act as roots, and therefore only white

objects can be reclaimed. A simple check at the point of object reclamation con-

firms this. A more thorough check can occur at full-heap garbage collection.

When an object reference is followed, between a source object and a target ob-

ject, the reference is checked to see if it valid (for instance, ensuring it is not a

black to white reference).

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 122

Table 5.2: Assertion checks that can be made every barrier in-
vocation.

Allocating Colour Assertion check
Thread?

White
Yes Grey

Black Check that no outgoing references are to white objects
White Halt with error

No Grey
Black Check that no outgoing references are to white objects

5.4.4 Thread-Independent Collection

With the barrier mechanisms in place leading to objects being shaded and glob-

alised, each thread-local space will be populated with local objects and objects

identified as either potentially shared (grey) or observed shared (black). It is

therefore possible for a single thread to determine which local objects in its

thread-local space are garbage without the need for co-operation from other

threads. Without co-operation from all other threads, it is not safe for an allo-

cating thread to reclaim any local objects that another thread could potentially

have a reference to. Therefore, all grey and black objects and their descendants

must all be treated as live. For this reason, every time an object is shaded, the

thread that allocated it must remember that the object is not safe to reclaim.

When a thread decides it wishes to perform thread-independent collection

on its space, it indicates this to a dedicated collector thread and blocks on thread-

independent GC. Only once thread-independent GC is completed can the thread

wake up and continue execution, and full heap GCs cannot occur whilst any

thread is blocked on thread-independent GC. Once the target thread is blocked,

the dedicated collector thread increments the current live state, so that all objects

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 123

in that thread space are by default considered garbage. Next, the roots must be

determined. In full heap garbage collection, the roots are any references from

outside the heap that refer to objects inside the heap. Sources of roots include

static variables and thread stacks. With thread-independent garbage collection,

a subset of the heap is collected, so different roots are used. The same principle

can be applied however — the roots are references from outside the portion of

the heap being collected to objects within. The thread whose thread-local space

is being collected has its stack scanned for roots. It is possible that other thread

stacks have references to black and grey objects in the thread-local space but it

is likely expensive to interrupt these threads for root scanning, and it is unsafe

to scan stacks of running threads. Additionally there may be references in the

heap from objects to grey or black objects within the thread-local space, and we

may be unable to determine which of these are live because other threads stacks

are unavailable for root scanning.

The solution adopted in the implementation is to assume all grey and black

objects within a thread-local space are live (regardless of whether they are truly

live or not). A thread keeps track of which objects are grey or black, using

a remset, and these objects are used as roots for thread-local garbage collec-

tion. Full heap garbage collection implementation is almost unchanged. The

only two additions are to ensure full heap garbage collection does not occur

when any thread is in thread-independent collection and to throw away each

thread’s remset that tracks grey and black objects and to regenerate it. More

precisely, at the beginning of full heap collection, remsets are emptied. As all

mutator threads are blocked, no entries will be added to the remset without

the collector’s knowledge. During the tracing stage of garbage collection, any

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 124

references from an object outside a thread-local space into it result in the target

object (which should be grey or black) being added into the allocating thread’s

remset.

Once the roots have been processed, the transitive closure from the roots is

traversed. When an object is encountered, it is marked as live and then all of its

outgoing references are added to a queue to be processed later. Only references

to objects within the thread-local space are enqueued. When the queue is empty

the entire transitive closure has been visited and all live objects are marked. The

thread-independent collector is now able to reclaim unmarked objects in the

thread-local space, reducing the amount of work a full-heap collection would

take.

When the thread-local space has been swept, thread-independent is com-

plete and the collector resumes the mutator thread and waits for a new collec-

tion request.

5.4.5 Globaliser Thread

A key addition of the thread-local implementation is the process of globalisa-

tion. The term ‘globalise’ was first used by Marlow et al. [60] referring to the

promotion of objects from being treated as local to treating them as used by

other threads. Another description of the globalising process is turning an ob-

ject from grey to black. Once an object is used by a second thread and turned

black, that thread has access to all child objects referred to by the newly black-

ened object. Some of these child objects may be white, and therefore must

be shaded. When an object is shaded, the allocating thread must be aware

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 125

so it does not reclaim the grey object and its transitive closure during thread-

independent garbage collection. Additionally, the allocating thread should not

mutate the newly blackened object whilst its outgoing references are shaded, in

case it assigns a white object to the black object which is then not shaded. The

easiest way to ensure these two conditions are met is to indicate to the allocating

thread that one of its objects should be globalised and wait whilst the allocating

thread globalises the objects on behalf other threads.

Definition: Globalise Request. Therefore, this thesis extends this idea further,

referring to globalise requests, as correctness mandates that the only thread ca-

pable of globalising objects is the thread that allocated the object. The thread

that is waiting for the allocating thread to globalise an object is known as the

requesting thread.

Whilst this implementation does not copy shared objects out of thread-local

spaces, the globalise request mechanism ensures that each object is globalised

at most once, and that there is no concurrency race hazard with multiple threads

attempting to perform the globalise process on an object at the same time. Fu-

ture implementations that rely on copying shared objects can reuse the globalise

request mechanism.

In Listing 5.3, sometimes an object will need to be globalised, and the re-

questing thread makes a call to the requestGlobalise method. Periodically,

threads check to see if a globalise request has been made for one of its objects.

If so, the thread calls the globalise method (see Listing 5.2).

A naı̈ve requestGlobalise implementation would communicate with the

allocating thread and then block or spin, waiting for the allocating thread to

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 126

communicate back to the requesting thread to wake up once the object has been

globalised. This can be achieved simply with a two-dimensional array, with one

row per allocating thread and one column per requesting thread. For any given

array cell, the allocating thread can read the value, globalise the applicable ob-

ject and clear the value. The corresponding requesting thread can write to the

cell when it needs an object to be globalised by the corresponding allocating

thread, and block until the cell value is cleared.

However, this approach can easily lead to deadlocks if two threads request

that each other globalise an object at a similar time, and both blocked waiting

for the other. This can also happen with three or more threads, if there is a cycli-

cal dependency. This design can also lead to undesirable delays if a requesting

thread is waiting for an allocating thread to globalise an object and the allocat-

ing thread itself is blocked for a different reason - perhaps because it was simply

descheduled or waiting for I/O. Additionally, this implementation is expensive,

for a virtual machine supporting 1024 threads, the array would occupy 4MB of

memory.

A better implementation solves this problem by introducing an independent

thread, whose sole role is to globalise objects on behalf of an allocating thread

if that allocating thread was unable to globalise objects because it was blocked.

Additionally, a cyclical queue can be used, rather than one cell per allocating-

thread and requesting-thread pair. At any point in execution time, it is unlikely

that very many threads would be waiting for it to handle a globalise request.

When a thread is about to block or terminate (perhaps because the thread is

about to wait on a lock, or even wait for an object to be globalised), it indicates to

the independent ‘Globaliser Thread’ that it is for the moment unable to process

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 127

requests to globalise objects. Once the globaliser thread has been given autho-

risation it periodically checks on behalf of the blocked thread and handles any

globalisation requests for that thread’s objects. When the blocked thread has

resumed, it takes back control of globalising objects and revokes permission for

the globaliser thread to handle its requests.

The globaliser thread may be busy processing objects when a thread re-

sumes, so the resumed thread must wait for the globaliser thread to finish be-

fore it revokes permission, to avoid the risk of race hazards and objects being

globalised twice.

When full-heap garbage collection is triggered, the Globaliser Thread must

be the last thread to be stopped and the first thread to be resumed. This is so

no threads are left waiting for an object to be globalised with no threads able to

respond, as they are blocked waiting to be resumed after garbage collection.

The Globaliser thread is an overhead — it does not bring any efficiency ad-

vantages to thread-local heap garbage collection (and may not even be used for

some Java applications), but it is an essential component of ensuring thread-

local heap garbage collection is correct.

If an immutable object requires globalising, a Globaliser thread is not needed.

The object merely needs to be duplicated. For mutable objects, there may be

alternatives to using a Globaliser thread. One such alternative is deadlock de-

tection — if a requesting thread is about to make a globalise request that would

result in deadlock (where the allocating thread is blocked, eventually depen-

dent on the requesting thread performing a future action), then the requesting

thread could perform the globalise process itself (assuming the allocating thread

doesn’t unblock during globalisation).

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 128

5.5 Summary

This chapter described the implementation of a precise thread-local heap garbage

collector for Java in Jikes RVM. Each object has a sharing state (white, grey or

black) and an allocating thread. For each thread, references from other threads

stacks and their thread-local spaces are allowed, but only if the target thread-

local space’s thread is aware. Additionally, references from non-thread-local

spaces to thread-local spaces are only allowed with the thread-local’s thread

awareness.

A white object is only accessible by the thread that allocated it. A grey ob-

ject has been (or is) reachable from other threads and could be in danger of

being used by other threads, but is still only used by its allocating thread. A

thread must be aware of all grey objects in its thread-local space. A black object

has been used by multiple threads. Black objects cannot hold a reference to a

white object, all references between black and white objects must be conducted

through a chain of at least one grey object. A thread must also be aware of all

black objects in its thread-local space. In essence, grey objects are a wall be-

tween a shared heap where objects are free to be used by multiple threads and

a local heap where a single thread has control of white objects. When a thread

other than the allocating thread wishes to use a grey object, a process called

globalisation occurs where the target object becomes black. A breach in the wall

occurs with possible references from a black object to a white, and so the newly

blackened object’s children turn grey.

As a thread knows all black and grey objects in its thread-local heap, all

references from outside the thread-local heap into it are known. These objects,

CHAPTER 5. PRECISE THREAD-LOCAL IMPLEMENTATION 129

and references from the thread’s stack can be treated as roots to permit a new

form of garbage collection — thread-independent garbage collection. A thread

can trace from the roots, marking all live white objects (grey and black objects

as roots are always live). Dead white objects can be reclaimed and empty pages

freed and handed back to the memory subsystem without the co-operation of

any other application threads.

This is expected to give benefits in scalability and locality as in a massively

multi-core environment, fewer full-heap garbage collections should be needed

and the cumulative stop-the-world pause reduced. Additionally thread-local

garbage collector threads will work more on objects local to its processor and

fewer remote objects on other processor’s memory.

Chapter 6

Results

6.1 Experiment Set-up

Chapter 5 describes an implementation of a precise thread-local heap garbage

collector for Java, that runs on the Jikes RVM virtual machine. This chapter

outlines which measurements were taken and how, why they were taken, and

presents the results and explains what they show.

All results were generated on the same machine to ensure consistency.

6.1.1 Hardware and Software

Hardware Figures 6.1 and 6.2 show the CPU structure. The machine has four

physical sockets, each socket providing eight cores. Each core supports two

logical processors, resulting in a total of 64 processors. Each of the sixteen pro-

cessors on one physical socket share 16MB of level 3 cache. Each of a socket’s

eight cores (with 2 logical processors) share a 2MB level 2 cache. There are

eight NUMA nodes in total, each supported by 8 GB of main memory. Figure

130

CHAPTER 6. RESULTS 131

6.1 shows the distance between each node. It is important to note that not all

remote memory accesses and mutations will cost the same. For example, (ig-

noring the effects of interconnect and cache saturation) it is cheaper for node 0

to access node 1’s main memory than to access node 3’s main memory.

Software The experiments were run on a linux machine; a version of 64 bit

Ubuntu with a kernel under a year old when the experiments were run (Figure

6.3). The version of Jikes RVM the implementation was built upon was mer-

curial tag 11005 on November 8th 2014 at 11:34:42 with the version message

“RVM-1048 : Upgrade to ECJ 4.2.2.”1.

6.1.2 Measurement Gathering

An important aspect of the implementation is the collection of statistical data

and the logging of it so that it can be processed and graphs plotted. However

the gathering of statistical data has an overhead and when gathering perfor-

mance information only the minimal logging should be used. Additionally, it

is useful to toggle components of the implementation to test individual over-

heads.

For this reason, global boolean switches have been implemented. Before the

virtual machine is built, these switches can be manipulated, and when com-

piled, the virtual machine will behave as instructed. The switches themselves

are removed at the compiler’s optimisation stage so do not impact on perfor-

mance. Some switches are dependent on others.

1Available at http://sourceforge.net/projects/jikesrvm/ or by executing ‘hg clone
http://hg.code.sf.net/p/jikesrvm/code jikesrvm’.

http://sourceforge.net/projects/jikesrvm/

CHAPTER 6. RESULTS 132

Figure 6.1: Output of numactl –hardware on the experiment
machine.

numactl --hardware

available: 8 nodes (0-7)

node 0 cpus: 0 1 2 3 4 5 6 7

node 0 size: 8189 MB

node 0 free: 191 MB

node 1 cpus: 8 9 10 11 12 13 14 15

node 1 size: 8192 MB

node 1 free: 65 MB

node 2 cpus: 16 17 18 19 20 21 22 23

node 2 size: 8192 MB

node 2 free: 170 MB

node 3 cpus: 24 25 26 27 28 29 30 31

node 3 size: 8192 MB

node 3 free: 589 MB

node 4 cpus: 32 33 34 35 36 37 38 39

node 4 size: 8192 MB

node 4 free: 35 MB

node 5 cpus: 40 41 42 43 44 45 46 47

node 5 size: 8192 MB

node 5 free: 35 MB

node 6 cpus: 48 49 50 51 52 53 54 55

node 6 size: 8192 MB

node 6 free: 303 MB

node 7 cpus: 56 57 58 59 60 61 62 63

node 7 size: 8192 MB

node 7 free: 784 MB

node distances:

node 0 1 2 3 4 5 6 7

0: 10 16 16 22 16 22 16 22

1: 16 10 22 16 22 16 22 16

2: 16 22 10 16 16 22 16 22

3: 22 16 16 10 22 16 22 16

4: 16 22 16 22 10 16 16 22

5: 22 16 22 16 16 10 22 16

6: 16 22 16 22 16 22 10 16

7: 22 16 22 16 22 16 16 10

CHAPTER 6. RESULTS 133

Figure 6.2: Output of lscpu on the experiment machine, which
provides a more human-readable version of ‘/proc/cpuinfo’.

lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 64

On-line CPU(s) list: 0-63

Thread(s) per core: 2

Core(s) per socket: 8

Socket(s): 4

NUMA node(s): 8

Vendor ID: AuthenticAMD

CPU family: 21

Model: 1

Stepping: 2

CPU MHz: 1400.000

BogoMIPS: 4199.97

Virtualisation: AMD-V

L1d cache: 16K

L1i cache: 64K

L2 cache: 2048K

L3 cache: 6144K

NUMA node0 CPU(s): 0-7

NUMA node1 CPU(s): 8-15

NUMA node2 CPU(s): 16-23

NUMA node3 CPU(s): 24-31

NUMA node4 CPU(s): 32-39

NUMA node5 CPU(s): 40-47

NUMA node6 CPU(s): 48-55

NUMA node7 CPU(s): 56-63

Figure 6.3: Output of uname -a.

uname -a

Linux berry 3.2.0-60-generic #91-Ubuntu SMP

Wed Feb 19 03:54:44 UTC 2014

x86_64 x86_64 x86_64 GNU/Linux

CHAPTER 6. RESULTS 134

Figure 6.4: A diagram showing how each NUMA node is con-
nected to other nodes. All odd numbered nodes are fully con-
nected and all even numbered nodes are fully connected. Node
0 is also connected to node 1, node 2 to 3, node 4 to 5 and node 6
to 7. Each odd-to-even pair of nodes (0 and 1, 2 and 3, etc) share
a socket.

4 6

0

1 3

7

2

5

The following switches are available:

• Enable read barriers.

• Enable write barriers.

• Enable the globalisation and remset mechanisms. Read and write barriers

must be enabled.

• Enable thread-independent collection. Globalisation and remset mecha-

nisms as well as read and write barriers must be enabled.

• Gather detailed statistical information or keep logging to a minimum for

performance runs.

• Bind threads to a single core when spawned. This enables the restriction

of used CPUs allowing scalability tests.

CHAPTER 6. RESULTS 135

Determining performance can be a tricky task for Java applications as there

are many opportunities for variance in results. A major source of variance is

just-in-time compilation. Different executions of an application may see dif-

ferent methods being optimised, methods optimised at different times and dif-

ferent compilation overheads. Jikes RVM supports compiler replay, where an

application is executed and just-in-time decisions are recorded [10]. Future ap-

plication runs can replay the decisions made by the first sampling run, so all

application runs have similar just-in-time compilation overheads.

A study conducted on the Da Capo benchmarks found that they struggled

to reach an independent state [50]. The author recommended that benchmarks

be run a sufficient number of times and the confidence interval reported. Re-

sults presented in this chapter, with the exception of lusearch 2009, follow the

suggested number of executions provided by Kalibera et al. [50].

Evaluation of the thread-local heap garbage collector answers the following

questions:

How well does this thread-local heap implementation scale compared to a

parallel heap garbage collection for a number of benchmarks? Is there any ben-

efit from performing frequent smaller thread-independent garbage collections

over larger stop-the-world full-heap garbage collections?

6.2 Results

Single-threaded benchmarks are omitted from the results in this chapter, as they

see no benefit from thread-local heaps. Benchmarks from the DaCapo 2006

benchmark suite that are present in the DaCapo 2009 benchmark suite are also

CHAPTER 6. RESULTS 136

omitted.

A large overhead was introduced in the form of barriers. These are necessary

for the garbage collection algorithm to be correct. A barrier is invoked for each

reference field read and write, and writes to static reference fields, placing an

overhead on each of these operations. There are three outcomes of a barrier

invocation: an object is shaded (turned grey from white), an object is globalised

(turned black from grey and other objects shaded), or no action is taken at all.

If a barrier is invoked with no action taken at all, then a cost has been in-

curred with no beneficial result. However barrier invocations are fixed when

the virtual machine is compiled, and little information about the object operand

is known at this point. Therefore barriers are invoked for every reference field

read/write and static reference write, regardless whether the barrier is needed.

The barriers themselves must check whether an action needs to be performed.

Figure 6.5 shows for each benchmark the proportion of barrier invocations

that result in no action being taken (red and green bars) versus invocations that

result in an object shade (blue) and an object globalisation (purple). It is clear for

all benchmarks that the vast majority of barrier invocations result in no action

at all, and ideally a barrier should not have been invoked at all.

The green bar alone, shows the number of barrier invocations involving

black objects where no action was taken. Once an object has been globalised

and turned black, it only needs a barrier invocation to shade a target white ob-

ject if a reference to it is about to be written to a black object’s field. Reads from

black object’s do not need barrier invocations at all. Whilst local objects dom-

inate, they tend to be short lived compared to shared objects. One of the best

ways to make the thread-local heap implementation more performant would be

CHAPTER 6. RESULTS 137

Table 6.1: An estimate of barrier costings: how much do barri-
ers with no action taken cumulatively cost?

Benchmark Time taken Time taken Difference Barrier
Barriers off Barriers on invocations

bloat 2006 14.591s 31.146s 16.555s 2741m
hsqldb 2006 67.788s 137.536s 69.748s 798m
luindex 2009 3.473s 6.304s 2.831s 451m
lusearch 2009 16.293s 28.361s 12.068s 2104m
pmd 2006 12.648s 20.989s 8.341s 1572m
sunflow 2009 12.943s 25.390s 12.447s 5088m

Table 6.2: An estimate of barrier costings: how many barriers
result in no action?

Benchmark Barriers w/ Read Barriers on black Barriers on white
no action objects w/ no action objects w/ no action

bloat 2006 2740m (99.95%) 995m (36.32%) 1720m (62.74%)
hsqldb 2006 796m (99.70%) 394m (49.40%) 389m (48.75%)
luindex 2009 450m (99.83%) 184m (40.96%) 255m (56.63%)
lusearch 2009 2103m (99.99%) 1308m (62.17%) 792m (37.64%)
pmd 2006 1554m (98.83%) 831m (52.87%) 536m (34.10%)
sunflow 2009 5087m (99.99%) 4410m (86.68%) 663m (13.04%)

to eliminate as many no-action barriers as possible.

Figure 6.5 and Table 6.1 show the proportion of barrier invocations that end

up performing additional actions. The immediate impression given is that the

vast majority of barriers are not required at all, as they perform no action. Un-

fortunately these barriers cannot simply be removed, as it is not until the bar-

rier is invoked and the check made that the barrier can be deemed not useful

and not required. The compiler cannot yet efficiently choose whether or not to

emit a barrier. For example, barriers on getfield or aaload operations are only

needed on grey objects that are accessed by a remote thread. In order to esti-

mate the extra overhead imposed by barriers with no action, benchmarks were

CHAPTER 6. RESULTS 138

Threads

%
 o

f t
hr

ea
d

ba
rr

ie
r

in
vo

ca
tio

ns
0

20
40

60
80

10
0

(a) avrora 2009

Threads

%
 o

f t
hr

ea
d

ba
rr

ie
r

in
vo

ca
tio

ns
0

20
40

60
80

10
0

(b) hsqldb 2006

Threads

%
 o

f t
hr

ea
d

ba
rr

ie
r

in
vo

ca
tio

ns
0

20
40

60
80

10
0

(c) luindex 2009

Threads

%
 o

f t
hr

ea
d

ba
rr

ie
r

in
vo

ca
tio

ns
0

20
40

60
80

10
0

(d) lusearch 2009

Threads

%
 o

f t
hr

ea
d

ba
rr

ie
r

in
vo

ca
tio

ns
0

20
40

60
80

10
0

(e) sunflow 2009

Threads

%
 o

f t
hr

ea
d

ba
rr

ie
r

in
vo

ca
tio

ns
0

20
40

60
80

10
0

(f) xalan 2009

Figure 6.5: A breakdown of each thread’s barrier activities —
which barrier invocations lead to no actions being taken on
white and grey objects (red), no actions being taken on black
objects (light green and green), which barrier invocations lead
to shading (blue) or globalising (purple). Read and write barri-
ers on black objects are split in two: Read and write barriers on
black objects of virtual machine specific types are darker green,
whilst benchmark and library types are light green. This dis-
tinction shows the virtual machine has a non-trivial impact on
cumulative barrier performance.

CHAPTER 6. RESULTS 139

Table 6.3: An estimate of barrier costings: how much execution
time be improved if allocating thread barriers on white objects
and read barriers on black objects are eliminated?

Benchmark Average cost Barriers that could Projected reduction
of a barrier be eliminated in execution time

luindex 2009 6.27ns 439m (97.3%) 2.753s
lusearch 2009 5.73ns 2100m (99.8%) 12.033s
sunflow 2009 2.45ns 5073m (99.7%) 12.429s

run with barriers turned on versus barriers turned off. By subtracting the exe-

cution times, we can approximate the overhead of all barriers. Note that barrier

actions were not measured, merely the cost of the barrier invocation and checks

to see if a barrier action is required. Table 6.1 shows that for all benchmarks,

barriers add a significant overhead, over 100% for some benchmarks. More

promisingly, Table 6.2 shows how many barrier invocations resulted in no ac-

tion. Read barriers on black objects never result in a barrier action being taken,

and an allocating thread accessing or mutating its white objects also results in a

barrier with no action taking place. If the barrier mechanism could be smarter,

a significant proportion of the barrier overhead (over 99%) could be eliminated.

Table 6.3 provides a projection of how much execution time can be reduced if

some barriers could be eliminated.

Whenever a thread-independent garbage collection occurs, information about

the number of pages freed and how long the collection took is gathered. Fig-

ure 6.6 shows when each thread-independent collection occurs and how many

pages were freed.

Each dot represents one thread-independent garbage collection cycle and

each thread’s cycles are connected with a line. Some thread’s do not have a line

CHAPTER 6. RESULTS 140

as only one thread-independent collection cycle was completed. There is little

correlation between execution time and pages freed. However it is possible to

see the variations of thread allocation rate, as a thread-independent garbage

collection cycle is triggered for every 5MB that thread allocates. The greater the

x-axis distance between two thread’s dots, the lower the thread’s allocation rate

is.

A measurement of thread-independent garbage collection success is its through-

put. Simply put, this is the rate of memory reclamation. It is calculated by di-

viding the number of pages freed by the length of a cycle. Figure 6.7 shows

the throughput of each thread-independent garbage cycle. The colour of each

dot represents which thread performed the cycle. Threads at the red end of the

colour spectrum were allocated earlier than threads at the blue end of the spec-

trum. An ideal thread-independent collection cycle will have high throughput,

so dots towards the top left of the graph are successes. Dots towards the bot-

tom right of the graph are problematic, as a relatively longer time was spent on

thread-independent garbage collection but for a lower amount of pages freed.

In general, thread-independent garbage collection cycles are very quick, of-

ten in the range of 1 to 30 milliseconds. This is on par with generational col-

lection. As thread-independent garbage collections are quick, they can be per-

formed frequently in order to keep reclaiming local objects a small amount at a

time.

Finally, statistical data on remsets was gathered. Remsets are necessary

so that allocating threads know of all grey and black objects in their thread-

local heap which are treated as roots for thread-independent garbage collection.

CHAPTER 6. RESULTS 141

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

0 10000 20000 30000 40000

0
50

0
10

00
15

00

Time (milliseconds)

P
ag

es
 r

ec
la

im
ed

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

● ●
● ● ●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●
● ● ● ● ● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ● ● ● ● ● ● ● ●

●

●●
●

●●

●
●●

●

●

●

●
●

● ●
●

●
● ●

(a) avrora 2009

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●

●●
●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●

0 20000 40000 60000 80000

0
20

0
40

0
60

0
80

0
10

00

Time (milliseconds)

P
ag

es
 r

ec
la

im
ed

(b) hsqldb 2006

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0 2000 4000 6000 8000 10000

0
50

0
10

00
15

00

Time (milliseconds)

P
ag

es
 r

ec
la

im
ed

●

●

●

●

●

●

●

●

●

●

●

●

● ●

(c) luindex 2009

●

●●●●●●●●●
●
●

0 5000 10000 15000 20000 25000

0
50

0
10

00
15

00
20

00

Time (milliseconds)

P
ag

es
 r

ec
la

im
ed

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●●

●

●●

●

●

●●
●

●

●
●●●

●

●

●

●●
●
●●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●●

●

●●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●●●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●
●
●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●
●
● ●●

●

●

●

●
●

●

●●
●

●

●
●

●

●
●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●
●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●
●

●

●
●●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●
●

●

●
●●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●● ●● ●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
● ● ●

● ●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

(d) lusearch 2009

●

●

●

●

●

0 5000 10000 15000

0
50

0
10

00
15

00

Time (milliseconds)

P
ag

es
 r

ec
la

im
ed

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●●

●
●●●●●

●

●●
●●●●

●

●
●●●●●●●●●

●
●●●

●

●●●●●●
●●●●●●●●●

●

●

●
●
●●●

●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●

●

●
●●●●●●

●
●●

●●●●●●●●●●●●●●●●●
●●

●

●●
●●

●●●●
●●●●

●●●●
●●●●●●●●●●●●●●

●●●●●●●●●

●

●●●

●

●

●
●●●●●

●●●●●●●●●●
●
●●●●●●●●●●

●●●●●●●●●

●

●

●●
●●●●●●●●●●●●●

●
●●●

●
●●

●
●●●●●

●●●●●

●

●

●
●●●●●●●●●●●●●●

●
●

●
●
●
●●●●

●
●
●
●
●●●●

●
●●●

●●●●

●

●
●
●●●●●

●

●
●

●
●
●●●●●●●●●●

●
●
●
●●●●●

●
●●●

●●●●
●
●
●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●

●
●●●●●●●●●

●●●●●●●
●●●●●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●

●

●
●●●●●

●●●●●●●●●
●

●

●
●●●●●

●
●●●●●

●
●

●

●

●
●●●●●●●●●

●
●
●
●●●●

●
●●●●●●●●●●●●●●●●●

●

●●

●

●

●
●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●

●

●
●●●●●●●●●

●

●
●●●

●●●●●●●●●●●

●

●
●
●
●●●●●

●●●●●●●●●●●●●●●●
●●
●●●●●●●●

●●●●●●
●

●

●●●●
●●●●●●●●●●●

●

●

●
●●●●●●●●●●●

●
●●

●●●●●
●●●●●●●●●●

●
●●●●●

●

●●
●
●●●●

●

●

●●●
●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●●●●●●●●●

●

●●●●
●●●●●●●

●

●

●●
●
●●●●

●
●●

●●●●●

●

●

●
●●

●●●●●●●

●

●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●
●●●●●●

●●●●●●●
●●●●●

●

●

●●
●●●●●●●●●●●●●●●●

●
●●●●

●●●●●●●●●●●●●●●●

●

●●●●●●
●●●●●●●

●

●

●
●●●●

●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●

●

●●●●●●
●●●●●●

●●
●
●
●●
●
●●●●

●●●●●●●●●●
●
●●●
●●●●

●

●

●

●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●
●●●●●●●●

●

●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●
●
●

●

●

●
●●●●●●●●

●●●●●●●●●●●●●●
●
●●●●●

●●●●●●●●●●●●

●
●
●●●●●

●

●

●

●

●●
●●

●●●●●●
●
●●●

●●●●

●

●

●●●●
●
●●●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●●●●
●●●●●

●
●
●●

●

●
●
●●

●
●
●●●

●
●●

●●●●●
●●●●●

●●●●
●

●●●
●●●●

●
●●
●
●

●

●●

●
●●●●

●●

●
●●
●●●

●

●

●

●

●

●

●

●
●●

●
●●●●

●●●●●●●●●●●●●●●
●●●●●●●●

●●●

●

●
●●●●●●●●●

●●●●●●●●●●
●●●

●
●●●●

●
●●●

●
●●●

●

●

●

●

●

●

●

●

●

●●

●●●●●●●●●●●●●●●●
●
●
●
●●●●●●●●

●

●●●●●
●
●●●●●●●●●●

●

●
●

●
●●●●●●●●●●●●●

●●
●
●
●
●●

●
●●●●

●●●●●●●●

●

●
●
●●●●

●●●●●●●
●
●
●

●●●●●●
●●●●●●

●
●●●●●

●
●●
●●●

●

●●●●●●●●●●●●●

●

●

●
●●●

●●●●
●●●●●●●

●●●●●●
●●●●●

●
●
●●

●

●

●●●
●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●

●

●●
●●

●

●

●

●●●●
●
●
●
●
●●●●●●

●●●●●●●●
●●●

●

●

●●●●●●●●
●●●●

●●●●●●●
●●●●●●●●●●●●●●●

●

●●●●●●

●

●

●
●●●●●●●●●●●●●●

●●●●●●●●

●

●

●
●●

●
●●

●●●●●●●●●●●●●
●

●●
●
●●●

●●●●●●●
●●●●

●

●

●

●

●
●
●
●
●
●●●●●●●●

●●●●●●●●●●

●

●

●
●
●
●
●
●●

●

●

●
●
●
●●●●●●

●●●●●●●●●

●

●

●
●●
●
●

●

●

●
●●●●●

●
●

●●●
●●●●●●●●●●●●

●●●●● ●●●●●●●●●
●

●

●

●●●
●●●●●●●●●●●●

●
●●

●●●
●●
●●●●●●●●●●●

●

●

●
●●
●

●●●●

●

●

●●●

●
●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●

●●●●●
●

●

●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●

●

●●●
●●

●
●●●●●

●

●
●●●●●●

●●●●●●●●●●●●●●●●●●●
●
●
●

●

●●●●●●●●●●

●

●
●
●●

●
●

●

●
●
●●

●●

●
●
●
●●

●
●●●●●

●●●●
●
●●●

●●●●●●●

●

●
●
●
●●●

●
●●●●●

●

●●
●●●●

●●●●
●
●●●●

●
●
●●●●●●●●●●●

●
●●●●●

●

●●●●●●●
●●●●

●●●●●●●

●

●●●
●

●●●●●●
●
●●●●●

●●●●●●●●●●●●●
●●●●●●●

●

●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●●●●

●

●●●●●●●

●

●●●●
●●●

●

●

●
●
●●●●●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●

(e) sunflow 2009

0 2000 4000 6000 8000 12000

0
50

0
10

00
15

00

Time (milliseconds)

P
ag

es
 r

ec
la

im
ed

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●
●

●

●

●

● ●
● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

● ●

(f) xalan 2009

Figure 6.6: An overview of thread-independent garbage col-
lection performance over execution. Each dot is one thread-
independent cycle and if a thread conducts multiple cycles,
these are connected.

CHAPTER 6. RESULTS 142

●
●

●

●
●●●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

0 20 40 60 80 100

0
50

0
10

00
15

00

Time (milliseconds)

P
ag

es
 r

ec
la

im
ed

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●
● ●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●
●●●●●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●●●●●●●

●

● ●
●

●●

●
● ●

●

●

●

●
●

●●
●

●
●●

(a) avrora 2009

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●

●●
●● ●●●●●●●●●●●●● ●● ●●● ●●● ●●●●●●●●●●●● ●

●

●●●●●●●●●●●● ●●●

●

●● ●● ●●●

0 200 400 600 800

0
20

0
40

0
60

0
80

0
10

00

Time (milliseconds)

P
ag

es
 r

ec
la

im
ed

●

●

(b) hsqldb 2006

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80

0
50

0
10

00
15

00

Time (milliseconds)

P
ag

es
 r

ec
la

im
ed

●

●

●

●

●

●

●

●

●

●

●

●

●●

(c) luindex 2009

●●

●

●
●

●
●
●

●

●

●

●●
●

●

●
●●●

●

●

●

● ●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●● ● ●●●● ●●●

0 10 20 30

0
50

0
10

00
15

00
20

00

Time (milliseconds)

P
ag

es
 r

ec
la

im
ed

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●

●

●●

●

●

●●
●

●

●
●●●

●

●

●

● ● ●
● ●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●●●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●
●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●
●

●

●
●●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●●●●●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
● ●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●
●

●
●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

(d) lusearch 2009

●
●

●

●

●
●

●

●

●
●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

0 20 40 60

0
50

0
10

00
15

00

Time (milliseconds)

P
ag

es
 r

ec
la

im
ed

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●●
●
●●●●●

●

●●
●●●●

●

●
●●● ●●●●●●
●
●●●

●

●●●●●●
●●●●●●●●●

●

●

●
●
●●●
●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●

●

●
●●●●●●
●
●●
●●●●●●●●●●●●●●●●●
●●

●

●●
●●
●●●●
●●●●
●●●●
●●●●●●●●●●●●●●
●●●●●●●●●

●

●●●

●

●

●
●●●●●●●●●●●●● ●●●●●●●●●●●●●

●●●●●●●●●

●

●

●●
●●●●●●●●●●●●●
●

●●●
●
●●
●
●●●●●
●●●●
●

●

●

●
●●●●●●●●●●●●●●

●
●

●
●
●
●●●●
●
●
●
●
●●●●
●

●●●●●●●

●

●
●
●●●●●

●

●
●

●
●
●●●●●●●●●●
●
●
●
●●●●●
●
●●●
●●●●
●
●
●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●●● ●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●

●
●●●●●●●●●

●●●●●●●
●●●●●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●

●

●
●●●●

●
●●● ●●●● ●●
●

●

●
●●●●●
●
●●●●●
●

●

●

●

●
●●●●●●●●●

●
●
●
●●●●
●
●●●●●●●●●●●●●●●●●

●

●●

●

●

●
●
●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●

●

●

●
●●●●●●●●●

●

●
●●●
●●●●●●●●●●●

●

●
●
●
●●●●●
●●● ●●●●●●●●●●●●●
●●
●●●●●●●●
●●●●●●

●

●

●●●●
●●●●●●●●●●●

●

●

●
●●●●●●●●●●●
●
●●
●●●●●
●●●●●●●●●●

●
●●●●●

●

●●
●
●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●●●●●●● ●

●

● ●● ●
●●●●●●●

●

●

●●
●
●●●●
●
●●
●●●●●

●

●

●
●●
●●●●●●●

●

●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●
●●●●●●
●●●●●●●
●●●●●

●

●

●●
●●● ●●●●●●● ●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●

●

●●●●●●
●●●●●●●

●

●

●
●●●●
●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●●●●●●
●●●●●●
●●
●
●
●●
●
●●●●
●●●●●●●●●●
●
●●●
●●●●

●

●

●

●
●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●

●
●●●●●●●●

●

●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●
●

●

●

●
●●●● ●●●●
●●●●●●●●●●●●●●
●
●●●●●

●●●●●●●●●●●●

●
●
●●●●●

●

●

●

●

●●
●●
● ●●●●●
●
●●●
●●●●

●

●

●● ●●●
●●●
●●●●●●●●

●

●●●●●●●●●● ●●●●●●●●●●

●

●

●

●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

●●●●●
●●●●●
●
●
●●

●

●
●
●●
●
●

●●●●●●
●●●●●
●●●●●
●●●●
●

●●●
●●●●
●
●●
●
●

●

●●

●
●●●●
●●

●
●●
●●●
●

●

●

●

●

●

●

●
●●●
●●●●

●●●●●●●●
●●●●●●●
●●●●●●●●
●●●

●

●
●●●●●●●●●

●●●●●●●●●●
●●●
●
●●●●
●
●●●
●
●●●

●

●

●

●

●

●

●

●

●

●●

●●●●● ●●●●●●●●●● ●
●

●
●
●●●●●●● ●

●

●●●●●
●
●●●●●●●●●●

●

●
●

●
●●●●●●●●●●●●●
●●
●
●

●
●●

●
●●●●
●●●●●●●●

●

●
●
●●●●
●●●●●●●

●
●
●

●●●●●●
●●●●●●

●
●●●●●
●
●●
●●●

●

●●●●●●●●●●●●●

●

●

●
●●●
●●●●
●●●●●●●
●●●●●●
●●●●●

●
●
●●

●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●

●

●●
●●

●

●

●

●●●●
●
●
●
●
●●●
●●●
●●●●●●●●
●●●

●

●

●●●●●●●●
●●●●
●●●●●●●
●●●●●●●●●●●●●●●

●

●●●●●●

●

●

●
●●●●●●●●●●●●●
●
●●●●●●●●

●

●

●
●●
●
●●
●●●●●●●●●●●●●
●

● ●
●
●●●
●●●●●●●
●●●●

●

●

●

●

●
●
●
●
●
●●●●●●●●
●●●●●●●●●●

●

●

●
●
●
●
●
●●
●

●

●
●

●
●●●●●●●●●●●●●●●

●

●

●
●●
●
●

●

●

●
●●●●●

●
●

●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●

●

●●●
●●●●●●●●●●●
●
●
●●
●●●●●

●●●●●●●●●●●
●

●

●
●●
●

●●●●

●

●

●●●

●
●●●●● ●●●●●●●●●●●●●●●●
●

●
●●●●●●●●●●●●
●●●●●
●

●

●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●

●

●●●
●●

●
●●●●●
●

●
●●●●●●

●●●●●●●●●●●●●●●●●●
●
●
●
●

●

●●●●●●●●●●

●

●
●
●●●
●

●

●
●
●●
●●

●
●

●
●●
●
●●●●●
●●●●
●
●●●
●●●●●●●

●

●
●
●
●●●●●●●●●

●

●●
●●●●

●●●●
●
●●●●
●
●
●●●●●●●●●●●
●
●●●●●

●

●●●●●●●
●●●●

●●●●●●●

●

●●●
●

●●●●●●
●
●●●●●
●●● ●●●●●●●●●
●
●●●●●●●

●

●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●●●●

●

●●●●● ●●

●

●●●●
●●●

●

●

●
●
●●●●●●
●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●

(e) sunflow 2009

●●

●

●

●●
●
●●
●●

●

●●

●

●

●●

●

●●

●

●
●●

●

●

●

●●●

●
●
●●

●
●
●
●
●

●

●
●

●

●●

●

●

●

●

●
●●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

0 50 100 150

0
50

0
10

00
15

00

Time (milliseconds)

P
ag

es
 r

ec
la

im
ed

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●
●
●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●
●

●

●

●●
● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●

(f) xalan 2009

Figure 6.7: An overview of thread-independent garbage collec-
tion throughput. Each dot is one thread-independent cycle.

CHAPTER 6. RESULTS 143

However, remsets are an overhead used purely for correctness, not optimisa-

tion, providing no other benefit. Figure 6.8 shows for each thread, the maxi-

mum extent of the remset across the whole of execution. Only grey and black

objects are inserted into the remset and the numbers of grey and black objects in

each remset are represented by a grey bar and a black bar respectively. The size

of remsets is governed by the how many objects a benchmark shares between

multiple threads. It is also interesting to see that some benchmarks have a lot

more black objects in their remset (indicating that objects were indeed used by

multiple threads), whereas some benchmarks such as sunflow 2009 had a large

number of objects at risk of being shared (grey) but very few of these objects

were actually used by multiple threads. Whilst it is important to see the maxi-

mum extent of each remset, it is also important to look at how the remset size

progresses throughout execution. Objects are inserted into a remset whenever

they are shaded. Therefore, the remset continues to grow over time. When a

full-heap garbage collection occurs, the remsets are discarded and rebuilt. This

is because:

• full-heap garbage collection is the only time grey and black objects can

be reclaimed. If a grey/black object is reclaimed, correctness mandates it

should not appear in the remset.

• the remsets are not required for full-heap garbage collection so the ability

to discard and rebuild is taken advantage of.

Figure 6.9 shows the progression of remset sizes over time. The pattern of

gradual increase with a sudden drop in remset size is clear. Each dot is the

size of a remset after a thread-independent garbage collection cycle. Dots are

CHAPTER 6. RESULTS 144

connected with a line if they belong to the same thread. It may be desirable

to periodically perform a full-heap garbage collection to reclaim shared objects

and reduce the size of the remsets. Reducing the size of the remsets means the

root determination phase of thread-independent garbage collection completes

quicker.

Measurement of implementation components and Java applications An im-

portant evaluation of the thread-local heap garbage collector is how well it

scales. To do so, the application must be executed with the same workload, but

varying the number of processors available to it. Execution time from appli-

cation start to application end is measured. As this is performance measure-

ment, logging is kept to a minimum. Figure 6.10 shows how two garbage

collectors scale when the available number of CPUs increases. The red line

is thread-local heap garbage collection, and the blue line is parallel stop-the-

world mark-sweep garbage collection. Both garbage collectors see performance

improvements when the number of available CPUs increases, and the scalabil-

ity of the implemented thread-local heap garbage collector is on par with the

typical parallel mark-sweep collector. Interestingly, the performance of parallel

garbage collection starts to degrade. This is likely because, with more parallel

garbage collector threads, more inter-processor memory traffic is created, and

the memory bandwidth limit is reached. As shown in the graphs, thread-local

heap garbage collection is more resistant to this problem as most garbage col-

lection cycles are performed accessing memory on one NUMA node. Sunflow

2009 is a benchmark that shows off the benefits of thread-local heap garbage

collection. Xalan 2009 also shows good potential. The benchmark spawns a

CHAPTER 6. RESULTS 145

Threads

R
em

se
t E

nt
rie

s
1e

+
04

2e
+

04
5e

+
04

1e
+

05

(a) avrora 2009

Threads

R
em

se
t E

nt
rie

s
1e

+
01

1e
+

02
1e

+
03

1e
+

04
1e

+
05

(b) hsqldb 2006

Threads

R
em

se
t E

nt
rie

s
5e

+
01

5e
+

02
5e

+
03

5e
+

04

(c) luindex 2009

Threads

R
em

se
t E

nt
rie

s
5

50
50

0
50

00
50

00
0

(d) lusearch 2009

Threads

R
em

se
t E

nt
rie

s
1

10
10

0
10

00
10

00
0

(e) sunflow 2009

Threads

R
em

se
t E

nt
rie

s
1e

+
01

1e
+

02
1e

+
03

1e
+

04
1e

+
05

(f) xalan 2009

Figure 6.8: A look at the maximum extent of remset size. Each
stacked bar represents a thread’s remset, grey and black colours
representing the number of grey and black objects in each rem-
set.

CHAPTER 6. RESULTS 146

●●●●●●●●
●

●●●●●●●
●

●●

●
●

●
●

●
●●●

●
●

●●

●
●●●●●●

●

●

●●

●

●●●●●●●●●

●

●

●●●●●

●

●

0
50

00
0

10
00

00
15

00
00

Thread−independent GC

R
em

se
t e

nt
rie

s

●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●●●●●●●●●●●●

●●
●●●

●●

●

●

●
●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●●●●●●●●

●●●

●●●

●

●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●
●

●
●●●●

●

●

●

(a) avrora 2009

●●●●●●
●
●●
●●
●●
●●
●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●

●●●●●●
●●●

●
●●
●●●●

●●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05

Thread−independent GC

R
em

se
t e

nt
rie

s

●●

(b) hsqldb 2006

●●●●●●●●●●●●

●

●●
●●

●●
●

●

●
●

●

●
●

●

●●●●●●●●●●●●●

●

●

●

●

●●●●●
●

●●●●●●
●●●

●●
●●●●●

●●

●

0
50

00
0

10
00

00
15

00
00

Thread−independent GC

R
em

se
t e

nt
rie

s

●
●●●●●●●●

●●●●●

(c) luindex 2009

● ●
●

● ● ● ● ●

● ●
●

● ● ● ● ● ● ●
●

●

● ● ● ● ●

● ●
● ●

●

● ● ●

●

●

●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ●

0
10

00
0

30
00

0
50

00
0

Thread−independent GC

R
em

se
t e

nt
rie

s

● ●

●

● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

●

● ●

● ●

● ● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ●
●

● ● ● ● ● ● ● ●● ●
● ● ●

● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ●
● ●● ●

●
● ●● ●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

● ● ● ● ●
●

● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ●

●
● ● ● ● ●

● ● ●● ●
● ● ●

●
● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ●● ●● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●
●

●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ●

● ●

●

● ● ● ● ● ● ● ●
● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

●

●

●

● ● ● ● ● ● ●
●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ●
●

● ● ● ● ● ●

● ● ● ●
●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●

● ● ● ● ● ● ●
●

●

●

● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

(d) lusearch 2009

●●

0
20

00
0

40
00

0
60

00
0

80
00

0

Thread−independent GC

R
em

se
t e

nt
rie

s

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●

●●●

●●●

●●

●●●●●●●●●

●●●

●●●

●

●●●

●●●●●

●

●

●●●●●●●
●

●●●

●●●●●●●

●●●

●●

●●●●●●●●

●●●

●

●●●

●●●●●●●●●●

●●

●

●●●

●●●

●●●
●

●●

●●●

●●●●●●●●●

●●●

●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●

●●●

●●●●●

●●

●●●

●●●

●

●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●

●●●

●●

●

●

●●●●●●●●●●●●

●●●●●●●

●
●●●●●●●●●

●●●●

●●●

●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●●●●●●●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●

●●●
●●

●●●●●●●●
●

●●●●●●●●

●●●●●●●●

●

●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●

●●●●●●●

●
●●

●●
●

●
●●●

●

●●●
●

●●●
●

●
●

●
●

●

●

●

●

●

●●●

●●●●●

●●

●●●

●●●●●
●●

●●

●●●●●●●●

●

●

●●

●●●●●

●●●
●

●
●●

●●
●

●●
●●●

●●●●●●●

●●●●

●●●●

●●●
●●●

●

●●●●●

●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●●●

●●●●●●●●●●●●●●●●●●●

●●

●

●●●

●●

●●●●●●●●●●●●●●●

●
●●●●

●●●

●
●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●
●

●●

●

●●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●
●●●●●●●●●●●●●

●

●●●●●●●
●●●

●●●

(e) sunflow 2009

●●●
●●●●●●

●
●●●

●

●●

●●●●
●●●

●●

●

●●●●●
●●●●●

●●●●●
●●●●

●●●●
●●●●

●●
●●●

●●
●●

●●
●●●

●●●●
●
●
●●●●

●●●●
●●

●

●●

●●
●●

●

●

●
●●

●

●

●●●●●
●●●●●●

●●●●●●●
●
●●●●●

●

●
●●●●

●

●
●
●●●

0
50

00
0

10
00

00
20

00
00

Thread−independent GC

R
em

se
t e

nt
rie

s

●●●●●●
●
●●

●●●

●

●

●●
●
●●●

●●●●
●●●

●

●●●●●●●●●●●●●●
●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●
●
●

●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●

●

●●●●
●●●●●●

●
●

●●
●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●

●

●●●
●

●●●●●●●●●●●●●●
●
●●●

(f) xalan 2009

Figure 6.9: A look at how remset size differs throughout ex-
ecution. Each dot is the size of a thread’s remset after thread-
independent garbage collection and each thread’s dots and con-
nected. Remsets typically gradually increase in size over time,
then see dramatic drops in size after full-heap garbage collec-
tion.

CHAPTER 6. RESULTS 147

lot of threads that work independently, with very few shared objects and good

thread-independent garbage collection performance. Other benchmarks do not

scale as well because either they either do not spawn enough threads to make

use of the available processors or the threads are not independent enough, shar-

ing too many objects between them.

6.3 Summary

This chapter presents some measurements of the novel thread-local heap garbage

collector implemented in Java. In order to maintain high precision of object

sharing status, high overheads have to be incurred. The hope is that the bene-

fits from thread-independent garbage collection outweighs the costs of invari-

ant maintenance. For two highly parallel benchmarks, sunflow 2009 and xalan

2009, the thread-local heap implementation matches or betters a parallel stop-

the-world implementation. Other benchmarks either do not exploit multiple

processors enough or the threads they spawn do not act independently enough

of one another — sharing too many objects between them. The majority of

collections can reclaim reasonable amount of memory (1000 pages or more; 4

megabytes) in a small amount of time (1 millisecond or more). This indicates

that even single-threaded benchmarks and those benchmarks that don’t spawn

independent acting threads might benefit from thread-independent garbage

collection if the overheads of invariant maintenance could be reduced.

CHAPTER 6. RESULTS 148

●

●

●

● ● ● ● ● ● ● ● ● ●

0 10 20 30 40

0
20

40
60

80
10

0

Available CPUs

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

 (
A

rit
h.

 M
ea

n
+

/−
 S

td
D

ev
)

●

●

●

● ● ● ● ● ● ● ● ● ●

(a) avrora 2009

●

●
● ● ● ● ● ●

● ●
● ●

●

0 10 20 30 40

0
20

40
60

Available CPUs

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

 (
A

rit
h.

 M
ea

n
+

/−
 S

td
D

ev
)

(b) hsqldb 2006

● ● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40

0
2

4
6

8
10

Available CPUs

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

 (
A

rit
h.

 M
ea

n
+

/−
 S

td
D

ev
)

● ● ● ● ● ● ● ● ● ● ● ● ●

(c) luindex 2009

●

●

●

● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40

0
20

40
60

80
10

0
12

0

Available CPUs

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

 (
A

rit
h.

 M
ea

n
+

/−
 S

td
D

ev
)

●

●

●

● ● ●
● ● ● ● ● ● ●

(d) lusearch 2009

●

●

●

●
●

●
● ● ● ● ●

● ●

0 10 20 30 40

0
20

40
60

80
10

0
12

0

Available CPUs

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

 (
A

rit
h.

 M
ea

n
+

/−
 S

td
D

ev
)

●

●

●

●
●

● ●

● ●
● ● ● ●

(e) sunflow 2009

●

●

●

●
● ● ● ● ● ● ● ● ●

0 10 20 30 40

0
10

20
30

40
50

60

Available CPUs

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

 (
A

rit
h.

 M
ea

n
+

/−
 S

td
D

ev
)

●

●

●

●
●

●
●

● ● ● ● ● ●

(f) xalan 2009

Figure 6.10: A comparison of parallel garbage collection (blue)
versus the thread-local heap implementation (red).

Chapter 7

Further Work and Thesis Conclusion

7.1 Further Work

This thesis has demonstrated that it is possible to design and implement a pre-

cise thread-local heap garbage collector, in which maintaining the invariant is

costly but for highly parallel applications the benefit is enough to offset the

cost. However, there are plenty of opportunities to improve the thread-local

collector performance. Additionally, whilst implemented for Java, there are no

language restrictions in the novel thread-local heap design. The novel design

can be applied to functional programming languages for example, with ML

and Haskell being popular targets for thread-local heap garbage collector im-

plementors [27, 28, 60, 90].

One area that could benefit from improvements is the enforcement of the

thread-local heap invariant — the barriers. These impose an overhead on putfield,

aastore, getfield, aaload and putstatic operations where the operands are

reference types. Whenever a barrier is invoked, checks are made to see if the

149

CHAPTER 7. FURTHER WORK AND THESIS CONCLUSION 150

thread-local heap invariant will be been broken (see the rules in section 5.3).

This means that objects that are at no risk of being shared between threads are

constantly checked to see if they violate the thread-local heap invariants. Table

6.3 provides a projection on how much execution time could be reduced by if

some barriers, that result in no action, could be eliminated.

If an object hasn’t changed colour between method invocations, the barrier

execution path taken will be the same as last time that barrier was invoked.

This means some statements and branch checks could be avoided. Unfortu-

nately in current implementation there is no way to detect that the colour has

not changed until the barrier has been invoked. If JikesRVM’s internal repre-

sentation of an object’s class was specialised to allow three coloured-classes class

per class — one of each colour — it would be possible to specialise barrier code

for each coloured-class, tailoring barrier code and removing unnecessary bar-

rier code. If an object changes colour, it would change coloured-class, changing

the barrier code that would be executed. This would shift code invocation to

once method compile basis, rather than every time the method is invoked. In

order to preserve correctness, the three specialised coloured-classes must ap-

pear exactly the same as their original class to the executing program and to

the rest of the virtual machine. Another way to detect whether an object ever

could change from white to at-risk intra-method, is static analysis. A barrier

invocation would only need to be performed for the first time an object is ac-

cessed, and if the object is white and static analysis guarantees the object does

not escape within a method, all further barrier invocations on that object in the

method could be eliminated.

In JikesRVM, the garbage collector algorithm is to some degree decoupled

CHAPTER 7. FURTHER WORK AND THESIS CONCLUSION 151

from the mechanism that decides when to trigger garbage collection. For ex-

ample, with mark sweep, garbage collection can be triggered when the heap is

full, after a certain period of time, after a certain amount of allocation or even

if the application requests it with System.gc(). Whichever mechanism trig-

gers garbage collection, garbage collection behaves the same way, albeit perfor-

mance such as throughput or garbage collection elapsed time may differ.

Thread-independent garbage collection is similarly decoupled from its trig-

ger mechanism in terms of garbage collection behaviour. The implementation

supports configurable triggers where a user can specify how frequently thread-

independent garbage collection is run and whether to stop thread-local heap

garbage collection in favour of full-heap garbage collection if thread-independent

collection performance is poor. A comprehensive investigation into the effect

different configurations have on different programs may be beneficial, as well

as investigations on different trigger mechanisms.

For thread-independent garbage collection to be correct, a thread’s stack

must be scanned for references it holds into its thread-local heaplet. A draw-

back of the thread-local heap implementation is that the thread cannot scan its

own stack whilst it is running, meaning the thread-independent garbage collec-

tion is delegated to a separate, dedicated collector thread that scans the thread’s

stack and performs thread-independent collection whilst the target thread is

blocked until the collection completes. This drawback can be mitigated by pin-

ning the designated collector thread to the same core as the mutator thread for

optimal memory access.

CHAPTER 7. FURTHER WORK AND THESIS CONCLUSION 152

7.2 Thesis Conclusion

Prior to the thesis, there were plenty of thread-local heap garbage collection al-

gorithms. These algorithms varied by the programming language they were

designed for, as well as how they treated shared objects. Some collectors used

static analysis to determine shared objects, but static analysis is heavily con-

servative. Others used dynamic analysis, monitoring the changes to the heap

during runtime and taking action if a local object becomes accessible to other

threads. Haskell, a functional programming language, had a thread-local heap

garbage collector that identified shared objects with greater precision. It was

able to exploit the large proportion of immutable objects and the already present

read barrier. Such a precise thread-local heap garbage collector did not exist for

non-functional programming languages like Java, nor had any studies been car-

ried out to determine the feasibility of implementing a precise thread-local heap

collector.

This thesis has four main contributions:

1. A study into Java heap demographics with respect to object sharing. It

has been shown that conservative thread-local heap garbage collectors are

treating a lot of objects as shared when a large amount of them never es-

cape their allocating thread. Doing so limits the impact of thread-independent

garbage collection.

2. An outline of key implementation decisions taken to implement a correct,

safe thread-local heap garbage collector for Java.

3. An evaluation of implementation components (barriers, globalisation and

CHAPTER 7. FURTHER WORK AND THESIS CONCLUSION 153

remsets, thread-independent garbage collection), scalability and thread-

independent garbage collection performance.

4. Future ideas to tackle some of the overheads in the current thread-local

heap implementation — the reduction of which will improve not only ex-

ecution time but scalability.

The results of the feasibility study were published in a paper accepted by

the ‘Object-Oriented Programming, Systems, Languages and Applications con-

ference’ [51]. Additionally, a precise thread-local heap design was presented at

‘Implementation, Compilation, Optimization of OO Languages, Programs and

Systems’ [64].

This thesis concludes from the feasibility study that imprecise thread-local

heap garbage collectors treat a large number of objects as shared even though

they are truly local. For some benchmarks tested the vast majority of shared

objects should be local. A more precise thread-local heap garbage collector can

take advantage of having more reclaimable objects during thread-independent

garbage collection and will incur lower overheads on treating objects as shared.

An idea was presented; that grouping threads that work closely together into a

single thread for the purposes of thread-independent garbage collection might

reduce the numbers of shared objects, keeping some objects local at the cost of

having to stop some threads together for a thread-independent garbage collec-

tion cycle. However, it was concluded that this is not likely to produce any

benefit as there were not a distinct pattern of threads working together.

This thesis draws several conclusions from the thread-local heap design and

implementation:

CHAPTER 7. FURTHER WORK AND THESIS CONCLUSION 154

• It is possible to design a precise thread-local heap garbage collector which

is not just applicable for Java, but other programming languages as well

as long as they support mechanisms for invariant preservation. In order

to support a more precise object sharing definition, the thread-local heap

invariant was extended to allow grey objects — buffers between black and

white objects.

• Read and write barrier overhead is high, but it could be reduced as many

barriers result in no action. Ideas have been provided for future work

in eliminating such barriers and projected how much overhead could be

reduced by.

• Domani’s claim has been supported — that allocating some objects di-

rectly as shared can improve performance.

• Thread-local heap garbage collection scales better than parallel garbage

collection on benchmarks that are very multi-threaded and whose threads

mostly operate independently.

• Thread-independent garbage collection is performant, reclaiming thou-

sands of pages worth of objects in just a few milliseconds length of time.

In the future, the number of web-based applications will continue to grow.

Similarly, the number of processors will as well. The next generation of garbage

collectors should exploit common design patterns of the programming language

and platform they target. For example, garbage collectors for Java Enterprise

Edition applications should exploit the fact some objects are given an upper

lifetime bound — some are declared as application scoped, some are declared

CHAPTER 7. FURTHER WORK AND THESIS CONCLUSION 155

as page view scoped. Java is a flexible language and, for the moment, future-

proof; supporting mobile applications, desktop applications as well as web ap-

plications. A one-size-fits-all garbage collector may not necessarily be optimal,

and a form of thread-local heap garbage collection could be very suitable for

some of its applications.

Bibliography

[1] Santosh G. Abraham and Janak H. Patel. Parallel Garbage Collection on a

Virtual Memory System. In Proceedings of the 1987 International Conference

on Parallel Processing, pages 243–246, September 1987.

[2] Todd A. Anderson. Optimizations in a Private Nursery-based Garbage

Collector. In Proceedings of the Ninth International Symposium on Memory

Management, pages 21–30, June 2010.

http://doi.acm.org/10.1145/1806651.1806655

[3] Andrew W. Appel. Simple Generational Garbage Collection and Fast Al-

location. Software Practice and Experience, 19(2):171–183, February 1989.

http://dx.doi.org/10.1002/spe.4380190206

[4] Andrew W. Appel, John R. Ellis, and Kai Li. Real-time Concurrent Collec-

tion on Stock Multiprocessors. ACM SIGPLAN Notices, 23(7):11–20, July

1988.

http://doi.acm.org/10.1145/989393.989417

156

http://doi.acm.org/10.1145/1806651.1806655
http://dx.doi.org/10.1002/spe.4380190206
http://doi.acm.org/10.1145/989393.989417

BIBLIOGRAPHY 157

[5] Hezi Azatchi, Yossi Levanoni, Harel Paz, and Erez Petrank. An on-the-

fly mark and sweep garbage collector based on sliding views. In Pro-

ceedings of the Eighteenth ACM SIGPLAN Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications, pages 269–281, October

2003.

http://doi.acm.org/10.1145/949305.949329

[6] Henry G. Baker. The Treadmill: Real-time Garbage Collection Without

Motion Sickness. ACM SIGPLAN Notices, 27(3):66–70, March 1992.

http://doi.acm.org/10.1145/130854.130862

[7] Henry G. Baker, Jr. List Processing in Real Time on a Serial Computer.

Communications of the ACM, 21(4):280–294, April 1978.

http://doi.acm.org/10.1145/359460.359470

[8] Katherine Barabash and Erez Petrank. Tracing Garbage Collection on

Highly Parallel Platforms. In Proceedings of the Ninth International Sym-

posium on Memory Management, pages 1–10, June 2010.

http://doi.acm.org/10.1145/1806651.1806653

[9] Benjamin Biron and Ryan Sciampacone. Real-time Java,

Part 4: Real-time garbage collection. Available from

http://www.ibm.com/developerworks/library/j-rtj4/. [accessed 19th February

2015].

[10] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang,

Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,

Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking,

http://doi.acm.org/10.1145/949305.949329
http://doi.acm.org/10.1145/130854.130862
http://doi.acm.org/10.1145/359460.359470
http://doi.acm.org/10.1145/1806651.1806653

BIBLIOGRAPHY 158

Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Ste-

fanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wieder-

mann. The DaCapo Benchmarks: Java Benchmarking Development and

Analysis. In Proceedings of the Twenty First ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications, pages

160–190, October 2006.

http://doi.acm.org/10.1145/1167473.1167488

[11] Stephen M. Blackburn and Antony L. Hosking. Barriers: Friend or Foe? In

Proceedings of the Fourth International Symposium on Memory Management,

pages 143–151, October 2004.

http://doi.acm.org/10.1145/1029873.1029891

[12] Stephen M Blackburn and Kathryn S. McKinley. In or out?: Putting Write

Barriers in Their Place. In Proceedings of the Third International Symposium

on Memory Management, pages 175–184, June 2002.

http://doi.acm.org/10.1145/512429.512452

[13] Stephen M. Blackburn and Kathryn S. McKinley. Immix: A Mark-region

Garbage Collector with Space Efficiency, Fast Collection, and Mutator

Performance. In Proceedings of the ACM SIGPLAN 2008 Conference on Pro-

gramming Language Design and Implementation, pages 22–32, June 2008.

http://doi.acm.org/10.1145/1375581.1375586

[14] Hans-J. Boehm, Alan J. Demers, and Scott Shenker. Mostly Parallel

Garbage Collection. In Proceedings of the ACM SIGPLAN 1991 Conference

on Programming Language Design and Implementation, pages 157–164, June

http://doi.acm.org/10.1145/1167473.1167488
http://doi.acm.org/10.1145/1029873.1029891
http://doi.acm.org/10.1145/512429.512452
http://doi.acm.org/10.1145/1375581.1375586

BIBLIOGRAPHY 159

1991.

http://doi.acm.org/10.1145/113445.113459

[15] Hans-J. Boehm and Mark Weiser. Garbage Collection in an Uncooperative

Environment. Software Practice and Experience, 18(9):807–820, September

1988.

http://dx.doi.org/10.1002/spe.4380180902

[16] Rodney A. Brooks. Trading Data Space for Reduced Time and Code Space

in Real-time Garbage Collection on Stock Hardware. In Proceedings of the

1984 ACM Symposium on LISP and Functional Programming, pages 256–262,

August 1984.

http://doi.acm.org/10.1145/800055.802042

[17] A. M. Cheadle, A. J. Field, S. Marlow, S. L. Peyton Jones, and R. L. While.

Exploring the Barrier to Entry: Incremental Generational Garbage Collec-

tion for Haskell. In Proceedings of the Fourth International Symposium on

Memory Management, pages 163–174, October 2004.

http://doi.acm.org/10.1145/1029873.1029893

[18] C. J. Cheney. A Nonrecursive List Compacting Algorithm. Communica-

tions of the ACM, 13(11):677–678, November 1970.

http://doi.acm.org/10.1145/362790.362798

[19] Perry Cheng and Guy E. Blelloch. A Parallel, Real-time Garbage Collec-

tor. In Proceedings of the ACM SIGPLAN 2001 Conference on Programming

Language Design and Implementation, pages 125–136, June 2001.

http://doi.acm.org/10.1145/378795.378823

http://doi.acm.org/10.1145/113445.113459
http://dx.doi.org/10.1002/spe.4380180902
http://doi.acm.org/10.1145/800055.802042
http://doi.acm.org/10.1145/1029873.1029893
http://doi.acm.org/10.1145/362790.362798
http://doi.acm.org/10.1145/378795.378823

BIBLIOGRAPHY 160

[20] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C Sreed-

har, and Sam Midkiff. Escape analysis for Java. ACM SIGPLAN Notices,

34(10):1–19, Oct 1999.

http://doi.acm.org/10.1145/320385.320386

[21] HyperTransport Consortium. HyperTrans-

port I/O Technology Overview. Available from

http://www.hypertransport.org/docs/wp/HT Overview.pdf. [accessed 24th

June 2014].

[22] Intel Corporation. An Introduction to the Intel QuickPath Intercon-

nect. Available from http://www.intel.com/content/dam/doc/white-paper/quick-

path-interconnect-introduction-paper.pdf. [accessed 24th June 2014].

[23] Jeffrey L. Dawson. Improved Effectiveness from a Real Time LISP

Garbage Collector. In Proceedings of the 1982 ACM Symposium on LISP and

Functional Programming, pages 159–167, August 1982.

http://doi.acm.org/10.1145/800068.802146

[24] David Detlefs, Christine Flood, Steve Heller, and Tony Printezis. Garbage-

first Garbage Collection. In Proceedings of the Fourth International Sympo-

sium on Memory Management, pages 37–48, October 2004.

http://doi.acm.org/10.1145/1029873.1029879

[25] David Dice. False sharing induced by card table marking. Available from

https://blogs.oracle.com/dave/entry/false sharing induced by card. [accessed

19th June 2014].

http://doi.acm.org/10.1145/320385.320386
http://doi.acm.org/10.1145/800068.802146
http://doi.acm.org/10.1145/1029873.1029879

BIBLIOGRAPHY 161

[26] Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and

E. F. M. Steffens. On-The-Fly Garbage Collection: An exercise in Cooper-

ation. Communications of the ACM, 21(11):965–975, November 1978.

http://doi.acm.org/10.1145/359642.359655

[27] Damien Doligez and Georges Gonthier. Portable, Unobtrusive Garbage

Collection for Multiprocessor Systems. In Conference Record of the Twenty-

First Annual ACM Symposium on Principles of Programming Languages,

pages 70–83, Portland, OR, USA, January 1994.

[28] Damien Doligez and Xavier Leroy. A Concurrent Generational Garbage

Collector for a Multi-Threaded Implementation of ML. In Conference

Record of the Twentieth Annual ACM Symposium on Principles of Program-

ming Languages, pages 113–123, Charleston, SC, USA, January 1993.

[29] Tamar Domani, Elliot Kolodner, Ethan Lewis, Erez Petrank, and Dafna

Sheinwald. Thread-Local Heaps for Java. In Proceedings of the Third Inter-

national Symposium on Memory Management, pages 76–87, June 2002.

[30] Python Software Foundation. 29.11. gc - Garbage Collector interface.

Available from http://docs.python.org/3/library/gc.html. [accessed 2nd May

2014].

[31] Python Software Foundation. About PythonTM. Available from

http://www.python.org/about/. [accessed 2nd May 2014].

[32] Robin J. Garner, Stephen M. Blackburn, and Daniel Frampton. A Compre-

hensive Evaluation of Object Scanning Techniques. In Proceedings of the

http://doi.acm.org/10.1145/359642.359655

BIBLIOGRAPHY 162

Tenth International Symposium on Memory Management, pages 33–42, June

2011.

http://doi.acm.org/10.1145/1993478.1993484

[33] David Geer. Industry Trends: Chip Makers Turn to Multicore Processors.

Computer Journal, 38(5):11–13, May 2005.

http://dx.doi.org/10.1109/MC.2005.160

[34] GHC. The Glasgow Haskell Compiler. Available from

http://www.haskell.org/ghc/. [accessed 2nd May 2014].

[35] Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc Shapiro. A study

of the Scalability of Stop-the-World Garbage Collectors on Multicore. In

MMnet’13: Language and Runtime Support for Concurrent Systems, May

2013.

http://www.macs.hw.ac.uk/~dsg/events/mmnet13.html

[36] Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc Shapiro. A Study of

the Scalability of Stop-the-world Garbage Collectors on Multicores. ACM

SIGPLAN Notices, 48(4):229–240, March 2013.

http://doi.acm.org/10.1145/2499368.2451142

[37] The PHP Group. PHP: Performance Considerations. Available from

https://secure.php.net/manual/en/features.gc.performance-considerations.php.

[accessed 20th April 2016].

[38] Xiaohua Guan, Witawas Srisa-an, and Chenghuan Jia. Investigating the

Effects of Using Different Nursery Sizing Policies on Performance. In Pro-

ceedings of the Eigth International Symposium on Memory Management, pages

http://doi.acm.org/10.1145/1993478.1993484
http://dx.doi.org/10.1109/MC.2005.160
http://www.macs.hw.ac.uk/~dsg/events/mmnet13.html
http://doi.acm.org/10.1145/2499368.2451142

BIBLIOGRAPHY 163

59–68, June 2009.

http://doi.acm.org/10.1145/1542431.1542441

[39] Daniel Hackenberg, Daniel Molka, and Wolfgang E. Nagel. Comparing

Cache Architectures and Coherency Protocols on x86-64 Multicore SMP

Systems. In Proceedings of the 42nd Annual IEEE/ACM International Sympo-

sium on Microarchitecture, pages 413–422, December 2009.

http://doi.acm.org/10.1145/1669112.1669165

[40] David R. Hanson. Storage Management for an Implementation of

SNOBOL4. Software Practice and Experience, 7(2):179–192, March 1977.

http://dx.doi.org/10.1002/spe.4380070206

[41] Barry Hayes. Using Key Object Opportunism to Collect Old Objects.

ACM SIGPLAN Notices, 26(11):33–46, November 1991.

http://doi.acm.org/10.1145/118014.117957

[42] Laurence Hellyer, Richard Jones, and Antony L. Hosking. The Locality of

Concurrent Write Barriers. In Proceedings of the Ninth International Sympo-

sium on Memory Management, pages 83–92, June 2010.

http://doi.acm.org/10.1145/1806651.1806666

[43] Antony L. Hosking. Portable, Mostly-concurrent, Mostly-copying

Garbage Collection for Multi-processors. In Proceedings of the Fifth Inter-

national Symposium on Memory Management, pages 40–51, June 2006.

http://doi.acm.org/10.1145/1133956.1133963

http://doi.acm.org/10.1145/1542431.1542441
http://doi.acm.org/10.1145/1669112.1669165
http://dx.doi.org/10.1002/spe.4380070206
http://doi.acm.org/10.1145/118014.117957
http://doi.acm.org/10.1145/1806651.1806666
http://doi.acm.org/10.1145/1133956.1133963

BIBLIOGRAPHY 164

[44] R. J. M Hughes. A semi-incremental garbage collection algorithm. Soft-

ware Practice and Experience, 12(11):1081–1082, November 1982.

http://dx.doi.org/10.1002/spe.4380121108

[45] Balaji Iyengar, Edward Gehringer, Michael Wolf, and Karthikeyan Mani-

vannan. Scalable Concurrent and Parallel Mark. In Proceedings of the

Eleventh International Symposium on Memory Management, pages 61–72,

June 2012.

http://doi.acm.org/10.1145/2258996.2259006

[46] Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection

Handbook: The art of automatic memory management. CRC Press, 2012.

[47] Richard Jones and Andy King. A Fast Analysis for Thread-Local Garbage

Collection with Dynamic Class Loading. In 5th IEEE International Work-

shop on Source Code Analysis and Manipulation, pages 129–138, September

2005.

[48] Richard Jones and Rafael Lins. Garbage Collection: Algorithms for automatic

dynamic memory management. John Wiley and Sons, 1996.

[49] Maria Jump, Stephen M. Blackburn, and Kathryn S. McKinley. Dynamic

Object Sampling for Pretenuring. In Proceedings of the Fourth International

Symposium on Memory Management, pages 152–162, October 2004.

http://doi.acm.org/10.1145/1029873.1029892

[50] Tomas Kalibera and Richard Jones. Rigorous Benchmarking in Reason-

able Time. pages 63–74, June 2013.

http://doi.acm.org/10.1145/2464157.2464160

http://dx.doi.org/10.1002/spe.4380121108
http://doi.acm.org/10.1145/2258996.2259006
http://doi.acm.org/10.1145/1029873.1029892
http://doi.acm.org/10.1145/2464157.2464160

BIBLIOGRAPHY 165

[51] Tomas Kalibera, Matthew Mole, Richard Jones, and Jan Vitek. A Black-

box Approach to Understanding Concurrency in DaCapo. ACM SIG-

PLAN Notices, 47(10):335–354, October 2012.

http://doi.acm.org/10.1145/2398857.2384641

[52] Brian W. Kernighan and Dennis Ritchie. The C Programming Language,

Second Edition. Prentice-Hall, 1988. ISBN 978-0131103627.

[53] Yossi Levanoni and Erez Petrank. An On-the-fly Reference-counting

Garbage Collector for Java. ACM Transactions on Programming Languages

and Systems, 28(1):1–69, January 2006.

http://doi.acm.org/10.1145/1111596.1111597

[54] Yinan Li, Ippokratis Pandis, René Müller, Vijayshankar Raman, and

Guy M. Lohman. NUMA-aware algorithms: the case of data shuffling.

In Proceedings of the 6th Biennial Conference on Innovative Data Systems Re-

search, January 2013.

http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper121.pdf

[55] Henry Lieberman and Carl Hewitt. A Real-time Garbage Collector Based

on the Lifetimes of Objects. Communications of the ACM, 26(6):419–429,

June 1983.

http://doi.acm.org/10.1145/358141.358147

[56] Zoltan Majo and Thomas R. Gross. Memory Management in NUMA

Multicore Systems: Trapped Between Cache Contention and Interconnect

Overhead. In Proceedings of the Tenth International Symposium on Memory

http://doi.acm.org/10.1145/2398857.2384641
http://doi.acm.org/10.1145/1111596.1111597
http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper121.pdf
http://doi.acm.org/10.1145/358141.358147

BIBLIOGRAPHY 166

Management, pages 11–20, June 2011.

http://doi.acm.org/10.1145/1993478.1993481

[57] Zoltan Majo and Thomas R. Gross. Memory System Performance in a

NUMA Multicore Multiprocessor. In Proceedings of the 4th Annual Interna-

tional Conference on Systems and Storage, pages 12:1–12:10, May 2011.

http://doi.acm.org/10.1145/1987816.1987832

[58] Sebastien Marion, Richard Jones, and Chris Ryder. Decrypting the Java

Gene Pool. In Proceedings of the Sixth International Symposium on Memory

Management, pages 67–78, October 2007.

http://doi.acm.org/10.1145/1296907.1296918

[59] Simon Marlow, Tim Harris, Roshan P. James, and Simon Pey-

ton Jones. Parallel Generational-copying Garbage Collection with a Block-

structured Heap. In Proceedings of the Seventh International Symposium on

Memory Management, pages 11–20, June 2008.

http://doi.acm.org/10.1145/1375634.1375637

[60] Simon Marlow and Simon Peyton Jones. Multicore Garbage Collection

with Local Heaps. In Proceedings of the Tenth International Symposium on

Memory Management, pages 21–32, June 2011.

http://doi.acm.org/10.1145/1993478.1993482

[61] John McCarthy. Recursive Functions of Symbolic Expressions and Their

Computation by Machine, Part I. Communications of the ACM, 3(4):184–

195, April 1960.

http://doi.acm.org/10.1145/367177.367199

http://doi.acm.org/10.1145/1993478.1993481
http://doi.acm.org/10.1145/1987816.1987832
http://doi.acm.org/10.1145/1296907.1296918
http://doi.acm.org/10.1145/1375634.1375637
http://doi.acm.org/10.1145/1993478.1993482
http://doi.acm.org/10.1145/367177.367199

BIBLIOGRAPHY 167

[62] Phil McGachey and Antony L. Hosking. Reducing Generational Copy

Reserve Overhead with Fallback Compaction. In Proceedings of the Fifth

International Symposium on Memory Management, pages 17–28, June 2006.

http://doi.acm.org/10.1145/1133956.1133960

[63] R. Milner, M. Tofte, and R. Harper. The definition of Standard ML. The MIT

Press, 1990.

[64] Matthew Mole, Richard Jones, and Tomas Kalibera. A study of sharing

definitions in thread-local heaps. In Proceedings of the Seventh Workshop

on Implementation, Compilation, Optimization of Object-Oriented Languages,

Programs and Systems, June 2012.

https://sites.google.com/site/icooolps/icooolps-2012/program

[65] Daniel Molka, Daniel Hackenberg, Robert Schone, and Matthias S. Muller.

Memory Performance and Cache Coherency Effects on an Intel Nehalem

Multiprocessor System. In Proceedings of the 18th International Conference on

Parallel Architectures and Compilation Techniques, pages 261–270, September

2009.

http://dx.doi.org/10.1109/PACT.2009.22

[66] David A. Moon. Garbage Collection in a Large LISP System. In Pro-

ceedings of the 1984 ACM Symposium on LISP and Functional Programming,

pages 235–246, August 1984.

http://doi.acm.org/10.1145/800055.802040

http://doi.acm.org/10.1145/1133956.1133960
https://sites.google.com/site/icooolps/icooolps-2012/program
http://dx.doi.org/10.1109/PACT.2009.22
http://doi.acm.org/10.1145/800055.802040

BIBLIOGRAPHY 168

[67] Mozilla Developer Network. Memory Manage-

ment. Available from https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Memory Management. [accessed 20th April

2016].

[68] Ian A. Newman and M. C. Woodward. Alternative Approaches to Multi-

processor Garbage Collection. In Proceedings of the 1982 International Con-

ference on Parallel Processing, pages 205–210, August 1982.

[69] Cosmin E. Oancea, Alan Mycroft, and Stephen M. Watt. A New Approach

to Parallelising Tracing Algorithms. In Proceedings of the Eigth International

Symposium on Memory Management, pages 10–19, June 2009.

http://doi.acm.org/10.1145/1542431.1542434

[70] Oracle. Chapter 2. The Structure of the Java Virtual Machine. Available

from http://docs.oracle.com/javase/specs/jvms/se6/html/jvms-2.html. [accessed

25th April 2014].

[71] Oracle. Chapter 6. The Java Virtual Machine Instruction Set. Available from

http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html. [accessed 25th

April 2014].

[72] Oracle. Java SE 6 HotSpot[tm] Virtual Machine Garbage Collection Tun-

ing. Available from http://www.oracle.com/technetwork/java/javase/gc-tuning-

6-140523.html. [accessed 25th April 2014].

[73] Oracle. Java SE HotSpot at a Glance. Available from

http://www.oracle.com/technetwork/java/javase/tech/hotspot-138757.html.

[accessed 28th April 2014].

http://doi.acm.org/10.1145/1542431.1542434

BIBLIOGRAPHY 169

[74] Oracle. Java.com: Java + You. Available from http://www.java.com/en/. [ac-

cessed 2nd May 2014].

[75] Oracle. Memory Management in the Java

HotSpot Virtual Machine. Available from

http://www.oracle.com/technetwork/java/javase/tech/memorymanagement-

whitepaper-1-150020.pdf. [accessed 20th April 2016].

[76] Oracle. Oracle JRockit. Available from

http://www.oracle.com/technetwork/middleware/jrockit/overview/index.html.

[accessed 1st June 2014].

[77] L. C. Paulson. ML for the working programmer. Cambridge University

Press, 1991.

[78] Pekka P. Pirinen. Barrier Techniques for Incremental Tracing. In Proceed-

ings of the First International Symposium on Memory Management, pages 20–

25, October 1998.

http://doi.acm.org/10.1145/286860.286863

[79] Tony Printezis and David Detlefs. A Generational Mostly-concurrent

Garbage Collector. In Proceedings of the Second International Symposium

on Memory Management, pages 143–154, October 2000.

http://doi.acm.org/10.1145/362422.362480

[80] DaCapo Project. DaCapo Benchmarks. Available from

http://www.dacapobench.org/. [accessed 30th July 2014].

http://doi.acm.org/10.1145/286860.286863
http://doi.acm.org/10.1145/362422.362480

BIBLIOGRAPHY 170

[81] The Jikes RVM Project. Jikes RVM - Home. Available from

http://jikesrvm.org/. [accessed 1st June 2014].

[82] Jon Rafkind, Adam Wick, John Regehr, and Matthew Flatt. Precise

Garbage Collection for C. In Proceedings of the Eigth International Sym-

posium on Memory Management, pages 39–48, June 2009.

http://doi.acm.org/10.1145/1542431.1542438

[83] Philip Reames and George Necula. Towards Hinted Collection: Annota-

tions for Decreasing Garbage Collector Pause Times. In Proceedings of the

Twelfth International Symposium on Memory Management, June 2013.

http://doi.acm.org/10.1145/2464157.2464158

[84] Erik Ruf. Effective Synchronization Removal for Java. In Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, pages 208–218, June 2000.

[85] Koichi Sasada. Incremental Garbage Collection in Ruby 2.2. Available from

https://engineering.heroku.com/blogs/2015-02-04-incremental-gc/. [accessed

20th April 2016].

[86] Neil Schemenauer. Garbage Collection for Python. Available from

http://arctrix.com/nas/python/gc/. [accessed 20th April 2016].

[87] Fridtjof Siebert. Limits of Parallel Marking Garbage Collection. In Proceed-

ings of the Seventh International Symposium on Memory Management, pages

21–29, June 2008.

http://doi.acm.org/10.1145/1375634.1375638

http://doi.acm.org/10.1145/1542431.1542438
http://doi.acm.org/10.1145/2464157.2464158
http://doi.acm.org/10.1145/1375634.1375638

BIBLIOGRAPHY 171

[88] Fridtjof Siebert. Concurrent, Parallel, Real-time Garbage-collection. In

Proceedings of the Ninth International Symposium on Memory Management,

pages 11–20, June 2010.

http://doi.acm.org/10.1145/1806651.1806654

[89] David Siegwart and Martin Hirzel. Improving Locality with Parallel Hi-

erarchical Copying GC. In Proceedings of the Fifth International Symposium

on Memory Management, pages 52–63, June 2006.

http://doi.acm.org/10.1145/1133956.1133964

[90] KC Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. Eliminat-

ing Read Barriers Through Procrastination and Cleanliness. In Proceedings

of the Eleventh International Symposium on Memory Management, pages 49–

60, June 2012.

http://doi.acm.org/10.1145/2258996.2259005

[91] Guy L. Steele, Jr. Multiprocessing Compactifying Garbage Collection.

Communications of the ACM, 18(9):495–508, September 1975.

http://doi.acm.org/10.1145/361002.361005

[92] Bjarne Steensgaard. Thread-specific Heaps for Multi-threaded Programs.

In Proceedings of the Second International Symposium on Memory Manage-

ment, pages 18–24, October 2000.

http://doi.acm.org/10.1145/362422.362432

[93] Azul Systems. Zing: An innovative JVM that makes Java applications

run better. Available from http://www.azulsystems.com/products/zing/whatisit.

[accessed 1st June 2014].

http://doi.acm.org/10.1145/1806651.1806654
http://doi.acm.org/10.1145/1133956.1133964
http://doi.acm.org/10.1145/2258996.2259005
http://doi.acm.org/10.1145/361002.361005
http://doi.acm.org/10.1145/362422.362432

BIBLIOGRAPHY 172

[94] Gil Tene, Balaji Iyengar, and Michael Wolf. C4: The Continuously Concur-

rent Compacting Collector. In Proceedings of the Tenth International Sympo-

sium on Memory Management, pages 79–88, June 2011.

http://doi.acm.org/10.1145/1993478.1993491

[95] David Ungar. Generation Scavenging: A Non-disruptive High Per-

formance Storage Reclamation Algorithm. ACM SIGPLAN Notices,

19(5):157–167, April 1984.

http://doi.acm.org/10.1145/390011.808261

[96] David Ungar and Frank Jackson. Tenuring Policies for Generation-based

Storage Reclamation. ACM SIGPLAN Notices, 23(11):1–17, November

1988.

http://doi.acm.org/10.1145/62084.62085

[97] David Ungar and Frank Jackson. An Adaptive Tenuring Policy for Gen-

eration Scavengers. ACM Transactions on Programming Languages and Sys-

tems, 14(1):1–27, January 1992.

http://doi.acm.org/10.1145/111186.116734

[98] David Vengerov. Modeling, Analysis and Throughput Optimization of

a Generational Garbage Collector. In Proceedings of the Eigth International

Symposium on Memory Management, pages 1–9, June 2009.

http://doi.acm.org/10.1145/1542431.1542433

[99] Paul R. Wilson. Uniprocessor Garbage Collection Techniques. In Proceed-

ings of the 1992 International Workshop on Memory Management, pages 1–42,

http://doi.acm.org/10.1145/1993478.1993491
http://doi.acm.org/10.1145/390011.808261
http://doi.acm.org/10.1145/62084.62085
http://doi.acm.org/10.1145/111186.116734
http://doi.acm.org/10.1145/1542431.1542433

BIBLIOGRAPHY 173

September 1992.

http://dl.acm.org/citation.cfm?id=645648.664824

[100] Xi Yang, Stephen M. Blackburn, Daniel Frampton, and Antony L. Hosk-

ing. Barriers Reconsidered, Friendlier Still! In Proceedings of the Eleventh

International Symposium on Memory Management, pages 37–48, June 2012.

http://doi.acm.org/10.1145/2258996.2259004

[101] T. Yuasa. Real-time Garbage Collection on General-purpose Machines.

Journal of Systems and Software, 11(3):181–198, March 1990.

http://dx.doi.org/10.1016/0164-1212(90)90084-Y

[102] Yi Zhao, Jin Shi, Kai Zheng, Haichuan Wang, Haibo Lin, and Ling Shao.

Allocation wall: a limiting factor of Java applications on emerging multi-

core platforms. In Proceedings of the Twenty Fourth ACM SIGPLAN Confer-

ence on Object-Oriented Programming, Systems, Languages, and Applications,

pages 361–376, October 2009.

http://dl.acm.org/citation.cfm?id=645648.664824
http://doi.acm.org/10.1145/2258996.2259004
http://dx.doi.org/10.1016/0164-1212(90)90084-Y

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Listings
	Introduction
	Research Statement and Contributions
	Thesis Outline

	Garbage Collection
	Introduction
	Fundamentals of Garbage Collection
	Algorithm Categories
	Virtual Machine Structure
	Fundamental Algorithms
	Mark Sweep
	Semi-space Copying
	Immix
	Incremental GC
	Generational GC

	Parallel GC
	Concurrent GC
	Barriers
	Summary

	Thread-Local Heap GC
	Introduction
	Non-Uniform Memory Architecture
	Thread-Local Heaps
	Identifying Shared Objects

	Summary

	Patterns of Sharing
	Introduction
	Tools
	DaCapo Benchmarking Suites
	Jikes RVM

	Thread Relationships
	Study Method
	Analysis

	Summary

	Precise Thread-Local Implementation
	Introduction
	Feasibility Study Findings
	Thread-Local Heap Algorithm Design
	Thread-Local Heap Algorithm Implementation
	Heap Structure
	Object Structure
	Invariant Maintenance
	Thread-Independent Collection
	Globaliser Thread

	Summary

	Results
	Experiment Set-up
	Hardware and Software
	Measurement Gathering

	Results
	Summary

	Further Work and Thesis Conclusion
	Further Work
	Thesis Conclusion

	Bibliography

