
Uppsala Master’s Theses in
Computing Science 113
Examensarbete DV3
1998-01-15
ISSN 1100-1836

SICStus MT – A Multithreaded Execution
Environment for SICStus Prolog

Jesper Eskilson

January 15, 1998

Computing Science Department, Uppsala University

Box 311, 751 05 Uppsala, Sweden

This work has been carried out at

Swedish Institute of Computer Science

Box 1263, 164 29 Kista, Sweden

Abstract

We have designed and implemented a multithreaded execution environment for SICStus
Prolog. The threads are dynamically managed using a small and compact set of Prolog primi-
tives and they are implemented completely on user-level, requiring almost no support from the
underlying operating system.

The development of intelligent software agents has been one of the reasons why explicit
concurrency has become a necessity in a modern Prolog system today. Such an application
needs to perform several tasks which may be very different with respect to how they are im-
plemented in Prolog. Performing these tasks simultaneously is very tedious without language
support.

Keywords: Logic Programming, Threads, Message-passing, Concurrency

Supervisor: Stefan Andersson

Examiner: Mats Carlsson

Passed:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11433701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Page 2/53

Acknowledgements

I would like to thank my supervisor Stefan Andersson who has patiently answered my ques-
tions about SICStus Prolog, my examiner Mats Carlsson for asking the right questions to me
and having many valuable opinions about the implementation and on the report. Thanks also to
Sverker Janson and to my friend and colleague Fredrik Larsson for many good ideas and fruit-
ful discussions.

Special thanks to my wife Jenny for her support and endless love.

Page 3/53

Table Of Contents

Chapter 1 - Introduction..7
1.1 Background...7

1.1.1 Concurrency.. 7
1.1.2 History... 8

1.2 About This Thesis...9
1.3 Organization ...9

Chapter 2 - The Design of A Multithreaded Environment.....................10
2.1 Multithreaded Execution and Virtual Machines.................................. 10
2.2 Should Native Threads Be Used?.. 11
2.3 Storage Model... 11
2.4 Execution Model... 12

2.4.1 Runtime vs. Development Systems ... 13
2.4.2 Exceptions ... 13

2.5 Scheduling .. 14
2.5.1 Preemption .. 14
2.5.2 Fairness.. 14
2.5.3 The Scheduling Algorithm ... 14
2.5.4 Choice of Time Quantum ... 16

Chapter 3 - Programming Interface..18
3.1 Primitives .. 18
3.2 Semantics .. 19

3.2.1 Backtracking.. 19
3.2.2 The Communication And Synchronization Mechanism.................... 20
3.2.3 Suspend and Resume.. 22
3.2.4 Exceptions—Where and Why? .. 22

Chapter 4 - The Problem Of Blocking System Calls24
4.1 Possible Solutions... 24
4.2 Emulator Support... 24

4.2.1 Native Code... 25
4.2.2 Suspending The Emulator.. 25

4.3 Predicates .. 26
4.3.1 Character Input Predicates... 26
4.3.2 Socket I/O ... 27
4.3.3 Output Primitives ... 27

4.4 Portability Aspects ... 27
4.4.1 Signals.. 27

Page 4/53

4.4.2 Performing Asynchronous System Calls... 28

4.5 Foreign Language Support .. 28
4.5.1 Blocking System Calls In Foreign Code... 28

Chapter 5 - Discussion...30
5.1 Memory Consumption... 30
5.2 Address Space Fragmentation... 30

5.2.1 Optimal Address Space Utilization Using mmap()............................ 31
5.2.2 Proposed Solution... 31

5.3 Comparison With Other Multithreaded Environments...................... 31
5.3.1 ERLANG... 31
5.3.2 Oz 2.0 ... 32
5.3.3 Java... 33
5.3.4 CS-Prolog Professional ... 35

5.4 Performance.. 36
5.4.1 Game of Life .. 36
5.4.2 Matrix Arithmetic ... 38
5.4.3 Profiling Data .. 38
5.4.4 Raw Overhead... 40

5.5 Conclusion .. 40

Chapter 6 - Future Work..41
6.1 Critical Regions and Database Synchronization.................................. 41

6.1.1 Semantics for Synchronized Database Operations 41

6.2 The Message Passing Mechanism ... 42
6.2.1 Avoiding Message Copying... 42
6.2.2 Indexing... 42

6.3 Improved Syntax .. 43
6.4 Improvements Under the Hood.. 43

6.4.1 Blocking System Calls in Foreign Code... 43
6.4.2 The Prolog/C Interface... 44
6.4.3 Runtime vs. Development Systems ... 44
6.4.4 Retracted Clauses.. 44
6.4.5 Access-control for Sub-threads .. 44

Chapter 7 - Related Work..45

Chapter 8 - Conclusion ..46

Chapter 9 - Program Listings ..47
9.1 Game Of Life... 47
9.2 Matrix Arithmetic... 50

Chapter 10 - References ...51

Page 5/53

Tables & Figures

Figure 1: Relationship between different kinds of threads ... 10

Figure 2: How to implement a catch-all mechanism in a subthread 13

Figure 3: PRR Scheduling. To the left, A is executing with priority 3. To the
right, A has been interrupted and inserted last among those threads with
equal priority. .. 16

Figure 4: How to implement join/1 using send/2 and receive/1. 19

Figure 5: Backtracking into spawn/2... 19

Figure 6: Communication using send/2 and receive/1. The example spawns
a simple echo thread which executes in the background and echos
everything sent to it. ... 20

Figure 7: Synchronizing using send/2 and receive/1. Two threads are
spawned (ReaderA and ReaderB) cooperating to read terms from
standard input. .. 21

Figure 8: Out-of-order receives in Prolog... 21

Figure 9: Implementation of suspend/resume using send/receive................................. 22

Figure 10: Emulator code for handling suspended C-predicates 25

Figure 11: Source code for the get/1 predicate.. 26

Figure 12: How blocking system calls can be handled in foreign code. This
example comes from the socket-library. .. 29

Figure 13: Example of inter-thread communication in ERLANG. This example
spawns a thread which increments a counter each time it receives the atom
increment.. 32

Figure 14: Example of inter-thread communication in Prolog. Roughly the same
example as in Figure 13, but in Prolog. The thread terminates when it
receives the atom die. Note the ! (cut) after receive(increment).
Without the cut, a choicepoint would be pushed for each incoming
message. ... 32

Figure 15: A concurrent Fibonacci function in Oz 2.0. This version is however
very inefficient, since it creates an exponential number of threads. 32

Figure 16: Sample code for creating a thread in Java. ... 34

Figure 17: Implementing send/receive in Java without using the piped input
and output streams. .. 35

Figure 18: The inner-loop of the Oz 2.0 version of Game-of-Life. Note the
absence of message passing.. 37

Figure 19: Profile data obtain from the Game-of-Life benchmark (10x10, 500
generations), using gprof.. 39

Figure 20: Extract from the call graph data obtained from gprof(). 39

Figure 21: Example of a synchronized database operation... 41

Figure 22: Suggestion for improved syntax for receive constructs................................... 43

Page 6/53

Table 1: Primitives for manipulating threads in SICStus MT ... 18

Table 2: Recommended minimum stack sizes (in bytes/words on a 32-bit
architecture) for SICStus MT .. 30

Table 3: State transitions for Conway’s Game of Life.. 36

Table 4: Execution times for Conway’s Game of Life. The parameters were
10x10 cells and 500 generations. Times are in milliseconds. 37

Table 5: Execution times in milliseconds for the Matrix Arithmetic benchmark.
Observe that the number of threads increase quadratically..................................... 38

Page 7/53

Chapter 1 - Introduction

The nature of Logic Programming in general and Prolog in particular, is that of proving a state-
ment given a set of axioms and a set of rules. The axioms and the rules form what is called the
database, to which queries are made. For example, assume that we have a database containing
information on how to get from point A to point B. The query

 | ?- route(kremlin, whitehouse, X).

might then give us the answer

X = [kremlin,sheremetyevo-2,heathrow,jfk,whitehouse] ?

yes

after searching for the fastest way of getting from the Kremlin to the White House.
This paradigm of modeling computation by making queries to a database has turned out to

be very expressive in modeling a large number of problems, especially where some form of
search is involved. However, larger software systems often contains several independent sub-
programs which continuously interact with their environment using some kind of loop which
accepts input and then acts on it. For example, a WWW-server normally consists of a part which
continuously listens for connections on a socket and a word-processor with on-the-fly spell-
check continuously scans the spelling dictionary for the words which are typed in. Modeling
these kinds of programs using the traditional query-answering mechanism becomes inconven-
ient and inefficient since the only way in which we can switch from executing one sub-program
to another is to interrupt the execution of the query, store away the entire computational state,
and return to the top-level loop, allowing another sub-program to execute, and later restore the
computational state and resume the query.

In other words, the nature of Prolog has historically been centered around the concept of
having a single thread of control, a concept which is insufficient in large software systems (re-
gardless of the language used). This is where multithreading comes in.

1.1 Background

1.1.1 Concurrency

Let us first take a little broader view of the subject. The generalization of multithreading is
called concurrency, which (in this context) refers to the simultaneous execution of smaller or
larger parts of one or more computer programs [2]. Concurrency can be divided into:

1. Instruction level where two or more (assembler) instructions are executed simultane-
ously.

2. Statement level where two or more statements (a group of instructions) are executed si-
multaneously.

3. Unit level where two or more subprograms (functions, methods, predicates, depending
on the paradigm) are executed simultaneously.

4. Program level where two or more programs are executed simultaneously.

Page 8/53

Instruction level and program level concurrency require no language support but are in-
stead supported at hardware and operating system level, respectively. Statement level
concurrency is also referred to as data-flow concurrency, since the flow of control is governed by
the availability of computed data values. Instead of executing statements sequentially, they are
executed as soon as all of their input values are computed. Multithreading comes in at Unit
level concurrency; it is the execution of two or more subprograms simultaneously. There is a
variant of unit level concurrency called co-routining where program units called co-routines can
cooperate to intertwine their sequence of execution. This type of concurrency provided by co-
routining is called quasi-concurrency since only one co-routine can execute at one given time
(even when multiple processors are present). Physical concurrency is when several subprograms
are literally executing simultaneously. This requires that multiple processors be available,
which is often not the case. A relaxed variant of physical concurrency is called logical
concurrency, which appears to the user as physical concurrency. This is done by interleaving the
execution of the different program units on the same processor. [2]

The central concept throughout this thesis is the thread of control. It is defined in [2] as a
"sequence of program points reached as control flows through the program". This concept to-
gether with logical, unit level concurrency make up what is hereafter called threads.

1.1.2 History

In the late 1970s, when UNIX was young, digital watches high-tech and window-systems yet to
be invented, there was little or no support for concurrency at language level (statement and unit
level). However, there were languages, such as Concurrent Pascal and InterLisp ([3], [4]), with
co-routining, but they were both relatively small, experimental languages with small industrial
impact.

The only support for logical and/or physical concurrency that existed was at program
level, in UNIX implemented by processes. This meant that a separate process had to be created
for each individual activity which should be performed concurrently: daemons, user applica-
tions, printer spoolers, batch jobs, etc. Even if this was a large step forward from having no
concurrency at all—not even at program level—it soon became obvious that this was inade-
quate. Concurrency was needed below program level; there was a need to execute parts of a
program in parallel, not only whole programs or applications. In distributed systems, for exam-
ple, servers were often found to be bottlenecks since they were unable to serve multiple clients
at a time, resulting in long response times and irritated users. Also, the emergence of MIMD [5]
architectures made it possible to exploit true (physical) concurrency to solve problems with in-
herent parallelism in them. In order to do this in a simple way, there had to be support for unit-
level concurrency in the language (spawning off new tasks, critical regions, etc.).

Now, why was it not possible to use normal processes? The main problem with processes
was (and still is) that they are too heavyweight. As the reader might be aware of, a process is a
completely isolated unit with its own execution environment (signal dispatch tables, memory
mapping tables, file descriptors, etc.). Creating a new process means that a complete execution
environment needs to be created from scratch (or copied from an existing one), an operation
which takes a considerable amount of time. The unsuitability of processes for unit-level
concurrency becomes even more evident on NUMA (Non-Uniform Memory Access) [6] archi-
tectures where the difference in access speed between local and non-local memory is very large.
A process-switch on such a machine will result in a address space change which in turn will
cause expensive cache and TLB misses [7].

In AND/OR-parallel Prolog systems [33], the overhead of creating new processes has been
eliminated by having a static (fixed) set of processes. The available work is distributed dynami-
cally among these processes by a scheduler. However, static process creation only eliminates
the overhead of creating new processes; the overhead of process-switching still remains.

It was realized that in order to implement low-overhead unit level concurrency, only those
parts of the execution environment directly related to code execution (such as the program
counter and the execution stack, for example), needed to be created for each concurrent subpro-

Page 9/53

gram. The rest of the execution environment could be shared. Using these ideas it was possible
to implement unit level concurrency without the overhead that came with using processes. An-
dersson et al. [8] mentions a factor 10 for the difference in overhead for creating a new thread
and creating a new process. This number was obtained by the Null Fork-benchmark which cre-
ates a thread/process whose only task is to invoke the empty procedure.

During the late 1980s and early 1990s, support for unit level concurrency became publicly
available in the form of thread packages of different kinds, and in 1995 every major operating
system had integrated support for threads [4].

1.2 About This Thesis

The purpose of this thesis is to show the feasibility of incorporating support for multithreading
in SICStus Prolog [9, 10]. The thesis describes the design and implementation of a prototype
multithreaded execution environment. The working title has been SICStus MT, which will be
used throughout this report. The design should be general enough to work on most platforms
supported by SICStus and efficient enough—both with respect to memory consumption and
execution speed—so that the usage of threads is not discouraged if and where it is appropriate.

1.3 Organization

Chapter 2 contains a discussion on the overall design issues. Chapter 3 describes the program-
ming interface and the semantics of the predicates involved. The problem of blocking system
calls is described in Chapter 4. Chapter 5 contains a discussion issues related to efficiency in
terms of memory consumption and execution speed. Chapter 5 also contains a comparison be-
tween SICStus MT and other multithreaded languages. Chapter 6 describes future work; im-
provements and extensions to the implementation. Chapter 7 describes some related work, and
Chapter 8 contains a short conclusion of the thesis. Chapter 9 contains the source code for the
two benchmarks.

Page 10/53

Chapter 2 - The Design of A Multithreaded Environment

This chapter will describe the design of a multithreaded execution environment for Prolog in
general. Knowledge of the WAM [11, 12]—the abstract machine on which SICStus executes
Prolog code—is not required, although a general knowledge on how abstract machines work
can be helpful.

2.1 Multithreaded Execution and Virtual Machines

It is important to realize that the concept of a thread of execution is tightly connected to the con-
cept of a machine executing a program. The machine is usually a physical device (a microproces-
sor, for example), but it can also be virtual and only exist in terms of a specification of the in-
structions it can execute (such as the WAM or the JVM). In the absence of appropriate hard-
ware, virtual machines are emulated in software. The emulator-program is for efficiency usually
written in assembler, C or another low-level language and executes directly (i.e. not emulated)
on a physical device. This concept of using several (different) layers of interpretation/execution
is generalized in [43].

Consider the scenario present in SICStus. We have a Prolog program which executes on the
WAM which in turn is emulated by a program which executes on a CPU. There are two pro-
grams present here—the Prolog program and the emulator program—and therefore we have
two threads of execution. One executing the Prolog program and one executing the emulator.

In the light of this, we introduce the concept of Prolog threads and native threads. Native
threads refer to threads of execution on the level of the emulator program. Prolog threads refer
to threads of execution on the level of the Prolog program. Naturally, this work is focused
around Prolog threads. The incorporation of native threads into SICStus Prolog is discussed in
Section 2.2.

“distance” from kernel
→

native threads Prolog-threads

Kernel-level threads User-level threads

Figure 1: Relationship between different kinds of threads

In the same way as it is important to distinguish between native threads and Prolog
threads, it is important to distinguish Kernel-level thr�ads and User-level threads. The difference
is simple and intuitive; kernel-level threads are threads which are scheduled by the operating
system kernel while user-level threads are managed and scheduled without any knowledge of
the kernel. This does not, however, mean that they are completely separate from the operating
system, only from the kernel. They could, for example, be implemented in a user-level system
library.

The relationship between native threads and Prolog threads on one side and Kernel-level
threads and User-level threads on the other is shown in Figure 1. In the figure we can see that
the definitions overlap; native threads can be either Kernel-level or User-level, and User-level
threads can be either native threads or Prolog threads.

Page 11/53

2.2 Should Native Threads Be Used?

One of the first questions, and undoubtedly the one that influenced the overall design most,
was the question of whether native threads should be incorporated and if so, how do we map
Prolog threads onto native threads?. There are several possible alternatives and they are not
mutually exclusive.

1. Map each Prolog thread onto an native thread. This means that for every new Prolog thread
created, a new native thread is created with the emulator as entry point, executing the
Prolog code for the new thread. This would result in the scenario where we have an in-
stance of the emulator running for each thread.

2. Introduce a new kind of thread, an Native Prolog thread. This means that, we allow the user
to explicitly create Prolog threads which are mapped directly onto native threads, alongside
with creating “normal” Prolog threads. This could, for example, be achieved by using two
different predicates for spawning threads.

3. Allow the emulator to make its own choice on mapping Prolog threads onto native threads,
possibly guided by some kind of user preference.

4. Do not use native threads at all.

We have chosen to use the last alternative, for a variety of reasons. First, even if there are fairly
portable packages implementing native threads (POSIX, for example), they are basically non-
portable since they do not behave in the same way on all platforms. Solaris threads are quite
different from Windows NT threads which in turn are different from OS/2 threads. This is a
major drawback. Second, by using native threads we lose control over scheduling algorithms. If
the underlying package does not support preemptive scheduling (see Section 2.5.1), Prolog
threads will not become preemptive and if the underlying package does not prevent starvation,
there will be Prolog threads queuing for charity and we will stand helpless. Third, due to im-
plementation details in SICStus, using native threads would mean rewriting large parts of code
which assumes that there is a global reference to the current set of machine-registers and in or-
der to fix this without rewriting code, one would need to hook the native thread scheduling
mechanism so that it keeps the global reference updated each time a new thread is scheduled.
this would cause even more non-portability. Fourth, even if native threads are very useful in
order to utilize underlying machine-specific features (such as multiple processors, specialized
scheduling algorithms), they are not essential in demonstrating the usefulness of Prolog
threads. Of course, it is possible to incorporate some of the ideas of utilizing native threads as
described above, but that is outside the scope of this thesis.

2.3 Storage Model

There are five kinds of data-areas in the SICStus emulator:

The Static Area contains a variety of objects, such as interpreted and compiled clauses, atoms,
indexing tables, and so on. It expands and shrinks by calls to dynamic memory allocation
functions à la malloc(), realloc() and free().

The Local Stack is also called environment stack and contains procedure frames, which mainly
consist of permanent variables (variables which survive predicate calls). It expands on
predicate calls and shrinks on determinate returns and on backtracking. This includes the
situation when exceptions are thrown, since exception handling is implemented in terms of
“controlled backtracking”.

Page 12/53

The Global Stack contains Prolog terms. The term “stack” is a bit confusing, since it is not a strict
LIFO-structure. It expands when terms are built and contracts by garbage collection and on
backtracking. “Heap” is a more appropriate term.

The Choicepoint Stack contains choicepoints consisting of the machine and argument registers of
the WAM. It expands whenever a non-deterministic predicate is called, and shrinks either
when the last clause of the predicate has been tried, a call to ! (cut) is made, or if an excep-
tion is thrown.

The Trail Stack contains conditional variable bindings, i.e. variables which should be reset to un-
bound upon backtracking. It expands during variable-binding in non-deterministic predi-
cates and shrinks similarly to the choicepoint stack with the addition that it also shrinks by
garbage collection. This is due to the fact that cuts cause garbage to be left on the trail stack.

In addition to this, we have the set of abstract machine registers organized as a data struc-
ture struct worker, or WS for Worker Structure, which contains program counters, stack
boundaries, choicepoint-information, etc.

In SICStus MT, the structure of this storage model needs to be modified. More precisely:
some areas must be kept private to each thread. Fortunately, this matter is solved quite easily,
under the assumption that we wish to keep the thread as light-weight as possible.

The bulk of the static area is kept global. There are some minor parts of the static area that
might be better off being thread-specific—such as execution statistics, for example—but they do
not affect the overall design or the implementation, so they have for the time being been kept in
the static area. The local, choicepoint, and trail stack must be kept private, since they are directly
related to how the program is executed. The same thing goes for the abstract machine registers,
the WS. The WS is combined with thread-related information (such as status-flags, thread ID,
message-port, etc.) to form a structure of type Thread.

The global stack has to be kept private to each thread. Even if it would be attractive to em-
ploy a shared global heap to be able to share data between threads (such as in Oz 2.0), this is not
really a feasible solution. The reason is that since Prolog is a backtracking language (Oz 2.0 is
not), a shared heap in multithreaded Prolog would mean that the heap management routines
must be able to deal with the fact that several threads can backtrack simultaneously, causing the
heap to shrink and expand in a very complex way.

2.4 Execution Model

Like the storage model, the execution model needs to be modified in order to support multiple
threads. Since we do not have any unit-level concurrency (i.e. no native threads) in the emulator
this means that the execution model must support time-sharing the emulator between the dif-
ferent threads.

The first problem to solve is to determine where in the emulator loop threads should be
switched in and out. The place where this is done is called synchronizing point. It is conceivable
to have more than one synchronizing point, but that would cause problems. If threads were al-
lowed to be switched in and out anywhere in the emulator, it would be difficult (and error-
prone) to make sure that they are switched in at the same place they switched out. Having a
single synchronizing point is also desirable in order to minimize the number of places in the
emulator that need modification.

A natural candidate for the synchronizing point is the overflow-check. This is a piece of code
which the emulator executes periodically order to make sure that the data-areas do not over-
flow. It is also invoked explicitly by certain WAM instructions to ensure that sufficient stack
space is available and that any goals unblocked by recent variable bindings are run.

The major benefit of using the overflow-check as location of the synchronizing point is that
it already has a mechanism for invoking it. This means that we do not need to write any new
code to be used by the scheduler to invoke the thread-switching mechanism. We simply fake a

Page 13/53

signal to the emulator that a stack is about to overflow, which will cause the emulator to trans-
fer control to the overflow-check where the thread (possibly) will be switched out. By “piggy-
backing” on the existing mechanism, we greatly reduces the impact on the emulator.

The second problem is to actually perform the switch. This is done by simply exchanging
the reference to the currently executing thread and to the enclosed WS. Since all references to
machine registers are made through the WS, this is a very easy procedure.

2.4.1 Runtime vs. Development Systems

SICStus has two modes of execution; development systems and runtime systems. Runtime systems
are linked together with an native application (usually written in C) to create what is known as
a stand-alone application. A runtime system is basically a subset of SICStus Prolog in the sense
that many of the built-in predicates are omitted or have limited functionality [9]. For example,
runtime systems have no top-level, no debugger, no profiling, and no save/restore facility.
However, our intention is to integrate the two systems, simplifying design and maintenance of
future versions of SICStus.

For this implementation, we have concentrated on one of the execution modes, the devel-
opment system. The development system was chosen since it is commonly used for developing
Prolog applications, and therefore more suitable for our purpose.

2.4.2 Exceptions

Runtime and development systems also differ in the way they handle uncaught exceptions.
Runtime systems simply return them to the embedding application, while development sys-
tems have a catch-all mechanism built-in in the top-level interpreter which catches any excep-
tion that has not been caught by the program itself.

The issue which needs to be addressed here is about what happens when a sub-thread (i.e.
a thread other than the thread running the top-level interpreter) throws an uncaught exception.
As usual, the simplest solution is to “do nothing”. Due to the implementation of exceptions in
SICStus (exceptions are basically a form of “controlled backtracking” combined with assert/1
and retract/1), this will force the exception to behave just as a normal failure. Therefore, if a
predicate throws an exception which is not caught, it will fail all the way up to the thread’s
goal, where it will terminate the thread. This solution has the benefit of being simple.

The drawback of this “do-nothing” solution is that threads terminate unconditionally
when an uncaught exception reaches the top-level goal. This goes also for “unintended” failures
which depend on misspelled predicate names, etc. In order to be informed of such failures, a
catch-all solution could be programmed using the standard exception primitives. See Figure 2.

goal(Arg) :-
on_exception(Pattern,raw_goal(Arg),handler(Pattern)).

handler(Pattern) :-
print_message(error,Pattern).

raw_goal(Arg) :-
 ...

% Here goes the code for the subthread

Figure 2: How to implement a catch-all mechanism in a subthread

Page 14/53

2.5 Scheduling

Scheduling [4, 13, 14] in multithreaded execution environments can be compared to motion
picture soundtracks: if it is done well, it is not noticed—it just contributes to the overall impres-
sion of the performance.

A little note on the terminology used in this following section. The algorithms are general
enough to be applicable to both low-level microprocessor scheduling and user-level abstract
machine scheduling. The classification of algorithms is taken from [16], a text-book on operating
system concepts. The terminology is therefore focused on the low-level scheduling: the units
which compete for computing resource are called processes and the computing resource is called
CPU. The corresponding terminology for this implementation would be threads and WAM, re-
spectively.

2.5.1 Preemption

The most important aspect of the scheduling in systems that use logical concurrency is to create
the illusion of concurrency—that is the whole idea—and in order to do that the scheduler has to
be preemptive. Preemption means that a thread can be interrupted, letting another thread exe-
cute. Without preemption, a thread cannot be interrupted except at certain places, for example
I/O calls.

If preemption is not used, the illusion of concurrency is in danger in two ways. First, the
concurrency itself is in danger since if a thread cannot be preempted by force, the concurrency
depends on the cooperation of the program to suspend itself allowing other threads to execute.
The concurrency can therefore easily be destroyed by a vicious program. Second, the illusion is
in danger since the cooperation of the program requires explicit calls (such as yield() in
Java [15]) in order to suspend itself inside tight loops, for example. These explicit calls destroy
the illusion because the concurrency, or traces of it, can be seen in the code.

2.5.2 Fairness

Fairness is an important aspect of a scheduler. It guarantees that a process will get access to the
CPU at some time in the future. Strong fairness guarantees that a process will get an infinite
amount of accesses to the CPU in the future (i.e. it will regularly be scheduled for execution,
regardless of the CPU load). Fairness is more difficult to achieve than preemption, since it re-
quires that the scheduler keeps some record of CPU usage for each process. However, it is rela-
tively easy to achieve conditional fairness, i.e. fairness under certain circumstances. These cir-
cumstances are discussed in the next section.

2.5.3 The Scheduling Algorithm

The choice of scheduling algorithm is naturally the most important decision behind the design
of a good scheduling mechanism.

2.5.3.1 Considerations

There are many different algorithms to chose from, both preemptive and non-preemptive. The
simplest is called first-come, first-served, or FCFS. The ready-set (the set of processes which are
waiting to execute) is organized as a FIFO queue. The first process in the queue is the next proc-
ess waiting to execute. It executes until it suspends and is then inserted last in the FIFO queue.
It is not preemptive; processes execute until they suspend themselves. The problem with this
algorithm is that the average waiting time can be quite long if there are processes doing expen-
sive computations without suspending themselves. Other processes will then have to wait until

Page 15/53

the executing process is done, which may take quite a while. The FCFS algorithm is inadequate
for our needs; it lacks preemption and does not guarantee fairness under any circumstance.

The next one is called Shortest Job First, abbreviated SJF. SJF scheduling is based on some-
thing called CPU bursts. A CPU burst is a period of uninterrupted CPU usage. In SJF schedul-
ing, the process with the shortest upcoming CPU burst is scheduled first. This algorithm has
been proven optimal [16] in the sense that it minimizes the average waiting time for a given set
of processes. The major problem with SJF scheduling is that it is not possible to implement as a
short-term scheduling algorithm since it is impossible to predict the size of the CPU burst ex-
actly. It is, however, possible to estimate the size of the upcoming CPU bursts. This is usually
done by calculating the exponential average of the measured lengths of the previous CPU
bursts (process by process, of course). The details on how this is calculated is not very impor-
tant, but the interested reader may take a look at [16], p. 139-140 for a detailed description of
this measurement. The important characteristic of this measure is that it weighs previous CPU
bursts differently depending on how long ago they occurred. Recent history gets more weight
than less recent history. If the CPU bursts display a fairly localized pattern, i.e. if they do not
vary very randomly, it is possible to make a educated guess about the coming CPU bursts.

SJF scheduling can be implemented both with and without preemption. SJF without pre-
emption is the “normal case”. With preemption it is usually called remaining-time-first schedul-
ing, since the processes are scheduled according to the size of what remains of their CPU burst.
However, the strength of SJF lies in non-preemptive scheduling, where the average waiting
time can become quite long. If preemptive scheduling is to be used, there are better algorithms
than SJF, since it becomes less important to predict the size of the next CPU burst. SJF is thereby
not suitable to use in this implementation; it is best suitable in a batch-job system where it is
important to minimize the average waiting time.

The third algorithm is called priority scheduling. It is basically very simple: each process is
associated with a priority and the process with highest priority gets to execute. It can be either
preemptive or non-preemptive. Preemptive priority scheduling interrupts the currently running
process if a new process with higher priority is started, non-preemptive does not. Note that SJF
is a special case of priority scheduling: the priority being the inverse of the (estimated) length of
the next CPU burst.

None of these algorithms turned out to be suitable for our needs. Instead, we have adopted
an algorithm called Round-Robin. This algorithm (with a touch of priority scheduling) is the one
used in this implementation and is described in detail in the next section.

2.5.3.2 Priority Round-Robin Scheduling

The algorithm used in this implementation is a combination of priority scheduling and Round-
Robin scheduling [16, 17], called Priority Round-Robin (PRR).

PRR scheduling is conducted in the following way: the set of threads ready to execute is
kept sorted by priority. When a time-quantum (see Section 2.5.4 for details on the choice of
time-quantum) is up, or a thread has suspended itself explicitly, the thread with highest priority
is scheduled for execution and the current thread stored away. If it was suspended on a block-
ing system call, it is inserted in the list of blocked threads, otherwise it is inserted into the list of
threads waiting to execute (the ready-list). The insertion into the ready-list is done so that the
newly inserted thread is inserted last among all the threads of equal priority. If all threads have
the same priority, the list works exactly like a FIFO-queue.

Page 16/53

executing → A-3 high priority B-3
B-3 C-3
C-3 A-3
D-2 D-2
E-0 E-0
F-0

↓
F-0

G-0 low priority G-0

Figure 3: PRR Scheduling. To the left, A is executing with priority 3. To the right, A has been interrupted and
inserted last among those threads with equal priority.

This algorithm is far from perfect. It is not fair; there is no guarantee that threads do not starve
out other threads. However, it is fair as long as threads do not alter their priorities. One could,
of course, remove the priority (and utilize simple Round-Robin), but that would make it impos-
sible to let certain threads be “more important” than others, which is a desirable property in, for
example, WWW servers.

A solution to this problem could be to take a glance at the UNIX scheduling model. In ad-
dition to the priority of the process, a UNIX process also stores information about what is has
been doing lately, giving the scheduler a possibility to make decisions based on how much the
process has been using the CPU (this is similar to SJF with estimated CPU bursts). The sched-
uler then bases the calculation of the real priority (used to determine which process should be
executed) on the base priority (which is set by the user) together with the process' history of
CPU usage. This calculation is done in such a fashion that the real priority decreases when the
process uses the CPU a lot and increases when it does not. This guarantees that a process will
not starve out other processes (at least not with respect to CPU time) while at the same time en-
able the user to indicate which processes are to get more CPU time than others.

This kind of scheduling algorithm could very well be implemented in SICStus, but the PRR
algorithm has proven simple, robust, and providing good performance for most cases.

2.5.4 Choice of Time Quantum

Crucial to (P)RR scheduling is the size of the time quantum, i.e. the maximum period of time a
process is allowed to execute before it is interrupted. The size of this period has a large impact
on the efficiency of the scheduling. If we have too large a period, the response times (and
thereby the concurrency) will suffer. Imagine the scenario where a large number of processes
are waiting for input. If all these processes receive input at roughly the same time and the time
quantum is large (and assuming that all processes consume their full quanta), it will take very
long time before the last process gets to use the processor. For example, if the quantum is 0.5
seconds, the number of processes 50, it will take 0.5*50 = 25 seconds for the last process to get
access to the CPU. On the other hand, if the time quantum is too small, the overhead of switch-
ing between threads will increase. For example, if the time quantum is smaller than the time it
takes to switch between threads, the scheduling overhead will be more than 50%. So, the time-
quantum needs to be carefully chosen.

When choosing the time quantum for an operating system, it is solely a question of raw
time; a time of 100 ms could be a reasonable alternative [17]. However, in our case there are
other possibilities:

2.5.4.1 Real-time Controlled Time Quantum

The variant is heavily influenced by the “classic” solution, which meant setting up a timer inter-
rupt and thereby reschedule at a fixed real-time interval (for example, 50 ms). However, as dis-
cussed in Section 2.4, it is not possible to reschedule directly, but instead we have to wait until
the emulator reaches the synchronizing point. This is achieved by setting a flag forcing the
emulator to jump to the synchronizing point as soon as possible, and then rescheduling when

Page 17/53

arriving there. This means that the chosen real-time interval is rounded up to the nearest arrival
at the synchronizing point.

2.5.4.2 WAM Instruction Counting

Instead of rescheduling based on a real-time interval, it is possible to reschedule after the emu-
lator has executed a certain number of WAM instructions. This method requires that a counter
be kept updated and compared for each instruction in order to see if a reschedule should take
place. This method has the benefit of not requiring any signals (timer interrupts, to be more
precise), which means that it is more portable than the previous method.

However, this variant has two serious problem. The first is efficiency: counting each WAM
instruction turned out to cause a large overhead (almost 20%). The second problem is related to
native code execution. In order for this variant to work with native code, it would be necessary
to modify the native code compiler so WAM instructions executed natively also are included in
the count. Apart from being tedious to implement, this would presumably (we have not done
any tests on this) degrade the performance of native code execution considerably.

2.5.4.3 Overflow-check Counting

Another method of determining the time quantum is to count the number of “spontaneous”
arrivals at the overflow-check, and reschedule every nth time. This method has the benefit of
the WAM instruction counting method of not needing any timer interrupts or other signals and
at the same time avoiding both the performance trap and the problems with native code. It is
also simple to implement.

There is a subtle problem with this method and it has to do with how often the emulator
reaches the overflow check “spontaneously”. Usually, it is reached often enough to be fairly
close to the 50 ms we tried for the real-time method, so under normal circumstances this is a
perfectly acceptable solution. There are, however, situations were the overflow-check is not
reached at all. Consider the following example:

consume_very_much_cpu_and_do_very_little_work :-
 repeat,
 fail.

This program gets caught in a infinite backtracking-loop in which no overflow-checks are
done. The predicate repeat/0 basically pushes an infinite number choicepoints upon back-
tracking. For a more detailed explanation of repeat/0, see [9], p. 110. Basically, we are not
guaranteed that there will be any overflow-checks at all, even if they for a normal program are
performed quite regularly.

The solution we have adopted is a combination of the real-time controlled variant and the
overflow-check counting variant. By rescheduling every overflow-check (setting n to 1) and
using timer interrupts when multiple threads are active to make sure that the example above
does not block the entire system, we get a solution which is simple to implement and efficient.
The portability drawback of timer interrupts seems to be unavoidable.

Page 18/53

Chapter 3 - Programming Interface

This section will describe the predicates used to create and destroy threads, communicate be-
tween threads, etc. It will also include a discussion on semantics of these predicates and the
modified semantics of some of the built-in predicates of SICStus.

3.1 Primitives

The set of primitives used to create, destroy, and in other ways manipulate threads have delib-
erately been kept to a minimum. There are many more features one might wish to see in a
threads implementation, but in order to keep the implementation simple and the ideas clear,
these have been left out. See Section 6.3 for a discussion on how this interface might be ex-
tended.

Predicate Description
spawn(:Goal, -ThreadID) Creates a new thread and schedules it for execution. The new

thread will execute the goal Goal, similarly to the predicate
call/1. ThreadID will be bound to the identifier of the new
thread.

Together with the new thread, a message port (also re-
ferred to as input queue) will be created. This port is intended
to be used for synchronization and communication between
different threads

The new thread will, if no measures are taken, complete
execution and succeed or fail silently. In other words, there is no
primitive join/1 which waits for a thread to complete. How-
ever, this can easily be implemented using send/2 and
receive/1. See Figure 4.

send(+ThreadID, +Term) Sends Term to the thread indicated by ThreadID. This predi-
cate always succeeds (or throw a domain error exception). Term
will be inserted last in the in the receiving thread’s input queue.

receive(?Term) Extract the first element in the thread’s input queue which is
unifiable with Term. If no such terms exist, the thread is sus-
pended.

self(-ThreadID) ThreadID is the thread identifier of the running thread.
kill(+ThreadID) Causes ThreadID to terminate. Always succeed.
wait(+Ms) Suspends the currently running thread and then waits at least

Ms milliseconds before resuming. The actual time elapsed be-
fore the thread is resumed is guaranteed to be at least Ms.

Table 1: Primitives for manipulating threads in SICStus MT

Page 19/53

spawn_joinable(Goal,ThreadID) :-
 self(Self),
 spawn(joinable(Goal,Self),ThreadID).

joinable(Goal,Parent) :-
 call(Goal), % Do the actual work
 self(Self),
 send(Parent,done(Self)). % Tell parent that the thread has completed.

join(ThreadID) :-
 receive(done(ThreadID)).

run :-
 spawn_joinable(..., ThreadID), % Same syntax as spawn/2 join(ThreadID).
 % Will suspend until ThreadID is done.

Figure 4: How to implement join/1 using send/2 and receive/1.

3.2 Semantics

The predicates can be divided into two groups. First, predicates with side-effects on the execu-
tion environment, such as spawn/2 and send/2. Second, predicates without side-effects but
which bind their arguments (or succeed/fail) depending on information in the execution envi-
ronment.

3.2.1 Backtracking

Backtracking in the presence of side-effects is a not a trivial problem. De Bosschere describes
four different ways of handling backtracking in predicates with side-effects [18]:

1. Disallow both undoing and redoing. This is the most restrictive one. No choicepoint is
pushed and redoing a side-effect is not possible.

2. Disallow only undoing. This is the simplest solution and the one we have implemented.
Simply avoid pushing a choicepoint. This will cause the side-effect(s) to be performed
over and over again.

3. Disallow only redoing. This is conceptually a little more difficult to grasp. This means
that the side-effect should be undone which is not always easy. In our case, for exam-
ple, undoing spawn/2 would have result in killing the spawned thread and undoing the
side-effects of the new thread. Redoing is disabled, so we do not start a new thread.

4. Allow both undoing and redoing. This combines points 2 and 3.

We have the chosen the second solution: no choicepoint is pushed and no measure is taken to
prevent redoing them. In the case of, for example, spawn/2 this has the possibly unpleasant re-
sult that backtracking back and forth over the call will create several threads.

forkbomb :-
 repeat,
 spawn(forkbomb,_),
 fail.

Figure 5: Backtracking into spawn/2.

Page 20/53

The code in Figure 5 is a cousin of the infamous fork-bomb, written in SICStus MT.

3.2.2 The Communication And Synchronization Mechanism

The model of communication and synchronization is heavily influenced by the model used in
ERLANG [19]. The model is message-based as opposed to blackboard-based [20, 18] (also known as
tuple space based [47]. This means that the communication is based on sending explicit messages
as opposed to using a shared store (blackboard) of some kind. Message-based systems have the
advantage over blackboard-based systems that they are inherently more scalable; there is no
central point through where all message must pass. They are on the other hand less expressive
since they require that messages are addressed to a certain destination. In blackboard-based
systems, messages are simply posted on the blackboard.

Each thread has a unidirectional message port where it can receive messages, consisting of
standard Prolog terms. Unidirectional simply means that messages only pass in one direction
through the port; it is not used for outgoing messages. The port is invisible, i.e. it is treated as an
integral part of the thread. A message can be any kind of Prolog term.

The communication mechanism is asynchronous. Asynchronous means that the sender does
not need to wait until the receiver is ready to receive the message. This also means that the
mechanism is buffered, i.e. the communication medium (the message queue) has a memory of its
own where it can store messages until they are ready to be picked up by the receiving thread.
The message port is basically a FIFO-structure, which means that it is completely ordered.
However, as we will discuss later on, the programmer can specify the order in which terms are
received.

Since shared heaps is not an option, sending a message must be done by copying it into the
static area and inserting it into the receiving thread’s input queue. If the receiving thread is sus-
pended on a call to receive/1 it is lazily switched in for execution, i.e. just moved to the ready-
list. If the receiving thread is suspended for some other reason, nothing happens. The alterna-
tive would be eager thread switching, i.e. preempting the receiving thread, disregarding any
priorities. See Section 5.4.1 for a discussion on the performance of these two approaches. When
the receiving thread is eventually resumed, it must unpack the message on its own heap.

See Figure 6 and Figure 7 for an example on how Prolog threads may communicate and
synchronize using send/2 and receive/1.

echo :-
 receive(Term),
 write(Term),
 nl,
 echo.

run :-
 spawn(echo, EchoThread),
 send(EchoThread, term1),
 send(EchoThread, term2),
 ...
 send(EchoThread, termn),

Figure 6: Communication using send/2 and receive/1. The example spawns a simple echo thread
which executes in the background and echos everything sent to it.

Page 21/53

 reader :-
 receive(readlock(NextReader)),
 read(Term),
 self(Self),
 send(NextReader, readlock(Self)),
 reader.

run :-
 spawn(reader, ReaderA),
 spawn(reader, ReaderB),
 send(ReaderA, readlock(ReaderB)),
 receive(dummy).

Figure 7: Synchronizing using send/2 and receive/1. Two threads are spawned (ReaderA and
ReaderB) cooperating to read terms from standard input.

3.2.2.1 Receiving Messages Out of Order

The ERLANG implementation of send/receive features a very practical construction: the ability
to specify which messages to receive for a particular call to the receive-primitive. This is also
referred to as message non-determinism [18]. This is in ERLANG implemented by pattern matching
and we have used the Prolog unification mechanism to obtain a similar result.

A little note on the terminology. In [18], De Bosschere talks about message non-determinism
and media non-determinism where the latter refers to the ability to be able to avoid specifying the
origin of the message. This is implicit in our solution.

Let us take an example. In Figure 8, the thread denoted ThrID will be suspended on the
call to receive(start) and will not be resumed until it has received the atom start; in this
case after it has received all terms term1, …, termn. This is useful if, for example, the main
thread needs to send all terms before the thread starts to process any of them.

thread :-
 receive(start),
 do_rest.

do_rest :-
 receive(Term),
 perform_action(Term),
 do_rest.

main :-
 spawn(thread,ThrID),
 send(term1,ThrID),
 send(term2,ThrID),
 ...
 send(termn,ThrID),
 send(start,ThrID).

Figure 8: Out-of-order receives in Prolog

In the Game-of-Life benchmark, described in Section 5.4.1, there is a particular construction
which relies on out-of-order receives. Since the cells work asynchronously (without a global
“conductor” telling them when to do a state transition), each cell needs to make sure that the
incoming messages are grouped by generation. This means that if a cell in generation x receives
a message from a cell which is in generation x+1, it must be able to defer that message until it-
self is in generation x+1. In our implementation, this is solved by letting each cell loop through

Page 22/53

all its neighbors and for each one, wait for a message from that particular neighbor. In that way,
we are guaranteed that the messages are processed in the correct generation. This would be
very tedious to code without language support, since we would need to keep a separate list of
terms which were received “too early”, a list which needs to be maintained, sent around to all
predicates calling receive/1, and searched for each call to receive/1.

However, there are performance issues worth discussing here. Recall from the previous
section that a message needs to be unpacked every time the receiving thread wishes to examine
it; unpacked messages cannot be reused since they may have been garbage collected. Further-
more, out-of-order receives will result in a list of “currently unmatched” messages, i.e. mes-
sages which have arrived but are not unifiable with the argument to receive/1. This means
that messages can be delayed in the message queue for an indefinite period of time. This has the
effect that in order to examine the messages in input-queue, all of them (including the “cur-
rently unmatched” ones) needs to be unpacked.

3.2.3 Suspend and Resume

Some readers will probable have noticed the absence of the primitives suspend and resume. They
are fairly common in thread implementations. POSIX implements them under the names
thr_suspend() and thr_continue() [4]. They are, however, not needed in a basic set of thread
primitives such as ours. In fact, there are only two situations where these two primitives are
necessary. The first situation is if one would want to implement a debugger. The debugger
would need to be able to step the threads in different ways. The second situation is if one would
want to implement an external scheduler. Such a scheduler could be implemented by using a
thread which controls which threads get to use the CPU (or the emulator in this case) by sus-
pending and resuming these threads.

Another strong reason to exclude them from the set of primitives is that, besides them be-
ing halfway unnecessary, they can be implemented by using send/2 and receive/1, as illus-
trated in Figure 9.

suspend :-
 receive(dummy).

resume(ThreadID) :-
 send(ThreadID,dummy).

Figure 9: Implementation of suspend/resume using send/receive

3.2.4 Exceptions—Where and Why?

Currently, none of the predicates throw any exceptions (for an explanation of the exception
mechanism, see [9], p. 111-113), they only succeed or fail silently. This is not a desirable behav-
ior. Instead, they should throw exceptions where this is appropriate (the implementation of this
is out-of-scope for this thesis). There are two situations which are interesting:

3.2.4.1 Illegal Arguments

All the predicates should throw exceptions when they discover that their arguments are of the
wrong type. For example, if they expect a thread-identifier and receives something that cannot
be a thread-identifier, they should throw an exception.

Page 23/53

3.2.4.2 Non-existent Target Threads

When the predicates which manipulate other threads than themselves (i.e. send/2 and kill/1)
discover that the specified thread (also called the target thread) does not exist, they need to take
appropriate action. For send/2 this amounts to throwing an exception. One might argue that
send/2 should simply succeed, to avoid threads failing when they do not care about whether or
not the message arrived properly. However, by throwing an exception we keep the flexibility of
allowing the user to handle the exception or ignoring it.

In the case of kill/1 we decided not to throw an exception when the target thread could
not be found, but instead let the predicate always succeed. One might use the same argument as
for send/2 and claim that we should allow the caller to take action if the target thread does not
exist. On the other hand, if we view the semantics of kill/1 as guaranteeing that the target
thread does not exists after the call returns, always succeeding is a quite reasonable behavior.

Page 24/53

Chapter 4 - The Problem Of Blocking System Calls

The problem of blocking system calls in user-level (as opposed to kernel-level) thread imple-
mentations is a well-known and well-investigated problem [21, 17]. The core of the problem is
that the operating system kernel (by definition) is unaware of the existence of user-level
threads. Therefore, when a blocking system call is performed, the kernel suspends the entire
process for the duration of the system call, instead of scheduling another thread for execution,
which is the desirable behavior.

4.1 Possible Solutions

There is not that many ways of solving the problem. We must in some way prevent a given
blocking system call from blocking the entire process and find a way of scheduling another
thread instead. We have explored two approaches to the problem, the cautious approach and the
cavalier approach.

The cautious approach uses a relatively complex mechanism in order to examine system re-
sources in order to determine, without making the call, whether or not the system call would
block the process. If the call could not be performed without blocking the process, the thread is
suspended and another thread is switched in. Otherwise, the thread continues with the read
and returns normally. The main problem of this approach is complexity. Each system call which
might block must be preceded by a piece of code (called jacket in [17]) in order to determine
whether or not the system call would block or not. This turned out to be quite non-trivial—the
documentation on when system calls block is often inadequate and examining system resources
not a very portable procedure.

The cavalier approach relies on the fact that most operating systems support some form of
performing system calls without blocking the process at all, also known as asynchronous I/O.
Instead of trying to determine on beforehand whether or not a system call is about to block, we
simply perform the system call asynchronously. A check is made after the call to determine if
the call was completed and if not, the thread is suspended and then resumed when the asyn-
chronous system call has completed.

The cavalier approach wins the game on the fact that it is simpler to implement and more
robust. We leave it to the individual system call to determine whether or not it is about to block.
This relieves us from having to write specialized code for each system call which is not only
tedious but also error prone.

4.2 Emulator Support

The solutions discussed above both need a mechanism for communicating with the emulator.
More precisely, they need to be able to inform the emulator when a thread should be suspended
as a result of a blocking system call. The idea is to introduce an extra return code for predicate-
calls in addition to TRUE/FALSE (which represent success and failure, respectively). The new
return code is called SUSPEND and is returned when the thread executing the predicate should
be suspended.

Since the process of suspending a thread as a result of making a blocking system call varies
significantly depending on the nature of the system call, the actual work of suspending a thread
(setting bits, moving threads between lists, etc.) is done by the code performing the system call

Page 25/53

(see Figure 11). The only action required by the emulator is to immediately jump to the syn-
chronizing point in order to perform a reschedule.

/*
 * All blocking system calls are made in predicates implemented in C.
 * These all appear as ENTER_C in the WAM code.
 */
CaseX(ENTER_C)
 ...
 switch ((*Func->code.cinfo)(Arg))
 {
 case FALSE:
 goto fail;

 case SUSPEND: /* The C-routine was about to suspend... */
 goto heap_oflo; /* ... so force a new thread to be scheduled */

 case TRUE: /* fall through */
 }
 ...
 LoadH; goto proceed_w;

Figure 10: Emulator code for handling suspended C-predicates

4.2.1 Native Code

One of the features of SICStus is the possibility of executing native code [44, 46]. This means
that instead of interpreting predicates or executing byte-compiled code, the Prolog code is com-
piled to native code and inserted directly into memory and executed as if it was a regular C
function. The purpose of this is of course execution speed, and speedups of 3-4 times are not
unusual.

The multithreaded execution model maintains full compatibility with native code execu-
tion, since the thread scheduling mechanism is built upon an already existing mechanism—the
overflow-check—for which the native kernel already has support for. By simulating a heap-
overflow when rescheduling should take place, the native code kernel will automatically escape
back to the emulator, perform an overflow-check and thereby reschedule. When the thread later
on is scheduled again, the native code execution will continue as normal. However, the imple-
mentation is not yet fully compatible, due to its lack of support for blocking system calls. The
native kernel must be modified to support the SUSPEND return code indicating that a immediate
reschedule should take place. Since this requires hacking into the native kernel, the implemen-
tation of this has been left outside this thesis.

4.2.2 Suspending The Emulator

The emulator will sometimes be in the situation where there are no more threads to schedule.
For example, this happens immediately at startup when the top-level thread waits for input
from the user. This should cause the Prolog process to suspend itself, just as if it would have if it
had performed a normal, blocking system call.

This is implemented by a small piece of code in the scheduler. When the scheduler has
suspended the top-level thread and realizes that the list of threads waiting to execute is empty,
it suspends the process1 by calling pause(). The process is then resumed (i.e. pause() returns)

1 Suspending and resuming processes is—as one would expect—platform dependent. The case described here is for
Solaris, but most modern operating systems implement something similar. See also Section 4.4.

Page 26/53

when a signal is received. The signal is triggered by one of two reasons. Either the synchronous
I/O mechanism sends a signal to indicate that the I/O call was completed, or the timer mecha-
nism sends a signal to indicate that we have one or more threads suspended on a call to wait/1
and that we need to examine the queue to schedule those threads for which the timer-period
has expired. These actions are taken in the signal-handler routines, so that when pause() re-
turns we examine the ready-list and if everything went right we should have a thread waiting
to execute. However, for different reasons we might have received a false alarm, in case we will
simply be suspended again.

4.3 Predicates

This section described some of the predicates which need to be modified in order to support
blocking system calls.

4.3.1 Character Input Predicates

There are quite a few predicates in SICStus in some way concerned with reading data from a
file or from the terminal. A complete list is available in [9]. Four of these are concerned with
reading characters and returning them to the calling Prolog predicate. These are get/1-2 and
get0/1-2. They all read a character from either the standard input or from the specified stream.
They are from our point of view practically identical (they differ only on how they treat white-
spaces and from where they read their data).

BOOL prolog_get1(Arg)
 Argdecl;
{
 int i;
 SP_stream *s = w->input_stream_ptr;

 i = readchar(s,TRUE,preds.get1);

 if (check_susp(activeThread, s))
 return SUSPEND;

 if (i > -2)
 {
 Unify_constant(MakeSmall(i),X(0));
 return TRUE;
 }

 if (i == -2)
 raise_error("get",1,0);

 return FALSE;
}

Figure 11: Source code for the get/1 predicate

The predicate get/1 (see Figure 11) demonstrates the cavalier approach quite well. The call to
readchar() is made and a small piece of code checks whether or not the thread should be sus-
pended and if so return SUSPEND. The first approach looked very similar, with the difference
that it made a call to select() before the call to readchar(), and had no code at all after.

Page 27/53

4.3.2 Socket I/O

One of the important external libraries which needed attention in this matter was the socket-
library. The socket-library enables Prolog applications to talk TCP/IP with other applications.
Supporting the socket-library was not at all trivial, but the problems were not so much related
to the actual I/O itself as to the general question of performing blocking system calls in foreign
code, a topic addressed in Section 4.5.

The SICStus implementation of generic streams enables programmers to create their own
kind of streams which then can be treated as any other stream by other Prolog predicates. The
socket-library takes advantage of this fact and creates a generic stream encapsulating the un-
derlying TCP/IP-socket. Thereby predicates can operate on socket streams exactly in the same
way as they operate on, for example, terminal streams. This has a big advantage from our point
of view. There is no new set of I/O predicates for sockets, except those predicates used to man-
age the sockets themselves, such as socket_bind/2-3, which means that the support for
blocking stream primitives comes for free.

4.3.3 Output Primitives

The direct output primitives (such as put/1 and format/2-3; calls used to output data to a ter-
minal, file or some other sort of output device) used in SICStus are all based the low-level sys-
tem-call (write() [22]). This call behaves similarly to read() with respect to blocking, but does
not block during “normal” use. Therefore, support for blocking system calls in direct output
primitives has not been implemented. The call write() does, however, block under certain file-
system conditions such as mandatory file/record locking and this should of course be sup-
ported in a released version of SICStus.

There are other output primitives of a more “implicit” nature. An example of such a call is
the socket library call connect() which is called in order to establish a connection to a socket.
This call may suspend if the connection cannot be established directly. The reason why this call
is classified as an output predicate is that in order to find out if it is going to block is to select it
(i.e. use select()) for writing.

4.4 Portability Aspects

This implementation has been done on Solaris, and while most parts of the solution are directly
portable to most operating systems supported by SICStus, there are some issues worth special
attention.

4.4.1 Signals

One problem inherent in this implementation is that it relies on the existence of signals, a
mechanism which exists in most UNIX-like operating systems, but there are some operating
systems which do not support signals the way they are implemented under UNIX-like operat-
ing systems. Most notably among these are Win32.

One possible solution to this is to emulate the behavior of signals by using native threads.
Instead of setting up a signal handler to inform the emulator that the system call has completed,
we let a native thread do the job instead. When that thread has completed, it simulates a signal
by, for example, calling the signal handler with the appropriate arguments. Obviously this re-
quires that the OS supports native threads. If that is not the case (and no signaling mechanism is
available), SICStus MT cannot be supported. The problems of this solution is that we need to
have an native thread for each system call, presumable created every time a blocking system
call is made. This might cause some performance problems.

Page 28/53

4.4.2 Performing Asynchronous System Calls

Recall the discussion in Section 4.1 and the fact that the cavalier approach relies on the fact that
there is some way of executing system calls asynchronously, i.e. so that they do not block the en-
tire process. This can be done under most operating systems, but not in a very portable manner.

What happens if the underlying operating system does not support any way of performing
asynchronous system calls? Well, if it supports native threads, one solution is to emulate the
asynchronous call by spawning an native thread which performs the call. In this way we buy
into the operating system’s way of handling blocking system calls to the expense of spawning a
new thread for each time a blocking system call is made. If the underlying operating system
does not support either asynchronous system calls, threads, or another way of getting around
the problem of performing blocking system calls , we have a dead end. The only way out in that
case is to give up, execute the blocking system call and accept that the entire process is blocked.

4.5 Foreign Language Support

The SICStus foreign language interface currently only supports C, but the C support subsystem
is quite extensive. It is possible to call C from Prolog, the other way around, and recursively (C
to Prolog to C to Prolog to C to …). The support consists of a set of C-functions for controlling
the emulator, creating and manipulating terms, and a set of predicates to specify argument in-
formation (type, instantiation, etc.) and dynamically link the C routines. It also consists of a
mechanism for generating glue-code, stubs which convert Prolog arguments into a C argument
list before the call and unifies uninstantiated arguments on return, and so on. For more details
on how the foreign language interface works, see [9].

4.5.1 Blocking System Calls In Foreign Code

There is a major difference between supporting blocking system calls in built-in C predicates
(i.e. such as get/1-2) and doing it for predicates in foreign code. The difference is that the built-
in predicates are quite few and uncomplicated and are statically linked into the emulator. We
have full control over the structure of the functions. The external libraries, on the other hand,
can be written by practically anybody, and might be very complicated in terms of its call graph.
Specifically, it can system calls located very deep in the call graph. What we have to do is to
extend the foreign language interface, specifically the functions used to control the emulator, to
include support for blocking system calls. Such an interface should be small and easy to under-
stand. Otherwise the possibility of misusing it becomes too large. It must also be general. The
built-in predicates which support blocking system call are quite simple. More specifically, the
blocking system calls are not located deep in the call graph (i.e. they only occur in the function
directly called by the emulator). Take a look at Figure 11. There is a single test with an immedi-
ate return which directly returns control to the emulator which then can examine the exit-code.
If the system call would be located deep inside a call graph (as it might be in an external li-
brary), it would still be necessary to be able to return all the way back to the emulator, and pref-
erably without any requirements on the user. Of course, it would be possible to document that
any call to a potentially blocking system call has to be accompanied by code enabling immedi-
ate return to the emulator, but that would clutter the code of the external library and put a lot of
responsibility in the hand of the programmer of the external library.

Our solution consists of two parts. The first part consists of an extension to the set of func-
tions for the foreign language interface and the second part is a modification of the glue-code
generator. The function is basically the same function as check_susp() which is called in the
get/1-2 and get0/1-2 predicates (see Figure 11), i.e. if the system call was about to block, it
marks the thread as suspended, makes sure that the emulator gets a SIGPOLL when I/O is pos-
sible on the specified file-descriptor, and finally returns TRUE if the thread should be suspended

Page 29/53

and FALSE otherwise. This function is then called directly after the potentially blocking system
call in the external library. See Figure 12.

if ((msgsock = accept((SPSock)socket, [...])))
 {
 if (SP_handle_blocking_syscall(socket, S_INPUT, EWOULDBLOCK))
 return (SP_stream *)SUSPEND;

 ...
 }

Figure 12: How blocking system calls can be handled in foreign code. This example comes from the socket-
library.

The modification of the glue-code generator is necessary mainly due to the fact that when a ex-
ternal library call returns, output-argument unifications are done. These has to be ignored if the
thread is about to block -- the library call is not really returning but just releasing control to the
emulator.

Page 30/53

Chapter 5 - Discussion

One of the central points of this thesis was to implement an efficient multithreaded execution
environment, both with respect to execution speed and to memory consumption.

5.1 Memory Consumption

The main issue here is the question “how lightweight Prolog threads can be?” It is immediately
obvious that the data occupied in the static area by the extended WS is negligible compared to
the size of the stack-consumption; if the extended WS consumes 1 kb, it is outweighed 64:1 by
the stacks if the stack sizes are those given in figure Table 2. The size consumed by the compiled
messages depends naturally on the number of messages, but the overhead of storing them sepa-
rately as compiled messages in the static area is negligible. The stack-consumption is partly de-
termined by the initial size of the stacks (which are controlled by environment variables, see [9],
p. 12-13), but after some experimenting with these it became obvious that there was a lower
limit which was very quickly exceeded and setting an initial size below this limit caused unnec-
essary stack shifting. These number are shown in table Table 2.

Minimum Size
Data Area

kbytes kwords

The Global Stack 32 8

The Local Stack 16 4

The Choicepoint Stack 8 2

The Trail Stack 8 2

Table 2: Recommended minimum stack sizes (in bytes/words on a 32-bit architecture) for SICStus MT

If we use these numbers to calculate the maximum number of threads which fit into the address
space of 256 MBytes (the problem of the small address space is discussed in the next section) we
get 4096 threads. 4096 threads may seem like a lot, but in certain applications, 4096 threads is
not a very large number. For example, the Game-Of-Life benchmark exceeds 4096 threads with
a board-size of 64 by 64, which is not a very large board. There are very many interesting pat-
terns larger than that.

We have not found a real solution for this problem; the heap consumption of the WAM is
not easy to change. However, there is a more immediate problem than simply large memory
consumption, and that is the problem with the 256 Mbyte address space which will be ad-
dressed in the next section.

5.2 Address Space Fragmentation

As mentioned above, the address space of SICStus is only 256 Mbytes on a 32 bit architecture.
The reason for this is that SICStus uses the upper 4 bits of each data-cell for tags to distinguish
different kind of data-cells, such as atoms, lists, structure cells, etc. There are also bits used by

Page 31/53

the garbage collector, but these occupy the lower 2 bits which are always unused since all data-
areas are 4-byte aligned. These bits reduces the amount of addresses expressible to 228 bytes =
256 Mbytes.

Not only does this mean that the Prolog stacks (those data-areas which needs to be ad-
dressed by data-cells, which excludes the static area which is only referenced by full 32-bit
pointers) cannot exceed 256 Mbytes in size, it means that they have to be located at optimal
places in order for this to be possible; i.e. the address space can not be fragmented. Unfortu-
nately, the address space will become fragmented due to how stacks are expanded. Stack expan-
sion, also called stack shifting, is done by allocating a new stack with doubled size and then
shifting over the stack to the new area. If we expand a stack of size n bytes, there has to be 2n
bytes free, and after shifting the stack to the new position, the n bytes from the old location will
be left unused, fragmenting the address space. This may, under unfavorable situations, cause
address space exhaustion even though the stacks total size is far below 256 Mbytes.

5.2.1 Optimal Address Space Utilization Using mmap()

There is one way to avoid address space fragmentation. By using the system call mmap() [22],
the data-areas can be mapped to fixed locations in the address space. This has two advantages.
First, expanding the stacks becomes very efficient, since no copying needs to be done. Second,
since the stacks are not reallocated in the way described above, the address space does not be-
come fragmented.

Unfortunately, this solution only allows one set of stacks and it is therefore not very suit-
able to use in SICStus MT. It is possible, but it would require that the number of threads be de-
termined on beforehand. It would also require that the address space be equally (or at least
statically) divided among the threads. Both of the consequences are unacceptable.

5.2.2 Proposed Solution

The most attractive solution is to ignore the problem for now and await the arrival of 64-bit ar-
chitectures. SICStus has already been ported to one such architecture, the DEC/Alpha platform.
However, time has not permitted testing this implementation on that platform, but this should
(theoretically, at least) not be a problem. On 64-bit platforms we get rid of the 256 Mbytes limit
which solves the problem of a fragmented address space, so we can utilize all the physical and
virtual memory available. This becomes especially important on machines with large amounts
of RAM. Previously it was impossible to utilize more than 256 Mbytes on those machines, even
with no fragmentation at all.

5.3 Comparison With Other Multithreaded Environments

This section will compare SICStus MT with other multithreaded execution environments. Per-
formance issues are discussed in Section 5.4.

5.3.1 ERLANG

The functional programming language ERLANG [19], developed at the Computer Science Labo-
ratory at Ericsson, has had a heavy influence on the design of this SICStus MT and the influence
can most clearly be seen on the programming interface and the choice of primitives and their
semantics. The ideas of communication and synchronization using a single message port per
thread and the absence of the primitives suspend and resume both originate from ERLANG.

ERLANG itself is a functional language which is very suitable to write process-oriented pro-
grams in. The syntax and semantics for creating and manipulating threads is very simple and

Page 32/53

easy to understand. The piece of code in figure Figure 13 spawns a thread which increments a
counter each time it receives a message containing the atom increment. The corresponding
piece of code in Prolog can be seen in figure Figure 14.

start() ->
 spawn(counter, loop, [0]).

loop(Val) ->
 receive
 increment ->
 loop(Val + 1)
 end.

Figure 13: Example of inter-thread communication in ERLANG. This example spawns a thread which
increments a counter each time it receives the atom increment.

start :-
 spawn(loop(Parent,0),_),
 receive(_).

loop(Parent,Val) :-
 receive(increment), !,
 Val0 is Val + 1,
 loop(Parent,Val0).

loop(Parent,Val) :-
 receive(die),
 send(Parent,done).

Figure 14: Example of inter-thread communication in Prolog. Roughly the same example as in Figure 13,
but in Prolog. The thread terminates when it receives the atom die. Note the ! (cut) after

receive(increment). Without the cut, a choicepoint would be pushed for each incoming message.

5.3.2 Oz 2.0

Oz 2.0 [23] is a so called multi-paradigm programming language developed at the Programming
Systems Lab at DFKI, the German Research Center for Artificial Intelligence. It is called multi-
paradigm since it incorporates ideas from so conceptually different programming language
paradigms such as functional, declarative (logic programming), concurrent, constraint, impera-
tive, and object-oriented.

Oz 2.0 creates threads by using the construct thread ... end, which does not only create
a thread, but constitutes a ordinary block which has a value. This gives the programmer flexi-
bility and expressive power (which sometimes limits the readability of the program). See Figure
15.

declare fun {Fib X}
 case X of
 0 then 1
 [] 1 then 1
 else thread {Fib X-1} end + {Fib X-2} end
end

Figure 15: A concurrent Fibonacci function in Oz 2.0. This version is however very inefficient, since it
creates an exponential number of threads.

Page 33/53

Oz 2.0 does not take quite as a minimalist approach as our implementation (or ERLANG, for that
part), which is noticeable both in the language as a whole and in the implementation of threads.
For example, the main message passing and thread synchronization mechanism in Oz 2.0 is
built upon the abstract datatype Port. A port is more expressive (but also more complex to im-
plement) than the message-ports in SICStus MT and in ERLANG. Unlike a message port, ports in
Oz 2.0 can be shared among threads, be embedded in other data structures, and passed between
threads. In general, ports in Oz 2.0 can be treated just as another datatype.

Unlike SICStus MT and ERLANG, Oz 2.0 implements the suspend and resume primitives
(see Section 3.2.3). Oz 2.0 also implements a primitive injectException which raises an excep-
tion in another thread.

A major difference between Oz 2.0 and SICStus MT (together with ERLANG) which has
considerable performance impact (see Section 2.3), is that Oz 2.0 implements a shared global
stack. By having a shared global stack, it is possible to send references to terms and other
structures between threads without any need for copying data. This can be utilized in for ex-
ample inter-thread message passing and thereby reducing the work done in sending a message
to sending a reference. In some situations (such as the Game-of-Life benchmark, discussed in
Section 5.4.1) we can avoid message passing entirely by be able to simply read information di-
rectly from a data structure.

5.3.3 Java

Java [15, 24, 25] (developed by Sun Microsystems, Inc.) is, if all buzzwords are removed, an ob-
ject oriented programming language with C-like syntax and extensive WWW and Internet sup-
port. Naturally, its capabilities in the area of Internet, WWW, and so on, is quite irrelevant here;
we are mainly interested in its multithreaded execution environment.

A little surprising is the fact that neither Java’s language specification [25] nor the virtual
machine specification specifies any restraints on the scheduling algorithm of the virtual ma-
chine. As a consequence, a (concurrent) Java program cannot presume that the underlying
scheduler is neither fair nor preemptive. This means that a concurrent Java program needs to
insert calls to yield() at strategic locations in order to make sure that other threads in the ap-
plication are allowed access to the CPU.

In Java, a thread is created by creating a subclass from the base class Thread, thereby asso-
ciating an object with the thread. To start the thread, the method start() is executed on the
thread-object. This will spawn a new thread which will, when scheduled, execute the method
run() in the thread-object. The somewhat unnatural association between a thread and an object
makes it a little tedious to create a thread. Consider the code in Figure 16. The corresponding
code in Prolog would consist of a simple call to the predicate spawn/2, while the Java code is at
least 10-12 lines.

Page 34/53

public class MyThread extends Thread
{
 public static void main(String argv[])
 {
 MyThread mt;

 mt = new MyThread();
 mt.start();
 }

 public void run()
 {
 // do work...
 }
}

Figure 16: Sample code for creating a thread in Java.

Not only is it more tedious to create a thread, the expressive power and the possibility of fine-
grain concurrency is diminished since a new class needs to be created every time the program-
mer wants to execute something concurrently. For example, a raytracer might want to execute
each separate trace concurrently in order to utilize multiple processors. In Java, the programmer
would need to create a new class for the very specific purpose of tracing a single pixel. This has
been simplified a little by the introduction of inner classes which supports declaring classes en-
capsulated in other classes. In Oz 2.0, it would be enough if the loop through the pixels was en-
capsulated in a thread ... end construct.

Like Oz 2.0, but unlike ERLANG and Prolog, Java implements inter-thread communication
by using datatypes. However, in Java this is considerably more complicated than in Oz 2.0,
even if the structure is similar. The datatypes PipedInputStream and PipedOutputStream
(which correspond to the Oz 2.0 datatype Port) supply the functionality of writing at one end
and reading at the other. However, using these alone is not enough; they only supply the
“pipe” characteristic of connecting two streams. The streams themselves are subclasses of
InputStream or OutputStream and must be created separately and then connected together
using the functionality of the piped stream classes.

This sounds no more complicated than it is and the mechanism has more drawbacks than
being simply complex and difficult to understand. The inter-thread pipes are designed to be
able to use over arbitrary serial communication devices (such as a TCP/IP-connection). To ac-
complish this, all objects which are to be sent between threads must implement the
Serializable interface, which means that they can be written upon a serial device and there-
after reconstructed at the other end. This interface also enables the programmer to have full
control on how the object is written down on the stream and how it should be read, enabling an
easy implementation of, for example, a transparently compressing stream.

The actual problem with the Java implementation of inter-thread communication is that it
is too general. The piped streams and the serializable interface are important issues in Internet
and WWW-based applications—it enables them to send objects over the Internet in a generic
manner—but they are too clumsy and complex too use for light-weight inter-thread communi-
cation. It is, for example, not necessary to support arbitrary communication devices when
communicating between threads on shared memory architectures, neither is it necessary to
have full control on how the data is stored while in transfer.

As a remedy, we have implemented an extended thread class with a light-weight built-in
message-port. Sending a message then amounts to passing a reference to the receiving thread.
See Figure 17.

Page 35/53

 private List messagePort; // doubly-linked list with messages (= objects)
 ...

 public synchronized void send(Object obj)
 {
 messagePort.insertLast(obj);
 this.notify();
 }

 public synchronized Object receive()
 throws InterruptedException
 {
 // Suspend if message queue is empty
 while (messagePort.length == 0)
 this.wait();

 return messagePort.removeFirst();
 }

 ...

Figure 17: Implementing send/receive in Java without using the piped input and output streams.

See Section 5.4 for a discussion on the performance of this implementation.

5.3.4 CS-Prolog Professional

CS-Prolog Professional [35, 45] is a Prolog system developed in Hungary. It supports several
independent processes (to avoid ambiguity, we will refer to them as threads) similar to SICStus
MT. However, there are a couple of important differences.

Thread are not created dynamically, but “pseudo-static”. This means that the execution of
a CS-Prolog program is divided into two phases, the prelude phase and the working phase.
Threads can only be created during the prelude phase. The prelude phase is terminated by a
call to a predicate start_processes/0, which causes all threads which have been created to
start executing. This has the effect that before any threads can start, the application needs to
determine the number of threads it will need. This is a quite serious drawback, since it would,
for example, prevent a WWW-server from creating a thread for each accepted connection.

5.3.4.1 The Communication Mechanism

CS-Prolog provides two different kinds of threads—self-driven and event-driven. The self-driven
process is the normal case. Its purpose is to execute a goal (in parallel) and terminate when it is
done, just like SICStus MT threads. Event-driven (or real-time) are designed in order to continu-
ously respond to events. When an event-driven thread is created, the programmer supplies two
goals: one for initialization and one for handling events. The latter will be restarted for each in-
coming event. In other words, CS-Prolog has integrated support for event-driven applications.

Like SICStus MT, CS-Prolog communicates between threads by sending messages. How-
ever, there are two major differences. The first is that CS-Prolog uses channels as medium. These
channels need to be created separately and are not bi-directional. This gives flexibility on one
hand: it is easy to generate broadcasts since many threads can read on the same channel. On the
other hand, the programmer needs to create all the channels explicitly; it is not possible to send
a message to a thread given only the thread’s identifier.

The second difference is that the message passing is synchronous (and buffered). This means
that when a message is sent to a channel, the sending thread will be suspended until the re-
ceiving thread is ready to accept the message. This tends to cause deadlocks more frequently

Page 36/53

and does not match the concept of “independent” threads very well since threads will be sus-
pended depending on the state of the thread they send messages to.

5.3.4.2 Scheduling

CS-Prolog supports physical concurrency, i.e. it is possible to utilize multiple-processor archi-
tectures. Threads are automatically distributed as evenly as possible. If there are more threads
than processors, some or all processors will be time-shared as in the single-processor case. For
single-processor scheduling, CS-Prolog behaves similarly to SICStus MT with the difference
that CS-Prolog threads do not have priorities, so the algorithm is a simple Round-Robin with a
configurable time-slice which defaults to 2 seconds.

An interesting feature of CS-Prolog is that it has a built-in deadlock detection mechanism
(DDM). By keeping track on the current state of all threads, it can detect global deadlocks. This
happens when all threads are suspended on communication points (send, receive, etc) and there
are no more threads to execute. When the DDM detects a global deadlock it signals a runtime
error in the main-thread.

A DDM should certainly be considered for inclusion in a released version of SICStus MT.
The problem is how to act when a deadlock is discovered. Since SICStus MT really does not
have a “main thread” (the top-level loop is not sufficiently “special”), we cannot imitate CS-
Prolog’s solution.

5.4 Performance

5.4.1 Game of Life

We have measured the performance of SICStus MT on two benchmarks. The first one is Game of
Life [26]. It is a little program that simulates a primitive biological environment (such as a mi-
croorganism culture or a student party). The environment consists of a board of size n by m
cells. A cell can either be alive (containing a living organism) or dead (no organism). Their ini-
tial state is determined either randomly or using a preset pattern before the game starts. Time is
counted in generations and the game is played one generation at a time. For every generation,
the state of each cell (alive or dead) is calculated by counting the number of alive neighbors in
the previous generation. The new state of the organism can be seen in Table 3.

Sum New State Explanation

0-1 dead Dies of loneliness

2 unchanged Happy organism

3 alive 3 neighbors creates a new organism

4-8 dead Dies of overcrowding

Table 3: State transitions for Conway’s Game of Life

The game itself is very fascinating, and there are many initial patterns which display intriguing
behavior. However, this is not the interesting part. The interesting aspect of Conway's Game of
Life from our perspective is the fact that implemented in a certain way, it becomes an excellent
benchmark for measuring thread scheduling overheads and the efficiency of synchronizing and
communicating between threads. Our special implementation uses one thread for each cell and
all communication between cells is done by using the message passing mechanism. It is easily

Page 37/53

realized that it quickly becomes a lot of threads and even more messages; the ideal situation for
a benchmark. The source code for the Prolog implementation of this benchmark can be seen in
Section 9.1. Table 4 shows some figures, measured on a Sun Microsystems 248 MHz UltraS-
PARC.

Since the implementation heavily relies on the usage on threads and it would be difficult to
implement a comparable version without using threads, this benchmark has only been used to
compare different multithreaded execution environments.

Language/Implementation Time (ms) Factor

SICStus MT 10000 1.00

ERLANG 3100 0.31

Oz 2.0 820 0.082

Java (JIT compiled) 17000/29000 1.7/2.7

Table 4: Execution times for Conway’s Game of Life. The parameters were 10x10 cells and 500
generations. Times are in milliseconds.

The efficiency of Oz 2.0—12 times faster than SICStus MT—is partly due to the fact that it does
not communicate nor synchronize using message passing. Instead of sending messages between
the threads to inform the neighbors about state changes, the Oz 2.0 version reads the state from
the thread's data structure explicitly. This is possible since threads in Oz 2.0 uses a shared heap
from which all of them can read/write. See Figure 18.

 proc {Cell G CurrentS FinalS History NW N NE W E SW S SE}
 case G == 0 then
 FinalS = CurrentS
 History = nil
 else
 NextS Hr
 in
 % Read the state of the neighbors and calculate next state.
 % No message passing!
 NextS = {NewState CurrentS NW.1+N.1+NE.1+W.1+E.1+SW.1+S.1+SE.1}
 History = NextS|Hr
 {Cell G-1 NextS FinalS Hr NW.2 N.2 NE.2 W.2 E.2 SW.2 S.2 SE.2}
 end
end

Figure 18: The inner-loop of the Oz 2.0 version of Game-of-Life. Note the absence of message passing.

As mentioned earlier, ERLANG has the possibility of compiling receive statements very effi-
ciently.

The Java benchmark was implemented in two different ways. The first was implemented
using the same structure as the Oz 2.0 implementation; i.e. it does not use the message passing
mechanism to communicate and synchronize. The second mimicked the Prolog/ERLANG im-
plementation by communicating and synchronizing using message passing. Still, the message
passing did not include copying between heaps as in Prolog and ERLANG, but by sending sim-
ple references to objects. Even so, the benchmark rendered much higher execution times for the
Java version2 than for the others. It seems that Java has a very inefficient thread scheduling

2 Using Sun’s own Java implementation.

Page 38/53

mechanism, but since the internals of the JVM were not available for us to examine, we can not
really say anything other than that the Java benchmark was far slower than could be expected.
An interesting note is that the JVM showed (practically) no difference between interpreted and
JIT compiled code, indicating that it is the scheduling mechanism of the JVM itself which is inef-
ficient.

Comparing lazy switching and eager switching (see Section 3.2.2) using the Game-of-Life
benchmark showed—as can be expected—that lazy switching is more efficient (approximately
700 ms or 7% in the example above). This is caused by the fact that lazy switching decreases the
number of messages which are unpacked in vain (i.e. messages which do not match the first
argument to the call to receive/1).

5.4.2 Matrix Arithmetic

While the Game of Life benchmark was written to compare different multithreaded execution
environments, the Matrix Arithmetic benchmark was written to compare SICStus MT with sin-
gle-threaded SICStus.

The benchmark is very simple; it multiplies two matrices. The single-threaded version
multiplies them straight away, i.e. takes one cell at a time and traverses the corresponding row
and column by standard Prolog list-traversal. The multithreaded version, however, spawns a
thread for each cell, and each thread then performs the same action as the top-level thread did
for each cell in the single-threaded implementation. The source code for this benchmark can be
seen in Section 9.2.

Size ST MT Factor

10*10 30 60 2.0

20*20 170 350 2.1

30*30 500 900 1.8

Table 5: Execution times in milliseconds for the Matrix Arithmetic benchmark. Observe that the number
of threads increase quadratically.

As we can see, in the multithreaded version the execution times are roughly doubled compared
to the single-threaded version. We can also see that the factor does not increase at all when we
increase the number of threads, indicating good scalability.

5.4.3 Profiling Data

By profiling the SICStus emulator, we can obtain figures for how much time is spent doing dif-
ferent things. The data in Figure 19 and Figure 20 was obtained by running the Game-of-Life
benchmark on a board of 10 by 10 cells and iterating 500 generations.

Page 39/53

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 33.28 6.64 6.64 2 3320.00 6776.64 wam
 [...]
 3.71 13.19 0.74 342876 0.00 0.00 compile_term
 3.71 13.93 0.74 166 4.46 4.46 SP_bcopy
 3.01 14.53 0.60 955264 0.00 0.00 cunify_args
 2.31 14.99 0.46 2706151 0.00 0.00 cunify
 2.21 15.43 0.44 955129 0.00 0.00 get_instance
 2.06 15.84 0.41 164 2.50 7.53 heap_overflow
 1.70 16.18 0.34 342876 0.00 0.00 ct_mark_phase
 1.50 16.48 0.30 44 6.82 6.82 _open
 1.35 16.75 0.27 1009674 0.00 0.00 prolog_receive
 1.10 16.97 0.22 740871 0.00 0.00 htLookUp
 1.05 17.18 0.21 704709 0.00 0.00 checkalloc
 1.00 17.38 0.20 332 0.60 0.60 _ioctl
 1.00 17.58 0.20 134 1.49 1.49 _write
 0.90 17.76 0.18 687733 0.00 0.00 checkdealloc
 0.65 17.89 0.13 562348 0.00 0.00 clInsert
 0.65 18.02 0.13 562346 0.00 0.00 clRemove

Figure 19: Profile data obtain from the Game-of-Life benchmark (10x10, 500 generations), using gprof.

 0.06 1.20 342663/342663 msgCreate [8]
[9] 6.4 0.06 1.20 342663 set_compound_data [9]
 0.74 0.46 342663/342876 compile_term [11]

...

[uninteresting calls here]
 0.00 0.00 706/2706151 bu3_functor [159]
 0.13 0.00 739931/2706151 prolog_self [31]
 0.33 0.00 1964545/2706151 prolog_receive [13]
[20] 2.3 0.46 0.00 2706151 cunify [20]
 0.00 0.00 13/955264 cunify_args [16]

...

 0.00 0.00 258/955129 wam [3]
 0.44 0.00 954871/955129 prolog_receive [13]
[21] 2.2 0.44 0.00 955129 get_instance [21]

Figure 20: Extract from the call graph data obtained from gprof().

These figures3 are quite informative. They can, for example, tell us that

• Apart from the function wam(), most of the time is spent doing the following: compiling
and packing up terms (compile_term(), get_instance()), unifying terms in general
(unify_args(), unify()), and expanding/shrinking stacks (SP_bcopy()). However,
the stack expansion probably depends on badly chosen initial stack values and not on
excessive stack usage.

• All calls to get_instance() are made by receive/1 (i.e. prolog_receive).

• Most calls to cunify() were made by receive/1 and self/1. However, using
cunify() in self/1 is a little overkill and can be optimized.

Figure 20 displays parts of the call graph which can tell us from where the functions were
called. By analyzing this information, we can see that the unification algorithm is called nearly 2
million times in order to match terms in the input-queue. We can also see that messages are un-

3 A little note on the percentages. Among the functions removed from figure Figure 20 is the profiler main-function
internal_mcount(), which is responsible for roughly 25% of the execution time. The “true” percentage can there-
fore be calculated from the raw percentage by dividing by 0.75. As a result, the true percentage of for example packing
and unpacking terms is (3.71% + 2.21%)/0.75 = 7.9%.

Page 40/53

packed roughly 1 million times (get_instance()), and packed about 350,000 times
(set_compound_data()). This means that each message is unpacked on average 3 times.

These figures can also give us a hint of how much speedup the special unification algo-
rithm described in Section 6.2 would give. This algorithm would eliminate the unnecessary (i.e.
two-thirds of it) unpacking. If we assume that the new unification algorithm is as fast as the ex-
isting ones this means that the speedup will be 2.21%/(0.75 * 3/2) = 2.0%, not a very large num-
ber.

5.4.4 Raw Overhead

An interesting performance issue is how large the raw overhead is. By raw overhead we mean the
overhead associated with supporting multiple threads, not the overhead associated with exe-
cuting two or more threads in parallel. More concretely it is the difference in execution time
between a program executed on single-threaded SICStus and the same program executed on
SICStus MT. To measure this, we executed the nreverse benchmark on a 100-element list 2000
times (for accuracy). First with support for multiple threads and then, using preprocessor
switches, without support for multiple threads.

The results were a little strange. Executing with support for threads gave consistently lower
execution times than without. Not much, around 0.5% (150 ms for a total of about 27500 ms),
but very consistently. This should not be possible, since if thread-support is switched off, there
is less code to be executed. The probable reason for this is that the branch-prediction of the Ul-
traSPARC can eliminate the overhead of checking if there are any threads to schedule. In any
case we know that the raw overhead for supporting multiple thread is very low.

5.5 Conclusion
There is a considerable overhead in the message passing mechanism, mostly caused by the out-
of-order receive mechanism. The total number of messages sent in the benchmark was only a
third of the total number of unpackings which means that each message is unpacked nearly
three times. Not only are the messages unpacked in vain, the (that itself is not a very big part of
the overhead), but the receiving thread has to be rescheduled and allowed to execute in order to
determine if the message was the one expected or not. By using indexing (as described in Sec-
tion 6.2.2) it should be possible to eliminate all the unnecessary unpackings and it should also
be possible to eliminate the resulting useless scheduling of threads blocked on receive/1, since
the indexer should be able to directly determine whether or not a message was the expected one
and thereby only wake up the receiving thread when the correct message arrives.

By implementing the improvements described in Section Chapter 6 - , we expect SICStus
MT to perform comparably to the ERLANG implementation with respect to the Game-of-Life
benchmark.

Page 41/53

Chapter 6 - Future Work

This chapter describes some areas which should be pursued in the future development of
SICStus MT.

6.1 Critical Regions and Database Synchronization

The programming interface outlined in Section Chapter 3 - must be extended to include some
form of critical regions, for example to support synchronized access to the Prolog database.
Currently, database transactions such as assert/1-2 are performed atomically. The atomicity
comes from the fact that threads cannot be interrupted inside a C function—threads are only
switched in and out at the synchronizing point, so all C-predicates are guaranteed to be executed
atomically.

However, it is desirable to be able to atomically execute larger parts of a Prolog program
than a single statement. Take a complex database-update as an example. It may consist of an
initial test of some condition followed by a call to assert/1 which should only be performed if
the initial test succeeded. After the test is done, it is vital that no other thread is allowed to inter-
rupt since that could make the test invalid.

In the current implementation, there is no mechanism to do this unless we fall back on the
message passing mechanism, but that would cause unnecessary overhead in sending messages
between the threads (both in extra lines of code and in execution time). Also, the situation of
critical regions and database synchronization occurs frequently enough to indulge it with a
separate solution. An example on how this could look in the Prolog code is displayed in Figure
21. A discussion about process synchronization in general can be found in [16].

transaction(Arg1,Arg2,Arg3) :-
 assert(Arg1),
 assert(Arg2),
 retract(Arg3).

run :-
 ... ,
 lock(transaction(foo,bar,frotz),L),

Figure 21: Example of a synchronized database operation.

In this example, the predicate transaction/3 is executed atomically using the predicate
lock/2 and the lock denoted L. lock/3 works similarly to call/1. The lock L is created some-
where and distributed to all threads which wants to execute the critical region.

6.1.1 Semantics for Synchronized Database Operations

In Figure 21 the predicate transaction/3 is executed atomically with respect to the lock L. This
means that if another thread attempts to call lock(...,L) before the first thread's call to
lock/2 (and thereby to transaction/3) has completed, it will be suspended and then released
when the first thread has completed its call. The lock maintains a list of threads which are sus-

Page 42/53

pended on the lock. These threads will be allowed to enter the critical region in a FIFO-manner.
In the literature, locks of this kind are called monitors [27, 28] since they make sure that only one
thread is inside the critical region at any time and thereby can be said to “monitor” the critical
region. Java's synchronized-construct is implemented using monitors (see [15], p. 38).

There are a couple of important points to make here. First, the lock needs to be reentrant.
This means that when lock/2 executes, it examines the lock and suspends only if someone else
has it (i.e. has used it in a call to lock/2). It does not suspend if the lock is owned by the exe-
cuting thread. If locks are not reentrant, it becomes very hairy to use nested atomic transactions,
since nested calls to lock/2 using the same lock would then suspend and cause a deadlock.
Second, we need to make sure that lock/2 behaves correctly when the atomic transaction fails
or raises an exception. This will cause backtracking and we must therefore make it possible for
lock/2 to be undone, i.e. it must release the lock.

The third point is also concerned with backtracking and what happens if the call to lock/2
is backtracked into, i.e. if the program fails after the call to lock/2 has completed. Here the
choice of semantics is not obvious. Assume that there are choicepoints pushed inside the trans-
action. Should they be taken into account and thereby enabling backtracking into lock/2? If so,
we would have to make sure that no one else has entered in the meanwhile and suspend if so.

Since the lock/2 predicate basically is a form of meta-call where we are guaranteed that
we will execute the predicate atomically with respect to the lock L, it is desirable that lock/2
has the same model of execution as, for example, call/1. In terms of locking, this means that
the lock is acquired at call/redo and released at exit/fail/exception.

6.2 The Message Passing Mechanism

In any communication-intensive application, the message-passing mechanism is a potential
bottle-neck, so also in SICStus MT. This section describes two possible improvements.

6.2.1 Avoiding Message Copying

One possible solution is to create a special unification implementation which is capable of uni-
fying a term on a heap with a compiled term. This would get rid of the overhead of constantly
unpacking the message, however the message would still need to be compiled (copied), which
is not the case with the solution above. The unification necessary would not cause any over-
head, since it would need to be done anyway, even if the terms were located on the same heap.
This is a perfectly reasonable solution, and will probably be implemented later on. See Section
5.4.3.

6.2.2 Indexing

Recall that when the out-of-order receive mechanism is used, the entire message queue needs to
be searched each time receive/1 is called; the message queue must store the messages which
cannot be passed directly to the user. This has the effect that the time complexity for receiving
messages is linear in the number of “currently undeliverable” messages.

Fortunately, the process of searching the message queue for terms unifiable with the ar-
gument of receive/1 is essentially equivalent to the search done during standard query reso-
lution: searching the Prolog database for matching clauses. This is a central issue in the WAM
and it has been the subject of extensive research [29, 30].

The key mechanism used in searching the Prolog database for matching clauses is called
indexing. Basically, it finds and excludes those clauses which cannot possibly result in a solu-
tion. The difference between this and actual query resolution is that indexing only examines the
head of the clause. If all clauses except one can be excluded then the predicate becomes deter-
ministic and no choicepoint needs to be pushed. Of course, since only the head of the clause is

Page 43/53

examined, only those clauses which differ in the head can possibly be distinguished. Due to
efficiency reasons, indexing is often only performed on the principal functor, but there are other
algorithms which are more efficient (see [29]).

The core of the indexing mechanism is, given an arbitrary term, to search a set of clause-
heads (i.e. terms) and produce a subset of these which are unifiable with the given term. This
can be utilized in the receive-mechanism in order to find messages which are to be passed to the
user. The message queue then corresponds to the Prolog database and the term passed to
receive/1 corresponds to the query.

By using indexing, we do not need to do a linear search and we can thereby decrease the
time spent in searching the message queue. However, the actual improvement depends on the
efficiency of the indexing algorithm and how well it performs on the set of messages which the
application sends between its threads, meaning that the programmer can improve the efficiency
of the indexing mechanism by sending “suitable” messages which are easy to index on.

6.3 Improved Syntax

Comparing Figure 13 and Figure 14 we see that the Prolog code is considerably less clear and
more verbose than the ERLANG code. This is mainly due to the fact that we have no syntax sup-
port for the synchronization and communication primitives; they have to be implemented as
ordinary predicates with no special syntax. See Figure 22 for a suggestion of how the syntax for
receive constructs could look like.

thread :-
 receive(Template, % Incoming term must match Template
 (Guard1 -> Body1 % If the Guard (a goal) succeeds,
 ; Guard2 -> Body2 % the corresponding body is executed.
 ; ...
 ; GuardN -> BodyN
),
 Timeout, Body). % If no term is received within ’Timeout’
 % millisecs, execute ’Body’ and return.
 ...

Figure 22: Suggestion for improved syntax for receive constructs.

The improved syntax enables us to specify in a very dynamic way the order in which terms are
received and we are no longer restricted to unification against a single term.

The semantics and eventually necessary restrictions of the new receive/4-predicate must
of course be thoroughly investigated. For example, should it be possible to call receive/4 from
inside a guard?

6.4 Improvements Under the Hood

6.4.1 Blocking System Calls in Foreign Code

In Section 4.5 we outline a possible solution for supporting blocking system calls in foreign
code. This solution, however, has two serious drawbacks. The first is how to get back to the
emulator when the system call suspends. The current solution is not transparent to the user.
Explicit jackets needs to be inserted, since the C code in the external libraries has full freedom to
perform any low level system call, and the user needs to manually make sure to return the
SUSPEND-code all the way up to the emulator.

Page 44/53

The second problem is how to redo the system call. The emulator would want to be able to
resume the library call immediately before the system call which caused the blocking, as if the
library call was never interrupted. This would require that the entire execution environment of
the library call was saved.

The first problem is possible to solve fairly transparently by using the standard C functions
setjmp() and longjmp() to obtain some sort of escape mechanism. This would eliminate the
manual stack unwinding, but not the explicit jackets. The second problem is not solvable at all
(within the limits of the C language) since it requires that the execution environment (especially
the C-stack) can be saved and restored again when the system call should be performed again.

The most attractive solution is to allow the program to do this manually, i.e. checking the
system call if it was about to block, and return SUSPEND to the emulator.

6.4.2 The Prolog/C Interface

The interface between Prolog and C has to be properly extended in a released version of
SICStus MT. It has to be extended to fully support the proposed solution for blocking system
calls in foreign code outlined in Section 4.5. The proposed solution is quite feasible, but it has to
be complemented with a deeper look into the different forms of blocking system calls and their
characteristics to make sure that they are supported. Similar support is needed for the
Prolog/C interface support functions, such as SP_fgetc() (see [9], p. 159). These must be able
to suspend themselves in a compatible manner. It might be desirable to extend the Prolog/C
interface to supply a similar functionality as the Prolog programming interface described in
section Chapter 3 - does, such as sending terms to other threads. Generally, the Prolog/C inter-
face needs to be thoroughly tested with respect to multiple threads, reentrancy, and blocking
system calls.

6.4.3 Runtime vs. Development Systems

This implementation does not support stand-alone applications (also called Runtime Systems,
see Section 2.4.1), but only the development system. However, the intention is that the distinc-
tion between runtime and development systems should be eliminated and we have therefore
not spent any resources on implementing support for both.

6.4.4 Retracted Clauses

There is also a problem with removing retracted clauses. The problem has to do with the algo-
rithm used to determine if a retracted clause can be physically erased [31]. The current algo-
rithm searches the choicepoint stack for references to the retracted clause (since it can be acti-
vated due to backtracking). The current implementation has no support for this and it is there-
fore possible that a retracted clause is removed too early.

6.4.5 Access-control for Sub-threads

When running the system as a development system with a top-level loop, restrictions must be
enforced on sub-threads and what they are allowed to do. For example, it might be unsuitable
to allow a sub-thread to terminate the entire process by calling abort/0. Simply forbidding sub-
threads to use certain predicates is not always suitable. In some cases, it might desirable to im-
plement alternative semantics for some of these; for example, halt/0 might be restricted to
terminate only the currently executing thread (and therefore be equivalent to
self(X),kill(X)).

Other predicates which need attention on this issue are reinitialize/0, save/1, re-
store/1, and load_foreign_resource/1.

Page 45/53

Chapter 7 - Related Work

This chapter will describe some related work done in the area of parallelism and concurrency in
Prolog and some references for further reading.

A survey of the basic issues and an outline of some existing Prolog implementation which
support concurrency/parallelism in different ways can be found in [18]. A comparison of
SICStus MT with the languages ERLANG [19], Java [25, 24], Oz 2.0 [23], and CS-Prolog Profes-
sional [45] is provided in Section 5.3.

The AND/OR-parallel Prolog systems [32, 33, 34, 18] are worth a separate mention.
AND/OR parallelism exploit the inherent parallelism in Prolog programs by utilizing shared-
memory MIMD architectures and creating processes as a result of conjunctions or disjunctions
in the Prolog code. This kind of parallelism is also called goal parallelism, as opposed to the proc-
ess parallelism which this thesis is focused around. Goal parallelism is implicit, i.e. the parallelism
is exploited without any special predicates and can therefore preserve full Prolog semantics.

PAN [20] is a process based Prolog system built on SICStus Prolog which uses multiple
SICStus processes which are statically created at startup as opposed to the light-weight Prolog
threads employed in SICStus MT. PMS-Prolog [36] is a parallel Prolog system which also uses
the message-passing paradigm for inter-thread/process communication. Multi-Prolog [37] and
BlackLog [38] are parallel Prolog systems which use the blackboard paradigm for inter-
thread/process communication. IC-Prolog II [39, 40] is a multithreaded Prolog system devel-
oped at Imperial College, London. It supports multithreaded Prolog similar to the implementa-
tion described in this work.

Page 46/53

Chapter 8 - Conclusion

We have shown that it is possible to support multiple threads of execution in SICStus Prolog.
The threads are light-weight, dynamically managed using a small and compact Prolog interface,
and implemented entirely at user-level.

The implementation has a very low raw overhead. This means that the overhead of exe-
cuting single-threaded code (i.e. a regular non-threaded Prolog program) on SICStus MT is very
low which makes it very reasonable to include support for multiple threads in a released ver-
sion of SICStus. The implementation maintains full native code support. This is important since
a considerable part of SICStus efficiency stems from its being able to execute Prolog code com-
piled to native code. The implementation does have a few problems, mainly concerned with
memory consumption together with small address spaces and the efficiency of the message
passing mechanism. There are solutions or suggestions for improvements for most of these
problems, even if they can not all be solved.

Future work in the area of SICStus MT include support for native threads, support for
critical regions and database synchronization, ensuring portability and improved syntax.

Page 47/53

Chapter 9 - Program Listings

9.1 Game Of Life

The following code is the Prolog code for the Game Of Life benchmark. It also serves as a good
example on how threaded Prolog code might look like.

% Document type: -*- Prolog -*-
% Filename: /a/if/home1/jojo/xjobb/misc/threadtest/life.pl
% Author: Jesper Jonsson <jojo@sics.se>
% Last-Update: Time-stamp: <1997-05-07 1728 jojo>

:-
use_module(library(random)),
use_module(library(lists)).

%%%%%%%
%
% life(+N, +M, +NumGens, +Mode)
%
% Description:
% Implements Conway’s Game Of Life. The game is run in a MxN-matrix with
% Num generations with one thread per cell. The game is entirely built on
% communication between thread and therefore a very good benchmark for
% a multithreaded environment.
%
% The source is highly inspired by Johan Montelius’ <jm@sics.se> Erlang
% version.
%

life(N, M, Num) :-
M >= 1, N >= 1,
statistics(runtime, _),
matrix(N, M, Matrix), % Create matrix of cells
!, % Don’t redo spawns
link(Matrix), % Inform each cell about its neighbors
start(Matrix, Num), % Start the game
Size is N * M,
wait_cells(Size, Sum),
statistics(runtime, [_,Runtime]),
format("Done. Surviving organisms = ~w.~n", [Sum]),
format("Runtime = ~w.~n", [Runtime]).

life(_, _, _) :-
format("Matrix too small. Minimum = 2x2.~n", []),
!,
fail.

%%%%%%%
%
% matrix(+N, +M, -Matrix)
%
% Description: Creates a N by M matrix of threads, one for each cell.
% The matrix is organized as a list of lists of thread-identifiers.
%
% [[<first row>],
% [<second row>]]
%

matrix(N, M, [Dummy|Matrix]) :-
DLen is M + 2,
length(Dummy, DLen),
matrix0(N, M, Matrix).

matrix0(0, M, [Dummy]) :-
DLen is M + 2,

Page 48/53

length(Dummy, DLen).
matrix0(N, M, [Line|Matrix]) :-

make_line(M, N, Line),
N0 is N - 1,
matrix0(N0, M, Matrix).

% Aux: make_line/2 creates a line in the matrix.
make_line(M, N, [_|Line]) :-

make_line0(M, N, Line).

make_line0(0, _, [_]).

make_line0(M, N, [CellThread|Line]) :-
spawn(cell, CellThread), % Spawn cell-thread
M0 is M - 1,
make_line0(M0, N, Line).

%%%%%%%
%
% link(+Matrix)
%
% Description: Links the matrix together by informing each cell about its neighbors.
%

link([_,_]).

link([North | Rest]) :-
Rest = [This, South |_],
link_line(North, This, South),
link(Rest).

link_line([NW | RestN], [W | RestW], [SW | RestS]) :-
RestN = [N, NE | _],
RestW = [This, E | _],
RestS = [S, SE | _],
Neighbors = [NW, N, NE, W, E, SW, S, SE],
remove_noncells(Neighbors, RealNeighbors),
send(This, RealNeighbors),
link_line(RestN, RestW, RestS).

link_line([_,_], _, _).

remove_noncells([], []).
remove_noncells([Neighbor|Neighbors], [Neighbor|RealNeighbors]) :-

nonvar(Neighbor),
remove_noncells(Neighbors, RealNeighbors).

remove_noncells([Neighbor|Neighbors], RealNeighbors) :-
var(Neighbor),
remove_noncells(Neighbors, RealNeighbors).

%%%%%%%
%
% start(+Matrix, +NumGens)
%
% Description: Send the term go(MasterThread, NumGens) to each thread
%

start([], _).
start([Line|Matrix], NumGens) :-

start_line(Line, NumGens),
start(Matrix, NumGens).

% Aux: start_line/2 starts all threads in a list.
start_line([], _).
start_line([Thread|Line], NumGens) :-

self(This),
(nonvar(Thread) ->
 random(0, 2, X),
 send(Thread, go(This, NumGens, X))
;
 true
),
start_line(Line, NumGens).

%%%%%%%
%
% wait_cells(+NumCells, -Sum)
%
% Description:
%

Page 49/53

wait_cells(NumCells, Sum) :-
wait_cells(NumCells, Sum, 0).

wait_cells(0, Sum, Sum).
wait_cells(NumCells, Sum, SumAck) :-

receive(final(Final)),
NumCells0 is NumCells - 1,
SumAck0 is SumAck + Final,
wait_cells(NumCells0, Sum, SumAck0).

%%%%%%%
%
% cell
%
% Description: The cell-thread.
%

cell :-
receive(Xs), % Receive list of neighbors.
receive(go(MasterThread, NumGens, Initial)), % wait for start-signal.
cell_iter(NumGens, Xs, Initial, Final),
send(MasterThread, final(Final)).

%%%%%%%
%
% cell_iter(Neighbors, MasterThread, NumGens, Initial)
%
% Description: The iteration-loop of the cell-thread.
%

cell_iter(0, Neighbors, State, State) :-
!,
send_nghs(Neighbors, State).

cell_iter(NumGens, Neighbors, State, Final) :-
send_nghs(Neighbors, State),
receive_nghs(Neighbors, NeighborStates),
reproduce(NeighborStates, State, NewState),
NumGens0 is NumGens - 1,
cell_iter(NumGens0, Neighbors, NewState, Final).

send_nghs([], _).
send_nghs([Neighbor|Neighbors], State) :-

self(This),
send(Neighbor, state(This, State)),
send_nghs(Neighbors, State).

receive_nghs([], []).
receive_nghs([Neighbor | Neighbors], [NState | NStates]) :-

receive(state(Neighbor, NState)),
receive_nghs(Neighbors, NStates).

reproduce(NeighborStates, State, NewState) :-
sum_list(NeighborStates, Sum),
repro(Sum, State, NewState).

repro(0, _, 0).
repro(1, _, 0).
repro(2, State, State).
repro(3, _, 1).
repro(4, _, 0).
repro(5, _, 0).
repro(6, _, 0).
repro(7, _, 0).
repro(8, _, 0).

Page 50/53

9.2 Matrix Arithmetic

The following code is the Prolog code for the multithreaded Matrix Arithmetic benchmark.

% Document type: -*- Prolog -*-
% Filename: /amd/home/jojo/src/prolog/matrix.pl
% Author: Jesper Jonsson <jojo@sics.se>
% Last-Update: Time-stamp: <1997-08-15 1304 jojo>

:-
use_module(library(random)),
use_module(library(lists)).

maximum(42).

matrix(M,N) :-
statistics(runtime,_),
make_matrix(Matrix1,M,N),
make_matrix(Matrix2,M,N), % Actually transposed
spawn_multipliers(Matrix1,Matrix2),
MN is N * M,
wait_for_results(MN),
statistics(runtime,[_,Runtime]),
format("Time consumed: ~w~n", [Runtime]).

make_matrix(Matrix1,M,N) :-
length(Matrix1,M),
fill_matrix(Matrix1,N).

fill_matrix([],_).
fill_matrix([First|Rest],N) :-

maximum(Max),
randseq(N,Max,First),
fill_matrix(Rest,N).

wait_for_results(0).
wait_for_results(Total) :-

receive(Result),
T0 is Total - 1,
wait_for_results(T0).

spawn_multipliers([],_).
spawn_multipliers([Row|Rest],Matrix2) :-

spawn_multipliers_2(Matrix2,Row),
spawn_multipliers(Rest,Matrix2).

spawn_multipliers_2([],_).
spawn_multipliers_2([Col|Cols],Row) :-

self(Self),
spawn(multiplier(Row,Col,Self),_),
spawn_multipliers_2(Cols,Row).

multiply_rows([],[],0).
multiply_rows([RowElem|RowElems],[ColElem|ColElems],Result) :-

multiply_rows(RowElems,ColElems,Result0),
Result is Result0 + (RowElem * ColElem).

multiplier(Row,Col,Parent) :-
multiply_rows(Row,Col,Result),
send(Parent,result(Row,Col,Result)).

Page 51/53

Chapter 10 - References

1 Leon Sterling and Ehud Shapiro. The Art of Prolog. MIT Press, 1986.

2 Robert W. Sebesta. Concepts of Programming Languages. Addison-Wesley, third edition, 1996.

3 The Free On-Line Dictionary of Computing. URL: http://wagner.princeton.edu/foldoc/.

4 Bil Lewis and Daniel J. Berg. Threads Primer—A Guide To Multithreaded Programming. Prentice Hall,
1996.

5 Kevin Dowd. High Performance Computing. O’Reilly & Associates, Inc., 1993.

6 Benjamin Gamsa. Region-Oriented Memory Management in Shared-Memory NUMA Multiproces-
sors. Master’s thesis, Department of Computer Science, University of Toronto, October 1992.

7 Christoph Koppe. NUMA architectures and user level scheduling—a short introduction. URL:
http://www4.informatik.uni-erlangen.de/ELiTE/numa_ult_intro.html, 1996.

8 Thomas E. Andersson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. Scheduler Ac-
tivations: Efficient Kernel Support for the User-level Management of Parallellism. In Proceedings of
the 13th ACM Symposium on Operating System Principles, pages 95-109, 1991.

9 Mats Carlsson, Johan Widén, Johan Andersson, Stefan Andersson, Kent Boortz, Hans Nilsson, and
Thomas Sjöland. SICStus Prolog User's Manual. SICS Technical Report T91:15, Swedish Institute of
Computer Science, June 1995. Release 3 #0.

10 Mats Carlsson. The SICStus Emulator. SICS technical report T91:15, Swedish Institute of Computer
Science, 1991.

11 Hassan Aït-Kaci. Warren's Abstract Machine—A Tutorial Reconstruction. MIT Press, 1991.

12 David H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI International,
1983.

13 L. Kleinrock. Queueing Systems, Volume II: Computer Applications. Wiley-Interscience, 1975.

14 B. W. Lampson. A scheduling philosophy for multiprocessing systems. Communications of the ACM,
11(5):347-360, May 1968.

15 David Flanagan. Java in a Nutshell. O’Reilly & Associates, second edition, 1997.

16 Abraham Silberschatz and Peter B. Galvin. Operating Systems Concepts. Addison-Wesley, fourth edi-
tion, 1994.

17 Andrew S. Tanenbaum. Modern Operating Systems. Prentice-Hall, 1992.

18 Koen De Bosschere. Process-based parallel logic programming: A survey of the basic issues. In
Bosschere et al. 41].

19 Joe Armstrong, Robert Virding, Claes Wiström, and Mike Williams. Concurrent Programming In
ERLANG. Prentice Hall, second edition, 1996.

20 Hamish Taylor. Design of a resolution multiprocessor for the parallel virtual machine. In Bosschere
et al. [41].

21 George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems—Concepts And Design.
Addison-Wesley, second edition, 1994.

22 John P. Mulligan. The Unofficial Guide To Solaris 2.x, Online Manual Pages. URL:
http://www.lafayette.edu/cgi-bin/mulligaj/rtfm.

23 Seif Haridi. A Tutorial of Oz 2.0. Swedish Institute of Computer Science, 1996.

Page 52/53

24 Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The Java Series. Addison-
Wesley, September 1996.

25 James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. The Java Series. Addison-
Wesley, September 1996.

26 John Horton. Computer Recreations. Scientific American, March 1984.

27 P. Brinch Hansen. Operating System Principles. Prentice-Hall, New Jersey, 1973.

28 C. A. R. Hoare. Monitors: An operating system structuring concept. Communications of the ACM,
17(10):549-557, October 1974.

29 R. Ramesh, I.V. Ramakrishnan, and D.S. Warren. Automata-Driven Indexing of Prolog Clauses. In
Proceedings of the Principles of Programming Languages, 1990.

30 S. Dawson, C. R. Ramakrishnan, I. V. Ramakrishnan, K. Sagonas, S. Skiena, T. Swift, and D. S. War-
ren. Unification factoring for efficient execution of logic programs. In Papers of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 247-258, 1995.

31 T. Lindholm and R. A. O’Keefe. Efficient implementation of a defensible semantics for dynamic
PROLOG code. In Lassez 42], pages 21-39.

32 Mats Carlsson. Design and Implementation of an OR-Parallel Prolog Engine. SICS Dissertation Series 02,
The Royal Institute of Technology, 1990.

33 J. Conery. The AND/OR Process Model for Parallel Interpretation of Logic Programs. PhD thesis, Univer-
sity of California at Irvine, 1983.

34 Roland Karlsson. An High Performance OR-Parallel Prolog System. SICS Dissertation Series 07, The
Royal Institute of Technology, 1992.

35 S. Ferenczi and I. Futo. CS-Prolog: A Communicating Sequential Prolog. In P. Kacsuk and M. J.
Wise, editors, Implementations of Distributed Prolog, pages 357-378. John Wiley, 1992.

36 M. J. Wise, D. G. Jones, and T. Hintz. PMS-Prolog: A Distributed, Coarse-grain-parallel Prolog with
Processes, Modules and Streams. In P. Kacsuk and M. J. Wise, editors, Implementations of Distributed
Prolog, pages 379-404. John Wiley, 1992.

37 K. De Bosschere and J.-M. Jacquet. Multi-Prolog: Definition, Operational Semantics and Implemen-
tation. In D. S. Warren, editor, Proceedings of the ICLP’93 conference, pages 299-313, Budapest, Hun-
gary, June 1993. The MIT Press.

38 D. G. Schwartz. Cooperating Heterogenous Systems: A Blackboard-based Meta Approach. PhD thesis, De-
partment of Computer Engineering and Science, Case Western Reserve University, 1993.

39 Yannis Cosmadopoulos and Damian A. Chu. IC Prolog II version 0.92 Reference Manual. London,
1992.

40 Damian Chu. I.C. Prolog II: a Multi-threaded Prolog System. In Evan Tick and Giancarlo Succi,
editors, ICLP-Workshops on Implementations of Logic Programming Systems, pages 17-34. Kluwer Aca-
demic Publishers, 1993.

41 Koen De Bosschere, Jean-Marie Jacquet, and Antonio Brogi, editors. ICLP94 Post-Conference Work-
shop on Process-Based Parallel Logic Programming, June 1994.

42 Jean-Louis Lassez, editor. Proceedings of the Fourth International Conference on Logic Programming, MIT
Press Series in Logic Programming, Melbourne, 1987. The MIT Press.

43 Neil D. Jones, Carsten K. Gomard, Peter Sestoft. Partial Evaluation and Automatic Program Generation.
Prentice Hall, 1993.

44 Kent Boortz. SICStus maskinkodskompilering. SICS Technical Report T91:13, Swedish Institute of
Computer Science, August 1991.

45 CS-Prolog Professional User’s Manual. Version 1.1. ML Consulting and Computing Ltd, Applied
Logic Laboratory, Budapest, Hungary, 1997.

46 R.C. Haygood. Native code compilation in SICStus Prolog. In Proceedings of the Eleventh International
Conference of Logic Programming, MIT Press Series in Logic Programming, 1994.

Page 53/53

47 D. Gelernter. Generative communication in Linda. ACM Transactions on Programming Languages and
systems, 7(1):80–112, January 1989.

