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Transactional Sapphire:

Lessons in High Performance, On-the-fly Garbage Collection
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Constructing a high-performance garbage collector is hard. Constructing a fully concurrent ‘on-the-ly’,

compacting collector is much more so. We describe our experience of implementing the Sapphire algorithm as

the irst on-the-ly, parallel, replication copying, garbage collector for the Jikes RVM Java virtual machine.

In part, we explain our innovations such as copying with hardware and software transactions, on-the-

ly management of Java’s reference types and simple, yet correct, lock-free management of volatile ields

in a replicating collector. We fully evaluate, for the irst time, and using realistic benchmarks, Sapphire’s

performance and suitability as a low latency collector. An important contribution of this work is a detailed

description of our experience of building an on-the-ly copying collector for a complete JVM with some

assurance that it is correct. A key aspect of this is model checking of critical components of this complicated

and highly concurrent system.
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1 INTRODUCTION

The last decade has seen two signiicant changes to the environments in which software is developed
and deployed. First, application developers have increasingly turned1 to managed languages running
on top of virtual machine environments such as the Java Virtual Machine (JVM) or .NET. Managed
runtimes ofer developers advantages of easier deployment and increased security, not least through
automatic memory management or ‘garbage collection’ (GC), which not only eliminates whole
classes of bugs but also simpliies the construction of concurrent algorithms [Herlihy and Shavit
2008] and facilitates composition of software modules [Jones et al. 2012]. Second, constrained by
physical limits and energy concerns, manufacturers’ strategies have turned from uniprocessors
with ever-increasing clock speeds to multi- and many-core processors. The consequences of these
two changes are that application programmers have had to develop multi-threaded code in order to

1http:⁄⁄www.tiobe.com⁄index.php⁄content⁄paperinfo⁄tpci⁄
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:2 Tomoharu Ugawa, Carl G. Ritson, and Richard Jones

realise the performance gains potentially ofered by this new hardware, and that virtual machines
have had to make eicient and correct use of these parallel resources.

Many modern applications are sensitive to response time. A mobile device user will be dissatisied
unless her applications respond crisply. Enterprise applications must handle highly concurrent
workloads without pausing transactions: delays may lead to a backlog of re-tried transactions or
direct inancial loss. Embedded systems may have hard real-time requirements: all operations must
complete within a ixed time.
Stop-the-world garbage collectors stop all user program (mutator) threads in order to reclaim

unused memory. Although performance can be improved further by deploying multiple collector
threads (parallel collection), stop-the-world collection leads to unacceptable pause times: several
seconds or more for very large heaps. Pause times can be reduced by allowing mutator and collector
threads to execute in parallel (concurrent collection). However, almost all such collectors temporarily
halt all mutator threads in order to scan their roots (in Java: statics, thread stacks, registers) or to
change phases of a collection cycle; this can lead to signiicant delay in contexts where there are
large numbers of threads [Jones and King 2005]. In contrast, an on-the-ly collector need stop only
one mutator thread at a time.

Contributions

In this article, we explore new design choices and optimisations for Sapphire [Hudson andMoss 2001,
2003], a general purpose collection algorithm designed to support soft real-time applications running
a large number of mutator threads on small- to medium-scale, shared memory, multiprocessors. To
avoid fragmentation, Sapphire uses replication-based copying [Nettles et al. 1992], with collector
and mutator threads collaborating to construct a compacted replica of live data structures. Building
on and extending our earlier work [Ritson et al. 2014; Ugawa et al. 2014], we introduce a number
of optimisations including the use of transactional memory (both software and hardware), faster
object copying and a simpler yet sound treatment of volatile ields. We introduce a general framework
for on-the-ly, concurrent and parallel GC for a widely used Java virtual machine, Jikes RVM⁄MMTk,
on which we implemented the Sapphire algorithm.

Hudson and Moss built Sapphire on Intel’s Open Run-time Platform [Cierniak et al. 2005] simply
to validate their algorithm. However, their implementation was neither parallel nor tuned, nor
was its performance evaluated thoroughly against a range of realistic benchmarks. We provide
a detailed account of the challenges faced when implementing Sapphire in a new context Ð a
high performance JVM Ð exposing both underlying (and not previously apparent) stop-the-world
assumptions in Jikes RVM, and some subtleties of on-the-ly, copying collection in general and
Sapphire in particular. Several conferences have introduced artifact evaluation to probe claims made
in papers by replicating (repeating exactly the same) experiments in the same context (typically
an operating system virtual machine). However, reproduction studies Ð made independently, in
diferent contexts or using diferent data Ð are essential to validate or refute prior indings [Vitek
and Kalibera 2011]. Their importance to computer science is now starting to be recognised, not
least through the eforts of the Reproducible Research Planet project2, the Evaluate Collaboratory3

and the European Conference on Object-Oriented Programming which has included reproduction
studies in its call for papers since 2014. We evaluate our implementation rigorously [Kalibera and
Jones 2013] using the widely adopted DaCapo benchmark suites [Blackburn et al. 2006], and ind
that it ofers high throughput and sub-millisecond responsiveness.

2http:⁄⁄www.rrplanet.com
3http:⁄⁄evaluate.inf.usi.ch
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Ben-Ari [1984] described Dijkstra’s simple concurrent, mark-sweep algorithm [1978] as łone of
the most diicult concurrent programs ever studiedž. In contrast, our Sapphire implementation
is a concurrent copying collector for a complete Java virtual machine that supports multiple
threads, locking, hashing, inalisation, weak references, relection, calls to native methods, and so
on. Implementing and debugging any high performance collector is hard; it was clear from the
outset that an ad hoc approach to designing, constructing and testing this particularly large and
complex, concurrent system would not work. We demonstrate how a systematic approach using
tricolour abstractions, specifying and enforcing invariants, and model checking critical⁄subtle parts
of the system can give conidence in the correctness of the algorithms used.
Much of our approach is generic rather than Sapphire- or Jikes RVM-speciic. We believe that

our experience will help illuminate some of the challenges facing developers of highly concurrent
garbage collectors, and provide guidance towards their solutions. In summary, our contributions
are:

• We provide, for the irst time within Jikes RVM’s MMTk memory manager toolkit, a frame-
work for on-the-ly GC (Section 5).
• Using this framework, we construct a complete, open source, on-the-ly collector that uses
the Sapphire algorithm to manage replicated spaces (Section 6) and a mark-sweep algorithm
for non-moving spaces. Our implementation uses parallel GC threads, in contrast to the
original Sapphire. We focus mainly on the replicating collector here since the on-the-ly
mark-sweep collector introduces few further complexities.
• We show how to deal with contention for object headers introduced by tracing, locking and
hashing (Section 7), and introduce a simpler yet correct, lock-free way to handle accesses
to volatile ields, thus making a step towards fully supporting programs that use ine-grain
synchronisation. (Section 8).
• We implement and evaluate transactions for object copying, both in software and using the
new hardware support for transactions provided by Intel’s Haswell processors (Section 9).
• We extend Jikes RVM⁄MMTk to manage reference types in the context of on-the-ly GC in
order to comply with the Java speciication (Section 10).
• We show how to assure the correctness of a complex, concurrent system through speciica-
tions of abstractions and invariants, and model checking of critical components and actions,
such as concurrent copying, phase changes, reference object processing and object hashing
(Section 12).
• We thoroughly evaluate Sapphire’s performance (Section 13). Our implementation combines
sub-millisecond response times for periodic tasks with low execution time overheads.

2 BACKGROUND

2.1 Garbage collection

The goal of any collector is to preserve (at least) all objects that are reachable by following a chain
of references from the program’s roots (pointer variables in stacks and registers, global variables
such as Java statics, etc), and to reclaim the space used by unreachable objects.

Many virtual machines segregate objects of diferent characteristics into diferent heap regions
(spaces), managed with diferent allocation and collection algorithms. For example, MMTk uses a
Treadmill collector [Baker 1992] to manage a ‘large object’ space, and a mark-sweep collector to
manage a non-moving space that holds internal VM data structures and compiled code. Collectors
that never move objects are vulnerable to fragmentation: although the total free space available in
the heap may be suicient, insuicient contiguous free space to satisfy an allocation request can be
found. The severity of this problem can be diminished but not eliminated by allocating objects from

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article . Publication date: June 2018.
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segregated free-lists [Jones et al. 2012, Chapter 7.4] or in separate large object spaces [Chapter 10.1].
A better solution is to have the collector move objects to ‘squeeze out’ unusable free space. Copying
collectors divide the heap into two semi-spaces, fromspace and tospace. Objects are allocated linearly
into fromspace until it is full. At that point, the collector is invoked to evacuate all live objects from
fromspace to tospace, after which the roles of the two spaces are ‘lipped’. To preserve the topology
of pointer structures in the heap, the collector records a forwarding pointer, typically in the header
of each live fromspace object evacuated, indicating the address to which it has been moved.

2.2 Assuring complex concurrent systems

Any complex, concurrent system is challenging to construct correctly. Garbage collectors are
notoriously diicult to debug as any error may not be observed until millions of instructions later.
Small timing diferences afect when collections occur and which objects survive. Timing-dependent
races mean that testing alone cannot provide a guarantee of correctness of a new collector (and, in
any case, any system as large and complex as the host Jikes RVM will be far from bug-free).

Abstraction is a successful way to deal with complexity. The tricolour abstraction [Dijkstra et al.
1978], which we explain below, characterises the collector’s knowledge of objects in terms of
three colours. Correctness is assured by enforcing invariants relating the colours of objects that
reference each other. As a concurrent collector switches from one phase to another, the invariants
to enforce may change. On-the-ly collection makes this particularly subtle since it does not halt
all mutator threads simultaneously in order to switch phases. Instead, ragged phase changes allow
each mutator to recognise the change independently. Thus, collection state changes do not appear
atomic: diferent mutators may be enforcing diferent invariants which must not clash with each
other. In Section 5.3 we introduce two novel design patterns that we believe are suiciently general
to support all types of ragged phase change that a collector might use.
Sapphire ofers numerous opportunities for races as objects are copied. Both mutators and col-

lectors access object header words for purposes of locking, hashing and copying; their interaction
is fragile (Section 7). The handling of concurrent updates to object ields is delicate; in Section 9
we introduce new object copying mechanisms that are more eicient than those of the original
Sapphire (which we outline in Section 3). Processing Java’s reference types is also subtle (Section 10).
In all these cases, we found informal reasoning to be inadequate to assure correctness of our imple-
mentation. However, bounded model checking with the SPIN model checker was straightforward
to construct and quick to assure the correctness of our solutions (Section 12).

2.3 Coherency

It is essential that mutators and collectors share a view of the heap that is (eventually) coherent [Wil-
son 1994]. In a stop-the-world context this is trivial, but it is more diicult in a concurrent setting,
whether objects are moved or not. For a non-moving collector, the requirement is that the mutator
should not mutate the graph of objects behind the back of the collector. Moving collectors add the
further constraint that the collector should not move objects without the mutator’s knowledge
[Pirinen 1998]. The solution to both problems is to have the compiler emit additional code when
object ields are read (read barriers) or written (write barriers), in order that the system satisfy two
properties: [Safety] the collector retains (at least) all reachable objects, and [Liveness] the collector
eventually terminates.
Correctness of concurrent collectors is most easily reasoned about by considering invariants

based on the tricolour abstraction that both collector and mutator must preserve. Here, tracing
collection partitions the object graph into black (considered live) and white (dead) objects. At
the start of a collection cycle, every object is white; when an object is irst encountered during
tracing it is coloured grey; when it has been scanned and all its children identiied, it is coloured
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black. Conceptually, an object is black if the collector has inished processing it, and grey if the
collector knows about it but has not yet inished processing it (or needs to process it again). The
collector progresses by advancing through the heap a wavefront of grey objects that separates black
from white objects, until all reachable objects have been traced black. At the end of the trace, no
references from black to white (unreachable) objects remain, so white ones can safely be reclaimed.
Concurrent mutation of objects while the collector is advancing the grey wavefront may de-

stroy this invariant. Objects can become lost only if two conditions hold at some point during
tracing [Wilson 1994]: (i) the mutator stores a pointer to a white object (a ‘white pointer’) into a
black object, and (ii) all paths from any grey objects to that white object are destroyed. Hence, safety
requires that both conditions do not hold simultaneously. This leads to two alternative tricolour
invariants: [Strong invariant] there are no pointers from black objects to white objects, or [Weak
invariant] any white object pointed to by a black object is reachable from some grey object, either
directly or through a chain of white objects. Colour can be extended to mutators [Pirinen 1998]. A
grey mutator’s roots can refer to objects of any colour under either invariant. Under the strong
invariant a black mutator’s roots cannot refer to white objects; it cannot allocate objects white
under either invariant (since there are no other references to a new object). These properties have
consequences for the termination of a garbage collection cycle, which we discuss below.

2.4 Barriers

Incremental update techniques preserve the strong invariant through a mutator insertion write
barrier that prevents the insertion of a white pointer in a black object (thus bridging the wavefront)
by colouring the white object grey (shading) or reverting the colour of either the target or the source
of the pointer, depending on the algorithm [Jones et al. 2012]. The original Sapphire algorithm
used an insertion barrier in its Mark phase. In contrast, deletion write barrier techniques preserve
the weak invariant by shading the target. This protects against deletion of a pointer to a white
object that may now be reachable only from a black object (and so would not be traced). In efect,
deletion barriers capture a snapshot of the heap at the beginning of a collection cycle. Although
deletion barriers may allow some garbage to ‘loat’ to the next collection cycle, they lead to simpler
termination.
All grey mutator techniques use an insertion write barrier. Black mutator techniques most

commonly use a deletion write barrier to preserve the weak invariant; it is possible to use a read
barrier to maintain the strong invariant, but these have higher overheads than write barriers [Yang
et al. 2012].

2.5 Initialisation and termination

Initialisation and termination require care. We discuss termination irst because it is simpler. With
a black mutator, the collector terminates when no grey objects remain in its work list. At this point,
even with the weak tricolour invariant, the mutator can hold only black references. Because no
grey objects remain, all white objects must be unreachable. Because the mutator is black, there is no
need to rescan its roots. Termination for a grey mutator is more complicated, since the mutator may
acquire white pointers after its roots were initially scanned, and therefore must be rescanned before
a collection cycle can terminate. If rescanning reveals any objects that are not black, these must be
added to the collector’s work list and the collection cycle must continue, and so on. Allocating new
objects white may drag out termination; allocating black avoids this but at the cost of wasted space
since it defers freeing any newly allocated object that becomes unreachable to the next collection
cycle.
Initialising on-the-ly collection requires more care than for mostly-concurrent collection. A

common approach for mostly-concurrent collectors, which stop all threads together at the start of
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a collection to scan their stacks, is to use a deletion barrier with a black mutator and to allocate
new objects black. However, this is insuicient for on-the-ly collectors. Because they scan mutator
stacks on the ly, some stacks may not yet be scanned (white) while others (black) have been
scanned. For eiciency, barriers are not triggered on stack operations, leading to the possibility of
supposedly black mutators loading references to white objects [Jones et al. 2012, Chapter 6.5]. The
simplest solution is to use an insertion barrier with a grey mutator, despite the termination problems
discussed above. In contrast, we combine both kinds of barrier: initially we use an insertion barrier
to reduce the volume of loating garbage before switching to a deletion barrier for guaranteed
termination. We give details in Section 6.2.

3 THE ORIGINAL SAPPHIRE ALGORITHM

Many applications need to complete tasks within a short period of time, and to do so with a high
degree of predictability. For some ‘hard’ real-time applications, for example safety critical systems,
any failure to meet a deadline is unacceptable. However, ‘soft’ real-time applications can tolerate
some deviation from their responsiveness goal, provided it is rare [Printezis 2006]. Sapphire is a
fully concurrent, replicating collector, designed to support soft real-time applications running a
large number of mutator threads on small- to medium-scale, shared memory, multiprocessors. We
irst give an overview of the original algorithm here; full details can be found in Hudson and Moss
[2001; 2003].

The original Sapphire algorithm assumes that data races occur only on volatile ields. Hudson and
Moss [2003] argue that łdata race accesses to non-volatile ields are not very useful, because they
do not have strong enough synchronization and ordering propertiesž. Worse, the Java Language
Speciication treats a single write to a non-volatile long or double value as two separate writes, one
to each 32-bit half [Gosling et al. 2015, Section 17.7]. Thus, a thread may see the irst 32 bits of a
64-bit value from one write, and the second 32 bits from another write. Data races are a rich source
of bugs; Boehm and Adve [2008] insist that łgood programming practice dictates programs be
correctly synchronized or data-race-freež, and indeed in all C⁄C++, Ada or Posix threads programs,
data races are errors. Yu et al. [2005] believe that łdata races almost always indicate a programming
error and such errors are notoriously diicult to ind and debug, due to the non-deterministic
nature of multi-threaded programmingž. There is a large body of research on tools to discover and
remove races (for example, Hong and Kim [2015]). Other than the Java language feature mentioned
above, data races in programmes running over Sapphire are type-safe, and at worst may leave an
old value in a non-volatile ield.

To avoid unacceptable pauses, Sapphire has no global synchronisation phase in which all mutator
threads must be stopped. Rather, it synchronises with each mutator thread independently, for
example stopping it to scan its roots. It constructs a replica in tospace of the fromspace object graph
while the mutator threads are running. The content of both pointer and non-pointer ields must be
kept coherent, but synchronisation between mutator and collector is expensive. Sapphire places
most of this overhead on the collector in order to avoid unpredictable mutator slowdowns as much
as possible. Replicas are kept loosely coherent by relying on the Java memory model [Gosling et al.
2015]. Mutators update both fromspace and tospace copies of an object, whenever both exist. Read
barriers are required only for pointer equality tests and reading volatile ields. Updates require
neither expensive locks nor atomic instructions.

3.1 Collector phases

Sapphire operates in two main groups of phases (Algorithm 1), irst to construct tospace replicas
and then to ‘lip’ the roots incrementally from pointing to fromspace objects to pointing to tospace.
Outside GC, mutators access fromspace objects. The Flip phases switch mutators to operating in

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article . Publication date: June 2018.
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Algorithm 1. Phases in Hudson and Moss’s Sapphire algorithm.

1 MarkCopy:

2 PreMark /∗ install Mark phase write barrier ∗/

3 RootMark /∗ blacken global variables ∗/

4 HeapMark/StackMark /∗ process collector mark queue ∗/

5

6 Allocate /∗ allocate tospace shells ∗/

7

8 PreCopy /∗ install Copy phase write barrier ∗/

9 Copy /∗ copy fromspace contents into tospace shells ∗/

10

11 Flip:

12 PreFlip /∗ install Flip phase write barrier ∗/

13 HeapFlip /∗ lip all heap fromspace pointers to tospace ∗/

14 ThreadFlip /∗ lip threads ∗/

15

16 Reclaim /∗ reclaim fromspace ∗/

tospace. Thus, each phase requires diferent write barriers. For instance, during the Mark phases
the write barrier queues a fromspace target for replication, but during the Copy phase it propagates
the write to the tospace replica. We explain the basic operation of each phase here, deferring a
discussion of the subtleties of phase transition to Section 5.
The MarkCopy phase group marks every reachable fromspace object, then allocates an empty

‘shell’ for it in tospace, and inally copies its contents to its tospace shell. In this phase group, new
objects are allocated black, in tospace. The irst, PreMark, phase installs the mark phase insertion
barrier shown in Algorithm 2(a). With this barrier, a mutator storing a reference to an unmarked
fromspace object adds that object to its own local queue without synchronisation. Note that MMTk
provides each mutator or collector thread with its own queues in order to minimise synchronisation
overheads; periodically these can be ‘lushed’ to global, i.e. shared, queues. Queued objects are
implicitly grey. The RootMark phase scans and blackens global variables, enqueuing their referents
with WriteMark. The HeapMark⁄StackMark phases process the collector’s queue and thread stacks.
Any unmarked object is blackened by scanning its slots and enqueuing their unmarked referents
for marking.

The original Sapphire algorithm used the usual termination process for incremental update write
barriers: the mark queue and the set of grey objects must both be empty, and the collector must
have scanned every thread’s stack without inding any further pointers to white or grey objects
before it can terminate. Termination relies on the write barrier keeping globals and newly-allocated
objects black, and preventing mutators writing white references into the heap.
After the set of reachable objects has been determined, the Allocate phase creates an empty

‘shell’ in tospace for each reachable fromspace object, copying monitor lock information to the shell
and placing a forwarding pointer to the shell in the fromspace object; we discuss object header
formats and forwarding pointers for our revised algorithm in Section 7.1. Because it will also be
necessary in the Flip phases to discover the fromspace object from its tospace replica, Allocate also
constructs a hash table for this reverse mapping.
Once the tospace shells have been constructed, the contents of fromspace objects are copied

to their tospace replicas in the Copy phase. It is necessary to ensure that tospace copies are up-
to-date with respect to all writes and that tospace objects refer only to tospace objects; we call

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article . Publication date: June 2018.



:8 Tomoharu Ugawa, Carl G. Ritson, and Richard Jones

Algorithm 2. Hudson and Moss’s Sapphire write barriers.

1 WriteMark(p, f, q): /∗ p.f − q ∗/

2 p[f] ← q

3 if isFromSpace(q) && not marked(q) /∗ white ∗/

4 enqueue(q) /∗ collector will mark later ∗/

(a) Mark phase barrier.

1 WriteCopy(p, f, q): /∗ p.f − q ∗/

2 p[f] ← q $

3 pp ← toAddress(p) $

4 if pp , null /∗ p is in fromspace ∗/

5 if isPointer(q)

6 q ← forward(q)

7 pp[f] ← q $

(b) Copy phase barrier.

1 WriteFlip(p, f, q): /∗ p.f − q ∗/

2 if isPointer(q)

3 q ← forward(q)

4 p[f] ← q

5 pp ← toAddress(p)

6 if pp , null /∗ p is in fromspace ∗/

7 pp[f] ← q

8 return

9 pp ← fromAddress(p)

10 if pp , null /∗ p is in tospace ∗/

11 pp[f] ← q

12 return

(c) Flip phase barrier.

1 forward(p): /∗ p is a non−null pointer ∗/

2 pp ← toAddress(p) /∗ pp is null if p is in tospace ∗/

3 if pp = null

4 pp ← p

5 return pp

(d) Pointer forwarding.

this a ‘semantic copy’. To maintain this invariant, PreCopy installs a new write barrier, WriteCopy,
Algorithm 2(b); here, toAddress(p) returns the forwarding address for p, or null if p is not in
fromspace, and forward(q), deined in Algorithm 2(d), returns the forwarding address if q is in
fromspace or q otherwise. Memory accesses marked with $ must be performed in the speciied order
Ð we assume that data dependencies imply ordering Ð but otherwise the barrier is unsynchronised
because Sapphire assumes there are no mutator-mutator races on non-volatiles.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article . Publication date: June 2018.
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Algorithm 3. Hudson and Moss’s Sapphire collector’s word copying procedure. Note that they omited the
lines marked with a # although these are necessary to deal with some StoreConditional failures.

1 copyWord(p, q):

2 for tries ← 1 to MAX_RETRY do /∗ times to try non−atomic loop ∗/

3 toValue ← *p $

4 if isPointer(toValue)

5 toValue ← forward(toValue)

6 *q ← toValue $

7 fromValue ← *p $

8 if toValue = fromValue

9 return

10 # loop

11 LoadLinked(q) $

12 toValue ← *p $

13 if isPointer(toValue)

14 toValue ← forward(toValue)

15 success ← StoreConditionally(q, toValue) $

16 # if success

17 # return /∗ StoreConditionally succeeded ∗/

In the Copy phase, the collector copies the contents of each black fromspace object to tospace,
using the lock-free synchronisation shown in Algorithm 3 to resolve races with the mutator.
copyWord attempts to copy a word without synchronisation (up to some limit) before resorting
to atomic operations. Hudson and Moss assumed that the StoreConditional could fail only if the
value in the replica had changed during the copy. In this case, assuming no races between mutators,
some mutator has written the up-to-date value into the replica. However, implementations of
StoreConditional generally may fail for other reasons Ð for example, after a context switch on
ARM. The solution is to repeat the atomic update in a loop until it succeeds (the lines 10ś17 marked
with a #). Of course, this gives no guarantee of progress.

Algorithm 4. Hudson and Moss’s Sapphire pointer equality test.

1 flipPointerEQ(p, q):

2 pp ← forward(p)

3 qq ← forward(q)

4 return pp = qq

Up to this point, mutators have been operating in fromspace (but replicating fromspace writes
into tospace). The Flip phases lip all fromspace references to tospace. First, the PreFlip phase installs
the WriteFlip barrier, Algorithm 2(c). As roots are lipped one by one, this barrier must cope with
mutators operating in both spaces, unlike other concurrent copying collectors which impose a
tospace [Baker 1978] or fromspace [Nettles and O’Toole 1993] invariant. The HeapFlip phase lips all
references held in global variables and new objects. The WriteFlip barrier prevents this work being
undone by ensuring that only tospace pointers are written. The ThreadFlip phase stops threads
one by one, and lips any fromspace pointers in their stacks or registers. In Flip phases, mutators
must still update both replicas, so must be able to discover fromspace copies using the hash table
constructed in the Allocate phase. Note that, in Flip phases, pointer equality tests must cope with
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comparisons of fromspace and tospace pointers (Algorithm 4). Once the ThreadFlip phase has
terminated, the Reclaim phase discards the write barrier and the hash table, and reclaims fromspace.

4 JIKES RVM AND THE MMTK MEMORY MANAGER

Jikes RVM [Alpern et al. 2002] is a metacircular virtual machine, written almost entirely in Java. Its
classes are compiled by an ordinary Java compiler into bytecode, which the Jikes RVM compiler
translates into native code, injecting code snippets, also written in Java, for barriers and checkpoints
for garbage collection. It does not use an interpreter. Both its ahead-of-time compiler and its adaptive
JIT compiler aggressively devirtualise and inline methods. Memory management is provided by
MMTk [Blackburn et al. 2004], an independent memory management component that provides a
framework for a variety of collectors using the key abstractions of spaces (discussed in Section 2),
plans and phases. In MMTk, the set of spaces for a particular coniguration is ixed statically. MMTk
uses two levels of allocator for spaces other than the large object space. Each mutator thread
allocates unsynchronised into its own per-space, thread-local allocation bufer (TLAB). When a
thread exhausts its current TLAB, it acquires new one from the space’s shared allocator, using a
lock.

4.1 Plans

In MMTk, an implementation of a GC algorithm is called a plan. A plan is a Java package containing
at least the following three main classes.

(1) A singleton global class holding global state, especially spaces. Whenever a thread requires
a fresh page for new TLAB or for allocation of a large object, the framework asks this class
whether to trigger a collection cycle.

(2) A collector class representing collector threads. Since MMTk supports parallel collection,
multiple collector thread instances are typically created (at boot time, rather than dynamically).

(3) A mutator class representing mutator threads. Each algorithm implements an allocation
method, using a thread-local allocator and write barriers, if necessary.

Plans form a hierarchy which an implementor can extend to implement a new collector, thereby
reusing code. The most basic plan is Simple which the StopTheWorld plan extends. The Concurrent

plan also extends Simple and provides a base for a concurrent mark-sweep collector. However, we
found this plan to be insuicient for on-the-ly collection (see Section 5).

4.2 Phases

A collection cycle typically comprises multiple phases, as for example in Algorithm 1. In MMTk,
phases are executed by collector threads. We call MMTK implementations of phases stages,4 and an
MMTk plan’s global class speciies the list of stages to be executed in a collection cycle. The MMTk
scheduler causes these stages to be executed one by one. A barrier synchronisation mechanism
ensures that the execution of distinct stages does not overlap. MMTk uses three kinds of stage.

(1) A global stage is executed by a single collector thread, mainly to afect global data structures.
A selected, master, collector thread will invoke the collectionPhasemethod of the plan’s global
class. Other collector threads wait for this to complete.

(2) A collector stage is executed as a set of parallel tasks, with each collector thread invoking the
collectionPhase method of the plan’s collector class. Typically most collection activities, such
as graph traversal and heap scanning, are implemented as collector stages.

4 MMTk calls a stage a łphasež. In this article, we prefer the term łstagež to distinguish it from the broader łphasesž used by

general garbage collection terminology.
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(3) A mutator stage manipulates a mutator’s private data structures. For load balancing, parallel
collector threads compete to claim a mutator and invoke its collectionPhase, until all mutators
have been processed.

A complex stage can be used to bundle a series of stages into a list of sub-stages and a counter
indicating the current sub-stage. The execution of the complex stage completes when the last
sub-stage completes. The scheduler uses a stage stack to manage stages. However, since the current
sub-stage counter is a ield of each complex stage, care needs to be taken not to program complex
stages recursively.

5 ON-THE-FLY COLLECTION FRAMEWORK

We extended Jikes RVM⁄MMTk with an on-the-ly framework that provides thread-by-thread
stack scanning and ragged phase changes, and support for locking and hashcodes (Section 7),
and reference type processing (Section 10) in an on-the-ly context. Our implementation builds
on-the-ly versions of collectors for MMTk spaces over this framework. In addition, it provides the
extensive barrier mechanisms needed for replication. Our framework is generic and should support
on-the-ly collectors other than Sapphire. For example, our implementation collects non-moving
spaces with an on-the-ly mark-sweep GC (although it takes a lock to release freed pages).

5.1 On-The-Fly Collector Framework

MMTk was originally designed as a framework for stop-the-world collection. Although it provides
some support for concurrent collectors, we found it insuicient for on-the-ly collection as, for
example, it blocks all mutators to change GC phases or to scan roots.

In contrast, our on-the-ly collection framework never blocks all mutators simultaneously. Rather,
the controller thread awakens collectors while the mutators are running. Mutators run with barriers
during a collection. The framework provides a mechanism to allow the collector to handshake
with each mutator, one by one, in order to activate or deactivate these barriers. For the handshake,
we introduced a new on-the-ly mutator stage. In this stage, collectors request each mutator to
perform a task, such as changing the barrier, and wait for it to acknowledge that it has done so. It
is important to recognise that on-the-ly collection implies ragged changes of collector phases. A
collector developer must keep in mind at all times that some mutators may be running with one
barrier and others with another, or none at all. It is the responsibility of the developer to ensure
that the invariants required by their algorithm are preserved. We address this in more detail below.

5.2 Stack and global root scanning

Our framework provides new implementations of common phases to support on-the-ly collection.
A StackMark phase has each collector thread compete to claim and halt a mutator, scan its stack and
resume it. The number of mutators blocked at any time is at most the number of collector threads,
typically signiicantly fewer than the number of CPU cores. We reused existing code from the
StopTheWorld plan to scan mutators’ stacks in parallel, with each GC thread stopping one mutator
thread at a time, as it was less complex to implement than letting each mutator scan itself.
A RootMark phase has the collector scan global roots: vectors of references for static variables

and Java Native Interface references [Oracle JNI 2015]. All writes to these vectors are expected to
be protected by an insertion barrier so mutators do not need to be halted for scanning. RootMark
comprises two stages. The irst is a global stage in which the master collector measures each vector
to balance loads in the following stage where all collectors scan the vectors in parallel. It is essential
that the irst stage is global since the size of a vector’s live area may change as mutators run. If the
range of a vector were to be computed asynchronously, some slots may be scanned by multiple
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collectors and others not at all. Protecting the vectors with a write barrier allows the live area to be
enlarged or contracted safely (although contraction may mean that the collector traverses dead
objects).

5.3 Ragged Phase Changes

Mostly-concurrent collectors stop all mutators when they change from one collection phase to
another (see Figure 1). This ensures that,

• once the collector has entered a new phaseB, nomutator observes a GC state SA corresponding
to the previous phase A; and
• at any time, all mutators have a coherent GC state, i.e. all observe SA or all observe SB .

In contrast, on-the-ly collectors stop mutators independently. A mutator will not recognise that
the phase has been changed until it reaches a GC-safe point. This causes two problems.

(1) The collector cannot start collection work until it has determined that all mutators have
recognised that the phase has been changed.

(2) There is a time window in which diferent mutators observe diferent GC states.

These are not new problems (see, for example, Doligez and Gonthier [1994]). Our contribution
is the introduction of a general design pattern that we believe is suicient to capture all types
of ragged phase change. For problem (1), we add an intermediate GC phase between the main
phases. In this GC phase, the collector does no collection work other than handshake with each
mutator to ensure that it has recognised the change of main phases and changed its local state. A
mutator responds to the handshake request at a GC-safe point. Once the collector has completed a
handshake with every mutator, it is guaranteed that all mutators have recognised that the GC is
going to move to the new phase. We call this type of ragged phase change Type I.
Problem (2) recognises the possibility of a mutator-mutator conlict. Those mutators that have

not recognised the new phase run with an assumption based on an invariant for the previous phase.
This may conlict with the invariant assumed by mutators that have recognised the change. We
add two intermediate GC phases, I1 and I2, to solve this problem as follows. Before this ragged
phase change, mutators respect the invariants of the current GC phase A. The purpose of phase
I1 is for mutators to change their local GC state to an intermediate state, SI . Typically, a mutator
in this intermediate state runs with a more complex barrier that respects the invariants of both
main phases A and B, i.e. each mutator is prepared for another mutator acting according to the
invariants of GC phase B, but none is doing so yet. For example, we shall see in Section 6 how the
collector changes from phase A (no collection) to phase B (marking and creating empty shells).
Here, in phase I1 (PreMark1), a mutator is able to write to black objects safely but only allocates
white. At the transition from I1 to I2 (PreMark2), the GC knows that all mutators are ready for
black objects. In phase I2, mutators start to allocate new objects black. At the end of phase I2, the
GC knows that all mutators are allocating black, and so can transition to state SB in phase I2. We
call this type of ragged phase change Type II.

In our Sapphire implementation, all phase changes are Type I except for the transitions from ‘no
GC’ to the Mark phase (Section 6.2), and from the Copy phase to the Flip phases (Section 6.4).

5.4 Barriers

Our Sapphire implementation uses barriers on write operations and pointer equality comparisons to
maintain coherence. As is common practice [Blackburn and McKinley 2002], we implement barriers
with an inline fast path (checking a barrier lag) and an out-of-line method call that does the actual
work. Each mutator has a thread-local barrier lag, a single word with bits indicating which barriers
are activated. We use a set of bits because in the Flip phase we activate both a write barrier and a
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(a) Mostly concurrent

GC phase A GC phase B

(b) On-the-fly Type I

GC phase A GC phase BGC phase I

(c) On-the-fly Type II

GC phase A GC phase B2GC phase IGC phase I1

Fig. 1. Ragged phase changes.

pointer-equality barrier. The compiler emits inline code that tests if the barrier lag is non-zero (at
least one barrier is activated) and, if so, calls the out-of-line method. Our implementation strategy
is friendly to the compiler’s inliner, and keeps the compiled code small and hence likely to it in the
code cache.

5.5 Termination Loop

On-the-ly collectors often need to repeat a sequence of tasks before a collection phase can terminate
(see Section 2.5). Even with snapshot-at-the-beginning techniques, which keep the mutators’ roots
black, processing Java’s reference types requires iteration to terminate (as we describe in Section 10).
In principle, the number of iterations is unbounded although any practical collector will fall back
to stop-the-world termination when necessary. Unfortunately, the Jikes RVM⁄MMTk scheduler Ð
designed with stop-the-world, or at best mostly-concurrent, collection in mind Ð supports only a
ixed sequence of stages. We introduced a construct to realise repetition by tricking the stage stack.
We bundle a sequence of stages that need to be iterated plus a global stage into a single complex
stage. In the global stage, the collector determines if we need to perform the complex stage again
or not. If so, the complex stage is pushed back onto the stack again.

6 ON-THE-FLY SAPPHIRE PHASES: INVARIANTS, BARRIERS AND CORRECTNESS

Over the next ive sections we describe our implementation of a fully concurrent, parallel Sapphire
within our on-the-ly collector framework for Jikes RVM⁄MMTk. Construction of high performance
garbage collectors is hard. Making a collector any one of copying, parallel, concurrent or on-the-
ly increases the complexity enormously. Experience has shown us that an ad hoc approach to
design, construction and testing is a recipe for frustration. Instead, we use a methodology based on
discovering suitable abstractions to model the state to our system. Some of these abstractions are
well-known, while others speciic to Sapphire phases are new derivations. We identify invariants in
terms of these abstractions: mutators or collectors must preserve these in each phase. Sometimes the
invariants of adjacent phases are incompatible (see Section 5.3). This is problematic since threads
may be running in diferent phases in an on-the-ly collector (we cannot stop all threads at once to
change their phase state). Finding these invariant incompatibilities shows where new, intermediate
phases need to be introduced to ensure that the invariants that mutators seek to enforce in any
Phase n are compatible with those of adjacent Phases n-1 and n+1.
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Understanding abstractions and invariants aids the construction of the barriers needed to enforce
correctness in the context of multiple threads. In some cases, interactions between mutator and
collector threads may be particularly complex, especially on relaxed-memory architectures, and
here we found bounded model checking of our abstract algorithms to be invaluable. This was fairly
straightforward to use, and quick to show when speciications do not hold. We discuss model
checking in Section 12.

6.1 Collection Phases

Our Sapphire implementation comprises a similar set of phases to the original (Algorithm 1) but
merges the Allocate phase into the marking phases. Our phases are shown in Algorithm 5. Most
of the phase changes are Type I (Section 5.3), but changing from ‘no collection’ to the StackMark
phase and from the Copy phase to the HeapFlip phase requires Type II phase changes (the two
intermediate phases are preixed with ‘Pre’ in the Algorithm.)

Algorithm 5. Our Sapphire phases.

1 Mark:

2 PreMark1 /∗ install Mark phase write barrier ∗/

3 PreMark2 /∗ toggle allocation colour ∗/

4 StackMark /∗ process mutators' stacks ∗/

5 RootMark /∗ blacken global variables ∗/

6 HeapMark /∗ process collector mark queue ∗/

7 ReferenceProcess /∗ mark reference types and terminate marking ∗/

8

9 Copy:

10 PreCopy /∗ install Copy phase write barrier ∗/

11 Copy /∗ copy fromspace objects to their tospace shells ∗/

12

13 Flip:

14 PreFlip1 /∗ install the limited self−lip and equality barriers ∗/

15 PreFlip2 /∗ install the full self−lip barrier ∗/

16 HeapFlip /∗ lip non−replicated spaces to point to tospace ∗/

17 RootFlip /∗ lip global roots to point to tospace ∗/

18 StackFlip /∗ lip mutator stacks to point to tospace ∗/

19

20 Reclaim /∗ turn of barriers; reclaim fromspace ∗/

Throughout, we impose the invariant that tospace slots never point to fromspace. This suices
for the Flip phases to scan only roots and non-replicated spaces, but not tospace, to lip pointers.

6.2 Mark Phases

The irst main phase group is Mark, in which the collector marks (or blackens) all reachable objects.
The representation of black objects may difer from one space to another. For mark-sweep spaces,
where objects are not moved, the collector sets a mark in the object header. For replicating spaces,
the collector creates an empty shell and installs a forwarding pointer (described in Section 7.1).

Throughout the Mark and Copy phases, we maintain the invariant that mutators access fromspace
objects in the replicated heap. During the main marking phases, we allocate new objects black
to ease termination. When allocating an object black, i.e. allocating both fromspace and tospace
replicas, we always allocate the fromspace object irst, checking if there is enough space for both

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article . Publication date: June 2018.



Transactional Sapphire:
Lessons in High Performance, On-the-fly Garbage Collection :15

objects. Thus, although a mutator may be blocked during the allocation in fromspace until the end
of the GC cycle if there is insuicient memory, the subsequent allocation in tospace can never fail.

Up to the ReferenceProcess phase, we also maintain the strong tricolour invariant that there are
no black-white pointers, which we enforce with an insertion barrier. The ragged transition from
‘no collection’ to the StackMark phase needs a Type II phase change, implemented by the PreMark1
and PreMark2 phases.
PreMark1 activates the insertion barrier shown in Algorithm 6. If the referent q of a pointer

update p.f = q is in fromspace, and if it has not been forwarded, i.e. the collector has not created
a shell for it, the barrier ‘shades’5 it (enqueues it for copying) so that the collector can create a
shell for it. The barrier does not create the shell immediately, because that allocation path might
include a GC-safe point and hence a potential phase change. Otherwise, an unmarked object in a
non-replicating space is marked and added to a separate work list so that its children can be traced.
Note that, to prevent a thread that has not yet activated the barrier from creating a black-white
pointer, we do not allocate new objects black until all mutators are known to have activated this
write barrier, i.e. until the PreMark2 phase.

Algorithm 6. New Mark phase write barrier.

1 checkAndEnqueue(q): /∗ shade q ∗/

2 if inFromspace(q)

3 if not forwarded(q)

4 tobeCopiedQueue.enqueue(q)

5 else

6 if not testAndMark(q)

7 worklist.enqueue(q)

8

9 WriteMark(p, f, q): /∗ p.f − q; ∗/

10 p[f] ← q

11 checkAndEnqueue(q)

In the HeapMark phase, collectors traverse reachable objects, creating shells for them in tospace.
Roots for the traversals include the tobeCopiedQueue illed by the mutator write barrier. Each shell’s
header (a status word and a back pointer to its fromspace replica) is created immediately (see
Section 7.1). The back pointer is used in the Flip phases to propagate mutator updates to both
copies of an object.
Because we use an insertion barrier, a grey mutator may acquire a reference to a white object

after its roots were scanned. Although the collector could rescan each mutator’s roots for white
objects at the end of the HeapMark phase, we prefer to postpone this termination check until after
the ReferenceProcess phase, since it requires the same check because mutators may Reference.get

white targets of Java’s reference type objects. We discuss reference processing in Section 10.
Up to the ReferenceProcess phase, we use the insertion barrier shown in Algorithm 6, not just

for safe initialisation of an on-the-ly collection (see Section 2.5), but also because insertion barriers
preserve less loating garbage than deletion barriers. However, in this phase, we switch on the
deletion barrier shown in Algorithm 7 for quicker termination and a guarantee of progress. We
explain why the deletion barrier guarantees progress in processing reference types in Section 10
and discuss performance in Section 13.8. As we switch the barrier, we scan the stack with both the

5The term ‘shade’ evokes the idea of changing white to grey but leaving black unchanged [Jones et al. 2012].
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Algorithm 7. ReferenceProcess phase barrier.

1 WriteReferenceProcess(p, f, q): /∗ p.f − q; ∗/

2 checkAndEnqueue(p[f])

3 p[f] ← q

4 if isFirstStackScan()

5 checkAndEnqueue(q) /∗ active only while switching barriers ∗/

insertion and the deletion barriers active, as per Doligez and Gonthier [1994]. More precisely, a
mutator uses both barriers during the irst stack scan it performs in the ReferenceProcess phase.

6.3 Copy Phases

All live fromspace objects were marked Ð with tospace shells Ð in the marking phases. In the Copy
phase, the collector copies the contents of each fromspace object into its shell; mutators continue to
allocate new objects black. We choose to scan tospace rather than fromspace to avoid the overhead
of skipping over dead objects. The collector irst installs the Copy phase write barrier (shown in
Algorithm 8) in the PreCopy phase. Whenever a mutator writes to a fromspace object, the write
barrier writes the semantically equivalent value to the corresponding ields of its tospace copy.
We designed the write barrier and the collector’s copying procedure so that (i) an update by the
mutator cannot be lost even when the collector copies the same object simultaneously, and (ii) the
mutator’s write will never fail, i.e. mutator writes are wait-free. We explain the design of the Copy
phase barrier in Section 9.

Algorithm 8. New Copy phase barrier.

1 WriteCopy(p, f, q): /∗ p.f − q ∗/

2 p[f] ← q

3 if inFromspace(p)

4 pp = p.forwardingPointer

5 if inFromspace(q)

6 pp[f] ← q.forwardingPointer

7 else

8 pp[f] ← q

6.4 Flip Phases

In the Flip phases, the collector lips references in non-replicated spaces, global roots and mutators’
roots. Figure 2 shows the invariants to be preserved (the paler, broader bands) and how our barriers
cause mutators to conservatively respect these invariants (darker, thinner bands). Until the PreFlip1
phase, roots and objects in all spaces (other than tospace) do not have tospace references: mutators
never see tospace references. Without this invariant, a read would have to be forwarded to the latest
copy of the object by read barriers. From the Heap⁄RootFlip phases onward (hatched paler and
wider background band), mutators never write a fromspace reference into a slot of a non-replicated
space but instead write its tospace counterpart to ensure termination. Without this invariant, the
collector would have to scan the non-replicated space repeatedly for fromspace references. In
consequence, mutators may now see tospace references, in conlict with the Copy phase invariant.
Thus, once again a Type II phase transition is needed.
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Fig. 2. Mutator barriers respect invariants. Horizontal bands indicate whether spaces can hold fromspace

(upper, let-hand side bands) or tospace (lower, right-hand side bands) references. The hatched bands indicate
when no new references can be stored in a space. The paler and wider background bands show the invariants
that must be preserved. The darker and narrower foreground bands show how our barriers cause mutators to
respect these invariants. Each vertical grey band represents the extent of a handshake.

By the end of the PreFlip1 phase, all mutators are ready to deal with tospace references, but they
must not yet write tospace references. To deal with these, we require three barriers. First, we need
a pointer-equality read barrier that yields true when a mutator tests the equivalence of references
to the fromspace and tospace replicas of the same object. Second, we expand the double-update
write barrier so that a mutator’s write to a tospace object is propagated to its fromspace replica.
Third, we use ‘self-lip’ write barriers that replace an attempt to write a fromspace reference with
the corresponding tospace reference.
The self-lip barriers are necessary for termination. In the PreFlip1 phase, the mutator installs

the pointer equivalence barrier, Algorithm 9(a), and the preliminary, limited self-lip write barrier,
Algorithm 9(b), which lips a reference only when writing to tospace. Table 1 shows the behaviour
of the limited self-lip write barrier. It never writes tospace references to any space other than
tospace unless q is in tospace. In PreFlip1 phase, no mutator has access to tospace. Thus, the greyed
cells in Table 1 never happen.
After all mutators have installed this barrier, the mutator installs the full self-lip write barrier,

Algorithm 9(c), in the PreFlip2 phase; from now on as the invariant requires, this mutator never
writes a reference to a fromspace object, as shown in Table 1(b). Note that we cannot install the full
self-lip barrier in PreFlip1 as other mutators may still be in the Copy phase, expecting to see only
fromspace references.
In the HeapFlip and RootFlip phases, the collector lips the non-replicated spaces and global

roots, respectively. Most non-replicated spaces other than the large object space are small so
our current implementation scans each one for fromspace references to lip. Hudson and Moss
[2003] suggested an improvement of using a remembered set to keep track of locations containing
references. Another option would be to have separate large object spaces for reference arrays and
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Algorithm 9. New Flip phase barriers. Note that the forwardingPointer of a tospace object points to its
fromspace replica.

1 pointerEQ(p, q) /∗ p −− q ∗/

2 if p = q

3 return true

4 if inFromspace(p)

5 return p.forwardingPointer = q

6 if inFromspace(q)

7 return q.forwardingPointer = p

8 return false;

(a) New pointer equivalence barrier.

1 WritepreFlip(p, f, q): /∗ p.f − q ∗/

2 if inFromspace(q) && inTospace(p)

3 q ← q.forwardingPointer

4 p[f] ← q

5 if inFromspace(p) || inTospace(p)

6 pp ← p.forwardingPointer

7 if inFromspace(q) || (inTospace(q) && inFromspace(pp))

8 pp[f] ← q.forwardingPointer

9 else

10 pp[f] ← q

(b) PreFlip phase write barrier with limited self flipping.

1 WriteFlip(p, f, q): /∗ p.f − q ∗/

2 if inFromspace(q)

3 q = q.forwardingPointer

4 p[f] ← q

5 if inFromspace(p) || inTospace(p)

6 pp ← p.forwardingPointer

7 pp[f] ← q

(c) Flip phase write barrier.

for other objects. At the end of RootFlip, only the mutators’ stacks contain fromspace references:
the collector lips these in the StackFlip phase.

From the StackFlip phase onward, the allocator must return a tospace reference (for termination),
while still allocating a replica in fromspace; we change the behaviour of the allocator to this in
PreFlip2 phase to be ready to deal with tospace references.

6.5 Reclaim phase

After the StackFlip, mutators no longer hold fromspace references. The collector exchanges the
roles of fromspace and tospace (as in any copying collector) so it can release the old fromspace. We
implemented our replicating collector in a similar way to the existing semi-space copying collector,
swapping the roles of fromspace and tospace at the end of each collection cycle; the collector has a
global lag indicating which space is currently fromspace. In addition, each mutator caches pointers
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Table 1. Behaviour of write barriers (a) WritepreFlip and (b) WriteFlip for p.f=q. These tables indicate the
spaces, F(rom) for fromspace, T(o) for tospace, and N(on) for a non-replicated space, of the sources and
destinations of references created by in each assignment in Algorithm 9. An entry łn: X⇝Y ž indicates that a
field of an object in space X points to an object in space Y ater the assignment on line n. Column and row
labels are spaces of destinations of references p and q. Note that neither p nor q can be tospace references in
the PreFlip1 phase (indicated by the greyed column and row).

(a) PreFlip phase write barrier.

p

q
From To Non

From 4: F⇝F 4: F⇝T 4: F⇝N
8: T⇝T 10: T⇝T

To 4: T⇝T 4: T⇝T 4: T⇝N
8: F⇝F 8: F⇝F

Non 4: N⇝F 4: N⇝T 4: N⇝N

(b) Flip phase write barrier.

p

q
From To Non

From 4: F⇝T 4: F⇝T 4: F⇝N
7: T⇝T 7: T⇝T

To 4: T⇝T 4: T⇝T 4: T⇝N
7: F⇝T 7: F⇝T

Non 4: N⇝T 4: N⇝T 4: N⇝N

to its current TLABs for fromspace and tospace. One reason is for quick allocation. The other is
more critical, and more subtle. If the space for fromspace were to change at an arbitrary point
(especially during allocation), the mutator might be confused. To avoid this, each mutator uses its
cached pointer, which is changed only at GC-safe points.

However, there is a time window between when the collector swaps the roles of fromspace and
tospace by toggling the global lag, and when a mutator updates its cached TLABs. It is possible that
a mutator thread might die inside this window. To take care of this, threads check the global lag
while terminating, in order to give up their TLABs to the collector correctly. For regular allocation,
we can always trust the cached pointer because the thread allocates in both spaces in the Flip phase,
and the double-update barrier is turned of at the same time as the mutator updates the cached
pointer to the TLABs.

7 RACES I: TRACING, LOCKING AND HASHING

Many of the challenges facing developers of on-the-ly collectors come down to dealing safely with
races, whether between mutator threads, collector threads or both. We irst address the problems
of locking and hashing: it is essential that all threads share a consistent view of an object’s lock or
hash value. A concurrent replicating collector has two options. It must either ensure that locking
or hashing information is stored in a single deinitive location (not necessarily in either of the
replicas), or that both replicas always hold identical information. In common with most JVMs, Jikes
RVM uses headers when locking or hashing objects. In this section, we consider how to manage
object headers using a hybrid policy. Often it is cheap to maintain identical hashing information in
both replicas. Otherwise, and always for locks, we use a lazy tospace invariant.

7.1 Object Headers

Each Jikes RVM⁄MMTk object contains a header of at least two words. One is a type information
block (TIB) pointer to a representation of the class of the object. The other is a status word,
containing a hash code, monitor lock information and a few bits used by collectors. While the GC
bits are independent, hash code and lock information are combined in a thin lock mechanism [Bacon
et al. 1998]. Although production Jikes RVM⁄MMTk provides biased locking [Pizlo et al. 2011], our
Sapphire implementation does not yet, but we foresee no problems in doing so. Since Sapphire
copies objects while the mutators are running, we cannot overwrite any content of an object with
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a forwarding pointer as non-concurrent copying collectors do. For simplicity, our implementation
adds a third word to each object header to hold the forwarding pointer. We could overwrite the
TIB word with the forwarding pointer and use the TIB pointer in the tospace replica, but this
would complicate method dispatch. Since we need a backward pointer from a tospace replica to the
fromspace original, we need a distinct ield (or some side table as per Hudson and Moss [2003])
anyway.

T T T T T T T T T T T T T T T T T T T T T T H H A A A A A A F B

Fig. 3. Jikes RVM object status word bits: thin lock (T), hash state (H), unused bits available (A) for use by the
GC, forwarded (F) and busy bits (B).

Figure 3 shows the layout of the status word. The least signiicant eight bits are available for
use by the GC. We use two bits to describe the status of the object; bit 0 is a busy bit and bit 1
is a forwarded bit. The busy bit is for mutual exclusion of actions that may modify the status or
forwarding pointer words. The forwarded bit indicates that the object’s tospace shell has been
created and the forwarding pointer has been installed. Note that this bit is not set in tospace replicas
so does not need to be cleared after the spaces are lipped. We enforce the following synchronisation
policy on the status word.
Status word tospace invariant. Although Sapphire avoids read barriers on object ields, we

do have to impose a read barrier on status word accesses. Since this word needs to be updated
atomically, it would be costly to maintain multiple replicas. Thus, we transfer the status word to the
empty shell in tospace when it is created. From this point on, the shell holds the up-to-date locking
and hashing information. Thus, whereas we observe a fromspace invariant for object bodies for
most collection phases, we observe a lazy tospace invariant for object headers, whereby mutators
use the tospace copy of any status word if it has been copied, and the fromspace copy otherwise.
An alternative might be to use transactional memory but the setup cost of Intel’s Restricted
Transactional Memory is around three times larger than that of a single compare-and-swap (CAS)
instruction [Ritson and Barnes 2013]. Fortunately, only a limited set of actions access the status
word, so it is feasible to apply a read barrier only to these accesses without overhead on other read
operations.
Mutual exclusion while copying. We ensure that only a single empty shell is created for any

fromspace object by meta-locking the busy bit, again as per Hudson and Moss [2003]. Figure 4
shows the transitions of the forwarded and busy bits. Whenever a collector attempts to create an
empty shell for an object, it sets the object’s busy bit with a CAS. After setting up the status word
of the shell, the collector updates the fromspace object’s status word with a bit pattern of busy=0
and forwarded=1. We remark that a mutator will spin briely if it attempts to take the meta-lock
of an object for locking or hashing while the collector is allocating the empty shell. We discuss
progress in Section 11.

normalmeta-locked
by mutator

moving moved

0001 01 10

by collector

by collector (atomic)

by mutator 

by mutator (atomic)

Fig. 4. Status word state transitions with the values of the forwarded (let) and busy (right) bits.
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Algorithm 10. Implementation of meta-locking. Our convention is that CAS returns true to indicate that the
word has been updated.

1 metaLockObject(o):

2 if not inGCCycle() || not inFromSpace(o)

3 return o

4 do

5 status ← o.statusWord

6 if (status & FORWARDED) , 0

7 return o.forwardingPointer

8 while not CAS(&o.statusWord, status, status | BUSY)

9 return o

10

11 metaUnlockObject(o):

12 if not inGCCycle() || not inFromSpace(o)

13 return

14 o.statusWord ← o.statusWord & ~BUSY;

Mutators always take the meta-lock when accessing fromspace locking information (but not
when accessing the tospace lock) during a GC cycle to ensure that they recognise when lock
information has been moved to tospace under our lazy tospace invariant. As an alternative, the
mutator could detect that the lock information has been moved from the failure of the CAS at
the end of the locking operation. However, we did not take this option because it complicates the
interface between MMTk and its client (Jikes RVM). In contrast, we need to meta-lock to obtain
the hash code only for unhashed fromspace objects (see Section 7.3).

7.2 Implementation of Meta-locking and the Tospace Invariant

Correct synchronisation requires locking and hashing operations to hold the meta-lock or to be
forwarded to tospace, depending on whether a collection is in progress, the space of the object
and the value of the status word. To maintain MMTk as an independent memory management
module, we decided to separate these complicated decisions from the core locking and hash-
ing mechanisms provided by the client VM (Jikes RVM). More speciically, we added two meth-
ods, MemoryManager.metaLockObject and MemoryManager.metaUnlockObject, to the MMTk interface.
These methods are responsible for forwarding as well as meta-locking.

We designed these interfaces to support a variety of concurrent collectors. Intuitively, metaLock-
Object lends the client VM a pseudo-reference. The VM locks and hashes using the pseudo-reference
and then hands it backwith metaUnlockObject. The pseudo-reference points to a location fromwhich
the up-to-date status word can be found. However, there is no guarantee that the pseudo-reference
refers to a valid object. For example, it may refer to tospace before the Flip phases. Therefore, the
client VM must not store pseudo-pointers in the heap. Furthermore, before a GC-safe point, when
the collector may scan the mutator’s roots, the mutator must hand it back with metaUnlockObject

and null any local variables that contain pseudo-references. We prevent the compiler from emitting
a GC-safe point in any method where the mutator still holds a pseudo-reference. Thus, every
metaLockObject has a matching metaUnlockObject in the same phase of GC.

Algorithm 10 shows our implementation of meta-locking. If a reference refers to fromspace inside
a GC cycle, metaLockObject locks the object or forwards the reference depending on the forwarded
bit. If the bit is set, metaLockObject returns a pseudo-reference to the tospace replica; otherwise, it
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Table 2. Number of initial v. total number of calls of hashCode. The third columns show the percentage of
initialising calls. For antlr, bloat, fop, and jython, the benchmark harness but not its workload called hashCode.

all initial % all initial %

antlr6 646 14 2.2 avrora9 700440 25 0.0
bloat6 646 14 2.2 eclipse6 921674 337920 36.7
fop6 646 14 2.2 hsqldb6 4071 93 2.3
jython6 646 14 2.2 luindex9 2330 55 2.4
lusearch9 13527 1341 9.9 pmd9 329739 104243 31.6
sunlow9 1750 136 7.8 xalan9 59018 558 0.9

returns the given reference as a pseudo-reference; this is the only case where the mutator sets the
busy bit. metaUnlockObject clears the busy bit only if it was set by metaLockObject.

7.3 Locks and hash codes

We implement Java monitors with thin locks [Bacon et al. 1998] and use address-based hashing, i.e.
we use the address of an object as its hash code. If the GC were not to move any object, this strategy
would be simple and would require no additional space. However, a collector must preserve the
hash code when it moves a previously hashed object.
MMTk’s moving collectors do this by adding an extra hash code ield when the collector irst

moves a hashed object. To realise this, two bits in the status word record the object’s hash state:
UNHASHED, HASHED or HASHED_AND_MOVED. An object is born UNHASHED. Calling hashCode on an UNHASHED

object returns the address of the object and, at the same time, changes its state to HASHED. When
the collector allocates a shell for a HASHED object (i.e. the irst time that the object is copied after it
has been hashed), the collector adds an extra word containing the object’s hash code (its address
at the time it was hashed) to the shell and sets its state to HASHED_AND_MOVED. At subsequent
collections (when the object’s state is HASHED_AND_MOVED), this word is copied to the new shell. For
HASHED_AND_MOVED objects, hashCode returns the value stored in this extra ield.

Although our default strategy accesses the status wordwith a CAS or bymeta-locking, in common
cases we can obtain the hash code without synchronisation. If an object has been forwarded, we
can access the status word of its tospace replica under the tospace invariant as usual. Moreover, if its
hash code has ever been observed, i.e., the state is HASHED or HASHED_AND_MOVED, we can also obtain
the hash code without synchronisation (even from a fromspace object) because the hash code never
changes. This observation can dramatically reduce the number of synchronisations. Table 2 shows
the ratio of the number of initial calls of hashCode for each object versus the total number of hashCode
calls, for benchmarks from DaCapo 2006 and 2009 (note that the values shown are characteristics
of the benchmarks, independent of any virtual machine implementation). The ratio varies greatly
but, generally, most calls are to HASHED or HASHED_AND_MOVED objects. In summary, mutators only
need to meta-lock objects that have no replica and have not been hashed. Algorithm 11 shows our
implementation.

As we have seen, treatment of the status word in concurrent collectors is delicate. We found the
SPIN model checker (see Section 12.1) invaluable in conirming that our treatment of the status
word was correct.

8 VOLATILES

The Java Memory Model [Gosling et al. 2015, Chapter 17] speciies legal executions of a program. Of
particular interest are synchronization actions, which include reads and writes to volatile variables.
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Algorithm 11. Hashing implementation.

1 getObjectHashCode(o):

2 o ← MemoryManager.hashByAddress(o)

3 if (o.statusWord & HASH_STATE) = HASHED

4 return (int) o

5 return readHashCode(o) /∗ HASHED↓AND↓℧OVED ∗/

6

7 isUnhashed(o):

8 return (o.statusWord & HASH_STATE) = UNHASHED

9

10 setHashed(Oo):

11 o.statusWord ← o.statusWord | HASHED;

(a) Hashing methods defined in Jikes RVM.

1 hashByAddress(o):

2 if not isUnhashed(o)

3 return o

4 if not inGCCycle() || not inFromSpace(o)

5 setHashed(o)

6 return o

7 o ← metaLockObject(o) /∗ returns a pseudo−reference ∗/

8 if isUnhashed(o)

9 setHashed(o)

10 metaUnlockObject(o)

11 return o

(b) Hashing methods defined in MMTk.

Accesses to volatile ields must become visible to other threads essentially in the order given by the
code. This presents a challenge to replicating collectors when there are two copies of a volatile
ield.
Replicating collectors must therefore take steps, often elaborate, to ensure that all accesses

to volatile ields are made to a deinitive, up-to-date copy. Hudson and Moss [2003, Section 5,
pp. 244ś254] proposed three fairly complicated designs to achieve this. Unfortunately, none of
these support lock-free programs that employ ine-grain synchronisation as all block access to
volatile ields while the collector thread is copying them (and thus rely on the operating system’s
thread scheduler). Furthermore, none of these solutions was implemented or evaluated.
We solve the problem of visibility of actions on volatiles Ð and take a step towards support for

lock-free programs Ð in a much simpler way, by allocating any object that contains a volatile ield
in a non-replicated space. Jikes RVM already requires some objects to be allocated in a non-moving
space so the addition of objects with volatile ields is trivial to do. One advantage of this approach is
the lexibility it ofers in support of atomic operations on data as the compiler can select to generate
code that allocates in a non-moving space based on any property. We implemented our solution
and measured benchmarks from the DaCapo 2006 and 2009 suites; we found the volume of objects
with volatile ields to be negligible for all but two applications, eclipse and hsqldb. And here, even
eclipse, the heavier user of volatiles, allocated only 1.6MiB of objects with volatile ields. We note in
passing that, while this is an efective solution for the benchmarks adopted as a standard by the
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research community, their very light use of volatiles may raise the question of how representative
these benchmarks are of modern, concurrent programs.

9 RACES II: TRANSACTIONAL COPYING

Any concurrent copying GC must deal with races between mutators updating, and collectors
copying, an object. We investigate three mechanisms. Our primary target is x86 systems, for which
most memory operations are guaranteed to be executed in order: only loads may be reordered with
preceding store instructions. Throughout, we assume that all reference ields are word-aligned and
sized (currently, 4 bytes as Jikes RVM uses 32-bit references). This allows us to improve performance
by copying word by word rather than ield by ield, while still handling reference types and double-
word types in accordance with the Java speciication. All our copying mechanisms are oblivious to
how mutators update multi-word ields.

9.1 Concurrent Copying with CAS

To copy object ields, we use a CAS in a loop, rather thanAlgorithm 3’s LoadLinked⁄StoreConditional,
copying word by word (Algorithm 12). This is more eicient because multiple non-reference ields
within the same word can be processed in a single iteration of the loop; it also deals correctly with
reference ields, which are word-aligned and sized. If the contents of the old and new words difer,
the collector atomically updates the tospace word using a CAS. Failure means that a mutator has
updated this word with a value newer than the one the collector attempted to write, so the collector
does not need to copy this word.

Algorithm 12. The collector’s word copying algorithm using CAS.

1 copyWord(p, q):

2 loop

3 currentValue ← *q;

4 toValue ← *p $

5 if isPointer(toValue)

6 toValue ← forwardObject(toValue)

7 if toValue = currentValue

8 return

9 if not CAS(q, currentValue, toValue) $

10 return

Unfortunately, success does not mean that the collector has written the newest value as there
is a risk of an ABA problem. If the mutator were to change the values held in p and q between
lines 3 and 4, the test in line 7 would fail, so the collector would prepare to CAS toValue into q.
In the absence of any further mutator action, this CAS would fail which is safe as noted above.
But if the mutator were to update p and q again with their original value, the CAS would succeed,
updating q with a stale toValue! To resolve this, our algorithm double checks in the next iteration
of the loop. The risk to progress is very small: the mutator would have to continually create update
the words to prevent progress. We veriied that this copying scheme is correct under x86’s TSO
memory ordering using the SPIN model checker.

The overhead of using atomic instructions for almost all words in the heap is signiicant. Assuming
that the overhead of CAS is dominated by the cost of lushing the store bufer, it could be reduced
if a CAS could handle an arbitrary number of words (some processors provide a double-word
compare-and-swap instruction, which could reduce the cost by half).
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9.2 Transactional Memory

We can extend the idea of copying an arbitrary number of words atomically and eiciently by using
transactional memory [Herlihy and Moss 1993]. Inspired by database systems, transactional memory
allows a thread to execute a sequence of instructions as a transaction. If no other thread makes
a conlicting access to the memory locations used by the irst thread, the transaction commits.
Otherwise, the transaction aborts and the state of the thread is rolled back to that before the
transaction started. Transactional memory can be implemented in software or hardware. We start
by exploring copying objects with hardware transactions before considering software transactional
memory solutions. Note that large objects are allocated in Jikes RVM’s separate large object space,
which is managed outside this scheme by a non-moving collector.

9.2.1 Hardware Transactional Memory. The Restricted Transactional Memory (RTM) extensions
to Intel’s Haswell microarchitecture [Intel 2013] support atomicmanipulation of arbitrary sized units
of memory. With RTM, a transaction starts with an XBEGIN instruction and then proceeds normally,
reading and writing memory with normal instructions, as well as branching and performing
arithmetic. The transaction is committed with XEND. All loads and stores in the transaction are
tracked in read and write sets at cache-line granularity. If any other hardware thread loads from or
stores to locations in these sets in a manner that creates a conlict, or if the cache overlows, the
transaction fails and the program is rewound to XBEGIN, which reports the cause of the failure.
The simplest HTM approach is to copy a single object in each transaction, word by word,

dereferencing for forwarding where necessary, using normal load⁄store instructions. If XBEGIN
reports that the transaction failed, then we fall back to the CAS version. Java objects are typically
smaller than a single cache line (64 bytes) [Dieckmann and Hölzle 1999], but the expected read set
of a transaction for a single object may be larger as semantic copying requires dereferencing each
reference ield of a source object.

In 32-bit execution mode, a single cache line can hold 16 references, each of which may refer to a
distinct object. Assuming a typical object size of less than one cache line, the transaction’s read-set
will grow to a little over 1000 bytes at most. Our earlier work [Ritson and Barnes 2013] indicated
that transactions up to 16KiB are possible on Haswell, so there is scope for copying multiple objects
within a transaction. For example, with read and write sets of 1152 bytes and disregarding other
overheads, 13 objects may it in a transaction. This allows us to trade transaction size against the
risk of failure.
We investigated two strategies for transactional copying. Inline copying starts a transaction

and scans the heap as normal, attempting to add each visited object to the open transaction if it
will it within our limit. If not, the transaction is committed and a new transaction is started. Inline
transaction construction is simple but has the disadvantage that scanning-related reads such as
looking up object type information Ð which cannot cause a real conlict Ð will be included in the
transaction.
Planned copying removes this disadvantage. Prior to each transaction, objects are visited as

part of the heap scan and added to a ‘to-be-copied’ list. When this list reaches a limit, a transaction
is initiated and all objects are copied before committing the transaction. Planning removes scanning
traic from the transaction and hence also reduces the risk of aborts, but it has a more complex
implementation and associated overheads. Various other activities may need to be performed as
part of planning the transaction, for example caching looked-up object type information (so that
associated reads do not inlate the transaction).

We evaluate these strategies in Section 13.7: both showed a similar performancewhen transactions
are small, while only planned copying maintained its high performance when transactions are
large.
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9.2.2 Sotware Transactional Memory. Rather than invent a general-purpose software transac-
tional memory mechanism, we constructed a minimal solution just for the copying phase of our
Sapphire implementation. This is facilitated by needing the fromspace and tospace replicas of the
object graph to be only eventually consistent. As tospace is not read until after the Copy phase is
complete, we do not need to maintain immediate consistency during the phase itself.
Our software transactional method (Algorithm 13) comprises a copying and a veriication step

to be performed for each object. The copying step semantically copies the object using normal
load⁄store instructions. In the veriication step the contents of the tospace replica are compared to
the fromspace object. If the two are consistent, the object has been successfully replicated. If any
word is found to be inconsistent with its replica, the object is copied again using the fallback CAS
method. Since reference ields of the replicas may be semantically equivalent rather than bitwise
identical, the values of fromspace reference ields are stored in a bufer during copying. Veriication
compares the current values of fromspace words against their tospace replicas or, for references,
their bufered values. Note that we assume that reference ields are word-aligned and sized. A
memory barrier (MFENCE on x86) separating the copying and veriication steps is essential, but is
the only fence needed. Without it, the store to the tospace replica could be reordered after the loads
performed in the veriication step, risking the loss of a mutator store. Again, we conirmed the
correctness of our solution with SPIN.

Algorithm 13. Collector’s code for copying an object using sotware transactional memory.

1 copyObjectTransactional(p, q):

2 for i ← 0 to words(q) /∗ copying step ∗/

3 toValue ← p[i]

4 if isPointerField(p, i)

5 buf[i] ← toValue

6 toValue ← forward(toValue)

7 q[i] ← toValue

8

9 memoryBarrier

10

11 for i ← 0 to words(q) /∗ veriication step ∗/

12 if isPointerField(p, i)

13 if p[i] , buf[i]

14 goto FAIL

15 else if p[i] , q[i]

16 goto FAIL

17

18 return

19

20 FAIL:

21 copyObject(p, q) /∗ fall back to copying word at a time with CAS ∗/

Although the software transactional memory approach needs additional load⁄store instructions
for veriication, they are unlikely to cause L1 cache misses since all these addresses are used in
copying. Alternatively, we could resolve the references again in the veriication step rather than
saving the unresolved references in the bufer, thus reducing the volume of data stored. However,
in our Jikes RVM implementation resolving references is costly as it involves several instructions
to identify the space of the referent, and we found that the bufered approach was faster.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article . Publication date: June 2018.



Transactional Sapphire:
Lessons in High Performance, On-the-fly Garbage Collection :27

Table 3. The number of object copies and the number of verification failures.

Benchmark copies failures Benchmark copies failures

antlr6 6,914,141 0 avrora9 15,459,711 23
bloat6 51,265,639 12 eclipse9 277,139,667 9
fop6 5,797,699 0 hsqldb6 320,072,643 9
jython6 66,562,921 27 luindex9 2,844,425 0
lusearch9 201,958,473 16 pmd9 218,561,131 47
sunlow9 174,138,725 104 xalan9 81,518,412 60

We explored how transactional copying would cope with very large arrays, fearing that they may
create too large a transaction. However, although HTM imposes a limit on the size of a transaction,
we found that copying with software transactions coped well with large objects (see the response
times in Figure 8). We fell back to allocating in Jikes RVM’s large object space only for objects
greater than 128KiB, several times larger than Jikes RVM’s default.
We also measured how frequently the veriication step fails and copying falls back to the CAS

version by using benchmarks from DaCapo 2006 and 2009. Table 3 shows the number of object
copies and the number of failures of veriication. Failures are very few and unlikely to impact
performance.

We demonstrate in Section 13.7 how software transactions ofer performance similar to hardware
transactions. As software transactions do not require hardware support, and so are portable, we
adopt this approach hereafter (unless otherwise stated).

10 RACES III: REFERENCE OBJECTS

Java provides references of four (decreasing) levels of strength: strong (i.e. normal), soft, weak, and
phantom. Weaker references are implemented by reference object classes. These can be used for
a variety of purposes such as constructing caches or creating canonicalised mappings. Reference
objects are widely used. Contrary to our expectations, we found that some DaCapo 2006 and 2009
programs used reference objects heavily (more than 1 million times per second), although this
varied between programs (Figure 11). Most showed a small peak of usage by the Jikes RVM class
loader at the start of execution. In addition, lusearch and xalan used reference objects throughout
their execution, and jython used them heavily in particular phases. In contrast, other programs
made little further use of them.

Correct handling of reference objects by a concurrent, let alone an on-the-ly, collector is complex.
This task is not eased by the lack of any deinition of the semantics of reference objects other
than an informal prose account in the documentation for the java.lang.ref package. Here, we
outline some of the problems and sketch our solution. For simplicity, we focus on strong and
weak references. We provide a fuller account, including a formalisation of Java’s reference types,
in Ugawa et al. [2014].

Objects that are reachable from the roots by traversing only strong references are called strongly-
reachable; they are not reclaimed. Objects that are not strongly-reachable but reachable from the
roots by traversing strong and soft references are called softly-reachable. Objects that are neither
strongly- nor softly-reachable but reachable from the roots by traversing one or more weak refer-
ences are weakly-reachable. The collector must reclaim weakly-reachable objects, and may decide
at its discretion to reclaim any softly-reachable object. In either case, it must clear the referent ield
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of the reference type. Mutators follow a reference through java.lang.ref.Reference.get, which re-
turns a strong reference to the referent or null if the reference has been cleared; PhantomReference.get
always returns null.

roots
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normal objects
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Fig. 5. Weak references held in strongly reachable objects r0, r1 and r2 must be cleared atomically.

The challenge for concurrent GC is that there may be a race between the collector clearing a
reference and a mutator strengthening the reachability of its referent by calling get. For this reason,
the semantics of reference classes require that, at the time that the GC decides to reclaim a weakly
reachable object (such as o2 in Figure 5), it must also clear atomically

(1) all weak references to o2 (e.g. the reference from r2 in Figure 5), and
(2) all weak references to other weakly-reachable objects from which o2 is reachable through a

chain of stronger references (e.g. the references in r0 and r1).

This prevents a mutator from making o2 strongly-reachable by retrieving one of the weakly-
reachable objects from which o2 is reachable. This is relatively straightforward in a stop-the-world
context, as mutators are not active while the collector runs: the collector traverses only strong
references and marks strongly-reachable objects, after which it clears any weak reference with an
unmarked referent.
However, in an on-the-ly context, a mutator may call get on a weak reference (e.g. r2) whose

referent o2 is only weakly-reachable, causing the referent to become strongly-reachable if the
reference has not yet been cleared. Once the referent becomes strongly-reachable, the collector
must not clear the weak reference, and must retain any objects that just became strongly reachable.
A similar argument applies to anyweak reference whose referent (e.g. o2) became strongly-reachable
because of calling get on another weak reference r0. The consequence is that single invocation of
get may afect whether the collector should clear many other weak references spread across the
heap. This problem cannot be resolved with just a barrier.

10.1 Processing weak references

Our solution is twofold. Our collector identiies all strongly-reachable objects and all weak references
whose referents are only weakly-reachable. This is an iterative process since a mutator may cause
a previously weakly-reachable object to become strongly-reachable by calling get. Mutators calling
get communicate with the collector through a global reference-state variable.
Figure 6 shows the state transition diagram for this global reference state. The collector is in

the NORMAL state when it is not running. When a collection is triggered, the collector starts TRACING,
traversing strong references from the roots as usual, trying to mark all strongly-reachable objects.
If no mutator calls get during the traversal, all strongly-reachable objects will be marked and the
collector can proceed to CLEARING weak reference objects whose referents are not marked.
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NORMAL TRACING CLEARING

REPEAT

get() restart tracing

no tracing workstart tracing

by collector

by collector (atomic)

by mutator (atomic)

Fig. 6. Global reference state transitions.

However, if a mutator invokes get on a reference object with an unmarked referent while the
collector is TRACING, the collector must process the referent’s transitive closure before it moves
to CLEARING. To resolve the race between the mutator calling get and the collector proceeding
to CLEARING, we introduce another state, REPEAT. When the collector believes its tracing work is
complete, it attempts to change the state to CLEARING atomically. Meanwhile, any get will attempt
to set the global state atomically to REPEAT, which will prevent the collector from proceeding to
CLEARING. If the collector fails to proceed to CLEARING, it continues TRACING from the newly greyed
referents. We can expect these to be few and the number of white objects that can be reached from
those grey objects not to be large. Once the collector starts CLEARING, mutators are prevented from
retrieving any unmarked referent: get returns null. Thus the collector has logically cleared all weak
references simultaneously.
It is important to ensure that no mutator obtains a reference to an unmarked referent in the

CLEARING state. If a getmethod were to be invoked in the NORMAL or REPEAT state, and if the collector
were to change the state to TRACING and then to CLEARING before the mutator executes the instruction
to obtain the referent in get, then the mutator would obtain the referent in the CLEARING state. This
cannot happen in our collector because the collector handshakes with mutators in the TRACING

state to lush the tobeCopiedQueue for the mutators’ write barrier. The mutator cannot answer the
handshake while it is executing get. Thus, the transition from TRACING to CLEARING occurs only
when tracing is actually complete.

10.2 Termination Loop

When a mutator in the TRACING state obtains a white (unmarked) referent of a weak reference,
the documentation for Java’s java.lang.ref package speciies that a strong reference is loaded.
How this is handled depends on whether the collector uses an insertion or a deletion barrier. If
the collector uses insertion barriers, the mutator is grey so it may hold a white reference. This
reference will be blackened when the collector loops to terminate, scanning its work queue and
mutator roots repeatedly until it inds no grey objects before attempting to set its state to CLEARING.
If this attempt succeeds, tracing has terminated, and any attempts to get an unmarked referent will
return null.
If the collector uses deletion barriers, mutators are black and cannot load a white reference,

as the collector does not rescan roots. Hence, get must shade the referent grey to preserve the
invariant. However, the collector must still loop to terminate, in this case to process grey objects, if
the global state was REPEAT when the collector attempted to switch to CLEARING.

Comparing these two styles of barriers, the deletion barrier solution tends to terminate quickly,
as the collector traces only from objects known to be grey. In contrast, a collector using an insertion
barrier must scan the roots to discover grey objects before processing them. This also increases

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article . Publication date: June 2018.



:30 Tomoharu Ugawa, Carl G. Ritson, and Richard Jones

the opportunity for mutators to get further white referents while the collector is attempting to
terminate. Thus, theoretically there is a risk of failure to make progress, for instance if a mutator
repeatedly gets then drops a white referent. However, termination is guaranteed with the deletion
barrier. As the get read barrier shades any white referent grey, and only a inite number of weak
references with white referents can exist, the termination loop eventually completes. Thus, we
decided to use the deletion barrier in the ReferenceProcess phase, as discussed in Section 6.2. Once
again, model checking was useful. SPIN helped us discover the risk of non-progress with the
insertion barrier and weak references, and conirmed the correctness of the deletion barrier version.

11 PROGRESS

The purpose of an on-the-ly collector is to avoid delaying mutator progress, for example by not
stopping all mutator threads to collect. Several real-time collectors claim to be lock-free [Pizlo
et al. 2007b], łmostlyž or probabilistically lock-free [McCloskey et al. 2008; Pizlo et al. 2008b], or
wait-free [Pizlo et al. 2008b, 2010] but provide few details (for example, of stack scanning or thread
management). It may be that these properties apply to high-priority mutator tasks that can cause
collector tasks to abort or retry. However Jikes RVM does not provide thread priorities. We do
not claim to ofer hard real-time guarantees, but rely on fair operating system scheduling and
not saturating resources. With these caveats, we believe that our implementation provides a good
platform for pause-sensitive applications. Assuming that the operating system provides certain
guarantees (e.g. that every thread eventually leaves every critical section in a timely manner),
the only events where our implementation may block a mutator are as follows. Otherwise, our
implementation provides wait-free copying.

• While the collector enumerates live threads, mainly to determine the threads to handshake
with the collector, new threads cannot be created.
• Installation of a forwarding pointer to an object’s tospace shell meta-locks its header, blocking
threads seeking to lock the object or hash it for the irst time. Of course, a mutator that locks
should expect to be blocked! In the worst case, the pre-emption of a thread holding the busy
bit might delay rather than halt progress (there are no circular dependencies).
• Acquisition of a fresh TLAB page or allocation of a large object requires a lock.

All these actions are brief, infrequent or both. In addition, we halt mutator threads, one at a time,
while we scan their stacks. This pause depends on the depth of the stack but could be bounded with
stack barriers [Cheng and Blelloch 2001] or return barriers [Saiki et al. 2005]. Finally, the mutator
could run out of space before a concurrent collection completes in poorly conigured application.
In this case, we fall back to stop-the-world collection. Addressing this issue is beyond the scope of
this article, but we note that hard real-time collectors demand ahead of time schedulability analyses
in order to meet pause time guarantees [Jones et al. 2012].

12 CORRECTNESS

In this section we describe our approach to assuring the correctness of our implementation. As we
noted in Section 2.2, debugging garbage collectors is hard, and much more so for concurrent and
on-the-ly collectors. The often long delay between an error (such as failing to trace a reference) and
when that error becomes manifest makes it diicult to identify the cause. Concurrent interaction
between mutator and collector threads hinders causal reasoning, and the exploration of possibilities
is time consuming, error prone, and fails to provide conidence Ð it is common in our experience
to revisit informal arguments repeatedly to reassure oneself of their correctness.

To overcome these problems, we adopted a principled design strategy from day one. We identiied
the invariants expressed in terms of tricolour abstractions that mutators and collectors should

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article . Publication date: June 2018.



Transactional Sapphire:
Lessons in High Performance, On-the-fly Garbage Collection :31

preserve in each phase of the algorithm (Section 6). This discipline was a considerable aid to
understanding, and provided the basis for constructing the code. However, it is obviously not
suicient to eliminate all bugs. Thus, as is common practice in building complex systems, we
programmed defensively, adding assertions liberally throughout our code to check whether these
invariants were preserved. In addition to checking these assertions at run-time, we also used ‘sanity
checking’ in testing, for example by halting the VM before the Reclaim phase and iterating through
all references in order to check that no references in the rest of the heap pointed into the fromspace
that was about to be reclaimed.

We tested the implementation extensively in order to obtain good coverage of possible interleav-
ings. Each benchmark was executed 1000 times, running the benchmarks in parallel against one
another in separate JVM instances. In this way, we placed a heavy load on the machine, thereby
increasing the chance of diferent interleavings. Unfortunately, even an unmodiied version of a
system as complicated as JikesRVM (and the DaCapo benchmarks) contain their own bugs, and it
was sometimes hard to determine the cause of a bug.

One good example was the hash code scenario. As we described in Section 7.3, both mutator and
collector threads access an object’s status word for hashing and locking. Address-based hashing
uses an object’s address as its hash code and this must be preserved by the collector if it moves
the object. MMTk’s moving collectors add an extra hash code ield when a hashed object is irst
moved, with bits in the status word recording the hash state. This proved to be tricky to implement
correctly: the cause of our error was not immediately apparent and testing did not always reveal
the bug. We decided to model this scenario and check it with the SPIN model checker [Holzmann
2004]: the bug was discovered and corrected within a few hours.
This success convinced us to use model checking routinely as a design tool. Thereafter, before

we developed code Ð for example, copying with software transactional memory (Section 9) or
processing reference types (Section 10) Ð we model checked and revised our designs until they
passed. We also retrospectively model checked other parts of our design (Type II phase changes,
copying with CAS, etc.).

12.1 Model checking

Model checking is a veriication technique for inite state systems. To verify some property such as
an invariant, we translate the code to a state transition system that models it. The model checker
will visit all possible states reachable from the initial state of the system, checking whether a given
property holds in every state. Since the model checker visits all possible states, models must be
small for veriication to complete within reasonable time and space.
We found bounded model checking to be a very efective aid for discovering and helping to

eliminate bugs, and it gave us a high degree of conidence in the correctness of our design. We
do not argue that it guarantees the correctness of an algorithm. But we found that exhaustively
exploring a model for counter-examples, even in a simpliied scenario, was of great practical use in
eliminating bugs, such as missing memory barriers. However, model checking does not reduce the
number of assertions needed in the code since the model is an abstraction of the Java code, and the
code was not derived automatically from the model. Exhaustive testing and sanity checking were
still essential. We believe that this principled approach to design Ð invariants expressed in terms
of abstractions, the more complex algorithms model checked, and invariants tested at run-time
with assertions Ð led to fewer failures and reduced development time. While we cannot prove
this claim, the development of our design and implementation of Java’s very subtle reference type
processing did seem to proceed faster than the development of similarly complicated parts of the
system where we had not used model checking.
We model checked the following more subtle parts of our algorithm.
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• Concurrent copying, with either atomic CAS operations or software transactional memory,
for reference ields, and single- and double-word scalar ields (six models in all).
• The changes of phase from ‘no collection’ to marking, and from copying to lipping.
• Reference object processing.
• Object hashing.

In all ten cases, model checking veriied the correctness of our algorithms. It also allowed us to
explore optimisations and termination properties, sometimes throwing up unexpected results. It
demonstrated the need for a fence between copying and veriication in the software transactional
memory algorithm (Algorithm 13). It showed that Type II transitions (Section 5.3) are essential
from the ‘no collection’ to the marking phase, and from the copying to the lip phase. And, model
checking discovered that reference object processing was not guaranteed to terminate if an insertion
barrier was used, but is guaranteed to terminate with a deletion barrier.
Below, we provide a detailed account of how we model checked concurrent copying and an

outline, for reasons of space, of the other four cases. A full report on our models (10 in all) can be
found at https:⁄⁄github.com⁄rejones⁄sapphire.

12.2 Model checking concurrent copying

The SPIN model checker accepts a model written in the Promela language, describing a state
transition system as a form of sequential processes6 communicating via channels. We express
properties as assertions injected into the model. We developed six models of concurrent copying, for
a reference ield, a single-word scalar ield and a double-word scalar ield (thus covering all possible
low-level types of ield), each with copying by a CAS operation or with software transactional
memory. Each model comprises a collector thread process, a mutator thread process, and a memory
process that models the x86 relaxed memory architecture. A single mutator suices since we are
concerned here with verifying the interactions between mutator and collector, and because Sapphire
assumes that mutators are data race free [Hudson and Moss 2003].

Modelling the memory model. In x86, each store issued from a CPU core is inserted into its
store bufer, a FIFO queue, so stores are drained and afect the cache memory in order. Store-load
forwarding allows a core to see any store still held in its store bufer. Only the core that issued a store
instruction writing v to an address a can read the latest value v from the address a immediately,
as the bufer is core-local. Note that we assume cache coherency, so once a store reaches cache
memory, the change can be seen by other cores. For this reason, we did not include the cache
hierarchy in our model.

We modelled the store bufer with channels between a thread process and the memory process
(Model 1). When themutator thread writes a valuev to an address a, it uses the MUTATOR_WRITEmacro
to send a pair ⟨a,v⟩ to the mutator_queue channel. The memory process receives the store request and
commits it to shared memory, modelled by the array shared. Similarly, the collector thread sends
store requests though its collector_queue channel. At arbitrary times memory non-deterministically
chooses the channel to drain.

To model store-load forwarding, we give each thread a copy of memory. When a thread writes to
an address a, it writes at index a of its local memory at the same time as it sends the write instruction
to the channel. In addition, it increments the appropriate counter (mutator_queue_count[a] or
collector_queue_count[a]) for its local memory to indicate that the latest value is in the store bufer.
The thread reads from the local memory if the corresponding counter is greater than zero. The
memory process decrements the counter when it commits the write.

6Note that these are processes in the modelling language, and not to be confused with the operating systems concept of a

process.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article . Publication date: June 2018.

https://github.com/rejones/sapphire


Transactional Sapphire:
Lessons in High Performance, On-the-fly Garbage Collection :33

1 active proctype memory() {

2 do

3 ::atomic{COMMIT_WRITE(mutator_queue, mutator_queue_count)}

4 ::atomic{COMMIT_WRITE(collector_queue, collector_queue_count)}

5 od

6 }

7

8 #define COMMIT_WRITE(q, count) \

9 (len(q) > 0) -> q?a,v -> shared[(a)-1] = v; count[(a)-1]--

10

11 #define MUTATOR_WRITE(a, v) \

12 atomic { \

13 mutator_queue!a,v; \

14 mutator_local_memory[(a)-1] = v; \

15 mutator_queue_count[(a)-1]++ \

16 }

17

18 #define MUTATOR_READ(a, v) \

19 atomic { \

20 if \

21 ::mutator_queue_count[(a)-1] == 0 -> v = shared[(a)-1] \

22 ::else -> v = mutator_local_memory[(a)-1] \

23 fi \

24 }

Model 1. The memory model; COLLECTOR_WRITE and COLLECTOR_READ are defined in a similar way.

Scenario. Our model-checking goal here is to verify that the mutator always reads the value
that it last wrote, regardless of any action by the collector, such as copying objects or lipping the
spaces. It therefore suices to model a scenario consisting of a single object with a single ield; here,
we use a reference ield but later we outline the case for single- or double-word scalar ields. The
memory has only two addresses; each semi-space contains one object. Initially, the fromspace copy
of the object has NULL in its ield. This scenario and the mutator is common to both our collector
models for concurrent copying.

Mutator model. Model 2 shows the model of the mutator. The flipped lag, whose initial value is
0, is a shared variable representing the Flip phase; setting it lips the mutator to read from tospace.
In the irst case of the do loop Ð the Promela construct for ininitely repeated, non-deterministic
choice Ð the mutator may alter the value of the ield, writing either NULL or a reference to the object
itself; the write barrier causes it to write to fromspace and then tospace. Alternatively, in the second
case, it may check the property that łthe mutator reads the semantic equivalent of what it wrote.ž
For reference ields, we convert the tospace address before the comparison. If the collector fails
to copy, the mutator may read a stale value after lipping. In this way, the property is checked by
actions scheduled ininitely often and at arbitrary times.

Models for scalar fields. The model for a single-word scalar ield is almost identical to Model 2: it
alternates writing 1 or 0 and omits the FORWARD action. For a double-word ield, the mutator model
writes 0,1 or 1,0 to two words in fromspace and in tospace, word at a time, i.e. it writes the irst
word to both spaces, and then the second word. Four separate MUTATOR_WRITEs give the collector a
chance to act in between any two actions.
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1 proctype mutator() {

2 byte x = NULL, r;

3 do

4 ::true ->

5 if

6 ::true -> x = NULL

7 ::true -> x = FROM_SPACE_OBJECT

8 fi;

9 r = x;

10 MUTATOR_WRITE(FROM_SPACE_ADDR(0), r);

11 FORWARD(r);

12 MUTATOR_WRITE(TO_SPACE_ADDR(0), r);

13 r = 0;

14

15 ::true ->

16 if

17 ::!flipped ->

18 MUTATOR_READ(FROM_SPACE_ADDR(0),r);

19 assert(x == r);

20 ::else ->

21 MUTATOR_READ(TO_SPACE_ADDR(0),r);

22 FORWARD(r);

23 assert(x == r);

24 fi;

25 r = 0;

26 od

27 }

Model 2. Model of the mutator.

Collector models. Models of the collector copying with CAS (Algorithm 12) are shown in Model 3,
and with transactional copying (Algorithm 13) in Model 4. Both are straightforward. The atomic

block in Model 3 represents the CAS instruction. Since CAS has the efect of a memory barrier, we
inserted COLLECTOR_MFENCE into the block to force lushing of the store bufer.

Correctness. SPIN did not report any error with any of these six models, conirming that the
mutator always reads a value semantically equivalent to the one that it has written most recently,
regardless of collector’s activity. However, note that if we remove the memory fence marked with
# in Model 4, SPIN did report the assertion in Model 2 to be violated.

12.3 Modelling phase changes

We next consider Sapphire’s two more complex changes of phase, from ‘no collection’ to marking,
and from copying to lipping semi-spaces. Both of these are Type II phase changes, that is, they
require two intermediate phases, rather than one (Section 5.3). We used model checking to assure
both that our algorithms were correct, and that two intermediate phases are necessary. Here, we
outline the scenarios for our models of phase change.

Modelling No GC to Marking. Mutators switch from ‘no collection’ to marking through the
two intermediate phases, PreMark1 and PreMark2. In PreMark1, the insertion barrier is installed
(Algorithm 6) but the mutator continues to allocate white objects; in PreMark2, mutators allocate
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1 proctype collector() {

2 byte currentValue, toValue, tmp, i;

3 byte a, v; /∗ a and v are used in COLLECTOR↓℧FENCE ∗/

4

5 i = 0;

6 do

7 ::(i < N_WORDS) ->

8 COLLECTOR_READ(TO_SPACE_ADDR(i), currentValue);

9 COLLECTOR_READ(FROM_SPACE_ADDR(i), toValue);

10 #ifdef REFERENCE

11 FORWARD(toValue);

12 #endif

13 if

14 ::(toValue == currentValue) -> i++

15 ::else -> atomic { /∗ CAS ∗/

16 COLLECTOR_MFENCE;

17 COLLECTOR_READ(TO_SPACE_ADDR(i), tmp);

18 if

19 ::(currentValue == tmp) ->

20 COLLECTOR_WRITE(TO_SPACE_ADDR(i), toValue)

21 ::else -> i++

22 fi;

23 COLLECTOR_MFENCE;

24 }

25 fi

26 ::else -> i = 0; break

27 od;

28 COLLECTOR_MFENCE;

29 flipped = true;

Model 3. Model of the collector copying with CAS. N_WORDS is the number of words to copy, i.e. 1 for a
reference or single-word scalar field, or 2 for a double-word scalar field.

black. Our heap model consists of three objects, each located at a distinct address represented
by an integer. Each object has a colour and a single ield. A colour is one of WHITE, GREY, BLACK or
NOT_ALLOCATED. The ield can hold an address of an object or NULL. Our mutator model emulates an
arbitrary program that may read from a ield, write to a ield, allocate an object or advance the
mutator’s phase. We modelled read, write and allocation as atomic operations in order to reduce the
number of states to be explored. This does not lose generality because we assume that mutators do
not race with one another, and the collector does not write to the variables that the mutator accesses
in these phases. The collector simply advances the GC phase from ‘no collection’ through one or
two intermediate phases (depending on the type of phase change being modelled) to marking, and
waits for mutators to catch up at each step.

As Sapphire uses an insertion barrier with a grey mutator in these phases, an observer process
checks the strong tricolour invariant that, if any object is BLACK and its ield is not NULL, then the
object it references is not WHITE. With two intermediate phases, the model checker conirmed that
this invariant always holds. With only one intermediate phase, in which the mutator enables its
insertion barrier and starts allocating black at the same time, the model checker found a counter-
example, thus conirming that a Type II phase change is indeed necessary.
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1 proctype collector() {

2 byte currentValue, toValue, tmp, i;

3 byte a, v; /∗ a and v are used in COLLECTOR↓℧FENCE ∗/

4 byte buf[N_WORDS];

5

6 i = 0;

7 do /∗ Copy ∗/

8 ::(i < N_WORDS) ->

9 COLLECTOR_READ(FROM_SPACE_ADDR(i), toValue);

10 #ifdef REFERENCE

11 buf[i] = toValue;

12 FORWARD(toValue);

13 #endif

14 COLLECTOR_WRITE(TO_SPACE_ADDR(i), toValue);

15 i++

16 ::else -> i = 0; break

17 od;

18

19 # COLLECTOR_MFENCE

20

21 do /∗ Verify ∗/

22 ::(i < N_WORDS) ->

23 #ifdef REFERENCE

24 COLLECTOR_READ(FROM_SPACE_ADDR(i), currentValue);

25 if

26 ::(currentValue != buf[i]) -> goto FAIL /∗ fall back to CAS ∗/

27 ::else -> skip

28 fi;

29 #else

30 COLLECTOR_READ(FROM_SPACE_ADDR(i), currentValue);

31 COLLECTOR_READ(TO_SPACE_ADDR(i), toValue);

32 if

33 ::(currentValue != toValue) -> goto FAIL /∗ fall back to CAS ∗/

34 ::else -> skip

35 fi;

36 #endif

37 i++

38 ::else -> i = 0; break

39 od;

40 goto SUCCESS;

41 FAIL:

42 /∗ copy with CAS here ∗/

43 SUCCESS:

44 COLLECTOR_MFENCE;

45 flipped = true;

46 }

Model 4. Model of the transactional copying collector. N_WORDS is the number of words to copy, i.e. 1 for a
reference or single-word scalar field, or 2 for a double-word scalar field.
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Modelling Copying to Flipping. In the Copy and Flip phases, the mutator writes to both fromspace
and tospace objects. In the Copy phase, the mutator assumes that tospace references are held only by
tospace objects, and it never writes tospace reference to anywhere other than tospace (Algorithm 8).
In contrast, in the Flip phase, the mutator never writes fromspace references. Mutators switch from
copying to lipping through two intermediate phases, PreFlip1 and PreFlip2. The mutator uses the
PreFlip barrier, Algorithm 9(b), in the PreFlip1 phase, and the Flip barrier, Algorithm 9(c), in the
PreFlip2 and Flip phases. The PreFlip phase barrier carefully checks the destination of references so
that it works as the Flip phase barrier if the mutator is writing a tospace reference, and as a Copy
phase barrier in other cases.
Our model comprises two mutators and three spaces: fromspace, tospace and a non-replicated

space. We consider two objects in fromspace, each of which has a replica in tospace, and a single
object in the non-replicated space. Once again, addresses are represented by integers and each
object contains a single ield. Our mutator model emulates an arbitrary program that may read
from or write to any object, and these actions are atomic. The collector model is the same as the
one used above. This time our observer process checks that no tospace object holds a reference to
a fromspace object. As before, the model checker veriies that this invariant holds if and only if
a Type II phase change is used, thus conirming a bug in Hudson and Moss which did not use a
Type II phase change.

12.4 Modelling Reference Type Processing

Java provides references of four levels of strength. Mutators can acquire a reference through
java.lang.ref.Reference.get, which returns a strong reference to the referent or null if the refer-
ence has been cleared (Section 10). The semantics of reference classes require that, at the time that
the collector decides to reclaim a weakly reachable object, it must also clear atomically all weak
references to that object, and all weak references to other weakly-reachable objects from which
that object is reachable through a chain of strong and⁄or soft references.
Our Sapphire implementation uses the state transition system shown in Figure 6. We added a

fourth object colour, RECLAIMED, to model objects reclaimed by the collector. To check our algorithms
for processing reference types, we veriied the following properties:

P1 [Safety]: A mutator will never see a reclaimed object.
P2 [Consistency]: Once a get method called on a reference object returns null, no mutator will

ever see the referent of that object.

Property P1 requires that, if a mutator loads a referent of a reference object, the referent has not
been reclaimed; P2 implies the atomicity properties that the API deinition requires. We checked
the properties for the limited model shown in Figure 5. This model has three pairs of reference
and normal objects, namely r0, r1, r2 for reference type objects and o0,o1,o2 for the corresponding
normal objects. These normal objects are linked in a list, but there are no other strong references
to them. We assumed that all reference objects remain directly strongly reachable from the root,
and that the mutator can always call get on them.
Model checking conirmed that properties P1 and P2 held, regardless of whether an insertion

or a deletion barrier was used in the reference processing phase. However, it also conirmed that
tracing terminated only with the deletion barrier, but not with the insertion barrier.

12.5 Modelling Hashcodes

Finally, we modelled object hashing. Address-based hashing has a delicate interaction with con-
current copying garbage collection. Our model uses a single object. Two addresses represent the
fromspace and tospace copies of the object. As the model of the collector performs many collection
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cycles, the address used for fromspace changes during the execution. To relect Algorithm 11,
the object is modelled with a combination of the contents of the hash state, the busy bit and the
forwarded bit, and a hash code word if the object was moved after its hashcode was obtained. Our
model of a single mutator comprises a single root pointing to the object. The mutator arbitrarily
and repeatedly advances its phase and obtains the object’s hashcode. The collector repeatedly
iterates through the collection phases ‘no collection’, mark, copy, lip and reclaim, handshaking
with the mutator as it changes phase. Model checking conirmed that our algorithm meets the Java
language speciication, i.e. that all calls of hashCode return the same value for an object.

12.6 Conclusions

We found bounded model checking with SPIN to be a practical approach to use. Although we were
not familiar with model checking before, it took no more than a day to construct our irst model and
check it, including discovering and correcting some bugs. Although checking a particular scenario
with bounded parameters (for example, a store bufer of size two) cannot give a 100% guarantee of
correctness, we can be reasonably conident. Concurrent garbage collection is complex and it is
easy to overlook corner cases. We believe that our approach to model checking ofers reasonable
conidence in an algorithm at a reasonable cost.

13 EVALUATION

Evaluating an on-the-ly or concurrent collector is fundamentally diferent from evaluating a stop-
the-world collector. The design of a stop-the-world collector will typically focus on minimising
application execution time, though reducing the extent of pauses for GC may also be important,
depending on the application. The efect of the collector on overall execution time will depend on
the number and duration of collections and any tax imposed on the mutator, for example due to
write barriers. In contrast, concurrent collectors are designed primarily to maintain responsiveness,
and this is necessarily achieved at some expense of mutator and collector throughput, and of
memory footprint. Thus, to evaluate a concurrent collector, it is important to ask:

• How should concurrent collections be scheduled?
• Is the application responsive?
• What impact does concurrent collection have on overall execution time?
• By how much does concurrent collection increase heap size requirements?

13.1 Environment and Benchmarks

All results were obtained from a 2.1GHz, 64-core, 4-socket AMD Opteron 6272 system with 64GiB
of RAM, running stock Ubuntu Linux 12.04.3 LTS (3.8.0-25-generic kernel). We disabled biased
locking [Pizlo et al. 2011] and specialised scanning [Garner et al. 2011] only because we have yet
to implement these in Sapphire. Hudson and Moss [2003] suggested that Mark and Copy phases
can be merged into a single Replicate phase. We explored this, assuming that it might ofer better
locality, but were surprised to ind that performance degraded when we used CAS for the Replicate
phase. We believe that this is because interleaving CASes to copy slots interferes with the locality
of marking by draining the processors’ load-store bufers. In contrast, a separate Copy phase issues
CASes in bursts. Inspection of CPU performance counters showed that a Replicate-with-CAS phase
improved the number of executed instructions and cache misses at each level of the cache hierarchy,
but introduced delays due to store-load forwarding. In contrast, using software transactional
memory in the Replicate phase led to no degradation but gave only similar performance to that
obtained by using separate phases for most benchmarks. As separate phases leads to a somewhat
more straightforward implementation, we adopted this for our experiments.
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Fig. 7. Speedup v. number of driver threads for DaCapo 2009, from Kalibera et al. [2012]. These experiments
ran with Oracle’s HotSpot 1.7 JVM on the same 64-core, 4-node AMD machine as we use in this paper.

We used a set of benchmarks from the DaCapo 2006 and 2009 benchmark suites, preferring 2009
versions and excluding any that failed to execute in an unmodiied Jikes RVM Semispace collector
coniguration (typically due to requiring libraries that Jikes RVM does not yet support). All of
the programs used launch multiple threads. By default, the suites scale the work-loads to use the
number of logical processors in the system, although seven of the DaCapo 2009 benchmarks allow
scaling to an arbitrary number of driver threads. However, be warned that the number of threads
created is a weak approximation of concurrency. Kalibera et al. [2012] wrote, łThe DaCapo harness
allows setting the number of threads that drives the workload, but this does not fully determine how
many threads do a substantial amount of work concurrently. Work-loads often spawn threads of
their own, either directly or indirectly through libraries. Some threads live for the entire execution
of the benchmark, some only for one iteration and some only for short-term tasks within iterations.
Some are active throughout whole execution of the benchmark, some only throughout one iteration
(e.g. avrora9) or some phase of it (e.g. h29

7), and sometimes tens or hundreds of threads are created
each for a single short-term task (e.g. eclipse9). Moreover, the number of threads spawned may
depend on the hardware Ð e.g. tomcat9 spawns poller threads that service network connections
depending on the number of logical processors available. On the other hand, even benchmarks that
do not spawn any new threads can generate work for the VM’s reference handler and inaliser
threads.ž Of the benchmarks we used, avrora9, hsqldb6, lusearch9, pmd9, sunlow9 and xalan9 all have

7Neither h29 nor tomcat9 run on Jikes RVM.
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signiicant levels of concurrency, and luindex9 has some meaningful concurrency, by Kalibera’s
deinition.
The DaCapo 2009 benchmarks were limited to 32 threads, both to allow processor resources to

be dedicated to the collector and because Kalibera et al. showed that most DaCapo benchmarks
degrade if more than 32 threads are used Ð Figure 7 shows examples of scalability of a selection of
DaCapo 2009 benchmarks. We found that the best performance was obtained by devoting 8 threads
to the garbage collector.

13.2 Methodology

Users adopt on-the-ly collectors for just one reason: to improve the responsiveness an application.
But there are unavoidable costs to on-the-ly collection: an application managed by any concurrent
collector will have a longer execution time than if it were managed by a stop-the-world collector,
and will have a larger memory footprint. Our primary measurement is therefore responsiveness
(Section 13.5), and we compare our Sapphire implementation against Jikes RVM’s only concurrent
collector.
The Concurrent Mark-Sweep collector8 is a mostly-concurrent collector that uses a deletion

barrier, hence mutators are kept black. It stops all mutators together for thread-stack scanning,
before allowing mutators to resume while the collector marks live objects. It then stops all mutators
again to complete reference processing. The collector uses lazy sweeping to reclaim memory on
demand [Hughes 1982]. Concurrent Mark-Sweep is not an entirely satisfactory point of comparison:
it could not execute some benchmarks, either due to memory exhaustion or other implementation
issues. It is also neither copying nor compacting, both of which give it some execution time
advantages over Sapphire.
However, we also want to understand what the consequences of a design that permits on-

the-ly collection will be on overall performance (e.g. execution time). To assess this, we need
to compare our Sapphire implementation with the nearest structurally similar stop-the-world
collector, in this case JikesRVM’s Semispace collector. Both Sapphire and Semispace manage the
heap primarily through a pair of copying semispaces, and neither are generational.9 Semispace
therefore provides an appropriate reference point. We stress that our methodology is designed
to expose these overheads because we believe only this will provide researchers with an insight
into the costs of building an on-the-ly replicating collector. In order to provide this insight, it is
essential to provide both the Sapphire and Semispace conigurations with the same environment and
resources. Thus, we experimented with the coniguration that gave Sapphire the best performance,
e.g. heap trigger (Table 5) and number of GC threads (we know from Kalibera et al. [2012] that 32
mutator threads is optimal for most DaCapo benchmarks Ð see also Figure 7). We then ask, what is
the cost of providing this coniguration? Deliberately we do not ask, what is the best coniguration
for Semispace? Then, we give the mutators in both conigurations the same number of threads (32),
and we give the parallel collectors in both conigurations the same number of threads (8).
In virtual machines research, performance changes are often small, so rigorous evaluation that

takes system warmup and variance into account is essential. Unfortunately, as Kalibera and Jones
[2013] have shown (and conirmed by Barrett et al. [2017]), it is often not possible to get managed
language systems to a stable state. Unless otherwise stated, we use compiler replay [Georges
et al. 2008]. For each selected benchmark, an initial set of ten warmup runs allows the optimising

8http:⁄⁄www.jikesrvm.org⁄JavaDoc⁄org⁄mmtk⁄plan⁄concurrent⁄marksweep⁄CMS.html
9It is certainly possible to build generational copying collectors (JikesRVM provides several varieties), and we do not believe

there is any lack of generality in our approach. Our on-the-ly techniques could be adopted for generational collection which

should reduce the time spent in garbage collection and hence the overheads incurred by mutators; the main challenges may

lie in tuning a generational on-the-ly collector.
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Benchmark No barrier Barrier Overhead

antlr6 1.94−1.95 2.54−2.55 31% ±0.3%
avrora9 9.38−10.12 10.92−11.02 12% ±0.2%
bloat6 8.49−8.54 10.33−10.37 22% ±0.2%
eclipse6 56.98−58.20 56.86−57.59 -1% ±0.0%
fop6 2.67−2.69 2.84−2.86 6% ±0.1%
hsqldb6 2.83−2.85 2.49−2.50 -12% ±0.1%
jython6 15.57−15.62 21.53−21.59 38% ±0.4%
luindex9 2.67−2.72 3.21−3.24 20% ±0.2%
lusearch9 3.76−3.83 4.35−4.43 16% ±0.2%
pmd9 5.82−6.10 7.09−7.28 21% ±0.3%
sunlow9 3.86−4.12 4.36−4.44 10% ±0.2%
xalan9 3.05−3.10 4.44−4.57 46% ±0.5%

Table 4. Cost of Sapphire-style barriers: execution time (seconds) for Semispace with and without write
barriers.

compiler to compile methods. The compiler’s state is then recorded. Results are collected from
30 independent runs in which classes have been compiled and initialised using the previously
recorded compiler state. We report results for benchmark execution only, and exclude time spent in
VM and benchmark start-up or shutdown. 95% conidence intervals are computed as per Kalibera
and Jones [2013].

13.3 Concurrency overheads

Using this methodology, we can determine in a fair manner the overheads incurred by Sapphire,
e.g. in terms of the cost of barriers, GC time and overall execution time. In contrast, Semispace
places no overhead on mutators. To estimate the cost of concurrency overheads, we adopted
the approach of Yang et al. [2012], modifying a Semispace coniguration to include Sapphire’s
write barriers but not to take any action, such as copying objects. We took care to ensure that
the optimising compiler did not remove these barriers. The efect of the barriers on execution
time is shown in Table 4 for execution with a ixed, and large, heap size of 384Mib, chosen to
reduce the impact of collection on these overheads. It is clear that the barriers needed by any
concurrent collector will impose a signiicant tax on the mutator. We were, however, surprised
that the addition of barriers improves performance for the hsqldb benchmark. Examination of the
hardware performance counters indicates that this improvement can be attributed to a 5% increase
in instructions executed per cycle as a result of reduced pipeline stalls, cache misses and page
faults when barriers are present. We assume that increasing the number of predictable branching
instructions improves prefetching and caching. We were able to replicate this result on an Intel
Haswell processor.

13.4 Triggering Collection

Running concurrent collections continuouslywould place an excessive barrier overhead onmutators,
but determining an optimal schedule of collections is hard, even for a stop-the-world collector [Jacek
et al. 2016]. An ideal concurrent collector must monitor the application’s allocation rate and trigger
collections so that they complete before the application runs out of memory. Such a trigger depends
on estimates of allocation rate and collector throughput for given workloads. However, for many
soft real-time applications, such estimates will not be available. Thus, to evaluate our Sapphire
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Livesize Trigger Peak heap Allocated during GC

Benchmark (MiB) (MiB) (×livesize) Min (MiB) Geomean (MiB) Max (MiB)

antlr6 31.7 16 1.71 1.20 2.75 4.65

avrora9 21.5 32 3.44 0.25 1.83 3.85

bloat6 33.0 32 2.94 0.82 2.92 8.44

eclipse6 59.1 48 3.60 0.26 4.68 16.67

fop6 26.7 32 3.69 1.23 2.96 4.98

hsqldb6 91.0 128 2.43 0.41 4.67 20.55

jython6 32.5 48 3.73 0.27 3.73 10.07

luindex9 21.5 32 3.38 0.69 1.95 4.00

lusearch9 31.9 ś ś

pmd9 90.8 96 3.18 1.44 5.98 51.81

sunlow9 38.6 64 7.53* 1.53 28.85 79.73

xalan9 45.5 ś ś

Table 5. Triggers for 100% on-the-fly collection with peak heap usage < 4× maximum livesize (*except for
sunflow which needed 8× livesize to avoid stop-the-world pauses).

implementation, we use a simple trigger that initiates an on-the-ly collection after every ixed
volume of allocation. This has the advantage of simplicity and stability. Amore sophisticated solution
might trigger collections by using predictions based on a history of allocation and collection rates.
Our assumption is that a user of an on-the-ly collector is prepared to pay some price in terms

of elapsed time and heap footprint for responsiveness. An ideal trigger will minimise time spent
in collection (additional mutator overhead) and heap footprint (further objects allocated during
collection), while avoiding falling back to stop-the-world collection (application pauses). These are
opposing objectives to be balanced: small (high frequency) trigger thresholds reduce the chance of
a stop-the-world collection, while large (low frequency) thresholds minimise the total time spent
in on-the-ly collection.

To explore the trigger selection space, we ran each benchmark with a range of allocation triggers
(8ś128MiB), allowing the heap to expand as necessary (up to 10× the maximum livesize of the
benchmark), and observed the elapsed time for the benchmark and the peak heap usage. Note that
we use such a large heap only to explore the triggers and not for performance evaluation. In common
with other researchers, we ignore System.gc throughout as, in our current implementation, this
call would trigger a stop-the-world collection even if an on-the-ly collection is already running.
Note that hsqldb would otherwise call System.gc ive times, degrading its performance by nearly
100%. Ignoring this request also improves performance with the Semispace collector coniguration.

Given that Sapphire’s priority is to remove application pauses, we irst iltered out conigurations
with stop-the-world pauses. Any semispace copying collector needs a heap of at least 2× maximum
livesize to guarantee that it will not run out of memory (although collection scheduling may lead
to lower peak heap usage in practice). Some further headroom avoids thrashing the collector: 3×
maximum livesize is reasonable for a stop-the-world collector but a concurrent copying collector
needs further room as mutators continue to allocate during collections. We made a pragmatic and
conservative choice to retain only trigger choices for which the heap footprint grows to no more
than 4× maximum livesize, and then select the trigger that delivered the shortest elapsed time.

As expected, for most benchmarks, large triggers had to be rejected because they led to stop-the-
world pauses as the concurrent collector could not keep up with allocation. Smaller triggers led to
longer elapsed times, but these reduced sharply as trigger intervals increased until a point where
increasing the trigger had diminishing efect on elapsed time. The triggers used in the remainder of
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our evaluation are shown in Table 5. Note that the ‘Allocated during GC’ columns do not include
double-allocation in tospace. It is clear that Sapphire is able to eliminate stop-the-world pauses
with modest peak heap usage. However, it is not suitable for applications with very high allocation
or mutation rates. These scenarios may lead to more stop-the-world collection pauses. For example,
lusearch allocates approximately 1GiB of objects each larger than 8KiB in one phase. Similarly,
xalan has a sustained allocation rate of 500MiB⁄sec and a peak rate exceeding 3GiB⁄sec. This means
it can achieve 90ś100% of collections performed on-the-ly only at the expense of either a very
large peak heap footprint (up to 12× maximum livesize) or a signiicant fraction of stop-the-world
collections. We therefore exclude lusearch and xalan from the remainder of the evaluation. sunlow
allocates a maximum of 80MiB (twice livesize) during collection but can avoid stop-the-world
pauses if peak heap usage is allowed to grow to 8× maximum livesize.

13.5 Responsiveness

The soft real-time scenario that Sapphire is designed to support requires that most tasks are com-
pleted within a given bound but infrequent deviations from this bound can be tolerated [Printezis
2006]. Responsiveness is the key metric for these applications. Worst case or average garbage
collection pause time alone is not an adequate measure of responsiveness. Even in a stop-the-world
collector, it is essential to understand pause time distribution as well as single metrics such as
average or worst-case pauses. However, none of these are adequate measures of a concurrent
collector. Even if individual pauses are very brief, many pauses in a short time window will impair
application responsiveness. For this reason, some researchers have adopted minimum mutator
utilisation (MMU), the minimum fraction of time spent in the mutator, for any given time window
[Cheng and Blelloch 2001]. However, MMU is also an unsatisfactory measure. For example, outside
stack scanning and construction of shells, Sapphire has 100% mutator utilisation in our conigu-
ration. MMU also raises the question of attribution of overheads. Barrier actions are likely to be
counted towards mutator utilisation although they are really work on the behalf of the collector.
Even with high MMU, these actions will increase the time to execute an application transaction.

For these reasons, we assess the responsiveness of our implementation by measuring the response
time of small transactions, as others have [Click et al. 2005; Pizlo et al. 2008b; Tene et al. 2011]. This
is a measure more representative of the needs of real-world applications. To do this, we added a
thread that starts when the VM starts and performs periodic transactions alongside the DaCapo
benchmarks. These periodic tasks are afected by VM activity including garbage collection but do
not interact directly with the DaCapo benchmarks, whose purpose is simply to keep the collector
busy.

The periodic task has a small ixed workload that deletes and recreates 200 nodes in a balanced
binary tree of 10,000 nodes at 1ms intervals. This workload is intended to exercise allocation
and invoke write barriers, giving it a high probability of interference with a running collector.
In isolation our periodic task typically takes 80µs to execute. The response time for each task
execution was recorded in a statically allocated bufer. Between task executions, the test thread
busy waits. The getrusage system call was used to detect context switches during task execution;
any afected results were discarded.

We compared Sapphire and Concurrent Mark-Sweep conigurations, excluding those benchmarks
that cannot execute on the latter (eclipse, jython, lusearch and xalan). To minimise the time spent in
collections, Concurrent Mark-Sweep was conigured to trigger collection when 60% of the heap was
used. Although Concurrent Mark-Sweep is a non-moving collector, we used the same heap sizes
as in the Sapphire conigurations, even though this gives Concurrent Mark-Sweep a signiicant
advantage.
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Fig. 8. Time to execute periodic tasks alongside DaCapo benchmarks. Note that the y-axes are logarithmic.
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Benchmark Semispace (s) GC (s) Sapphire (s) OTF (s) Overhead

antlr6 2.12−2.12 0.63−0.65 3.06−3.08 0.78−0.81 45% ±0.8%

avrora9 9.65−9.74 0.23−0.24 10.44−11.95 0.55−0.59 15% ±8.3%

bloat6 9.06−9.12 1.48−1.50 12.64−12.72 2.57−2.63 39% ±0.9%

eclipse6 54.18−55.22 3.57−3.60 60.76−73.30 10.86−13.44 23% ±13%

fop6 2.73−2.76 0.40−0.41 2.89−2.91 0.27−0.30 6% ±0.8%

hsqldb6 2.80−2.82 0.67−0.68 2.73−2.77 0.59−0.65 -2% ±1.0%

jython6 18.06−18.12 2.05−2.09 19.21−19.29 3.13−3.19 6% ±0.4%

luindex9 2.62−2.64 0.18−0.18 3.59−3.60 0.37−0.38 37% ±0.7%

pmd9 5.81−6.04 0.65−0.67 8.76−8.97 2.53−2.60 50% ±4.6%

sunlow9 4.06−4.17 0.46−0.48 5.22−5.30 3.54−3.61 28% ±2.7%

Table 6. Execution and GC times for Semispace and Sapphire configurations. In each case, 95% confidence
intervals are shown [Kalibera and Jones 2013]. The OTF column shows the time spent in on-the-fly GC. The
final column shows the overhead of Sapphire v. Semispace (ratio of geomeans).

Figure 8(a) shows the distributions of elapsed times for these tasks; note that the y-axis is
logarithmic. It does not show pause times, which are negligible. Collections running during a task
invocation imposes write barrier overhead on the task. We compare the collectors by considering
how often a task deadline is missed. Sapphire reduced the rate of 1ms deadline misses by 100×
compared to Concurrent Mark-Sweep, from 2.22 misses⁄second to 0.02 misses⁄second. Only 37
out of 1,553,076 tasks took longer than 1ms to complete, and none took longer than 7.5ms. For
Sapphire, only tasks running against benchmarks with very high allocation rates (pmd and sunlow,
highlighted in the igure) executed in more than 500µs. We conclude that Sapphire provides good
responsiveness for applications other than those with very high allocation rates.
Figure 8(b) shows periodic task execution times across all but two of the benchmarks we used

for the Sapphire; lusearch and xalan are again excluded as they could not avoid stop-the-world
pauses. Results for hsqldb, pmd and eclipse are highlighted as they include signiicant outliers
(task executions longer than 1ms) for Sapphire. Eclipse seems poorly suited to on-the-ly collection.
However, many of the outliers are unrelated to GC Ð similar pauses outside GC time occur with the
Semispace stop-the-world collector. We can reasonably conclude that these outliers are an artefact
of Jikes RVM⁄eclipse beyond the scope of this paper. Excluding eclipse, we still see that only 37 tasks
from over four million samples for Sapphire execute in 1ś7.5ms; all other tasks (more than 99.999%)
execute in less than 1ms. The geometric mean periodic task execution time outside of garbage
collection across all benchmarks is 85µs (median 82µs). During garbage collection this rises to
geometric mean 177µs (median 168µs), efectively doubling the time taken to execute a task. Naïvely
we could interpret this as indicating that application code will run at half-speed during on-the-ly
collection. However, it is important to recognise that our periodic task, composed of only allocation
and pointer manipulations, which place most stress on the barriers, represents a worst-case. For
example, Table 6 and Figure 9 show sunlow spends 67% or more of its execution in on-the-ly
collection but sufers only a 28% slowdown, an improvement over the 35% we might naïvely expect.
Note that the bars in Figure 9 omit the time spent in the sweep phase for non-moving spaces (as
well as times in intermediate phases, none of which are signiicant).

13.6 Execution time

Any coniguration using a concurrent collector will sufer throughput overhead compared with
a collector that does not use barriers. Comparing the overall execution and garbage collection
times of Sapphire and Semispace in Table 6, we observe some correlation with barrier overheads
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Fig. 9. Garbage collection time.

(Table 4) but also some inconsistencies. For most benchmarks where the GC times are comparable
(fop, hsqldb, jython), Sapphire’s overhead is small or negative. Here, the cost of write barriers is
ofset by running the GC concurrently (though not in the case of antlr). For example, jython has
a stable livesize and steady allocation rate, making it an ideal candidate for on-the-ly collection.
It also has a large number of weak references (over 30,000) which are well handled on-the-ly by
Sapphire (see Section 13.8 for the details). In other cases, Sapphire spends signiicantly longer in
GC than Semispace, since its collection mechanism is more complex. Here, the cost of mutator
slowdown during GC is larger than the cost of Semispace’s stop-the-world pauses, leading to an
execution time overhead of 15ś50%.

Other concurrent, moving collectors sufer similar slowdowns. Even with mutator performance
optimised by hot-swapping code to install specialised barriers during collection phases [Arnold
and Ryder 2001; Pizlo et al. 2008a], Pizlo et al found that Chicken [2008b] exhibited a three-fold
slow-down during copying, Clover [2008b] ive-fold and Stopless [2007a] ten-fold.
Concurrent collection necessarily requires some headroom for allocation during collection.

However, as Table 5 shows, this overhead is modest in the common case (the geometric mean
is never above 6MiB except for sunlow). For the worse cases, only pmd and sunlow allocate a
substantial volume of memory during GC, 0.57× and 2.07× their maximum livesize respectively.

13.7 Transactions

We explored replacing copying with CAS with transactional copying, using either hardware or
software transactions (Section 9). Full details can be found in Ritson et al. [2014]. First, we explored
the efect of transaction size on raw copying speed, without mutators running, copying multiple
objects in a single hardware transaction. Figure 10(a) shows the results for the fastest (sunlow) and
slowest (hsqldb) copying benchmarks, but all benchmarks exhibited similar behaviour, with the
performance of inline copying (mhtm inline) tailing of as the transaction size reaches 128 bytes
(approximately 2ś3 objects), presumably because the read set size becomes too large for most
transactions to complete. On the other hand, copying with planned transactions (mhtm plan) shows
little degradation, whether or not the plan pre-loads information (mhtm full) from the object’s type
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(a) Speed of diferent transaction size transactions
with multi-object copying, using inline (mhtm in-

line), planned (mhtm plan) and planned with TIB
pre-loading (mhtm full) transactions.
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Fig. 10. Transactional copying.

information block (TIB) in order to further reduce the number of cache lines accessed during the
transaction.

Figure 10(b) compares the performance, with mutators running, of copying by a single collector
thread using CAS (cas), hardware transactions with one object (htm) or multiple objects (mhtm)
using a transaction size of 256 bytes, or software transactions (stm); the error bars represent 95%
conidence intervals. Both transactional methods show substantial performance improvement
over the original CAS technique. Both variants have comparable performance, suggesting that
performance gains can be made without hardware support.

13.8 Reference types

Diferent applications vary widely in their use of reference types. Figure 11 shows the number of
calls of a get method per second in each 10ms time window; the x-axis is the normalised elapsed
time of the program. Contrary to our expectations, some programs used reference types heavily
(more than 1 million times per second), but this varies between programs. Most showed a small
peak at the beginning of execution; we found that these were due to the Jikes RVM class loader.
Often programs made little further use of reference types but jython6 made heavy use of them
in particular phases. In contrast, lusearch6, lusearch9, xalan6 and xalan9 made substantial use of
reference types for much of their execution.

We compared the performance of diferent techniques for managing reference types. These can
be protected at collection time through a global mutual exclusion lock that prevents any mutator
from turning a weakly reachable object into a strongly reachable one, or without blocking mutators
as we discussed in Section 10. Either an insertion or a deletion barrier can be used. We provide a
detailed evaluation in Ugawa et al. [2014]. Here, we consider the efect of diferent techniques on
execution times.
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Fig. 11. Frequency of calls to Reference.get in DaCapo (10ms quanta); thex-axis is the normalised
entire execution time, T.

antl
r6

avro
ra9 bloa

t6
ecli

pse
6 fop6

hsq
ldb6jyth

on6
luin

dex
9
pmd9

sun
flow

9
0.7

0.8

0.9

1.0

1.1

1.2

el
ap

se
d 
tim

e 
(n
or
m
al
ise

d 
to
 S
TW

)

lock-ins lock-del otf-ins otf-del

Fig. 12. Execution timeswith diferent reference processing approaches (either using a lock in get or processing
on-the-fly, otf ) and diferent barriers (insertion, ins, or deletion, del). The bars show geometric means and
95% confidence intervals, normalised against processing times with mutators stopped.

In summary, we found that execution using a mostly or fully concurrent technique tended to
be shorter than if reference types were processed with the world stopped (Figure 12). This is
because (most) mutators continue to run, in sharp contrast to the other approaches, provided they
do not exhaust memory (admittedly this risk is increased as mutators run for longer between
collection cycles). We also found that the on-the-ly reference processing phase was likely to
converge fairly quickly if we use deletion barriers (Table 7). For most of the benchmarks, any of
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lock insertion lock deletion OTF ins’n OTF del’n
active block active block iteration iteration

90% 99% 90% 99% 90% 99% 90% 99% 90% 99% 90% 99%

antlr6 3 3 1 1 3 3 1 1 2 11 2 3
avrora9 6 8 1 1 5 8 1 1 11 20 2 6
bloat6 3 3 1 1 3 3 1 1 1 12 1 2
eclipse6 5 5 1 2 5 5 1 2 2 12 1 4
fop6 3 3 1 1 3 3 1 1 2 19 2 4
hsqldb6 3 3 0 0 3 3 1 1 1 2 1 2
jython6 3 3 1 1 3 3 1 1 2 13 1 4
luindex9 3 3 1 1 3 3 1 1 5 11 2 7
pmd9 6 11 1 5 6 17 2 9 3 7 2 4
sunlow9 34 34 0 1 34 34 0 1 1 9 1 4

Table 7. The number of threads that were actually runnable or would be runnable if they had not tried to
take the lock for Reference.get (active), and the number of threads that waited for the lock (block) at the
end of the ReferenceProcess phase (let). The count of iterations to terminate the ReferenceProcess phase
using on-the-fly techniques(right). 90 and 99 percentiles are shown for each technique.

our reference processing techniques led to faster execution times than with stopping the world
to process reference types. For all but pmd9, some mostly or fully concurrent technique was
signiicantly faster than stop-the-world processing. There was no clear overall winner among the
locking and on-the-ly techniques. For example, although on-the-ly processing with a deletion
barrier often performs well, it performed comparatively poorly for jython6 (where some phases of
execution use reference types very heavily) and luindex9. For most benchmarks, only one or two
mutators were blocked by the locking techniques, the exception being pmd9: here the on-the-ly
techniques worked much better. As expected, on-the-ly processing with deletion barriers needed
substantially fewer iterations than with insertion barriers. We conclude that overall execution time
is not increased signiicantly by processing references on-the-ly, and is often reduced.

14 RELATED WORK

In this section, we compare Sapphire with other approaches to incremental and concurrent garbage
collection, especially those that move objects in order to defragment the heap.

14.1 Consistency

Object relocation presents a fundamental problem to both incremental and concurrent collectors:
how to ensure that both collector and mutator threads see a consistent view of the heap. Incre-
mental techniques compact the heap little by little in a stop-the-world fashion. Like Sapphire,
Oracle’s Garbage-First mostly-concurrent collector [Detlefs et al. 2004] and the incremental ‘Train’
collector [Hudson and Moss 1992] abandon hard real-time guarantees for a softer, best-eforts
approach in the expectation that it may yield throughput and space usage more appropriate for
many applications. Each divides the heap into a number of much smaller regions. Although marking
is performed mostly concurrently, mutators are blocked while objects in a victim region(s) are
evacuated. In contrast, Sapphire evacuates fromspace as a whole, and has no stop-the-world phase.
If we allow mutators to run while objects are relocated, we need read barriers or replicating

collection. Many real-time collectors use read barriers to ensure that, at any moment, only a single
location holds the latest value of a ield of an object. Bacon et al. [2003] discuss both an eager
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tospace invariant for ℧etronome (under which a thread always accesses tospace for the up-to-date
version of an object) and a lazy read barrier (which does not forward a pointer until it is used).
Staccato [McCloskey et al. 2008] and Chicken [Pizlo et al. 2008b] impose a lazy tospace invariant
under which the latest value is the tospace one if the object has been copied. Stopless [Pizlo et al.
2007a] imposes a more complicated invariant, but still only one location holds the valid latest
value of a ield. As concurrent collectors move objects while the mutator is running, mutators and
collectors must maintain a coherent view of the heap at each read or write operation, requiring
frequent synchronisation.

Replicating collectors relax mutator-collector coherency requirements by allowing the mutator
to access fromspace objects while the collector is copying them to tospace. Nettles et al. [1992]
originally proposed replication as an incremental copying method that did not rely on expensive
read barriers. To maintain consistency between replicas, the mutator’s insertion write barrier
logged any modiication to previously replicated fromspace objects. The collector processed these
logs to make semantically equivalent modiications to the tospace replicas before the mutator’s
roots were lipped to point to tospace. Collection was complete when the collector’s work list
and the mutation log were both empty. Unfortunately, the Nettles and O’Toole write logs are not
bounded in size as any mutation must be logged. Thus, at some point, they must stop all mutator
threads to complete the processing of these logs, including copying any previously undiscovered,
reachable objects. Sapphire does not log updates in this way for two reasons. First, it is intended as
an on-the-ly collector so it should not stop the world. Second, it was designed for Java, an object
oriented language, where the number of mutations can be expected to be very much higher than
in a mostly functional language like ML. Instead, Sapphire has the mutator write barrier apply
changes immediately to both fromspace and tospace replicas.
All these consistency mechanisms rely on barriers, which impose an overhead on mutator

threads and increase the size of mutator code, with possible efects on caching. However, there
are opportunities to use static analysis or compiler optimisations to reduce barrier overheads. We
follow the standard MMTk practice of separating barriers into an inline fast path and an out-of-line
method call which, if necessary, does the work (see Section 5.4). Bacon et al. [2003] use compiler
optimisations to reduce the cost of read barriers, in particular by reducing the number of null
checks; similarly, we eliminate the pointer-equality barrier, Algorithm 9(a), if either operand is null.
Adl-Tabatabai et al. [2009] similarly suggest opportunities for eliminating redundant operations
across multiple barriers in the context of software transactional memory systems. We also rely on
Jikes RVM’s optimising compiler to reduce the cost of barriers. Pizlo et al. [2008a] propose path
specialization to reduce barrier overhead, creating multiple copies of the code, modifying each copy
to handle one or more phases of the collector. Code is then patched at run-time to call the copy
corresponding to the current collector phase. This can remove phase-testing overhead in barriers
and all overhead in phases where no barriers are active. We leave further barrier elimination for
future work.

For on-the-ly collectors, how to change phases without stopping all mutators is another diiculty.
The standard technique is that the collector handshakes with each mutator one by one. The Doligez
and Leroy [1993] collector was the irst to adopt ragged phase changes. Doligez and Gonthier
[1994] corrected this algorithm by introducing two intermediate phases between ‘no collection’
and the mark phase in order to support multiple mutators. Domani [Domani et al. 2000] adapted
their collector for Java. Our design patterns generalise the Doligez-Leroy-Gonthier approach to
support all types of ragged phase change that might be used by a collector.
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14.2 Virtual memory techniques

A number of concurrent and incremental collectors use page protection to provide synchronisation.
The Compressor [Kermany and Petrank 2006] irst constructs a compaction plan to identify the
destination of each object to be moved. It then protects tospace pages from read and write access,
and lips the mutators’ roots. Whenever a mutator traps on a protected tospace page, the trap
handler copies its objects from fromspace before resuming the mutator.
In contrast, Pauseless [Click et al. 2005] and its generational extension, C4 [Tene et al. 2011],

protect only those fromspace pages from which objects are being moved. Their read barrier repairs
stale fromspace references. The original implementation for the Azul Vega platform implemented
the barrier through a special load-reference instruction, but on stock hardware Pauseless compiles
the barrier inline. Azul’s proprietary hardware also supported fast user-mode trap handlers and
added a GC-mode and larger pages to the translation lookaside bufer. More recently Azul has
provided patches for the Linux kernel to support their algorithm on stock hardware [Azul 2010].

14.3 Real-time collection

Soft real-time goals that typically include a throughput requirement and an acceptable rate of
failure to meet deadlines are suicient for many applications [Printezis 2006]. However, hard
real-time systems require all high-priority tasks to respond to events within a ixed time, and
must schedule tasks so that their real-time constraints are met. This requres performing schedula-
bility analysis ahead-of-time, assuming a particular (usually priority-based) run-time scheduling
algorithm [Kalibera et al. 2009, 2011]. Scheduling may be work-based [Cheng and Blelloch 2001],
slack-based [Henriksson 1998], time-based [Bacon et al. 2003] or a combination [Auerbach et al.
2008]. Kalibera et al. [2011] explore scheduling strategies in detail in a reimplementation of the
Metronome collector on the Ovm platform [Armbruster et al. 2007]. They found that no one
scheduling strategy was strictly preferable for all applications. Barrier overheads led to a mean of
69% slowdown on computational tasks (16% in a newer version of their virtual machine) but they
comment that this could probably be improved with compiler optimisations. Our soft real-time
Sapphire collector is oblivious to thread schedules, which are managed by the underlying Linux
scheduler.

℧etronome is one of the best-known real-time collectors. This incremental mark-sweep collector
uses a deletion write barrier, Brooks-style forwarding pointers [1984], and time-based scheduling,
and works best on uniprocessor or small multiprocessor systems. To support ine-grained, time-
based work scheduling, Metronome’s design allows it to do as much work, including evacuation, as
possible within a given time quantum while mutators are stopped. Thus, it implements arrays with
arraylets, which also helps avoid fragmentation. In contrast, Sapphire never stops all mutators.
Metronome’s Tax-and-Spend extension [Auerbach et al. 2008] never compacts. Schism [Pizlo et al.
2010] similarly adopts arraylets and relocates only array metadata.

Kalibera’s replicating collector [2009] also uses a Brooks barrier but has the forwarding pointer
held in the tospace replica point back to its fromspace original, thus admitting very simple and
predictable mutator barriers. Kalibera and Jones [2011] showed how a handle-based VM ofers the
beneit of immediate reuse of space used by evacuated objects without a copy reserve overhead.
They demonstrated, contrary to popular belief, that, with careful optimisations, this system achieves
the same execution time overheads as a Brooks-style compacting collector. However, both collectors
run only on uniprocessors with ‘green’ (VM-scheduled) thread scheduling.

Stopless [Pizlo et al. 2007a] was the irst collector to claim lock-free relocation of objects. It ensures
that all updates are made to the most up-to-date location of a ield, thereby supporting mutators’ use
of atomic operations without locking. Its complicated protocol uses intermediate, ‘wide’ versions
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of objects and requires at least two double-word compare-and-swap atomic operations to copy a
word. The write barrier also involves a double-word compare-and-swap operation.

Staccato [McCloskey et al. 2008] permits concurrent compaction without requiring locks. It
attempts to move only a few objects at a time (for instance, to reclaim sparsely-occupied pages),
with mutators aborting relocation if they write to an object being copied. A handshake between
mutators and the collector ensures that reads ind the latest location of a value without ine-grained
synchronisation. Chicken [Pizlo et al. 2008b] is similar to Staccato but assumes the stronger memory
model of x86⁄x86-64, and so only writes abort copying (because atomic operations order reads); it
also uses few memory fences.
Clover [Pizlo et al. 2008b] relies on probabilistic detection of writes by the mutator to deliver

guaranteed copying with lock-free mutator accesses except in rare cases, and lock-free copying by
the collector. Instead of preventing races, the collector marks ields being copied by overwriting
them atomically with a randomly chosen value α that Clover assumes the mutator will never write
to the heap. The write barrier blocks the mutator whenever it attempts to write this value and
causes the mutator to store into the up-to-date location of the object.

Of these three collectors, Stopless cannot guarantee collector progress, since repeated writes to a
‘wide’ copy may postpone copying indeinitely; Chicken guarantees progress, but at the expense of
aborting some copies; and Clover is claimed to guarantee progress, though it may stall waiting to
install α into a ield that the mutator is repeatedly updating.

It is appealing to try to perform memory management in hardware. There has been little recent
work here (see Jones [1996] for examples of earlier work). Notable exceptions include work by
Bacon et al. with reconigurable hardware [2012; 2014] and Puitsch’s use of a hardware copying
unit [2011; 2013].

14.4 Transactions

To the best of our knowledge, McGachey et al. [2008] were the irst to use software transactional
memory to support GC. Their concurrent GC supported a version of Java extended with an atomic

construct. Read and write barriers were used both for transactional code and to provide strong
atomicity. In contrast to our Sapphire implementation which places no restrictions on mutators,
McGachey et al. must put an object into exclusive mode before writing to it. The GC notes a version
number stored in the object’s header before copying it and checks that the number has not changed
afterwards. If it has, the copy aborts and has to be retried. Only one object is copied in a transaction.
The Collie on-the-ly collector [Iyengar et al. 2012] uses a hardware-supported read barrier

on Azul Systems Vega processors to ensure that mutators always access tospace replicas, unlike
Sapphire which accesses fromspace until its RootFlip phase. To provide wait-freedom, an object
referenced from a root or accessed by a mutator while Collie is trying to move it is not physically but
virtually copied, by mapping its fromspace page to the same physical memory as its mirrored tospace
page. During the compaction phase, read and write barriers mark objects as non-transportable,
replacing references to them with references to their corresponding address on the mirrored
to-space page. In contrast, our copying collectors never pin fromspace objects. During its mark
phase, Collie constructs conservative ‘referrer sets’ of objects holding references to each object. To
transplant an individual object, Collie copies its contents before it starts a transaction. Inside the
transaction, it checks the references in the referrer set: if any point to the mirrored to-space, the
transaction (and the copy) is aborted. Otherwise the transaction commits. Like our implementations,
Collie tries to reduce the size of transactional read and write sets.
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15 CONCLUSIONS

We have described our experiences building Sapphire, a fully concurrent copying garbage collector,
for a widely used JVM. We provide for the irst time within Jikes RVM a general framework for on-
the-ly copying garbage collection, including a new and general design pattern for managing ragged
changes of GC phases. Our implementation supports the complete Java language, including correct
and on-the-ly handling of locking, hashing and reference types. Building any high performance
collector is complex, and an on-the-ly copying collector particularly so. An ad hoc approach to
construction would have been infeasible. We show how a methodology of deining abstractions,
identifying invariants that can be enforced through write (and one read) barriers, and model
checking leads to a reliable implementation. In contrast to Hudson and Moss’s original Sapphire,
our implementation uses parallel threads for GC. We introduce high performance object copying
by using planned transactions: we ind that hardware and software transactions ofer similar levels
of performance. We add simpler, yet lock-free, support for volatiles.

The source code of our collector, our SPIN models and a technical report describing the models
in detail can be found at https:⁄⁄github.com⁄rejones⁄sapphire.
Sapphire is well suited to soft real-time applications. For the irst time, we evaluate Sapphire

against a set of realistic benchmarks. Our implementation achieves signiicant improvements in
responsiveness over Jikes RVM’s Concurrent Mark-Sweep collector, and is able to reduce the efect
of the garbage collector on response times to less than 1ms for 99.999% of invocations of a periodic
task.
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