459 research outputs found

    Extracting information from the text of electronic medical records to improve case detection: a systematic review

    Get PDF
    Background: Electronic medical records (EMRs) are revolutionizing health-related research. One key issue for study quality is the accurate identification of patients with the condition of interest. Information in EMRs can be entered as structured codes or unstructured free text. The majority of research studies have used only coded parts of EMRs for case-detection, which may bias findings, miss cases, and reduce study quality. This review examines whether incorporating information from text into case-detection algorithms can improve research quality. Methods: A systematic search returned 9659 papers, 67 of which reported on the extraction of information from free text of EMRs with the stated purpose of detecting cases of a named clinical condition. Methods for extracting information from text and the technical accuracy of case-detection algorithms were reviewed. Results: Studies mainly used US hospital-based EMRs, and extracted information from text for 41 conditions using keyword searches, rule-based algorithms, and machine learning methods. There was no clear difference in case-detection algorithm accuracy between rule-based and machine learning methods of extraction. Inclusion of information from text resulted in a significant improvement in algorithm sensitivity and area under the receiver operating characteristic in comparison to codes alone (median sensitivity 78% (codes + text) vs 62% (codes), P = .03; median area under the receiver operating characteristic 95% (codes + text) vs 88% (codes), P = .025). Conclusions: Text in EMRs is accessible, especially with open source information extraction algorithms, and significantly improves case detection when combined with codes. More harmonization of reporting within EMR studies is needed, particularly standardized reporting of algorithm accuracy metrics like positive predictive value (precision) and sensitivity (recall)

    Modeling Disease Severity in Multiple Sclerosis Using Electronic Health Records

    Get PDF
    Objective: To optimally leverage the scalability and unique features of the electronic health records (EHR) for research that would ultimately improve patient care, we need to accurately identify patients and extract clinically meaningful measures. Using multiple sclerosis (MS) as a proof of principle, we showcased how to leverage routinely collected EHR data to identify patients with a complex neurological disorder and derive an important surrogate measure of disease severity heretofore only available in research settings. Methods: In a cross-sectional observational study, 5,495 MS patients were identified from the EHR systems of two major referral hospitals using an algorithm that includes codified and narrative information extracted using natural language processing. In the subset of patients who receive neurological care at a MS Center where disease measures have been collected, we used routinely collected EHR data to extract two aggregate indicators of MS severity of clinical relevance multiple sclerosis severity score (MSSS) and brain parenchymal fraction (BPF, a measure of whole brain volume). Results: The EHR algorithm that identifies MS patients has an area under the curve of 0.958, 83% sensitivity, 92% positive predictive value, and 89% negative predictive value when a 95% specificity threshold is used. The correlation between EHR-derived and true MSSS has a mean R[superscript 2] = 0.38±0.05, and that between EHR-derived and true BPF has a mean R[superscript 2] = 0.22±0.08. To illustrate its clinical relevance, derived MSSS captures the expected difference in disease severity between relapsing-remitting and progressive MS patients after adjusting for sex, age of symptom onset and disease duration (p = 1.56×10[superscript −12]). Conclusion: Incorporation of sophisticated codified and narrative EHR data accurately identifies MS patients and provides estimation of a well-accepted indicator of MS severity that is widely used in research settings but not part of the routine medical records. Similar approaches could be applied to other complex neurological disorders.National Institute of General Medical Sciences (U.S.) (NIH U54-LM008748

    Methods to Develop an Electronic Medical Record Phenotype Algorithm to Compare the Risk of Coronary Artery Disease across 3 Chronic Disease Cohorts

    Get PDF
    Background Typically, algorithms to classify phenotypes using electronic medical record (EMR) data were developed to perform well in a specific patient population. There is increasing interest in analyses which can allow study of a specific outcome across different diseases. Such a study in the EMR would require an algorithm that can be applied across different patient populations. Our objectives were: (1) to develop an algorithm that would enable the study of coronary artery disease (CAD) across diverse patient populations; (2) to study the impact of adding narrative data extracted using natural language processing (NLP) in the algorithm. Additionally, we demonstrate how to implement CAD algorithm to compare risk across 3 chronic diseases in a preliminary study. Methods and Results We studied 3 established EMR based patient cohorts: diabetes mellitus (DM, n = 65,099), inflammatory bowel disease (IBD, n = 10,974), and rheumatoid arthritis (RA, n = 4,453) from two large academic centers. We developed a CAD algorithm using NLP in addition to structured data (e.g. ICD9 codes) in the RA cohort and validated it in the DM and IBD cohorts. The CAD algorithm using NLP in addition to structured data achieved specificity >95% with a positive predictive value (PPV) 90% in the training (RA) and validation sets (IBD and DM). The addition of NLP data improved the sensitivity for all cohorts, classifying an additional 17% of CAD subjects in IBD and 10% in DM while maintaining PPV of 90%. The algorithm classified 16,488 DM (26.1%), 457 IBD (4.2%), and 245 RA (5.0%) with CAD. In a cross-sectional analysis, CAD risk was 63% lower in RA and 68% lower in IBD compared to DM (p<0.0001) after adjusting for traditional cardiovascular risk factors. Conclusions We developed and validated a CAD algorithm that performed well across diverse patient populations. The addition of NLP into the CAD algorithm improved the sensitivity of the algorithm, particularly in cohorts where the prevalence of CAD was low. Preliminary data suggest that CAD risk was significantly lower in RA and IBD compared to DM.National Institutes of Health (U.S.). Informatics for Integrating Biology and the Bedside Project (U54LM008748

    Electronic Medical Records for Discovery Research in Rheumatoid Arthritis

    Get PDF
    Objective: Electronic medical records (EMRs) are a rich data source for discovery research but are underutilized due to the difficulty of extracting highly accurate clinical data. We assessed whether a classification algorithm incorporating narrative EMR data (typed physician notes) more accurately classifies subjects with rheumatoid arthritis (RA) compared with an algorithm using codified EMR data alone. Methods: Subjects with ≥1 International Classification of Diseases, Ninth Revision RA code (714.xx) or who had anti–cyclic citrullinated peptide (anti-CCP) checked in the EMR of 2 large academic centers were included in an “RA Mart” (n = 29,432). For all 29,432 subjects, we extracted narrative (using natural language processing) and codified RA clinical information. In a training set of 96 RA and 404 non-RA cases from the RA Mart classified by medical record review, we used narrative and codified data to develop classification algorithms using logistic regression. These algorithms were applied to the entire RA Mart. We calculated and compared the positive predictive value (PPV) of these algorithms by reviewing the records of an additional 400 subjects classified as having RA by the algorithms. Results: A complete algorithm (narrative and codified data) classified RA subjects with a significantly higher PPV of 94% than an algorithm with codified data alone (PPV of 88%). Characteristics of the RA cohort identified by the complete algorithm were comparable to existing RA cohorts (80% women, 63% anti-CCP positive, and 59% positive for erosions). Conclusion: We demonstrate the ability to utilize complete EMR data to define an RA cohort with a PPV of 94%, which was superior to an algorithm using codified data alone.National Library of Medicine (U.S.) (Award U54LM008748)National Institutes of Health (U.S.). i2b2 (Informatics for Integrating Biology and the Bedside) (Grant U54-LM008748

    Analyzing the heterogeneity of rule-based EHR phenotyping algorithms in CALIBER and the UK Biobank

    Get PDF
    Electronic Health Records (EHR) are data generated during routine interactions across healthcare settings and contain rich, longitudinal information on diagnoses, symptoms, medications, investigations and tests. A primary use-case for EHR is the creation of phenotyping algorithms used to identify disease status, onset and progression or extraction of information on risk factors or biomarkers. Phenotyping however is challenging since EHR are collected for different purposes, have variable data quality and often require significant harmonization. While considerable effort goes into the phenotyping process, no consistent methodology for representing algorithms exists in the UK. Creating a national repository of curated algorithms can potentially enable algorithm dissemination and reuse by the wider community. A critical first step is the creation of a robust minimum information standard for phenotyping algorithm components (metadata, implementation logic, validation evidence) which involves identifying and reviewing the complexity and heterogeneity of current UK EHR algorithms. In this study, we analyzed all available EHR phenotyping algorithms (n=70) from two large-scale contemporary EHR resources in the UK (CALIBER and UK Biobank). We documented EHR sources, controlled clinical terminologies, evidence of algorithm validation, representation and implementation logic patterns. Understanding the heterogeneity of UK EHR algorithms and identifying common implementation patterns will facilitate the design of a minimum information standard for representing and curating algorithms nationally and internationally

    Improving Case Definition of Crohnʼs Disease and Ulcerative Colitis in Electronic Medical Records Using Natural Language Processing

    Get PDF
    available in PMC 2014 June 01Background: Previous studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Our objective was to develop a robust electronic medical record–based model for classification of inflammatory bowel disease leveraging the combination of codified data and information from clinical text notes using natural language processing. Methods: Using the electronic medical records of 2 large academic centers, we created data marts for Crohn’s disease (CD) and ulcerative colitis (UC) comprising patients with ≥1 International Classification of Diseases, 9th edition, code for each disease. We used codified (i.e., International Classification of Diseases, 9th edition codes, electronic prescriptions) and narrative data from clinical notes to develop our classification model. Model development and validation was performed in a training set of 600 randomly selected patients for each disease with medical record review as the gold standard. Logistic regression with the adaptive LASSO penalty was used to select informative variables. Results: We confirmed 399 CD cases (67%) in the CD training set and 378 UC cases (63%) in the UC training set. For both, a combined model including narrative and codified data had better accuracy (area under the curve for CD 0.95; UC 0.94) than models using only disease International Classification of Diseases, 9th edition codes (area under the curve 0.89 for CD; 0.86 for UC). Addition of natural language processing narrative terms to our final model resulted in classification of 6% to 12% more subjects with the same accuracy. Conclusions: Inclusion of narrative concepts identified using natural language processing improves the accuracy of electronic medical records case definition for CD and UC while simultaneously identifying more subjects compared with models using codified data alone.National Institutes of Health (U.S.) (NIH U54-LM008748)American Gastroenterological AssociationNational Institutes of Health (U.S.) (NIH K08 AR060257)Beth Isreal Deaconess Medical Center (Katherine Swan Ginsburg Fund)National Institutes of Health (U.S.) (NIH R01-AR056768)Burroughs Wellcome Fund (Career Award for Medical Scientists)National Institutes of Health (U.S.) (NIH U01-GM092691)National Institutes of Health (U.S.) (NIH R01-AR059648
    corecore