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Abstract

The convergence of two rapidly developing
technologies - high-throughput genotyping and
electronic health records (EHRs) - gives scientists an
unprecedented opportunity to utilize routine healthcare
data to accelerate genomic discovery. Institutions and
healthcare systems have been building EHR-linked DNA
biobanks to enable such a vision. However, the precise
extraction of detailed disease and drug-response
phenotype information hidden in EHRs is not an easy
task. EHR-based studies have successfully replicated
known associations, made new discoveries for diseases
and drug response traits, rapidly contributed cases and
controls to large meta-analyses, and demonstrated the
potential of EHRs for broad-based phenome-wide
association studies. In this review, we summarize the
advantages and challenges of repurposing EHR data
for genetic research. We also highlight recent notable
studies and novel approaches to provide an overview
of advanced EHR-based phenotyping.
influencing disease [21].
Introduction
The dramatic rise of inexpensive and dense sequencing
technologies over the past decade has led to many gen-
etic discoveries. Since the completion of the Human
Genome Project in 2003, genome-wide association stud-
ies (GWASs) alone have markedly accelerated our search
for genetic influences on diseases [1], resulting in the
identification of more than 10,000 single nucleotide
polymorphisms (SNPs) associated with over 250 differ-
ent phenotypes [2]. These phenotypes include specific
diseases (for example, breast cancer or rheumatoid
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arthritis) and observable traits (for example, height, skin
pigmentation or drug response). Similarly, more recent
efforts to look at rare variants through next-generation
sequencing technologies have identified causative SNPs
for rare diseases [3] as well as important modulators for
some common diseases [4-6]. Through these efforts,
genetic determinants of many human diseases and, more
recently, therapeutic responses, are being deciphered.
Traditionally, genetic studies have leveraged purpose-

built cohorts [7,8] (such as the Wellcome Trust Consortium
[9], Framingham Heart Study [10] and Human Heredity
and Health in Africa Consortium [11]). These studies often
use self-report questionnaires and/or clinical staff to obtain
participant phenotypes. While this approach provides qual-
ity phenotypes and high repeatability in the assessment of
given traits, considerable challenges remain [12,13], such as
slow patient accrual [14], inadequate sample size [15,16]
and high cost [17]. As genotyping and sequencing costs
have significantly decreased [18-20] and computing power
has increased, the lack of large cohorts with adequately de-
fined phenotypes has hindered discovery of genetic factors

In recent years, the growth of electronic health records
(EHRs) has been recognized as a viable and efficient
model for genetic research. In this review, we summarize
the advantages and challenges of repurposing EHR data
for genetic research and highlight significant initiatives,
notable studies and novel approaches. Accumulated suc-
cesses have demonstrated that EHRs contain rich infor-
mation and hold promise for establishing more detailed
phenotypes in future.
Combining electronic health record phenotypes
and genetic data
The recent widespread adoption of EHRs in the United
States represents an unprecedented opportunity to lever-
age clinical data generated as a byproduct of healthcare
for genetic discovery. An EHR system is primarily
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designed for routine clinical care. Early studies of EHRs
focused on the challenge of their implementation
[22-26] and investigated their direct benefits for patient
care, including quality improvement, cost savings and
interoperability [27-33]. Beginning in the 1990s, several
institutions began collecting DNA samples from volun-
teer patients and depositing them in biobanks (Table 1).
DNA samples are often accrued from leftover biospeci-
mens collected for routine clinical testing. Many of them
can be linked to individual EHRs that have been
scrubbed of identifying information. These EHR-linked
DNA biobanks have the potential to propel the discovery
of the genetics underlying clinical phenotypes [34,35].
EHRs contain a wealth of clinical information, but this

information is not always in readily minable formats.
Designed for clinical care, diagnoses may only be men-
tioned in clinical notes, and billed diagnoses may later
be rejected as the physician learns more. Thus, to iden-
tify populations with high accuracy takes careful thought
and domain knowledge.
Leveraging EHRs for phenotyping generally involves

collaboration across disciplines. Typically, domain ex-
perts work with clinical informaticians to create and exe-
cute an algorithm to query the EHR for subjects with
the target phenotype and randomly select cases for re-
view. Both domain experts and clinical informaticians
are irreplaceable during the process. Domain experts
understand the target phenotype and its representation
in EHRs, while clinical informaticians know where and
how to extract corresponding information. Validation is
another important part of the process that not only
Table 1 Efforts and incentives to leverage clinical data for ge

Projects Region Start year Website

eMERGE United States 2007 http://emerge-network.org

i2b2 United States 2004 http://www.i2b2.org [153]

PGPop United States 2010 http://pgpop.mc.vanderbilt

deCODE genetics Iceland 1996 http://www.decode.com [6

UK Biobank United Kingdom 2007 http://www.ukbiobank.ac.u

MVP United States 2011 http://www.research.va.gov

KP RPGEH United States 2009 http://www.rpgeh.kaiser.org

CKB China 2004 http://www.ckbiobank.org

CKB, China Kadoorie Biobank; eMERGE, The Electronic Medical Records and Genomics
Permanente; MVP, Million Veteran Program; PGPop, Pharmacogenomic Discovery and
Genes, Environment, and Health.
measures an algorithm’s performance but also enhances
its capability for inter-institutional sharing [36]. An algo-
rithm may be revised and validated iteratively until its
performance achieves a desired goal. An example pheno-
type algorithm is presented in Figure 1.
EHR data come in both structured and unstructured

formats (Figure 2a), and the use of both types of infor-
mation can be essential for creating accurate phenotypes
(Figure 2b). Billing codes (for both diagnosis and proce-
dures), laboratory test results, and growing amounts of
prescription data are in structured formats that are easily
stored in relational databases for rapid and straightfor-
ward retrieval [37]. Using natural language processing
(NLP) pipelines and text mining techniques to scan nar-
rative data for pertinent keywords has greatly expanded
the usefulness of EHRs for research purposes. Further-
more, the presence of textual, narrative information in
the form of clinical notes allows researchers to review
given cases for validation of a phenotype algorithm or for
careful evaluation of obscure phenotypes that may not be
clearly or consistently recorded in billing code data, such
as specific drug adverse events or rare diseases.

Advantages of electronic health records for
genomic medicine
EHRs have several distinct advantages for genetic re-
search, including cost efficiency, the large amounts of
available clinical data, and the ability to analyze data
over time.
Early GWASs used relatively small sample sizes pri-

marily because of the significant costs of genotyping and
nomics research

Aims

[152] To develop methods and best practices for the utilization of
EHRs for genetic research

To provide researchers with useful tools to leverage EHRs for
clinical and genetic research

.edu [59] To understand how a person’s genes affect his or her
response to medicines

0] To leverage population-based and EHR-linked biosamples to
investigate inherited causes of common diseases

k [61] To improve the prevention, diagnosis and treatment of a
wide range of serious and life-threatening illnesses through
a collection of around 500,000 volunteers' biosamples and
clinical information

/mvp [52] To enroll one million volunteers and use their clinical and
genetic data to improve health care for veterans

[53] To examine the genetic and environmental factors that
influence common diseases

[154] To explore the complex interplay between genes and
environmental factors on the risks of common chronic diseases

Network; i2b2, Informatics for Integrating Biology and the Bedside; KP, Kaiser
Replication in Very Large Patient Populations; RPGEH, Research Program on
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Figure 1 Algorithm for the identification of subjects with type 2 diabetes. Normal glucose values are random glucose >200 mg/dl, fasting
glucose >125 mg/dl. Normal HbA1c ≥6.5%. Dx, diagnosis; HbA1c, hemoglobin A1c; ICD-9, International Classification of Diseases, Ninth Revision;
Rx, treatment; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus. Figure reprinted with permission from Kho et al. [57].
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patient accrual. More recent studies have combined
many separate GWASs via meta-analyses to yield popu-
lations of up to hundreds of thousands of patients [38].
In these cases, GWAS data are reused, but their reuse
may be limited to the phenotypes already collected or
require patient re-contact, which can be costly. With
EHR-linked genetic data, researchers can reuse patient
data for many diverse studies [39]. Thus, the marginal
cost of association studies is reduced to a one-time
genotyping expense plus the cost of developing, validat-
ing and executing electronic phenotype algorithms; ef-
fectively, a queryable record of a diverse set of clinical
phenotypes is collected free of charge [40]. Indeed, EHR-
derived populations have contributed to recent large
meta-analyses [41,42]. Also eliminated is the cost of
recruiting patients for each phenotype of study. A recent
analysis compared the cost of 115 prior pharmacoge-
netic studies found in the US National Institutes of
Health (NIH) RePORTER system [43] with the estimated
costs of 28 EHR-based pharmacogenetic studies [12].
The results showed that the EHR-based approach could
reduce study costs by as much as 82% per subject (the
median cost per subject per year decreased from
US$478 to $96). The study also found that EHR-based
studies took a much shorter time than traditional re-
search designs to complete. However, the process of
classifying each patient in an EHR population as a case,
control or neither for a given phenotype is not easy (dis-
cussed in more detail below). Still, for some recent stud-
ies, EHR populations for entirely new phenotypes have
been derived and classified very rapidly, including for an
adverse drug-drug interaction in 20 days [44] and new
contributions to meta-analyses in less than a month [42].
The quantity of EHR data provides another significant

impetus for their use [45]. Considering that subjects
may be clinically complicated - for example, they may
have comorbid conditions and be taking multiple medi-
cations - a large cohort is essential for further sub-
analysis [12]. A recent survey of 456 US biobanks shows
that the mean number of specimens per biobank has
reached 461,396, and this number is growing rapidly [46].
The availability of longitudinal clinical information in

EHRs may also be an asset for genetic research. Certain
phenotypes are inherently longitudinal, such as disease
complications or progression, survival and drug response
[47,48]. Moreover, EHR information can be continuously
updated at little cost to the research study. In addition,
the inclusion of longitudinal EHR data may lead to more
accurate phenotype algorithms [39,49,50]. For example,
in one study, differentiating between Crohn’s disease and
ulcerative colitis was improved through longitudinal in-
formation [51].
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Fake ID ENTRY_DAT CODE

34068 5/13/2001 41.85

37660 8/6/2002 79.99

140680 8/31/2003 79.99

23315 5/14/2003 112

75936 7/9/2004 117.9

Lab tests

Fake ID TEST ENTRY_DAT VALU

3536 pO2 1/23/1996 314

72921 LDL 2/5/1996 34

102460 pCO2 1/26/1996 45

135043 HDL 1/25/1996 35

135432 MonAb 1/24/1999 0.16

Structured

Problem lists:
---- Medications known to be 
prescribed: 
Keppra 750 mg 1/2 tab q am 
and pm 
Dexilant 60 mg by mouth daily 
aspirin 325 mg 1 tablet by 
mouth daily 
clopidogrel 75 mg tablet 1 
tablet by mouth daily 

---- Known adverse and allergic 
drug reactions: 
Sulfa Drugs 

---- known significant medical 
diagnoses: 
Seizure disorder 
Aneurysm 
Heartburn 

---- Known significant 
operative and invasive 
procedures: 
2003  Appendectomy
2005  Stents put in **DATE 
[Aug 29 05]

Semi-structured

Clinical notes
EXAM: BILATERAL DIGITAL SCREENING 
MAMMOGRAM WITH CAD, **DATE[Mar 16 01]: 
COMPARISON: **DATE[Jul 01 01] 
TECHNIQUE: Standard CC and MLO views of 
both breasts were obtained. FINDINGS: The 
breast parenchyma is heterogeneously dense. 
The pattern is extremely complex with 
postsurgical change seen in the right upper outer 
quadrant and scattered benign-appearing 
calcification seen bilaterally. A possible 
asymmetry is seen in the superior aspect of the 
left breast. The parenchymal pattern otherwise 
remains stable bilaterally, with no new distortion 
or suspicious calcifications. IMPRESSION: 
RIGHT: No interval change. No current evidence 
of malignancy.. LEFT: Possible developing 
asymmetry superior aspect left breast for which 
further evaluation by true lateral and spot 
compression views recommended. Ultrasound 
may also be needed.. RECOMMENDATION: 
Left diagnostic mammogram with additional 
imaging as outlined above.. A left breast 
ultrasound may also be needed. BI-RADS 
Category 0: Incomplete Assessment - Need 
additional imaging evaluation. IMPRESSION: 
RIGHT: No interval change. No current evidence 
of malignancy….

Unstructured

Billing codes
ICD 9 and CPT

Clinical notes
(NPL)

Lab and test results
NPL

True
cases

Medications
ePrescribing
and NLP

(b)

Figure 2 (See legend on next page.)
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Figure 2 EHR data structure and accurate phenotyping. (a) Electronic health record (EHR) data can be structured or unstructured. Structured data
are easy to retrieve whereas unstructured data require additional tools to be used for phenotyping, such as natural language processing (NLP).
(b) Accurate phenotyping often requires extracting information from billing codes, prescriptions, laboratory tests and clinical notes. This information
can be either structured or unstructured. ICD-9, International Classification of Diseases, Ninth Revision.
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Electronic health record initiatives, projects and
workgroups
Beginning in the early 2000s, a number of efforts, net-
works and collaborations have been repurposing EHR
data for genetic research in the United States and be-
yond. These include the Electronic Medical Records and
Genomics (eMERGE) network, national biobanks such
as the UK Biobank and China Kadoorie Biobank (CKB),
and other efforts such as the Million Veterans Project
(MVP) [52] and the Kaiser Permanente Research Pro-
gram on Genes, Environment, and Health (RPGEH)
[53]. These are summarized in Table 1.
The eMERGE network is a pioneering consortium

funded by the National Human Genome Research Insti-
tute (NHGRI). It initially included five medical research
biobanks in 2007 (the Group Health Research Institute,
Marshfield Clinic, Mayo Clinic, Northwestern University
and Vanderbilt University) and was expanded to nine
sites in 2011/2012 (the four new members were Boston
Children’s Hospital/Cincinnati Children’s Hospital
Medical Center, Children’s Hospital of Philadelphia,
Geisinger Health System and Mount Sinai). The primary
goal of the eMERGE network is to develop methods and
best practices for the utilization of EHRs for genetic re-
search [54,55]. In the past seven years, the eMERGE net-
work has made a significant contribution to the field by
demonstrating that data captured through routine clin-
ical care are sufficient to identify various phenotypes for
large-scale, high-throughput genetic research. To date,
more than 30 electronic phenotype definitions have been
created, validated and implemented throughout the net-
work, and the results of genetic replications have been
published [36,56-58]. The ‘best practice’ learned from
eMERGE is an iterative paradigm of algorithm design
followed by physician review of cases and controls in a
block-randomized fashion [36].
Pharmacogenomic Discovery and Replication in Very

Large Patient Populations (PGPop) [59] is a collaborative
research resource of the Pharmacogenomics Research
Network (PGRN). Institutions that are part of PGPop in-
vestigate drug-response phenotypes through deploy-
ment, validation and genetic testing of EHR-linked
biobank data. In addition, Kaiser Permanente and the
US Department of Veterans Affairs (VA) have launched
biobank programs by collecting specimens from their
membership populations. Kaiser Permanente started col-
lecting data in 2009, and 200,000 members have now
donated their biological samples from the three Kaiser
regions (Georgia, Northern California and Oregon). The
MVP was initiated by the VA in 2011. Its goal is to en-
roll one million volunteers and use their clinical and
genetic data to improve healthcare for veterans. DNA
samples from both biobanks can be linked to EHRs and
researchers are allowed to access and use them. EHR
biobanks such as MVP, BioVU and BioMe at Mount
Sinai [52] include racially and ethnically diverse popula-
tions, which could be valuable for future studies of mi-
nority groups.
Many European countries have the unique advantages

of centralized healthcare systems with long histories of
extant data. deCODE [60] and the UK Biobank [61] are
two notable European biobanks that have leveraged EHR
and insurance claims data. deCODE, a commercial
population-based biobank founded in 1996 in Iceland,
has been used to investigate the genetics of many com-
mon diseases and traits. So far the company has isolated
genes thought to be involved in several diseases, such as
gout [62], cardiovascular disease [63], cancer [64] and
schizophrenia [65]. deCODE is distinct from other bio-
banks because of the relative genetic homogeneity of the
Icelandic population. The clear ‘founder effects’ facilitate
the identification of disease genetic etiology. Another
unique characteristic of deCODE is that the DNA sam-
ples can be linked to their genealogies [66]. Thus, de-
CODE allows study of the impact of evolutionary factors
in human diseases.
The UK Biobank was started in 2007. It collected more

than 500,000 volunteers aged from 40 to 69 years and
has the ability to request follow-up information. Basic
information about participants is obtained through a
questionnaire and an interview. Information about clin-
ical visits and issued prescriptions are transferred from
the centralized UK National Health Service. The recruit-
ment process was completed in 2010.
Like the eMERGE network, the Nordic Biobank

Network is a European collaborative genetics project. It
connects several population-based biobanks in the Nordic
countries, including Sweden, Finland, Norway, Estonia,
Denmark, Iceland and the Faroe Islands. These biobanks
contain health information from 25 million inhabitants,
including 4 million DNA samples, 100,000 malignant neo-
plasm samples [67] and 17 million users’ prescription data
[68]. Researchers are able to work together to achieve
common results and strengthen genetic research.
In East Asia, the CKB aims to explore the complex

interplay between genes and environmental factors on
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the risks of common chronic diseases [69]. Instead of
using complete EHRs, the project linked to the national
health insurance system and collected abstract outcome
data, such as cause-specific mortality, morbidity for a
few major diseases and any episode of hospitalization.
The BioBank Japan Project also maintains a bio-
repository of blood and tissue samples from 300,000 citi-
zens. Its major research focuses are on cancers, diabetes,
rheumatoid arthritis and a few common diseases [70,71].
Since EHRs are not fundamentally designed for cross-

population queries, the desire to repurpose EHR data for
this use has led to the development of research data
warehouses. One of the most notable has been Informat-
ics for Integrating Biology and the Bedside (i2b2), an
NIH-funded National Center for Biomedical Computing
with a primary mission to provide researchers with in-
formatics tools to leverage EHRs for clinical and genetic
research [72]. i2b2 developed a scalable computational
framework and graphical user interface to allow re-
searchers to query and explore EHR data to create re-
search cohorts. The software it offers can be used for
phenotyping from EHRs while preserving patient privacy
through a query tool interface. Since 2008, i2b2 has also
held annual NLP competitions focused on extracting
meaningful computable results from clinical narrative
text. Previous challenges included identifying obesity co-
morbidities, extracting medication data, identifying
smoking status, resolving text co-references (that is,
finding all expressions that refer to the same entity in a text;
for example, 'The patient is a 76-year-old lady who has had
multiple recurrences of a mandibular mass. She also suffers
from hypertension, gout, and diabetes mellitus.'), and iden-
tifying temporal relationships from text mentions of clinical
events (for example, 'the hemorrhage began a week after
starting warfarin') [73]. Extraction of information about
medications and identification of smoking status have
proven particularly valuable to electronic phenotyping [74].
Genomic replication and discovery using electronic
health record data
Below, we review some examples of genetic studies into
complex diseases and traits, and drug responses, as well
as disease-agnostic approaches such as phenome-wide
association studies (PheWASs). The selection of exam-
ples is not intended to be comprehensive but instead to
provide a sample of the breadth of phenotypes studied
and the chronology of EHR exploration for genetic re-
search. Additional file 1 presents a timeline of major
milestones in the development of EHR-derived genetic
research. The number of publications using EHR-derived
biobank samples for genomic research has been rapidly
growing in recent years, although it is clearly still dwarfed
by non-EHR studies (Figure 3).
Complex diseases
The first study using EHR data in combination with
DNA samples was in 2008. Wood and colleagues en-
rolled a cohort from patients presenting at a bariatric
surgery clinic, collected DNA samples, and then ex-
tracted phenotypes from EHRs and tried to replicate two
known SNPs associated with coronary heart disease and
type 2 diabetes mellitus (T2DM) [75]. They used the
International Classification of Diseases, Ninth Revision
(ICD-9) codes to define their phenotypes. However, nei-
ther of the two SNPs replicated, potentially due to insuf-
ficient accuracy of diagnosis codes or the small sample
size (709 individuals). In 2010, Ritchie and coworkers
applied a more complex phenotyping strategy using a
combination of diagnosis codes, procedural codes, la-
boratory values and clinical notes to define phenotype
algorithms for five common diseases: atrial fibrillation,
Crohn’s disease, multiple sclerosis, rheumatoid arthritis
and T2DM [51]. Physicians reviewed the electronic med-
ical records to determine whether the cases and controls
identified by the algorithms were correctly labeled. Of
note, algorithms were used to identify both cases and
controls, such that many individuals were neither cases
nor controls due to insufficient information or poten-
tially overlapping diseases. Their manual chart review
showed that the positive predictive values (PPVs) of al-
gorithms reached 95% or better. In the following ana-
lysis, they replicated at least one previously reported
association for each of the diseases. Another group con-
ducted a replication study on rheumatoid arthritis [76].
They also used both structured and unstructured EHR
data to define the rheumatoid arthritis phenotype. Their
results showed that the odds ratios and aggregate genetic
risk score (GRS) of known rheumatoid arthritis risk al-
leles were nearly identical to those reported from a
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previous meta-analysis of multiple traditionally collected
cohorts.
Several projects have discovered new genetic associa-

tions using EHR-linked DNA biobanks for genetic discov-
ery [77]. For example, eMERGE investigators reported
common variants near the forkhead family gene FOXE1
associated with hypothyroidism in European-Americans
[50]. Chen and colleagues leveraged the absolute lympho-
cyte count from clinical data to identify 53 maturation/
aging-related genes [78]. Other novel associations were
found using GWASs of erythrocyte sedimentation rate
[79], red blood cell counts [80] and varicella zoster virus
infection [81], among others [77].
Since EHRs became available for research, investiga-

tors have studied the portability of EHR-based pheno-
type definitions. Many phenotype definitions of complex
diseases, such as hypothyroidism [50], cardiovascular
diseases [82-84], T2DM [57] and rheumatoid arthritis
[56,85], have been deployed and validated across mul-
tiple institutions. EHR-derived phenotypes appear to be
generally portable and more accurate than previous de-
signs using just administrative data, and are therefore
gaining more widespread acceptance for clinical and
genetic research [13,86]. Now, researchers are able to
study phenotypes at different levels of detail - for ex-
ample, drug-dose response [48,87,88] versus longitudinal
analyses [89,90]. Many of these algorithms from eMERGE
and other institutions have been shared on the Phenotype
KnowledgeBase [40].
Studies combining genotyping and phenotyping not

only proved the utility of linking EHR data with biospe-
cimens for genetic studies but also suggested that elec-
tronic phenotyping is not as straightforward as simply
querying patient data for diagnosis codes. Challenges in
defining phenotypes still exist, and at present computa-
tional methods to share complicated phenotypes across
EHR systems or institutions do not exist. Thus, each site
must use local informatics personnel to deploy the algo-
rithm, and manual chart review is required for valid-
ation. Indeed, manual curation of all records may be
required for some phenotypes if they have low PPVs
[48,91]. Successful phenotyping may require the collab-
oration of clinicians, informaticians and other domain
experts to develop a validated algorithm.

Pharmacogenomics
Pharmacogenomics seeks to identify the genetic under-
pinnings affecting an individual’s response to drugs.
However, partially owing to the difficulty of obtaining
cohorts with drug-response data, pharmacogenomics
has not been thoroughly studied. We reviewed the 1,920
studies in the NHGRI GWAS catalog as of September
2014 and noted that only 7% of them include drug-
response phenotypes, with most of these studies
focusing on the efficacy of warfarin, chemotherapy and
psychiatric medications. Thus, pharmacogenomics may
be a ripe area for research using EHR data [35]. Indeed,
EHR data have already been used to successfully repli-
cate associations with clopidogrel, warfarin and tacroli-
mus. Variants in the membrane-transporter-encoding
gene ABCB1 and the cytochrome P450 gene CYP2C19
were associated with recurrent cardiac events during
clopidogrel therapy in a real practice setting using EHR
data [48]. Birdwell and coworkers confirmed the associ-
ation of tacrolimus blood concentration to dose ratio
with the CYP3A5 gene variant rs776746 using transplant
patients and their EHR data for medication doses and ta-
crolimus levels [92]. Ramirez and colleagues investigated
the associations between steady-state warfarin dose and
European-American or African-American ancestry using
EHRs [88]. Integration of an expanded set of genetic var-
iants into a warfarin pharmacogenomic algorithm im-
proved dose prediction, reducing the prediction error by
23% in European-Americans and by 7.5% in African-
Americans when compared to clinical algorithms. A
later study of warfarin-treated individuals demonstrated
that the CYP2C9*3 variant conferred a twofold increased
risk of warfarin-related bleeding events after the warfarin
initiation period [93].
Besides the replication and expansion of pharmaco-

genetics findings, EHRs have been used to discover
novel pharmacogenetics-related phenotypes. For ex-
ample, a study group from the Marshfield Clinic used
their biobank to identify an estrogen receptor genotype
associated with thromboembolism during tamoxifen ex-
posure [94]. Another study generated dose–response
curves for atorvastatin and simvastatin to test both po-
tency and efficacy of the drugs for association with 144
preselected SNPs [87]. They identified a pharmacody-
namic variant (in the transcriptional regulator PRDM16)
associated with statin efficacy and several loci associated
with potency. EHRs have also contributed to a meta-
analysis of statin reduction of low-density lipoprotein
(LDL) cholesterol levels [42]. Furthermore, EHR data
have uncovered variants in the G-protein-coupled recep-
tor gene TDAG8 (also known as GPR68) associated with
heparin-induced thrombocytopenia, a rare but severe
adverse reaction to heparin anticoagulant therapy [95].

Phenome-wide approaches
By virtue of serving as the record of an individual’s clin-
ical history, EHRs represent an agnostic collection of
phenotypes driven by the reasons for a patient to seek
healthcare. As such, EHRs enable a new class of research
that looks at many different diseases simultaneously. For
example, Rzhetsky and colleagues used billing codes
from the EHRs of 1.5 million patients to analyze disease
co-occurrence in 161 conditions, demonstrating that
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autism, bipolar disorder and schizophrenia likely share
significant genetic architecture [96]. This inference was
later validated using GWAS data on the three diseases
[97]. Another study of autism spectrum disorders ana-
lyzed the longitudinal diagnosis codes of 13,740 individ-
uals and observed three distinct new patterns of medical
trajectories [89]. The findings confirmed the value of
longitudinal EHR data and implied various genetic eti-
ologies for the disease.
PheWASs provide a systematic scan of clinical pheno-

types associated with a target genetic variant. As such, a
PheWAS can be considered as a ‘reverse GWAS’. In a
PheWAS in 2010, groups of diagnosis codes were used
as phenotypes to replicate previously known gene-
disease associations for seven common diseases. Associ-
ations of four diseases were successfully replicated,
including multiple sclerosis, rheumatoid arthritis, Crohn’s
disease and ischemic heart disease [98]. A more recent
PheWAS of 3,141 variants testing 751 SNP-phenotype as-
sociations previously discovered through a GWAS repli-
cated 210 of them, including 66% of known associations
with adequate sample size to be tested for in the cohort.
This study also identified 63 new associations, some of
which represent true pleiotropy, in which the genetic vari-
ant is associated with multiple distinct phenotypes [99].
Hebbring and coworkers replicated a novel PheWAS find-
ing of an association between the human leukocyte anti-
gen HLA-DRB1*1501 variant and erythematous rashes in
the Marshfield Clinic biobank [100] and have subse-
quently leveraged this cohort to study functional variants
across the genome [101]. Cronin and team used this ap-
proach to identify an association between obesity-
associated FTO variants and fibrocystic breast disease
[102]. Namjou and colleagues applied the same approach
to European-origin pediatric cohorts and discovered gen-
etic links between the phospholipase C-like 1 gene PLCL1
and speech language development, and between the inter-
leukin gene cluster IL5-IL13 and eosinophilic esophagitis
[103]. A study by Shameer and team revealed that variants
associated with the number of circulating platelets and
mean platelet volume have pleiotropic associations with
myocardial infarction, autoimmune and hematologic dis-
orders [104]. The PheWAS approach has also been used
in observational cohorts [105]. These independent valida-
tions confirmed the feasibility of PheWASs for genetic
research.

Challenges of repurposing electronic health
record data for genetic research
EHRs are primarily designed for clinical care, not research.
As a result, reuse of EHRs for research purposes poses
certain challenges. These challenges result from imperfec-
tions in the EHR data themselves and challenges in ‘un-
derstanding’ the EHR data for phenotype abstraction.
EHRs derive from selected populations and their data
contain biases [34,45,106]; in particular, they are biased
toward sick individuals. In addition, a study of longitu-
dinal Medicare claims data showed substantial differ-
ences in diagnostic practices across various US regions
[107]. As a consequence, when EHR data are repurposed
for genetic research, biases in the phenotyping output
should be considered and evaluated. Controls may also
contain biases based on the reason the population was
selected, the EHR from which they were derived, or in-
sufficient data within the EHR to rule out them having
the disease. For example, consider a patient seen only
for an orthopedic concern, such as a fracture, and its
follow-up; the individual may have multiple elevated
blood pressure readings due to pain (and appear to be a
case for hypertension) and never receive glucose screen-
ing to rule out diabetes (and thus may seem to be a can-
didate for a control for diabetes). Novel approaches,
statistical or informatics-based, are needed to handle ob-
servation biases of data in the EHR. One recent study
found improved association results by matching controls
to cases based on density of EHR content [108].
Undoubtedly, results of phenotyping would be more

accurate if all EHR data for every patient were available.
However, clinical data are often fragmented across
healthcare systems as patients visit multiple healthcare
centers, change insurance, and move. The ability to ex-
change EHR data is limited [109]. A recent retrospective
observational study indicated that, of the nearly 3.7 mil-
lion patients who sought treatment in acute care settings
in Massachusetts, over 30% visited more than one hos-
pital and 1% visited five or more hospitals [110]. Similar
findings were reported in another cross-sectional survey
conducted in 32 primary care clinics in Colorado, which
suggested that missing information in clinical settings is
common and multifaceted [111]. Incomplete EHR data
may adversely affect phenotyping results. A study evalu-
ating the eMERGE T2DM algorithm [57,98] found that
using EHR data from two medical centers in Minnesota
had better predictive power than using data from one
medical center alone [112]. A follow-up study found that
phenotype accuracy improved as the timeframe of avail-
able EHR data was increased from one to ten years [49].
Another issue limiting repurposing EHRs for research

is EHR accuracy. Inaccuracy in an EHR may be intro-
duced at any time during a clinical visit; billing accuracy
is not always a high priority for busy clinicians. Common
sources of inaccuracy include the amount and quality of
information available, communication between patients
and clinicians, professional knowledge and experience
with the illness, unintentional errors (for example, mis-
specification, use of medical abbreviations), and, occasion-
ally, intentional errors (for example, upcoding diagnoses
for higher restitution) [113]. Additionally, EHRs can
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record and store data in different ways. For example,
‘weight’ and ‘height’ may be recorded and stored within an
EHR system in different units (for example, kilograms,
grams and pounds for weight), which can lead to false
body mass indices [86]. Acronyms may have multiple
meanings, such as ‘RA’ (rheumatoid arthritis, right atrium,
room air or right arm) and ‘PD’ (Parkinson’s disease or
personality disorder), and are frequently found in clinical
notes [114]. In addition, a failed laboratory test or a con-
taminated blood sample may return a physiologically un-
likely value, such as an LDL over 10,000 mmol/l. These
inaccuracies do not typically misdirect a provider’s diagno-
sis or treatment as clinicians can easily discern any mis-
takes or decode acronyms based on the available context
and their medical knowledge. However, the lack of such
knowledge makes it difficult for a computer to detect or
determine the correct information, thus resulting in phe-
notyping false positives.
EHR data are highly complex and include both struc-

tured and unstructured information that must be woven
together to create a phenotype algorithm [109,115]. In
recent years, considerable NLP efforts have been de-
voted to promoting information extraction from clinical
notes, resulting in many publicly available or home
grown NLP systems, such as cTAKES [116], MedLEE
[117] and KMCI [118]. However, subtle relationships
hidden in notes remain difficult to extract due to the
complexity of the language used and the lack of explicit
semantic resources describing the relationships between
clinical concepts [119,120]. A combination of deeper
syntactic analysis and domain knowledge stored in for-
mal ontologies would be a promising future direction.
Another challenge to broad use of EHR data is that

they contain protected health information. Many EHR-
linked biobanks have been collected under consent
models that assume protection of the individual’s iden-
tity. Some EHRs include the consent and information
necessary to re-contact individuals [121,122] while
others do not [123]. Given publicly available resources,
researchers have shown that removal of the specific
identifiers mandated by the US Health Insurance Port-
ability and Accountability Act (HIPAA) is insufficient to
protect against re-identification [124,125]. For this rea-
son, most EHR-linked biobanks are protected with ac-
cess policies, and result sets that are shared publicly (for
example, with dbGaP) are analyzed for re-identification
risk. Additionally, the NIH’s Genomic Data Sharing
(GDS) policy [126], which went into effect on 25 January
2015, requires individuals to consent to broad data shar-
ing of their DNA (in a manner compliant with HIPAA
Safe Harbor). This policy made untenable some existing
opt-out consent models for future federal studies, such
as that employed in the Vanderbilt BioVU biobank [123].
As a result, BioVU, as one example, has transitioned to
an opt-in consent model for future studies that explicitly
consents for data sharing. However, the GDS policy
states that samples collected before 25 January 2015 in
cohorts not explicitly consented for sharing (such as
BioVU) can still be used in future NIH studies.

Conclusions and future directions
Accumulated studies suggest that EHRs offer potential
efficiencies in addressing the temporal and economic
challenges of traditional genetic research. Ample EHR
data may enable the extraction of more reliable and fine-
grained phenotypes. The number of EHR studies is
growing. To date, EHR biobanks with extant genetic
data are relatively small compared to the largest meta-
analyses. A near-term future expectation, however, is
that millions of patients for whom EHR data are avail-
able will also have available genetic data through efforts
such as eMERGE and MVP, and national biobanks such
as the UK Biobank, CKB and Qatar Biobank. These ef-
forts will make EHR biobanks an important and growing
resource for data discovery and replication. Indeed, ef-
fective use of EHR data will likely play an important role
in the US Precision Medicine project announced by
President Obama in his State of the Union address on
20 January 2015.
One of the key lessons that we have learned from pre-

vious experience is that work is needed to define pheno-
types accurately using EHR data. Accurate phenotypes
have become a rate-limiting step for EHR-based genetic
research, and the process of accurately defining them
often requires interactions between subject matter ex-
perts and informaticians in an iterative process of refine-
ment [127]. The Health Information Technology for
Economic and Clinical Health (HITECH) Act, enacted
as part of the American Recovery and Reinvestment Act
of 2009, may increase the availability of EHRs for genetic
research. Owing to the Meaningful Use Regulations,
which are particularly aimed at increasing the capability
for clinical information exchange, large-scale adoption of
these certified EHR technologies and agreed standards
for interoperability will accelerate the exchange of
phenotypic and genetic data across various systems,
thereby forming a more powerful ‘EHR cloud’ than ever
before [128]. However, there is no current standard for
applying automated, fully computable and transportable
execution of phenotype algorithms to a diverse set of
EHR systems and sites. The closest current effort is per-
haps the Quality Data Model [129]; however, this specifi-
cation at present does not allow for depth of NLP or
complex methods such as machine learning, seen in
some phenotyping algorithms [130].
Unfortunately, many data in clinical records are still

not computable. New knowledge resources and applica-
tions of structured medical terminologies may improve
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the ‘computability’ of future EHRs. Pioneering work in-
cludes standardized vocabularies such as Systematized
Nomenclature of Medicine - Clinical Terms (SNOMED-
CT) for representing clinical concepts such as diseases
and clinical traits, RxNorm for medications, and the
Unified Medical Language System (UMLS) to link >100
disparate vocabularies together. Some of these vocabular-
ies offer predefined semantic relationships that can be lev-
eraged in future applications. For example, SNOMED-CT
includes links between its nearly 400,000 concepts with an
extensive hierarchical structure, along with other semantic
relationships [131]. In this way, a computer can computa-
tionally deduce that the concept ‘viral pneumonia’ is an
‘infective pneumonia (disorder)’, which has a ‘causative
agent’ relationship with the concept ‘virus’ and a ‘find-
ing site’ relationship with the concept ‘lung’. Some ef-
forts, such as openEHR [132] and clinical element
model (CEM) [133], have published specifications to
define detailed clinical data. The implementation of for-
mal representations of EHR data may improve auto-
matic phenotyping performance because computers
may ‘understand’ the meaning across clinical data based
on pre-defined semantics.
Fully leveraging the potential of EHRs often requires

not only knowledge within a terminology but also of the
semantic relationships between concepts across termino-
logical systems. For example, drugs are typically used for
disease management (indications) and they may also
cause problems (side effects). The ICD-9 and RxNorm
are used to represent diseases and drugs, respectively,
but neither of them maintains the knowledge of indica-
tions and side effects. Although terminological systems
such as the UMLS are often used to bridge terminolo-
gies, the relationship between concepts across termin-
ologies remains suboptimal. Some groups have created
ad hoc mapping between concepts across terminologies.
This manual approach is time consuming and faces sig-
nificant challenges due to the disparity of coverage and
granularity between terminologies [134-136]. We and
others have investigated one particular relationship (for
example, indication) at a time and leveraged available
resources to identify concepts from different terminolo-
gies applicable to this relationship. This approach has
led to several previously unavailable resources, such as
SIDER [137] and MEDI [138-140]. SIDER offers infor-
mation about drugs and their corresponding side ef-
fects. MEDI provides computable knowledge about
drugs (represented by RxNorm concepts) and their in-
dications (represented by the ICD-9 or UMLS Concept
Unique Identifiers). These knowledge bases have
proven beneficial to many other studies - for example,
in drug discovery [141] and clinical information extraction
[142]. EHR-based genetic research requires knowledge
from basic science, clinical practice and informatics.
Anticipation of increased use of ontologies within clinical
information systems and biological resources from various
domain terminologies - for example, Gene Ontology,
SNOMED-CT and ICD-9 - would facilitate conjoined
knowledge bases to accelerate research and cross-talk be-
tween biological research and clinical care.
Advanced tools for unstructured EHR data analysis

not limited to narrative notes will improve the quality
and detail of future phenotypes extracted from the EHR.
However, a number of challenges still exist, such as dis-
ambiguation of acronyms and interpretation of clinical
meaning across a number of sentences. Other unstruc-
tured data - for example, radiology images and waveform
data - may be key to diagnosis in routine practice, such
as using chest X-rays to rule out pneumonia and electro-
cardiography for myocardial infarction. Few of these raw
data are involved in electronic phenotyping at present.
In the future, EHRs may routinely include pictures (of
rashes, for example) and radiological data that can be
readily reprocessed with imaging algorithms, and abun-
dant sensor data such as telemetry or mobile health
technologies will be available - providing another deep
resource that would be costly to obtain outside of clin-
ical care.
In addition, new models will be needed to handle

many-to-many gene-disease analysis. For example, re-
searchers frequently observe that certain diseases (for
example, diabetes and hypertension) co-occur in indi-
viduals, suggesting a possible many-to-many associ-
ation between genetic variations and multiple disorders.
Network analyses may help untangle such complex
relationships.
The ultimate utility of genetic discovery will be tested

through its implementation in clinical practice. The chal-
lenge of incorporating genetic data and implementing de-
cision support has been discussed elsewhere [128]. EHRs
need to be adapted to handle new and large classes of in-
formation, new standards must be created and adopted,
and decision support should be refined to ensure that gen-
etic findings are seamlessly integrated into clinical work-
flow. A few medical centers have already incorporated
genetic information into routine care [143-145]. These
centers have shown that genomic data can be used to
tailor prescribing decisions to target therapies better
[146,147] and to avoid serious drug adverse events
[148,149], which are often impossible to predict without
using genetics. Acceleration of the adoption of genomic
medicine is also the goal of NHGRI’s IGNITE network,
which includes a wide array of underserved, commu-
nity, VA and military medical centers [150]. In these
ways, NIH director Francis Collins’ 2009 vision of a
genomic treatment plan for a patient being 'simply a
click of the mouse' away is already being realized for
some conditions [151].
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Additional file 1: Timeline of genetic and electronic health record-
based research. A timeline of major milestones in the development of
EHR-derived genetic research.
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