2,963 research outputs found

    Knowledge-based vision and simple visual machines

    Get PDF
    The vast majority of work in machine vision emphasizes the representation of perceived objects and events: it is these internal representations that incorporate the 'knowledge' in knowledge-based vision or form the 'models' in model-based vision. In this paper, we discuss simple machine vision systems developed by artificial evolution rather than traditional engineering design techniques, and note that the task of identifying internal representations within such systems is made difficult by the lack of an operational definition of representation at the causal mechanistic level. Consequently, we question the nature and indeed the existence of representations posited to be used within natural vision systems (i.e. animals). We conclude that representations argued for on a priori grounds by external observers of a particular vision system may well be illusory, and are at best place-holders for yet-to-be-identified causal mechanistic interactions. That is, applying the knowledge-based vision approach in the understanding of evolved systems (machines or animals) may well lead to theories and models that are internally consistent, computationally plausible, and entirely wrong

    A framework for teaching biology using StarLogo TNG : from DNA to evolution

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (p. 65-66).This thesis outlines a 10-unit biology curriculum implemented in StarLogo TNG. The curriculum moves through units on ecology, the DNA-protein relationship, and evolution. By combining the three topics, it aims to highlight the similarities among different scales and the relationships between them. In particular, through the curriculum, students can see how small-scale changes in molecular processes can create large-scale changes in entire populations. In addition, the curriculum encourages students to engage in problembased learning, by which they are trained to approach questions creatively and independently.by Yaa-Lirng Tu.M.Eng

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures

    Cyclic Incrementality in Competitive Coevolution: Evolvability through Pseudo-Baldwinian Switching-Genes

    Get PDF
    Coevolving systems are notoriously difficult to understand. This is largely due to the Red Queen effect that dictates heterospecific fitness interdependence. In simulation studies of coevolving systems, master tournaments are often used to obtain more informed fitness measures by testing evolved individuals against past and future opponents. However, such tournaments still contain certain ambiguities. We introduce the use of a phenotypic cluster analysis to examine the distribution of opponent categories throughout an evolutionary sequence. This analysis, adopted from widespread usage in the bioinformatics community, can be applied to master tournament data. This allows us to construct behavior-based category trees, obtaining a hierarchical classification of phenotypes that are suspected to interleave during cyclic evolution. We use the cluster data to establish the existence of switching-genes that control opponent specialization, suggesting the retention of dormant genetic adaptations, that is, genetic memory. Our overarching goal is to reiterate how computer simulations may have importance to the broader understanding of evolutionary dynamics in general. We emphasize a further shift from a component-driven to an interaction-driven perspective in understanding coevolving systems. As yet, it is unclear how the sudden development of switching-genes relates to the gradual emergence of genetic adaptability. Likely, context genes gradually provide the appropriate genetic environment wherein the switching-gene effect can be exploite

    Multiagent Learning Through Indirect Encoding

    Get PDF
    Designing a system of multiple, heterogeneous agents that cooperate to achieve a common goal is a difficult task, but it is also a common real-world problem. Multiagent learning addresses this problem by training the team to cooperate through a learning algorithm. However, most traditional approaches treat multiagent learning as a combination of multiple single-agent learning problems. This perspective leads to many inefficiencies in learning such as the problem of reinvention, whereby fundamental skills and policies that all agents should possess must be rediscovered independently for each team member. For example, in soccer, all the players know how to pass and kick the ball, but a traditional algorithm has no way to share such vital information because it has no way to relate the policies of agents to each other. In this dissertation a new approach to multiagent learning that seeks to address these issues is presented. This approach, called multiagent HyperNEAT, represents teams as a pattern of policies rather than individual agents. The main idea is that an agent’s location within a canonical team layout (such as a soccer team at the start of a game) tends to dictate its role within that team, called the policy geometry. For example, as soccer positions move from goal to center they become more offensive and less defensive, a concept that is compactly represented as a pattern. iii The first major contribution of this dissertation is a new method for evolving neural network controllers called HyperNEAT, which forms the foundation of the second contribution and primary focus of this work, multiagent HyperNEAT. Multiagent learning in this dissertation is investigated in predator-prey, room-clearing, and patrol domains, providing a real-world context for the approach. Interestingly, because the teams in multiagent HyperNEAT are represented as patterns they can scale up to an infinite number of multiagent policies that can be sampled from the policy geometry as needed. Thus the third contribution is a method for teams trained with multiagent HyperNEAT to dynamically scale their size without further learning. Fourth, the capabilities to both learn and scale in multiagent HyperNEAT are compared to the traditional multiagent SARSA(λ) approach in a comprehensive study. The fifth contribution is a method for efficiently learning and encoding multiple policies for each agent on a team to facilitate learning in multi-task domains. Finally, because there is significant interest in practical applications of multiagent learning, multiagent HyperNEAT is tested in a real-world military patrolling application with actual Khepera III robots. The ultimate goal is to provide a new perspective on multiagent learning and to demonstrate the practical benefits of training heterogeneous, scalable multiagent teams through generative encoding

    Long-term cyclic persistence in an experimental predator–prey system

    Get PDF
    Predator–prey cycles rank among the most fundamental concepts in ecology, are predicted by the simplest ecological models and enable, theoretically, the indefinite persistence of predator and prey1,2,3,4. However, it remains an open question for how long cyclic dynamics can be self-sustained in real communities. Field observations have been restricted to a few cycle periods5,6,7,8 and experimental studies indicate that oscillations may be short-lived without external stabilizing factors9,10,11,12,13,14,15,16,17,18,19. Here we performed microcosm experiments with a planktonic predator–prey system and repeatedly observed oscillatory time series of unprecedented length that persisted for up to around 50 cycles or approximately 300 predator generations. The dominant type of dynamics was characterized by regular, coherent oscillations with a nearly constant predator–prey phase difference. Despite constant experimental conditions, we also observed shorter episodes of irregular, non-coherent oscillations without any significant phase relationship. However, the predator–prey system showed a strong tendency to return to the dominant dynamical regime with a defined phase relationship. A mathematical model suggests that stochasticity is probably responsible for the reversible shift from coherent to non-coherent oscillations, a notion that was supported by experiments with external forcing by pulsed nutrient supply. Our findings empirically demonstrate the potential for infinite persistence of predator and prey populations in a cyclic dynamic regime that shows resilience in the presence of stochastic events

    Shift-life interactive art: mixed-reality artificial ecosystem simulation

    Get PDF
    This article presents a detailed design, development and implementation of a Mixed Reality Art-Science collaboration project which was exhibited during Darwin’s bicentenary exhibition at Shrewsbury, England. As an artist-led project the concerns of the artist were paramount, and this article presents Shift-Life as part of an on-going exploration into the parallels between the non-linear human thinking process and computation using semantic association to link items into ideas, and ideas into holistic concepts. Our art explores perceptions and states of mind as we move our attention between the simulated world of the computer and the real-world we inhabit, which means that any viewer engagement is participatory rather than passive. From a Mixed Reality point of view, the lead author intends to explore the convergence of the physical and virtual, therefore the formalization of the Mixed Reality system, focusing on the integration of artificial life, ecology, physical sensors and participant interaction through an interface of physical props. It is common for digital media artists to allow viewers to activate a work either through a computer screen via direct keyboard or mouse manipulation, or through immersive means to activate their work, for “Shift-Life” the artist was concerned with a direct “relational” approach where viewers would intuitively engage with the installation’s everyday objects, and with each other, to fully experience the piece. The Mixed Reality system is mediated via physical environmental sensors, which affect the virtual environment and autonomous agents, which in turn reacts and is expressed as virtual pixels projected onto a physical surface. The tangible hands-on interface proved to be instinctive, attractive and informative on many levels, delivering a good example of collaboration between the Arts and Science
    corecore