26 research outputs found

    Broadcast Scheduling in Interference Environment

    Get PDF
    Broadcast is a fundamental operation in wireless networks, and nai¨ve flooding is not practical, because it cannot deal with interference. Scheduling is a good way of avoiding interference, but previous studies on broadcast scheduling algorithms all assume highly theoretical models such as the unit disk graph model. In this work, we reinvestigate this problem by using the 2-Disk and the signal-to-interference-plus-noise-ratio (SINR) models. We first design a constant approximation algorithm for the 2-Disk model and then extend it to the SINR model. This result, to the best of our knowledge, is the first result on broadcast scheduling algorithms in the SINR model

    A Combinatorial Logarithmic Approximation Algorithm for the Directed Telephone Broadcast Problem

    Full text link

    Approximation Algorithms for Broadcasting in Simple Graphs with Intersecting Cycles

    Get PDF
    Broadcasting is an information dissemination problem in a connected network in which one node, called the originator, must distribute a message to all other nodes by placing a series of calls along the communication lines of the network. Every time the informed nodes aid the originator in distributing the message. Finding the minimum broadcast time of any vertex in an arbitrary graph is NP-Complete. The problem remains NP-Complete even for planar graphs of degree 3 and for a graph whose vertex set can be partitioned into a clique and an independent set. The best theoretical upper bound gives logarithmic approximation. It has been shown that the broadcasting problem is NP-Hard to approximate within a factor of 3-É›. The polynomial time solvability is shown only for tree-like graphs; trees, unicyclic graphs, tree of cycles, necklace graphs and some graphs where the underlying graph is a clique; such as fully connected trees and tree of cliques. In this thesis we study the broadcast problem in different classes of graphs where cycles intersect in at least one vertex. First we consider broadcasting in a simple graph where several cycles have common paths and two intersecting vertices, called a k-path graph. We present a constant approximation algorithm to find the broadcast time of an arbitrary k-path graph. We also study the broadcast problem in a simple cactus graph called k-cycle graph where several cycles of arbitrary lengths are connected by a central vertex on one end. We design a constant approximation algorithm to find the broadcast time of an arbitrary k-cycle graph. Next we study the broadcast problem in a hypercube of trees for which we present a 2-approximation algorithm for any originator. We provide a linear algorithm to find the broadcast time in hypercube of trees with one tree. We extend the result for any arbitrary graph whose nodes contain trees and design a linear time constant approximation algorithm where the broadcast scheme in the arbitrary graph is already known. In Chapter 6 we study broadcasting in Harary graph for which we present an additive approximation which gives 2-approximation in the worst case to find the broadcast time in an arbitrary Harary graph. Next for even values of n, we introduce a new graph, called modified-Harary graph and present a 1-additive approximation algorithm to find the broadcast time. We also show that a modified-Harary graph is a broadcast graph when k is logarithmic of n. Finally we consider a diameter broadcast problem where we obtain a lower bound on the broadcast time of the graph which has at least (d+k-1 choose d) + 1 vertices that are at a distance d from the originator, where k >= 1

    Resource Allocation in Networked and Distributed Environments

    Get PDF
    A central challenge in networked and distributed systems is resource management: how can we partition the available resources in the system across competing users, such that individual users are satisfied and certain system-wide objectives of interest are optimized? In this thesis, we deal with many such fundamental and practical resource allocation problems that arise in networked and distributed environments. We invoke two sophisticated paradigms -- linear programming and probabilistic methods -- and develop provably-good approximation algorithms for a diverse collection of applications. Our main contributions are as follows. Assignment problems: An assignment problem involves a collection of objects and locations, and a load value associated with each object-location pair. Our goal is to assign the objects to locations while minimizing various cost functions of the assignment. This setting models many applications in manufacturing, parallel processing, distributed storage, and wireless networks. We present a single algorithm for assignment which generalizes many classical assignment schemes known in the literature. Our scheme is derived through a fusion of linear algebra and randomization. In conjunction with other ideas, it leads to novel guarantees for multi-criteria parallel scheduling, broadcast scheduling, and social network modeling. Precedence constrained scheduling: We consider two precedence constrained scheduling problems, namely sweep scheduling and tree scheduling, which are inspired by emerging applications in high performance computing. Through a careful use of randomization, we devise the first approximation algorithms for these problems with near-optimal performance guarantees. Wireless communication: Wireless networks are prone to interference. This prohibits proximate network nodes from transmitting simultaneously, and introduces fundamental challenges in the design of wireless communication protocols. We develop fresh geometric insights for characterizing wireless interference. We combine our geometric analysis with linear programming and randomization, to derive near-optimal algorithms for latency minimization and throughput capacity estimation in wireless networks. In summary, the innovative use of linear programming and probabilistic techniques for resource allocation, and the novel ways of connecting them with application-specific ideas is the pivotal theme and the focal point of this thesis

    Radio network algorithms for global communication

    Get PDF
    Radio networks are a distributed computing model capturing the behavior of devices that communicate via wireless transmissions. Applications of wireless networks have expanded hugely in recent decades due to their convenience and versatility. However, wireless communication presents practical difficulties, particularly in avoiding interference between transmissions. The radio network model provides a theoretical distillation of the behavior of such networks, in order to better understand and facilitate communication. This thesis concerns fundamental global communication tasks in the radio network model: that is, tasks that require relaying messages throughout the entire network. Examples include broadcasting a message to all devices in a network, or reaching agreement on a single device to act as a coordinator. We present algorithms to perform global tasks efficiently, and show improved asymptotic running times over a range of environments and model variants. Our results demonstrate an advance over the state of the art in radio network research, and in many cases reach or approach known lower bounds

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Metastability-containing circuits, parallel distance problems, and terrain guarding

    Get PDF
    We study three problems. The first is the phenomenon of metastability in digital circuits. This is a state of bistable storage elements, such as registers, that is neither logical 0 nor 1 and breaks the abstraction of Boolean logic. We propose a time- and value-discrete model for metastability in digital circuits and show that it reflects relevant physical properties. Further, we propose the fundamentally new approach of using logical masking to perform meaningful computations despite the presence of metastable upsets and analyze what functions can be computed in our model. Additionally, we show that circuits with masking registers grow computationally more powerful with each available clock cycle. The second topic are parallel algorithms, based on an algebraic abstraction of the Moore-Bellman-Ford algorithm, for solving various distance problems. Our focus are distance approximations that obey the triangle inequality while at the same time achieving polylogarithmic depth and low work. Finally, we study the continuous Terrain Guarding Problem. We show that it has a rational discretization with a quadratic number of guard candidates, establish its membership in NP and the existence of a PTAS, and present an efficient implementation of a solver.Wir betrachten drei Probleme, zunächst das Phänomen von Metastabilität in digitalen Schaltungen. Dabei geht es um einen Zustand in bistabilen Speicherelementen, z.B. Registern, welcher weder logisch 0 noch 1 entspricht und die Abstraktion Boolescher Logik unterwandert. Wir präsentieren ein zeit- und wertdiskretes Modell für Metastabilität in digitalen Schaltungen und zeigen, dass es relevante physikalische Eigenschaften abbildet. Des Weiteren präsentieren wir den grundlegend neuen Ansatz, trotz auftretender Metastabilität mit Hilfe von logischem Maskieren sinnvolle Berechnungen durchzuführen und bestimmen, welche Funktionen in unserem Modell berechenbar sind. Darüber hinaus zeigen wir, dass durch Maskingregister in zusätzlichen Taktzyklen mehr Funktionen berechenbar werden. Das zweite Thema sind parallele Algorithmen die, basierend auf einer Algebraisierung des Moore-Bellman-Ford-Algorithmus, diverse Distanzprobleme lösen. Der Fokus liegt auf Distanzapproximationen unter Einhaltung der Dreiecksungleichung bei polylogarithmischer Tiefe und niedriger Arbeit. Abschließend betrachten wir das kontinuierliche Terrain Guarding Problem. Wir zeigen, dass es eine rationale Diskretisierung mit einer quadratischen Anzahl von Wächterpositionen erlaubt, folgern dass es in NP liegt und ein PTAS existiert und präsentieren eine effiziente Implementierung, die es löst

    Complexity Theory, Game Theory, and Economics: The Barbados Lectures

    Full text link
    This document collects the lecture notes from my mini-course "Complexity Theory, Game Theory, and Economics," taught at the Bellairs Research Institute of McGill University, Holetown, Barbados, February 19--23, 2017, as the 29th McGill Invitational Workshop on Computational Complexity. The goal of this mini-course is twofold: (i) to explain how complexity theory has helped illuminate several barriers in economics and game theory; and (ii) to illustrate how game-theoretic questions have led to new and interesting complexity theory, including recent several breakthroughs. It consists of two five-lecture sequences: the Solar Lectures, focusing on the communication and computational complexity of computing equilibria; and the Lunar Lectures, focusing on applications of complexity theory in game theory and economics. No background in game theory is assumed.Comment: Revised v2 from December 2019 corrects some errors in and adds some recent citations to v1 Revised v3 corrects a few typos in v
    corecore