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Abstract:  

Broadcast is a fundamental operation in wireless networks, and naïve flooding is not practical, because it cannot 

deal with interference. Scheduling is a good way of avoiding interference, but previous studies on broadcast 

scheduling algorithms all assume highly theoretical models such as the unit disk graph model. In this work, we 

reinvestigate this problem by using the 2-Disk and the signal-to-interference-plus-noise-ratio (SINR) models. 

We first design a constant approximation algorithm for the 2-Disk model and then extend it to the SINR model. 

This result, to the best of our knowledge, is the first result on broadcast scheduling algorithms in the SINR 

model. 

 

Index Terms: SINR, broadcast, TDMA. 

 

Article: 

1 INTRODUCTION 

BROADCAST is probably the most fundamental yet challenging operation among all operations of wireless ad 

hoc networks. The broadcast storm problem [26] tells us that naïve flooding is simply not practical, because it 

causes severe contention, collision, and congestion. When two or more nodes are transmitting to a node, their 

signals will interfere with each other, resulting in the receiving node’s inability to recognize anything. In the 

literature, broadcast is often studied in the highly theoretical Disk Graph model, in which the transmission and 

interference range of a node equipped with an omnidirectional antenna is thought of as a disk centered at this 

node with some radius. Disk graphs in this case are defined as follows: The node set is the set of all 

transceivers. A directed edge exists from u to v if v lies in u’s disk. In addition, if all nodes have the same 

radius, then the resulting graph is bidirectional, and we can thus use an undirected graph to represent it. This is 

called the Unit Disk Graph model, which has been widely used in the literature. Others use a more generalized 

General Graph model, in which the transmission and interference topology is modeled as a general graph. 

However, these three models are all overly simplified, and they do not match what actually happens in reality. 

For example, a node can interfere with a far-away node, and the interference range of a node is generally much 

larger than its transmission range [16], [17]. None of the three models described earlier can address this issue. 

 

In this paper, we investigate the broadcast problem by using two new models that are much more realistic. First, 

we use the 2-Disk model, in which two disks are employed to represent the transmission and interference range, 

respectively. Then, we use the signal-to-interference-plus- noise-ratio (SINR) model, which deals directly with 

transmission laws in general physics. SINR is more realistic, as it actually models the case where many far-

away nodes could still have the effect of interfering some nodes if they are transmitting simultaneously. This 

case cannot be dealt with in the 2-Disk model, as no interference whatsoever is assumed when nodes are located 

outside the interference range. The SINR model gives a more precise analysis in this case, in which the 

accumulative interference of many nodes outside the interference range should not be neglected. Surprisingly, 

we found that we can still use the 2-Disk model to deal with this case by carefully selecting the transmission 
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and interference radii. This result, to the best of our knowledge, is the first result on broadcast scheduling 

algorithms in the SINR model. 

 

The rest of this paper is organized as follows: Related work is introduced in Section 2. In Section 3, we formally 

present our interference models, assumptions, and the definition of the broadcast scheduling problem in both 

models. We give the preliminaries of tessellation in Section 4, which will be used extensively in later sections. 

We present our broadcast scheduling algorithms in Section 5, give an example of them in Section 6, and analyze 

them in Section 7. Simulation results are given in Section 8. 

 

2 RELATED WORK 

Broadcast was studied extensively in the literature. Sheu et al. [27] did empirical studies about the efficiency of 

broadcasting schemes in terms of collision-free delivery, number of retransmissions, and latency. They also 

designed a centralized distributed broadcast algorithm. Basagni et al. [4] presented a mobility-transparent 

broadcast scheme for mobile multihop radio networks by using a mobility-transparent schedule that guarantees 

bounded latency. 

 

Minimum-latency broadcast schedule has been extensively studied in the literature. The prevailing network 

model in the literature is an arbitrary undirected graph. Let n be the number of nodes in the graph, Δ be the 

maximum node degree in the graph (i.e., the maximum number of neighbors of a node), and R be the radius of 

the source in the graph (i.e., the number of hops from the source to the farthest node). Obviously, R is a trivial 

lower bound on the latency of any broadcast schedule. Alon et al. [1] proved the existence of a family of n-node 

networks of radius 2, for which any broadcast schedule has latency Ω(log
2
 n). Chlamtac and Kutten [6] 

established the NP-hardness of the minimum-latency broadcast schedule in general graphs. Recently, Elkin and 

Kortsarz have investigated the hardness of approximation for the same problem. In [10], they proved a 

logarithmic multiplicative inapproximability: unless NP ⊆ BPTIME(n
O(log log n)

), Ω(log n)-approximation of the 

radio broadcast problem is impossible. In [11], they also proved a polylogarithmic additive inapproximability: 

unless NP ⊆ BPTIME(n
O(log log n)

), there exists a constant c such that there is no polynomial-time algorithm that 

produces, for every n-node graph G, a broadcast schedule with a latency less than opt(G) + log
2
 n, where opt(G) 

is the optimal broadcast latency for G. Several multiplicative approximation algorithms for minimum-latency 

broadcast schedule have been proposed in [6], [7], and [20]. Chlamtac and Kutten [6] proposed a broadcasting 

schedule of latency O(RΔ). Chlamtac and Weinstein [7] gave the first broadcast schedule whose latency is O(R 

log
2
 (n/R)), where R (the radius of the source) is the lower bound of the broadcast latency. This algorithm is of 

the best possible order for networks with a constant diameter due to the lower bound obtained in [1]. Kowalski 

and Pelc [20] improved this result by constructing a broadcast schedule with latency O(R log n + log
2
 n). For R 

= Q(log n), the approximation ratio is O(log2(n = R)), which is of the best possible order, unless NP ⊆ 

BPTIME(n
O(log log n)

) due to the inapproximability result in [11]. Bar-Yehuda et al. [3] obtained the same result 

as in [20] earlier, but their solution was a randomized algorithm of Las Vegas type (which means that they 

cannot guarantee a 100 percent success). Although this is a serious problem in some scenarios, it has great 

advantage in distributed implementation. A couple of additive approximation algorithms for minimum-latency 

broadcast schedule have been proposed in [13] and [12]. Gaber and Mansour [13] presented a method 

consisting of partitioning the underlying graph into clusters. This method improves the time of broadcast, 

because the existing broadcast schemes can be applied in each cluster separately, and the diameters of clusters 

are smaller than the diameter of the graph. This method can be used to construct (in polynomial time) a 

deterministic broadcast scheme working in O(R + log
6
 n) steps by using the broadcast schedule in [7]. 

 

It can produce a broadcast scheme with latency O(R + log
5
 n) by using the schedule in [20]. Recently, the 

clustering method in [13] has been improved by Elkin and Kortsarz [12]. This new clustering method can be 

used for constructing (in polynomial time) a deterministic broadcast scheme working in O(R + log
5
 n) steps by 

using the broadcast schedule in [7], and it can produce a broadcast scheme with latency O(R + log
4
 n) if the 

schedule in [20] is used. This result was reduced to O(R + log
3
 n) by Gasieniec et al. [15]. Very recently, 

Kowalski and Pelc [19] have further reduced it to O(R + log
2
 n) in [20], which is asymptotically optimal, unless 



NP ⊆ BPTIME(n
O(log log n)

). 

 

The minimum-latency broadcast schedule in wireless ad hoc networks that are represented by unit disk graphs 

was only considered in [14] and [9]. Dessmark and Pelc [9] presented a broadcast schedule with a latency of at 

most 2,400 R. Bruschi and Del Pinto [5] considered distributed protocols and obtained a lower bound of Ω(R 

log n), with the assumption that no nodes know the identities of their neighbors. Kushilevitz and Mansour [21] 

proved that for any randomized broadcast protocol, there exists a network whose latency is Ω(R log (N/R)). 

Chlebus et al. [8] studied deterministic broadcasting without a priori knowledge of the network. They 

considered two models (with and without collision detection) and designed algorithms for the two models 

separately. They also established a lower bound Ω(R log n) for the scheme without collision detection. Apart 

from these results on upper or lower bounds, there are also some results on the hardness of approximation of 

this problem. Gandhi et al. [14] established the NP-hardness of minimum-latency broadcast schedule restricted 

to unit disk graphs and presented an improved broadcast schedule with a latency of at most 648 R. Huang et al. 

[18] studied the unit disk graph model and designed two scheduling algorithms that improved the 

approximation ratio in [14]. In their work, these two algorithms have approximation ratios of 52 and 24, 

respectively. They also designed a theoretically near-optimal scheduling algorithm, whose latency is bounded 

by O(R + R log
1.5

 R). If R is large, then the approximation ratio is nearly 1. This algorithm is nearly optimal for 

all broadcast scheduling algorithms (in unit disk graphs). 

 

Our work uses the SINR model, so it is also related to those who used this model. Moschibroda et al. 

[25] considered the problem of scheduling a given topology by using the SINR model. In a network, 

for any given topology, we may not be able to realize this topology in one time slot if interference is 

considered. In other words, we need to do scheduling in order to make a topology feasible, and 

Moscibroda et al. [25] focused on the latency issue. This problem is not directly related to our work, as 

scheduling a topology is always a one-hop concept, in which there is no relay. In broadcast, a nonsource 

node cannot transmit a message, unless it has already received from another node. This property 

makes our work fundamentally different from [25]. Zheng and Barton [28] investigated the theoretical limits 

of data aggregation. They proved that the data aggregation rates Θ((log n)/n) and Θ(1) are optimal for 

systems with path-loss exponent α satisfying 2 < α < 4 and α > 4, respectively. 

 

3 INTERFERENCE MODELS, ASSUMPTIONS, AND PROBLEM DEFINITION 

In this section, we introduce two interference models, namely, the 2-Disk and SINR models. The descriptions of 

the 2-Disk model are given as follows: A wireless network is modeled as a set of nodes V arbitrarily located in a 

2D euclidean space. Each node is associated with two radii: the transmission radius rT and the interference 

radius rI (where rI ≥ rT). The transmission range of a node v is a disk of radius rT centered at v, and the 

interference range of v is a disk of radius rI centered at v. However, the transmission range is a concept with 

respect to the transmitting nodes, while the interference range is a concept with respect to the receiving nodes. 

A node u receives a message successfully from v if and only if u is within v’s transmission range and no other 

nodes are within u’s interference range. For simplicity, we assume that all nodes have the same rT and rI in the 

2-Disk model throughout this paper.
1
 Note that the transmission range can now be considered from the 

receivers’ point of view and the interference range can be considered from the transmitters’ point of view, since 

they are equivalent this way. 

 

In the SINR model, a wireless network is also regarded as a set V in a 2D euclidean space. Each node is 

associated with a transmission power P. For simplicity, we assume that all nodes have the same P. According to 

                                                
1
 This, of course, limits the proposed algorithms to homogenous networks, where each node has the same transmission range and the 

same interference range. Interestingly, as we will show later, the same algorithms and transmission schedules can be used in the SINR 

model, in which the received signal’s power is compared to the overall interference and noise level, and no fixed interference range rI 

is assumed. 
 



general physics, we know that if a node u is transmitting with power P, the theoretically received signal strength 

Pv at another node v is given by 

 

   
 

  
  

 

where r is the distance between u and v, and α is a constant called the path-loss exponent. As commonly 

assumed [16], the path-loss exponent is greater than two (i.e., α > 2). A node v receives a message successfully 

in a time slot from another node u if and only if the SINR at v is at least a given constant β, where β is called the 

minimum SINR. The SINR at v is given by 

 

      
  

    
  

 

where N is the background noise, and Iv is the total interference at v. Pv and Iv are given by 

 

   
 

       
     

 

       
 

       

 

 

In the above expressions, d(u; v) is the euclidean distance between u and v, and T ⊂ V is the set of nodes 

scheduled to transmit in the current time slot. Note that in order for the SINR to make sense, we need to assume 

that N + Iv > 0. 

 

In practice, we further consider the generalized physical model, in which the actually received signal 

 

 
 

strength PA can deviate from the theoretical value by a factor of θ > 1 [25], i.e., 

 
 

 
 
 

  
      

 

  
  

 

We assume that the network is connected. This fundamental assumption has different representations in 

different models. In the 2-Disk model, it only means that the disk graph generated by V and rT (i.e., an edge 

exists between u, v, ⇔ d(u, v) < rT) is connected. However, in the SINR model, it means more. Let u and v be 

any two nodes with an edge between them in V that is connected. Any successful received message at v means 

that SINRv ≥ β. Thus, we have 
 

       
 > β(N + Iv) ≥ βN: Equivalently, we can say that there exists a γ > 1 such 

that 
  

   
        . Letting r' be any distance between two nodes with an edge on them in V, we can make the 

following assumption on connectivity: 

 



Connectivity assumption. There exists a constant γ > 1 such that the disk graph generated by V 

and     
  

   

 
 is connected. 

 

Finally, we also make an assumption that every node knows its location. This assumption is strong but essential, 

since we are considering the SINR model, which is a geometrical concept. 

 

The problem definition for either model is given as follows: Given a set of nodes V and a source s   V, the 

objective is to find a schedule {U1, U2,...}satisfying the following requirements: 1) for all i, Ui ⊂ V represents 

the set of nodes scheduled to transmit in time slot i, 2) a node cannot be scheduled to transmit, unless it has 

already received successfully in an earlier time slot (note that the conditions of successful reception are different 

in those two models), and 3) in the end, all nodes in V receive successfully. Latency is the first time slot such 

that this happens. 

 

4 TESSELLATION OF HEXAGONS 

Before presenting the proposed broadcast algorithm, we introduce a tessellation/coloring technique. This 

technique will be used in our algorithm. 

 

A tessellation of the entire plane is a way of partitioning into equal (or similar) pieces. We partition the plane 

into hexagons, as shown in Fig. 1a. Each hexagon has radius 1/2 and is half open half closed, with the topmost 

point included and the bottommost point excluded, as shown in Fig. 1b. We can give many different colorings 

to this tessellation. 

 

 
 

Three-coloring is shown in Figs. 2a and 2b. Three hexagons are grouped together, as shown in Fig. 2a, and they 

can fill up the entire plane, as shown in Fig. 2b. Now, let us look at the three hexagons in Fig. 2a again. If we 

enclose another layer of hexagons, we get 12 hexagons grouped together, as shown in Fig. 3a. This introduces a 

12-coloring, and they fill up the plane, as shown in Fig. 3b. Similarly, we can further enclose much more layers 

and get a 27-coloring, a 48-coloring, a 75-coloring, and a general 3k2-coloring, as shown in Figs. 4a and 4b and 

Figs. 5a, 5b, and 5c. 

 

Note that hexagons of the same color in a 3-coloring are separated by at least the distance of one radius, which 

is 1/2. In a 12-coloring, they are separated by at least the distance of four radii, which is 2. They are separated 

by 7, 10, and 13 radii in 27-, 48-, and 75-coloring, respectively. In general, hexagons of the same color are 

separated by at least 3k – 2 radii (or euclidean distance 
   –  

 
) in a 3k

2
-coloring. This can be easily proven by 

mathematical induction. There are many different ways of coloring these hexagons, and we just consider one of 

them [22]. 

 

5 BROADCAST SCHEDULING ALGORITHM 



In this section, we first look at the 2-Disk model and design a broadcast scheduling algorithm of approximation 

ratio   
 

 
 
  

  
    

 

, which is a constant. Later, we will show that the SINR model can be reduced to the 2-Disk 

model, and the same scheduling algorithm can be applied. 

 
 

 

We consider the transmission graph GT = (V; ET) generated by rT and V. To define the broadcast schedule, we 

first need to construct a virtual backbone as follows: We look at GT and its Breadth First Search (BFS) tree and 

then divide V into layers L0; L1; L2; . . .; LR (where R is the radius of GT and source s). All nodes of layer i are 

thus i hops away from the root. Then, we construct a layered maximal independent
2
 set, called BLACK, as 

follows: Starting from the zeroth layer, which contains only s, we pick up a maximal independent set (MIS), 

which contains only s as well. Then, at the first layer, we pick up an MIS in which each node is independent of 

each other and those nodes at the zeroth layer. Note that this is empty, because all nodes in L1 (layer 1) must be 

adjacent to s. Then, we move on to the second layer, pick up an MIS, and mark these nodes black again. Note 

that the black nodes of the second layer also need to be independent of those of the first layer. We repeat this 

process until all layers have been worked on. Nodes that are not marked black are marked white at last. Those 

black nodes are also called the dominators, and we will use these two terms interchangeably throughout this 

paper. The pseudocode of layered MIS construction is given in Algorithm 1. 

 

Algorithm 1: Construct an MIS in GT layer by layer.  

Input: V, s, and GT 

1. BLACK ← /0 

2. for i ← 0 to R do 

3. Find an MIS BLACKi ⊂ Li, independent of BLACK 

4. BLACK ← BLACK ∪ BLACKi 

5. end for 

6. return BLACK. 

 

Now, we construct the virtual backbone as follows: We pick some of the white nodes and color them blue to 

interconnect all black nodes. Note that L0 = {s} and all nodes in L1 must be white. We simply connect s to all 

nodes in L1. To connect L1 and L2, we look at L2’s black nodes. Each black node must have a parent on L1, and 

this parent node must be white, since black nodes are independent of each other. We color this white node blue 

and add an edge between them. Moreover, we know that this blue node must be dominated by a black node 

either on L1 or L0 (in this case, L0). We then add an edge between this blue node and its dominator.
3
 We repeat 

this process layer by layer and finally obtain the desired virtual backbone (which is a tree) in this manner. Note 

that in this tree, each black node has a blue parent at the upper layer and each blue node has a black parent at the 

same layer or the layer right next to it above. 

                                                
2
 The term independent means ―nonadjacent‖ with respect to GT. 

3 If there is more than one dominator of the blue node, only one needs to be chosen to connect to the blue node. 



 
 

The pseudocode is given in Algorithm 2. Note that until now, the construction of the virtual backbone is not 

related to the 2-Disk model and only the concept of transmission range is used. The concept of interference 

range is used when we schedule the time slot for each node, which will be explained next, according to the 

tessellation of hexagons, where enough colors must be used in order to avoid interference. 

 

Algorithm 2: Virtual backbone construction. 

Input: V, s, and GT 

1: Tvb = (V; Evb), Evb ← /0 

2: ⊳/* Connect the black nodes layer by layer */ 

3: ∀u   L1 add an edge between u, s 

4: for i ← 1 to R – 1 do 

5: for all black nodes v C BLACKi+1 do 

6: Find its parent p(v) in GT’s BFS tree 

7: Color p(v) blue and find its dominator dp(v) in BLACKi ∪ BLACKi–1   

8: Add an edge between p(v), v to Evb 

9: Add an edge between dp(v), p(v) to Evb 

10: end for 

11: end for 

12: ⊳/* Connect the remaining white nodes */ 

13: for all the remaining white nodes u do 

14: Find u’s dominator du 

15: Add an edge between u and du to Evb 

16: end for 

17: return Tvb. 

 

The broadcast scheduling algorithm based on the virtual backbone in the 2-Disk model is described as follows: 

Note that the layers of the BFS tree and the virtual backbone may be different. Starting from the zeroth layer 

containing only the source s, we schedule s to transmit in the first time slot, and obviously, this transmission 

causes no collision. After the first time slot, all nodes of the first layer will receive successfully. We will design 

a schedule such that all nodes of the (i + 1)th layer receive from the ith layer successfully for i = 1; 2; . . . ;R. 

We partition the plane into half-open half-closed hexagons of radius
4
 
  

 
 and give a   

 

 
  

  

  
    

 

-coloring 

with proper scaling, as described in Section 4 (in which    
 

 
 
  

  
    ). Then, the distance between two 

hexagons of the same color is at least rT + rI, which guarantees the validity of the proposed schedule. This 

schedule has two parts, and in the first part, we schedule each blue node of layer i to transmit in the time slot 

                                                
4 The size of hexagons is determined by guaranteeing that not more than one black node is in the same hexagon. rT/2 is thus the 

largest radius of each hexagon that we can have. 



according to its targeted black nodes’ colors. If there is more than one targeted black node with the same color, 

those blue nodes will need to transmit multiple times.
5
 For example, suppose that the starting time of the ith 

layer is Ti. If a blue node has three black children of colors 4, 9, and 13, then we schedule it to transmit in time 

slots Ti + 4, Ti + 9, and Ti + 13. In the second part, we schedule each black node of layer i + 1 to transmit in the 

time slot according to its own color. After these two parts complete, all nodes at layer i + 1 receive the 

broadcast message. The pseudocode of this part is given in Algorithm 3. 

 

Algorithm 3: Broadcast scheduling. 

Input: V, s, and virtual backbone Tvb 

1: Tessellate the plane and give a   
 

 
 
  

  
    

 

-coloring by setting    
 

 
 

  

  
     

2: Schedule s to transmit in time slot 1. 

3: Tstart ← 1 

4: for i ← 1 to R – 1 do 

5: ∀u   BLUEi, ∀w   {u’s children}, schedule u to transmit in time slots Tstart + color(w) 

6: Tstart ← Tstart +   
 

 
 
  

  
    

 

 

7: ∀v   BLACKi+1, schedule v to transmit in time slot Tstart + color(v) 

8: Tstart ← Tstart +   
 

 
 
  

  
    

 

 

9: end for. 

 

Note that in line 5 of Algorithm 3, each blue node has at most four black children, and therefore, we need at 

most four time slots. This is because those black children are all independent of each other in GT, and in the 

transmission range of any blue node u (i.e., in the disk centered at u with radius rT), there can be at most five 

independent nodes, and one of them must be u’s parent. Note that the source s does not have any parent, but s is 

black. So, u cannot be the source. For this reason, each blue node can only have at most four black children. 

 

 

In the SINR model, we simply set 

 

    
 

    

 

     
    

      
 

 

   
 

 

   
   

 

 

 

                                                
5 When a blue node sends a message, only the targeted black node is guaranteed to receive successfully, although other children may 

still be able to receive. 



and apply the broadcast scheduling algorithm for the 2-Disk model.
6
 

 
Note that since the proposed algorithm is a centralized algorithm, the source needs to inform each node its time 

slot to forward the message. However, this initial message forwarding is only performed once in the whole 

network lifetime. Any inefficient forwarding can be used without increasing the overhead significantly. 

 

6 AN EXAMPLE 

Figs. 6a and 6b show the layered construction of MIS, as described in Algorithm 1. Fig. 6a shows the topology 

of GT. In the first step, the source s is selected in the MIS and is colored black. Note that layer 2 is represented 

with a light gray color for ease of understanding (this color has nothing to do with the black-blue coloring 

scheme). In the second step, since the source is black, all nodes at layer 1 must all be white; otherwise, it will 

not be independent of s. In the third step, we will select an independent set at layer 2, which must also be 

independent of the nodes at the previous layer, i.e., layer 1, though there is no black node at layer 1, and this 

does not have any effect. Fig. 6b shows that five more black nodes were selected at layer 2. We keep doing this 

and select black nodes until all layers have been worked on. The black-node selection depends on GT only, and 

it has nothing to do with the BFS tree. Not until blue nodes are being selected do we need to consider the BFS 

tree, as shown in Fig. 6c. In Algorithm 2, we are trying to add appropriate blue nodes to interconnect all black 

ones. Since the source does not have an upper layer and there are no black nodes at layer 1, we start from layer 

2 directly. For each black node at layer 2, we color it blue and connect to its parent in the BFS tree, as shown in 

Fig. 6d. In Fig. 6d, we see that four nodes at layer 1 are colored blue and are connected to some black nodes at 

layer 2. Nodes that are not colored blue remain white, and there are two white nodes. We also connect these 

four blue nodes and two white nodes to the source s, since they are dominated by s. We keep working on layer 

3. For simplicity, suppose that we have already found the black nodes at layer 3 and their corresponding blue 

nodes at layer 2. Fig. 6d shows that there are three blue nodes at layer 2 that are connected to their black 

children at layer 3. Note that there are nine nodes at layer 2, in which five are black, three are blue, and the 

remaining node is still white. Now, for each blue or white node at layer 2, we know that it must be adjacent to at 

least one black node either at layer 2 or layer 1, since BLACK2 is an MIS. Because of its maximality, all nodes 

at layer 2 must be adjacent to at least one black node at the same layer or the previous layer. Therefore, for each 

blue/ white node at layer 2, we find a black node either at layer 1 or layer 2 and connect to it, as shown in Fig. 

6d. We keep doing this for all layers, and the virtual backbone will be constructed this way. 

 

We present an example of broadcast scheduling in the 2-Disk model, as shown in Fig. 7. Assume that rI/rT = 3. 

  
 

 

  

  
    

 

    colors should be used to separate the transmission schedules of these hexagon cells (k = 4) 

and we give a 48-coloring. In Fig. 7, a virtual backbone has already been constructed according to Algorithm 2. 

The root (source) is black, and all nodes at layer 1 are either blue or white (four are blue, and two are white). 

The blue nodes at layer 1 are chosen to connect the black nodes at layer 2, and the remaining are white. At layer 

3, there are five black nodes, two blue nodes, and one white node. We explain the broadcast schedule of our 

scheme, according to Algorithm 3, as follows: 

 

1. The source transmits in time slot 1 and sets Tstart – 1. 

2. The four blue nodes at layer 1 are scheduled according to their black children’s color. Therefore, the 

first node transmits in time slots Tstart + 24 = 25 and Tstart + 25 = 26, the second node transmits in 

time slot Tstart + 26 = 27, the third node transmits in Tstart + 31 = 32, and the last node transmits in 

Tstart + 39 = 40. Note that the first node transmits in two time slots, because it has two black 

children. The white nodes do not transmit at all. All other time slots between [Tstart + 1; Tstart + 48 + 

1] are idle. 

3. Tstart, Tstart + 48 = 49. 

                                                
6 It will be explained in detail in Section 7. 



4. At layer 3, there are five black nodes of colors 24, 25, 26, 31, and 39. Their transmission time slots 

are Tstart + 24 = 73, Tstart + 25 = 74, Tstart + 26 = 75, Tstart + 31 = 80, and Tstart + 39 = 88, 

respectively. 

5. Set Tstart, Tstart + 48 = 97, and by this time, all nodes at layer 3 should have already received the 

message successfully. 

6. We keep scheduling in this manner until all nodes at layer R receive the message successfully and 

the broadcast finishes. 

 

7 ANALYSIS 

Theorem 7.1. Algorithm 3 is a valid scheduling algorithm. 

 

Proof. We prove two assumptions: 1) each node will receive successfully before it is scheduled to transmit and 

2) in the end, all nodes receive successfully. Algorithm 3 begins with the source’s transmission, and since there 

is only one node transmitting, there will be no collision, and all nodes of L1 will receive successfully. Now, we 

prove that all nodes of Li+1 will receive successfully from Li for all 1 < i < R – 1. First, we show that all nodes of 

BLACKi+1 will receive successfully from BLUEi. This is straightforward. Assume the contrary if there exists a 

receiver v   BLACKi+1 such that another node w   BLUEi is interfering with the sender u   BLUEi. If this 

happens, we know that d(u; v) < rT and d(w; u) < rI. This implies d(v; w) < rT + rI, contradicting to the fact that 

any two hexagons of the same color must be at least rT + rI apart. Second, we show that all nodes of Li+1 – 

BLACKi+1 must receive successfully from BLACKi+1. This is also straightforward by using similar arguments. 

Assume the contrary: if there is a node v   Li+1 – BLACKi+1 such that another node w   BLACKi+1 is interfering 

with the sender u   BLACKi+1, then similarly, d(u; v) < rT and d(w; u) < rI, implying d(v; w) < rT + rI, and we get 

a contradiction. ∎ 

 

Theorem 7.2. Algorithm 3 has latency (the total number of time slots for completing the broadcast procedure) 

     
 

 
 
  

  
    

 

      .  

 

Proof. We study the ―for‖ loop in Algorithm 3. Inside the loop, first, we schedule the blue nodes according to 

their black children’s colors, which takes   
 

 
 
  

  
    

 

 time slots, since we use   
 

 
 
  

  
    

 

 colors to 

construct the tessellation. Then, we schedule the black nodes to transmit according to their colors. Therefore, it 

takes   
 

 
 
  

  
    

 

 time slots as well. As a result, each iteration of the for loop takes   
 

 
 
  

  
    

 

time slots, 

and there are R — 1 iterations. Along with the source’s time slot in the beginning, the overall latency is 

     
 

 
 
  

  
    

 

      . ∎ 

 

Having the above latency bound and that R is itself a lower bound for any broadcast schedule, we can get the 

following corollary. 

 

Corollary 7.1. The broadcast scheduling algorithmfor the 2-Disk model is a constant approximation algorithm 

with ratio   
 

 
 

  

  
    

 

. 

 

It is easy to see that the approximation ratio of the proposed algorithm is only related to the physical 

transmission characters. That is, the approximation ratio of the proposed algorithm only depends on the ratio of 

the interference range to the transmission range. When these two ranges are similar, the approximation ratio 

becomes 24, no matter how many nodes are in the network. In a large network, the proposed algorithm can 

broadcast the message efficiently. 

 



It is obvious that there are many idle time slots in the proposed scheduling algorithm. In practice, we can delete 

all idle time slots and reindex all scheduling of nodes. We will show by simulation that it can reduce the latency 

by up to 86 percent. 

 

Theorem 7.3. In the SINR model, if we set rT, rI as 

 

    
 

    

 

     
    

      
 

 

   
 

 

   
   

 

 

 

and we use Algorithm 3 to schedule the transmissions, then the overall interference at any intended receiver 

(i.e., the node that is scheduled to receive at this time) at any time is strictly less than (γ – 1)N. 

 

 
 

Proof. Since we use Algorithm 3, we know that at any time, the distance between two simultaneously 

transmitting nodes is at least rT + rI, because any two hexagons of the same color must be at least rT + rI apart. 

Moreover, let u be a sender and let v be its intended receiver at any time in Algorithm 3. Then, there will be no 

other sender that is transmitting simultaneously and whose distance to v is less than rI. This is true, because rI is 

the interference radius, and we have avoided this situation in Algorithm 3. Now, let us pick up an intended 

receiver v and consider its concentric circles of radii rI; 2rI; 3rI;..., as shown in Fig. 8a. Here, we use A(r1; r2) to 

denote the annulus between two concentric circles of radii r1 and r2 (r1 < r2), as shown in Fig. 8b. We define 

A(r1; r2) to be inner closed outer open (i.e., A(r1; r2) contains the circle of radius r1 but does not contain the 

circle of radius r2). Now, we consider A((i — 1)rI; irI). We also consider the senders scheduled to transmit 

simultaneously at a fixed time. Let Mi be the number of these senders in A((i – 1)rI; irI). We know that the 

distance between any two black nodes is at least rT + rI. Moreover, since each blue sender is at most rT from its 

black receiver, the distance between any two blue senders is at least rI – rT. Therefore, the distance between any 

two senders is at least rI – rT. If we draw an open disk of radius rI 2 rT at each sender in A((i – 1) rI; irI), then 

these disks will not overlap at all. Moreover, all of these disks will be completely contained in      –       

     

 
     

     

 
 . Therefore, by comparing their areas, we know that 

 

  
     

 
 
 

           
     

 
 
 

          
     

 
 
 

  



 

and that 

 

   
                 

         
                                

 

Since the distance between v and any point in A((i – 1)rI; irI) is at least (i – 1)rI, the cumulative interference 

caused by sender in A((i – 1)rI; irI) is bounded by   
  

         
   and the overall interference Itotal at v caused by 

all  senders on the entire plane is bounded by 

 

          

 

   

  

         
  

 

Here, i starts from 2, because, except for the intended sender, no other interfering senders are within the disk 

centered at v with radius rI. Plugging in (1), we know that Itotal is less than 

 

 
                 

        
  

         
 

 

   

                   

 

Now, let q be defined as follows: 

 

  
  
  

  
      

   
 

 

   
 

 

   
   

 

  

 

Then, (2) becomes 

 

        
              

      
 

  

        
 

 

   

                  

 
        

      
 
     

  
 

    

      

 

   

                 

 

Equation (3) is obtained by plugging in 

 

          
 

    

 

  

 

In (3) 

 

 
    

      
   

      

      
 

 

      
 

 

   

 

   

 

   
 

        
  

 

      

 

   

 

   

 



   
 

    
  

 

  
 

 

   

 

   

 

 

From elementary calculus, we know that 

 

 
 

  
 

 

   
                    

 

   

 

 
    

      
 

 

   
 

 

   
  

 

   

                     

 

Also, in (3), the term 

 
          

      
                                   

 

In practice, q, i.e., the ratio of interference radius to transmission radius, is 3 ~ 5, and we could assume q ≥ 2 to 

obtain 

 
          

      
    

 

Plugging in (4) and the above expression into (3), we obtain 

 

       
       

  
 

 

   
 

 

   
            

 

since    
       

   
 

   
 

 

   
   

 
. This theorem is thus proven. ∎ 

 

Corollary 7.2. The SINR at any intended receiver at any time is strictly greater than 0. 

 

Proof. At any intended receiver, the signal strength is at least 
 

   , where r is the distance between the 

designated  sender and its intended receiver, and r < rT. Therefore, the signal strength is at least 
 

  
  = 

 

          
    . Theorem 7.3 tells us that the overall interference is strictly less than (γ – 1)N, so the SINR at 

any intended , receiver is strictly greater than 
   

        
   . Remember that we have made the connectivity 

assumption in Section 3, in which the disk graph generated by V and  
  

   

 
 is connected. ∎ 

 

Corollary 7.2 tells us that Algorithm 3 is also a valid scheduling algorithm for the SINR model. 

 

Corollary 7.3. Our broadcast algorithmfor the SINR model has a latency that is bounded by   
 

    
 

 
  

       

  
 

 

   
 

 

   
   

 

    

 

       



 

Note that the number of colors depends on rI = rT and not on the number of nodes. Also, broadcast latency is 

invariant of the number of nodes. This is because we applied the technique of constructing a virtual backbone, 

which plays a vital role in coloring. The number of nodes in this virtual backbone directly affects the latencies, 

and it is not affected by the number of nodes in the whole network. 

 

 
 

8 SIMULATION RESULTS 

Simulations have been performed in Matlab to evaluate the latency of our proposed scheme. In these 

simulations, n nodes were distributed randomly into a square region of size X by Y, where X and Y are 

normalized to the transmission range rT. The transmission latency was then measured after our proposed scheme 

is employed. We measured two different latencies in our simulations: 
 

 The transmission latency, based on Theorem 7.3, can be easily found when the maximum depth of the 

BFS tree is identified. 

 The compact transmission latency is a shorter latency in which all idling time slots are removed. 

 

Note that the compact latency measurements were based on the assumption that such removal of idling time 

slots is possible, which requires some extra communication between nodes in different BFS tree depths. 

 

Fig. 9 shows the transmission latency as a function of the number of nodes in the network n for different 

network area sizes X. The value of k was set to 3 in these simulations. In Fig. 9, the transmission latencies 

remain almost the same when the number of nodes in network n is larger than 1,000 for each set of X and Y. 

This is actually expected: the increase in n does not change the transmission tessellation and its depth 

significantly (as discussed in Section 7). As the network size increases, the transmission latency becomes 

longer. This is because of the increased depth of the virtual backbone. 

 

Fig. 10 shows the two types of transmission latency as a function of network area sizes X for different numbers 

of nodes in the network n. The value of k was set to 3 in these simulations. It can be seen that compact latency is 

much shorter than the transmission latency due to the existence of many idling time slots in this setting. 

 

We compare the compact transmission latency in different network regions in Fig. 11. As the network region 

size increases, the compact transmission latency increases as well. 



 
 

Remarks on distributed implementation. Our algorithm can be modified into a distributed version for the 

following reason. It makes use of the following centralized information: 

 

1. layer information in Algorithm 1, 

2. MIS in Algorithm 1, 

3. BFS tree in Algorithm 2, and 

4. color information in Algorithm 3. 

 

In 1, each node only needs to know its layer number. In 2, each node only needs to know whether or not it is in 

the MIS. In 3, each node only needs to know its parent in the BFS tree. In 4, each node only needs to know its 

color. Lists 1 and 2 have distributed algorithms, because there are distributed BFS algorithms [2]. List 3 is 

related to the MIS, and there are also distributed MIS algorithms in the literature [23], [24]. However, we need 

to modify those algorithms slightly and apply them layer by layer. List 4 could have distributed 

implementations, provided that each node knows its location. This may be possible if each node has a GPS 

device, for example, or each node is given the location information when it is deployed. 

 

Remarks on varying rT and rI. Varying the values of transmission/interference ranges does not affect our 

algorithm; it only affects the following: 1) graph topologies GT and GI and 2) coloring (since    
 

 
 
  

  
     

depends on them). From a practical point of view, varying the values of transmission/interference ranges only 

affects certain system parameters; it does not affect any algorithms/subroutines. 

 

9 CONCLUSION AND FUTURE WORK 

Many highly theoretical models were used in all previous works on broadcast scheduling. Instead, we have used 

two more practical models for reinvestigating this problem. Surprisingly, we have found that we can apply the 

same method to both models and obtain low-latency schedules. Although our proposed algorithms are 

centralized, we did not formulate the minimum latency problem as an optimization problem (such as linear 

programming) and find the optimal solution for the following reasons. First, this problem in general graph 

model was proposed in [6] in 1985, and so far, there is still no good formulation for representing it as a linear 

programming problem. The main reason for that is the difficulty of representing the condition that ―a node can 

only transmit if it has successfully received from another node.‖ So far, there is still no good formulation for 

representing this condition, even in the general graph model, so we believe that it is more difficult to represent it 

in our more complicated 2-Disk and SINR models. Second, the broadcast latency problem in the disk graph has 

proven to be NP-hard [14], and this problem in our 2-Disk and SINR models can be regarded as a more general 

case and is therefore also NP-hard. For this reason, finding an optimal solution is difficult. 

 



For future work, there are two promising directions as follows: The first direction is to apply our techniques to 

directional antennae. We believe that most techniques developed here can be applied to the case of directional 

antennae by reinvestigating their geometrical properties, although the models may need to be redefined 

accordingly. The second direction is to apply these techniques to data aggregation (or converge cast) 

scheduling. In such a scenario, all nodes wish to transmit their data back to a fixed sink node. This could be 

regarded as a reverse- direction broadcast. The major difference is that in a broadcast, a node can transmit to 

many nodes at the same time, while in a data aggregation, many nodes cannot transmit to one sink in one time 

slot. This property makes data aggregation fundamentally different from broadcast, but we believe that we can 

still apply several techniques that have been developed in this work. For these reasons, we believe this work 

will be an important start that bridges the gap between theory and practice. 
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