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Abstract

APPROXIMATION ALGORITHMS FOR BROADCASTING IN

SIMPLE GRAPHS WITH INTERSECTING CYCLES

Puspal Bhabak, Ph.D.

Concordia University, 2015

Broadcasting is an information dissemination problem in a connected network in

which one node, called the originator, must distribute a message to all other nodes

by placing a series of calls along the communication lines of the network. Every

time the informed nodes aid the originator in distributing the message. Finding the

minimum broadcast time of any vertex in an arbitrary graph is NP-Complete. The

problem remains NP-Complete even for planar graphs of degree 3 and for a graph

whose vertex set can be partitioned into a clique and an independent set. The best

theoretical upper bound gives logarithmic approximation. It has been shown that

the broadcasting problem is NP-Hard to approximate within a factor of 3 − ε. The

polynomial time solvability is shown only for tree-like graphs; trees, unicyclic graphs,

tree of cycles, necklace graphs and some graphs where the underlying graph is a

clique; such as fully connected trees and tree of cliques. In this thesis we study the

broadcast problem in different classes of graphs where cycles intersect in at least one

vertex. First we consider broadcasting in a simple graph where several cycles have

common paths and two intersecting vertices, called a k-path graph. We present a

constant approximation algorithm to find the broadcast time of an arbitrary k-path

graph. We also study the broadcast problem in a simple cactus graph called k-cycle

graph where several cycles of arbitrary lengths are connected by a central vertex on

one end. We design a constant approximation algorithm to find the broadcast time

of an arbitrary k-cycle graph.

Next we study the broadcast problem in a hypercube of trees for which we present

a 2-approximation algorithm for any originator. We provide a linear algorithm to

find the broadcast time in hypercube of trees with one tree. We extend the result

for any arbitrary graph whose nodes contain trees and design a linear time constant
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approximation algorithm where the broadcast scheme in the arbitrary graph is already

known.

In Chapter 6 we study broadcasting in Harary graph for which we present an

additive approximation which gives 2-approximation in the worst case to find the

broadcast time in an arbitrary Harary graph. Next for even values of n, we introduce

a new graph, called modified-Harary graph and present a 1-additive approximation

algorithm to find the broadcast time. We also show that a modified-Harary graph is

a broadcast graph when k is logarithmic of n.

Finally we consider a diameter broadcast problem where we obtain a lower bound

on the broadcast time of the graph which has at least
(

d+k−1
d

)

+1 vertices that are at

a distance d from the originator, where k ≥ 1.
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Chapter 1

Introduction

When the computer was first designed, the main purpose was to perform the very

tedious computations of everyday life and business in seconds. Since then many

efforts have been made to transform the computing machines into intelligent ones

that possess self-organizing skills like capable of massive parallel processing, support

voice recognition and understand natural language. As a result the need of the hour

has been to build an advanced technology as the single CPU systems take longer time

to solve the problem serially.

Multi-computer and multi processor systems have been the solution to this prob-

lem. In the multi processor systems, different processors work in parallel. This is

accomplished by breaking the problem into independent parts so that each process-

ing element can execute its part of the algorithm simultaneously with the others.

Sometimes the processors exchange data among themselves whenever it is needed

either through shared memory (shared between all processing elements in a single

address space), or distributed memory (in which each processing element has its own

local address space).

Parallelism has several advantages. First of all it saves time and money as hav-

ing more resources for a task will reduce the time to completion with potential cost

savings. Besides it is more convenient to solve larger problems on multi-core due to

increase in memory space. Now-a-days most of the computers being used by the com-

mon people have multi-core processors in their system. Along with the improvement

on the physical level, one has to design an efficient algorithm that will distribute

the information among the processors through the interconnection network so that

1



we can get the most benefit out of the advances in the hardware domain. In recent

years, a lot of work has been dedicated to studying properties of interconnection net-

works in order to find the best communication structures for parallel and distributed

computing. The communication primitives can be defined as follows:

• Routing or one-to-one communication.

• Broadcasting or one-to-all communication.

• Multicasting or one-to-many communication.

• Gossiping or all-to-all communication.

One of the main problems of information dissemination investigated in this re-

search area is broadcasting. The broadcast problem is one in which the knowledge of

one processor must spread to all other processors in the network. For this problem we

can view any interconnection network as a connected undirected graph G = (V,E),

where V is the set of vertices (or processors) and E is the set of edges (or commu-

nication lines) of the network. According to [113], the broadcast time problem was

introduced in 1977 by Slater, Cockayne and Hedetniemi. Large sources of information

about broadcasting and related problems are survey articles ([70], [113], [116]), book

[117] and book chapter [97].

Formally, broadcasting is the message dissemination problem in a connected net-

work in which one informed node, called the originator, must distribute a message

to all other nodes by placing a series of calls along the communication lines of the

network. Every time the informed nodes help the originator in distributing the mes-

sage. This is assumed to take place in discrete time units. The broadcasting is to be

completed as quickly as possible subject to the following constraints:

• Each call requires one unit of time.

• A vertex can participate in only one call per unit of time.

• Each call involves only two adjacent vertices, a sender and a receiver.

Given a connected graph G and a message originator, vertex u, the natural ques-

tion is to find the minimum number of time units required to complete broadcasting

in graph G from vertex u. This number is defined as the broadcast time of vertex
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u, denoted b(u,G) or b(u). The broadcast time b(G) of the graph G is defined as

max{b(u)|u ∈ V }. It is easy to see that for any vertex u in a connected graph G

with n vertices, b(u) ≥ dlog ne (all log’s in this thesis are base 2), since during each

time unit the number of informed vertices can at most double. Also, in a connected

graph there should be at least one new informed vertex at every new round which

implies that b(u) ≤ n − 1. G is called a broadcast graph if b(G) = dlog ne. For the

complete graph Kn with n ≥ 2 vertices, b(Kn) = dlog ne, yet Kn may not be minimal

with respect to this property. That is, we may be able to remove some edges from

Kn and still have a subgraph K ′
n with n vertices such that b(K ′

n) = dlog ne. In any

connected graph G, a broadcast from a vertex u determines a spanning tree rooted at

u. This spanning tree is called a broadcast tree. Figure 1 shows a broadcast scheme

in 6 rounds, which is shown in the edge labelling. Vertex with the label 0 is the

originator.

0

1 4 3 2

2      3        4           5                 6               4                 5          3     4    5

3                4

Figure 1: Broadcast Tree

Determining b(u) for an arbitrary originator u in an arbitrary graph G has been

proved to be NP-Complete in [162]. The problem remains NP-Complete even for

3-regular planar graphs [143] and for a graph whose vertex set can be partitioned
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into a clique and an independent set [121]. The best theoretical upper bound is ob-

tained by the approximation algorithm in [49] which produces a broadcast scheme

with O( log(|V |)
log log(|V |)b(G)) rounds. Research in [159] has showed that it is NP-Hard to ap-

proximate the solution of the broadcast time problem within a factor 57
56
− ε. However

this result has been improved to within a factor of 3− ε in [49]. As a result research

has been made in the direction of finding approximation or heuristic algorithms to

determine the broadcast time in arbitrary graphs (see [7], [12], [49], [50], [71], [72],

[73], [110], [112], [131], [156], [158]).

Since the broadcast problem in general is NP-Hard, another direction is to design

polynomial algorithms for some classes of graphs. The first result in this direction was

a linear algorithm to determine the broadcast time of any tree [162]. The authors

have introduced the term broadcast centre, which is the set of all vertices having

minimum broadcast number, in order to determine the broadcast time for the tree in

linear time. Recent research shows that there are polynomial time algorithms for the

broadcast problem in tree-like graphs where two cycles do not intersect - unicyclic

graphs, tree of cycles, or in graphs containing cliques, however with no intersecting

cliques - fully connected trees and tree of cliques ([90], [100], [102], [103]). However,

the problem remains NP-Hard for restricted classes of graphs.

A long standing open problem is to present a constant approximation for broad-

casting in arbitrary graph or to prove that it is NP-Hard to approximate within a

constant factor. One way of approaching this problem is to consider broadcasting in

more complex graphs to the extent that we cannot provide a constant approximation

for broadcasting in that graph. The thesis is a contribution to this longer research

path. On the other hand polynomial time algorithms for the broadcast problems is

known only for the class of graphs where two cycles do not intersect. Thus to bridge

this gap, we consider broadcasting in simple graphs contain intersecting cycles. We

first consider broadcasting in a simple graph where several cycles have two inter-

secting vertices, called a k-path graph. We next study the broadcast problem in a

simple cactus graph called k-cycle graph where several cycles of arbitrary lengths are

connected by a central vertex on one end. We next consider broadcasting in a graph

where each vertex of the hypercube is the root of a tree, called hypercube of trees.

In the literature there is a polynomial algorithm for the broadcast problem in fully-

connected trees. However, the problem is much more difficult for hypercube of trees
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because in a hypercube any pair of vertices are not neighbors as in a clique. Finally

we study the broadcast problem in Harary-like graphs which are regular k-connected

graphs.

The rest of the thesis has been organized as follows. In the next chapter we

present a literature review of some of the important works that have been done so far

in the area of broadcasting in a network in general and the different network classes

that have been considered. In Chapter 3 we will present a constant approximation

algorithm to find the broadcast time of an arbitrary k-path graph. In Chapter 4 we

study the broadcast problem in a simple cactus graph called k-cycle graph where we

design a constant approximation algorithm to find the broadcast time of an arbitrary

k-cycle graph. In Chapter 5 we study the broadcast problem in a hypercube of trees

for which we present a 2-approximation algorithm for any originator. We provide a

linear algorithm to find the broadcast time in hypercube of trees with one tree. We

extend the result for any arbitrary graph whose nodes contain trees and design a linear

time constant approximation algorithm. In the 6th Chapter we study broadcasting

in Harary graph for which we present a log k−2
2
-additive approximation to find the

broadcast time in an arbitrary Harary graph. For even values of n, we introduce a

modified-Harary graph and present a 1-additive approximation algorithm to find the

broadcast time. We show the optimality of our algorithm for a particular subclass of

modified-Harary graph. Then we also show that modified-Harary graph is a broadcast

graph when k is logarithmic of n. In Chapter 7 we consider a diameter broadcast

problem where we obtain a lower bound on the broadcast time of the graph. Finally,

Chapter 8 is the conclusion and a short note on future work.
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Chapter 2

Related Work

This chapter reviews the important contributions made so far in the field of broad-

casting problem. There are several communication modes being investigated in this

literature. We first present the one-way mode and two-way mode which belong to the

most extensively studied ones. The other modes will be discussed after this.

• One-way mode (also called telegraph communication mode)

In this mode, flow of message in a single round can be in one direction only i.e

each node in a single round is active through one of its adjacent edges either as

a sender or as a receiver. In Figure 2, in the first round the node x1 broadcasts

all its message to node x2 and x7 sends message to x6. In the second round, x2

sends to x3 and x6 sends to x5. In the 3rd round x3 sends to x4 and in the 4th

round finally x4 gets informed from x5.

X1                X2                   X3                X4                X5                  X6                  X7

1                          2                        3                       4                     2                          1

Figure 2: Telegraph Model

• Two-way mode (also called telephone communication mode)

In this mode, in a single round, each node may be active through one of its

adjacent edges. When it is active, it can simultaneously send message and
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receive message through this active edge. Sometimes this is also known as full-

duplex communication mode. It can be easily observed that when one edge is

used to transmit the message, the information flow is bi-directional. One can

generalize this broadcast model. (i, j)-mode means that in any round one node

can send message to i neighbors via i adjacent edges. At the same time it can

receive messages from j neighbors through j adjacent edges. Thus, the two-

way mode is a restricted (1, 1)-mode where any active node will use the same

adjacent edge for both sending and receiving messages [55].

Based on the number of neighboring processors that can be communicated simulta-

neously, broadcast models are classified into:-

• 1-port communication model (or processor bound model) where a node commu-

nicates with one neighbor at a time [70].

• k-port communication model where a processor can communicate with at most

k of its neighbors at a time. A considerable amount of study [109], [108], [93],

[94], [98], [130], [160] is dedicated to this model. This is useful in the area of

DMA-bound systems [136] as well as in computing functions in networks [6],

[22], [42].

• link bound model where all the neighbors can be informed at the same time [70].

Broadcast models can also be classified based on the time taken to send a message

between the two nodes of the network.

1. the constant model where irrespective of the size of the message, time taken to

broadcast it to another node is constant

2. the linear model where time needed to broadcast a message to a neighboring

node is a linear function of the size of the message.

There are some results with linear model [11], [150], [41], [65], [40] though the

literature mainly deals with the constant model.

Again, sometimes in the literature broadcast model has been classified depending on

how the communication has been setup with the neighbors.
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1. Vertex disjoint path mode broadcasting where in every round information is be-

ing transmitted to the uninformed nodes via disjoint sets of vertices, which can

be paths of length greater than one. There are two types of this model [21], [58],

[61], [66], [67], [69], [118], [131] that have been studied in the literature. In one

class of this model, one end-node broadcasts its whole piece of information to all

other nodes along the path. In the second class of this model, the intermediate

nodes in the path do not read the message being sent.

2. Edge disjoint path mode broadcasting where in every round information is being

transmitted to the uninformed nodes via disjoint sets of edges, which can be

paths of length greater than one. This model has been investigated in several

papers [58], [61], [66], [68], [116], [119]. Note that both vertex disjoint and edge

disjoint models are called Line broadcast model.

3. (i, j) mode broadcasting where in any round, a node can inform its i neighbors

via i incident edges and it can receive messages from j neighbors via j incident

edges. This model has been studied in [55].

4. Radio Broadcasting where the transmission of the message is assumed to take

place in discrete pulses or rounds. In this model, on each communication round,

each informed node can either inform all its neighbors or not send it at all i.e.,

it is not allowed to send to a subset of its neighbors at a time. Moreover, the

node that receives the message from precisely one neighbor is considered to be

informed at that round since in this model, it is assumed that if a node receives

message from more than one neighbor at the same time, then the message is

corrupted. There are several literature on the study of this model [3], [4], [10],

[30], [28], [31], [29], [51], [52], [54], [53], [74], [76], [123], [132].

5. Universal list broadcast model where every vertex knows in prior the ordered

list of neighbors that it is going to inform [43], [128], [111], [96]. This model

differs from the classical broadcast model where every vertex can choose the

ordered list of nodes it will inform depending on the source vertex.

6. Messy broadcasting model where each vertex sends the message randomly to

its neighbors without any knowledge about the originator or the time at which
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the message was sent. In other words, messy broadcasting model is looking for

upper bounds in the broadcast time, following the constraints below:

• one node knows only its neighbors

• the originator is not known

• the time slot is not known

• there is no co-ordinating leader

This model is best suited in a topology which has insufficient memory to main-

tain a co-ordinated protocol. One of the major differences between the messy

broadcasting and the previously mentioned topologies is that, in a messy broad-

cast scheme, the vertices at each round send the message to a randomly selected

neighbor, without having the knowledge of the network topology [2], [35], [91],

[89], [138], [85], [86]. There are 3 different types of messy models being studied

in the literature:

• M1 model where at each time unit, every vertex knows the state of each

of its neighbors i.e. informed or uninformed.

• M2 model where every informed vertex knows the source vertex from which

it receives the message and also the neighbors to which it has sent the

message.

• M3 model where every informed vertex knows the neighbors to which it

has sent the message.

7. Multiple message broadcasting where large amounts of data are broken into

smaller pieces of information which are then sent individually over the network

[8], [9], [27], [33], [57], [87], [88], [140], [126], [127], [32].

8. Fault tolerant broadcasting model where it is assumed that some links in the

network can be faulty. Thus in a k fault-tolerant broadcasting scheme, it is

assured that any node in the network can receive the message from the originator

in presence of at most k edge failures [1], [77], [79], [149].

9. Broadcasting with randomly placed calls originated from the spreading of rumour

studies where each informed member of a population transmits the message to

9



other members of the population. Later a slightly different model is being

introduced, in which an informed node transmits the information on average f

times, where f is a function of time. Further work on this model can be found

in [14], [24], [38], [39], [48], [62], [82], [81], [80], [75], [124], [134], [135], [146],

[151], [152], [153], [154], [155].

Although there are several broadcast models, however in this thesis we will consider

the classical broadcast model. Recall from the Introduction chapter, in the classical

broadcast model, broadcasting is to be completed as quickly as possible subject to

the following constraints: (1) Each call requires one unit of time. (2) A vertex can

participate in only one call per unit of time. (3) Each call involves only two adjacent

vertices, a sender and a receiver. In this model, the broadcast problem of determining

b(u) for an arbitrary originator u in an arbitrary graph is proved to be NP-Complete

in [162]. This NP-Complete problem is as follows:

Given a graph G = (V,E) with a specified set of vertices V0 ⊆ V and a positive

integer k, does there exist a sequence V0, E1, V1, E2, V2, ..., Ek, Vk, where Vi ⊆ V ,

Ei ⊆ E(1 ≤ i ≤ k), Ei = {(u, v), u ∈ Vi−1, v /∈ Vi−1}, Vi = Vi−1 ∪ v and Vk = V . Here

Vi is the set of informed vertices at round i, Ei is the set of active edges through which

information is being sent at round i and k is the total broadcast time. When |V0| = 1,

then it is the case when broadcasting starts from an arbitrary single originator. The

proof has been done by reducing the 3-dimensional matching problem (3DM) to the

broadcast problem in polynomial time.

2.1 Approximation Algorithms and Heuristics

Since finding the minimum broadcast time of any originator in an arbitrary graph

has been proved to be NP-Complete, many approximation algorithms and heuristics

have been presented to determine the broadcast scheme with minimum time cost

(see [7], [131], [49], [73], [72], [50], [71], [12], [156], [158], [60], [145]). The first

work of this kind in [131] gives us a broadcast scheme whose performance is at most

b(u,G)+Diam(u)+3
√

|V | rounds for a given graph G = (V,E) and the originator u.

Here Diam(u) is the diameter of u and b(u,G) is the optimal broadcast time. This

gives us an O(
√

|V |) additive approximation algorithm. A randomized broadcast

algorithm has been presented in [156] which is based on calculating the poise of a
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graph. The poise of a tree T is defined as the sum of the maximum degree of a vertex

in the tree and the diameter of the tree. The poise of a graph G, denoted by P (G),

is defined as the minimum poise of any spanning trees. Calculating the poise of a

graph is NP-Complete. Ravi in [156] presents a heuristic to compute a spanning tree

of a graph on n vertices and m edges which runs in O(nm log n) time. The paper also

shows there is a O(log(n)P (G) + log2 n) algorithm to calculate the poise of the tree

and b(G) = O(P (G) logn
log logn

). The time complexity of the algorithm is O(nm log2 n)

and the upper bound of the broadcast time is O( log2 n
log logn

b(G)). The best theoretical

upper bound is obtained by the approximation algorithm in [49] which produces a

broadcast scheme with O( log(|V |)
log log(|V |)b(G)) rounds. Research in [159] has showed that

the broadcast time cannot be approximated within a factor 57
56
−ε. However this result

has been improved within a factor of 3− ε in [49].

In the heuristic approach, researchers tried to match between the set of informed

and the set of uninformed vertices in every round of calls. The Round-Heuristic

described in [12] presents the simulation results which guarantees the performance of

this algorithm is quite close or equal to the optimal value. The running time of Round-

Heuristic is O(Rnm log n) where R is the number of rounds taken for broadcasting,

n is the number of vertices and m is the number of edges in the graph. Another

heuristic known as Tree-based Approach in [110] reduces the complexity of each round

to O(m). Both these approaches perform better in most of the commonly used

interconnection networks and also produce better results in the graph models from

the network simulator ns-2 [141], [7], [47], [23]. Recent heuristic approaches in [112]

apply Random Heuristic and Semi-Random Heuristic algorithms which both reduce

the total time complexity to O(m) and the simulation results show that these new

heuristics perform better than the previous approaches in the models representing

real networks. Both these algorithms first generate a shortest path for every vertex to

receive the message in the network. While Random Heuristic makes random decisions

when matching children and parents, Semi-Random employs a strategy to distribute

the children to the parents.
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2.2 Commonly Used Topologies

In this section we present a family of commonly used graph topologies with well stud-

ied properties related to interconnection networks such as the diameter, the number

of edges, the maximum degree, the broadcast time and others (see [70], [116], [137],

[113]). For some of these graphs, the exact value of broadcast time is not known. In

such cases the best known lower and upper bounds have been presented.

2.2.1 The Path Pn

1                               2                            3                              4                         5                             6

Figure 3: Path with n = 6

A path in a graph is a sequence of vertices such that from each of its vertices there is

an edge to the next vertex in the sequence. In the path of length n denoted by Pn the

nodes are all integers from 1 to n and the edges connect each integer i (1 ≤ i < n)

with i + 1. Pn has n vertices, diameter is equal to n − 1 and maximum degree 2.

The broadcast time of Pn is equal to n− 1. This is because the end vertices have the

maximum broadcast time in the path. In Figure 3, b(P6) = 5.
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2.2.2 The Cycle Cn

Figure 4: Cycle with n = 6

A cycle (ring) is a path such that the start vertex and the end vertex are also connected

by an edge. Cn has n vertices, diameter is equal to
⌊

n
2

⌋

and maximum degree 2. The

broadcast time of Cn is equal to
⌈

n
2

⌉

. In Figure 4, b(C6) = 3.

2.2.3 The Complete Graph Kn

Figure 5: Complete Graph with n = 6
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A complete graph is a simple undirected graph in which every pair of distinct vertices

is connected by a unique edge. Kn has n vertices, diameter is 1 and degree n − 1.

The broadcast time of Kn is equal to dlog ne as during each round every informed

vertex can send message to an uninformed neighbor. In Figure 5, b(K6) = 3.

2.2.4 The Hypercube Hm

The hypercube of dimension m, denoted by Hm is the graph whose vertices are all

binary strings of length m and whose edges connect those binary strings which differ

in exactly one position. Hm has 2m vertices, m2m−1 edges, diameter m and each

vertex has exactly degree m. An (m+ 1)-dimensional hypercube is constructed from

two m-dimensional hypercubes by connecting each pair of the corresponding vertices.

The hypercube is one of the few family of graphs where the broadcast time is equal

to log(|V |) where |V | denotes the number of nodes in the hypercube, i.e. b(Hm) = m.

In Figure 6, b(H3) = 3.

000                                                                                                 001

100                                                                                                 101

110                                                   111

010                                                  011

Figure 6: Hypercube H3

2.2.5 The Cube-Connected Cycles CCCm

The CCCm is a modification of the hypercube Hm obtained by replacing each vertex

of the hypercube with a cycle of m nodes. The i-th dimension edge incident to a node

14



of the hypercube is then connected to the i-th node of the corresponding cycle of the

CCCm. This CCCm has m2m vertices, diameter
⌊

5m
2

⌋

− 1 and maximum degree 3.

From [139] we know that b(CCCm) =
⌈

5m
2

⌉

− 1. Figure 7 shows a 3-dimensional

cube-connected cycle.

Figure 7: Cube-Connected Cycle CCC3

2.2.6 The Butterfly BFm

The m-dimensional butterfly network, BFm is a graph with vertex-set Vm = {0, 1, ...,
m − 1} × {0, 1}m, where {0, 1}m denotes the set of length-m binary strings. For

each vertex v = 〈i, α〉 ∈ Vm, i ∈ {0, 1, ...,m − 1}, α ∈ {0, 1}m, we call i the level

and α the position-within-level of v. The edges of BFm are of two types: For each

i ∈ {0, 1, ...,m− 1} and each α = a0a1...am−1 ∈ {0, 1}m, the vertex 〈i, α〉 on level i of

BFm is connected

• by a straight-edge with vertex 〈(i+ 1)mod m,α 〉 and

• by a cross-edge with vertex 〈(i+ 1)mod m,α(i) 〉

on level (i + 1)mod m. Here, α(i) = a0...ai−1ciai+1...am−1, where ci denotes the

binary complement of ai. The BFm has m2m vertices, diameter
⌊

3m
2

⌋

and maximum
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degree 4. From [148] we know that 1.7417m ≤ b(BFm) ≤ 2m − 1. Figure 8 shows a

3-dimensional butterfly network.

Figure 8: Butterfly graph, m = 3

2.2.7 The Shuffle-Exchange SEm

The SEm is the graph where the vertices are represented by binary strings of length

m and whose edges connect each string αa, where α is a binary string of length

m − 1 and a is in {0, 1}, with the string αc and with the string αa, where c is the

binary complement of a. The SEm has 2m vertices, diameter is 2m−1 and maximum

degree 3. From [122] we know that b(Em) ≤ 2m− 1. Figure 9 shows a 3-dimensional

shuffle-exchange graph.
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000                  001 110            111

010                                            011

100                                            101

Figure 9: Shuffle-Exchange graph SE3

2.2.8 The DeBruijn DBm

The DBm is the graph where the vertices are represented by binary strings of length

m and whose edges connect each string αa, where α is a binary string of length m−1

and a is in {0, 1}, with the strings αb, where b is a symbol in {0, 1}. The DBm

has 2m vertices, diameter is m and maximum degree 4. From [148] we know that

b(DBm) ≥ 1.3171m and from [19] we know that b(DBm) ≤ 1.5m + 1.5. Figure 10

shows a 3-dimensional DeBruijn graph.

000                      010 101                          111

001                                            011

100                                            110

Figure 10: DeBruijn graph DB3

2.2.9 2d Grid Network Gm,n

The 2 dimensional grid network Gm,n (or mesh) is a network on mn vertices. A vertex

having the tuple (i, j) is connected to a maximum of 4 vertices denoted by the tuples
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(i − 1, j), (i, j − 1), (i + 1, j), (i + 1, j + 1) for 1 < i < m and 1 < j < n. The

corner vertices are connected to 2 neighbors only, for example (0, 0) is connected to

(0, 1), (1, 0). Other than the corner vertices, all other vertices which are on the sides

have 3 neighboring vertices, for example (0, j) is connected to (0, j − 1), (0, j + 1),

(1, j). From [113] we know that b(Gm,n) = m + n − 2. New heuristics in [110], [44]

have found better results on the performance of various broadcast schemes in grids.

Figure 11 shows a 2-grid graph G[3× 4].

Figure 11: The Grid [3 × 4]

2.2.10 The d-Torus T [a1 × a2 × ...× ad]

A d-Torus graph is a d-grid graph with both ends of rows and columns connected.

The bounds on the broadcast time of the Torus are D ≤ b(T [a1 × a2 × ... × ad]) ≤
D +max(0,m− 1), where D =

d
∑

i=1

ai − d, and m is the number of odd ai. Figure 12

shows a 2-torus graph T [3× 4].
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Figure 12: 2-Torus graph with 12 vertices

2.2.11 The k-ary Tree

The complete k-ary tree of height m, denoted by Tm
k , is the graph whose nodes are

all k-ary strings of length at most m and whose edges connect each string α of length

i(0 ≤ i ≤ m) with the strings αa, α ∈ {0, ..., k − 1}, of length i + 1. The nodes at

level m are the leaves of the tree. For a node α at level i, (0 ≤ i < m), the nodes

αa, a ∈ 0, ..., k − 1, are called the children of α. α is called the parent of αa. Tm
k

has (km+1 − 1)/(k − 1) nodes, diameter 2m and maximum degree k + 1. If v0 is the

root of Tm
k , then broadcast time of the tree from v0 is equal to km. In Figure 13,

b(v0, T
2
3 ) = 6.

v0

1 2
3

2        3       4                               3    4        5                           4   5        6

Figure 13: Complete Tree T 2
3
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2.2.12 Unicyclic Graphs

A unicyclic graph is a connected graph with one cycle. It can be also represented as a

cycle where every vertex on the cycle is a root of the tree. Figure 14 shows a unicyclic

graph where the vertices of the cycle are denoted by r1, r2, ..., rk and the tree rooted

at ri by Ti, where 1 ≤ i ≤ k.

From [100] we know that if G = (V,E) is a unicyclic graph and T ′ is a spanning

tree of G then bmin(G) ≤ bmin(T
′) ≤ 2bmin(G) − 2, where bmin(G) is the minimum

broadcast time of all the vertices in G. Similarly bmin(T
′) is defined as the minimum of

the broadcast times of all the k spanning trees that can be formed from the unicyclic

graph having k trees. In [100], it has been also shown that b(G) ≤ b(T ) ≤ 2b(G)− 2

where T is a spanning tree of G.

r1

r2

ri

rk

Ti

Tk T1

T2

Figure 14: Unicyclic graph with trees Ti

2.2.13 Knödel graphs Wg,n

Knödel graphsWg,n are defined as undirected graph G = (V,E) with V = {0, 1, ..., n−
1}, n is even, and the set of edges E = {(i, j)|i + j = (2k − 1)mod n}, where

0 ≤ i, j ≤ n− 1, 1 ≤ k ≤ g and 1 ≤ g ≤ dlog ne.
b(Wk,2k) = k [129] and b(Wk−1,2k−1) = k [125]
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Several studies have been made on Knödel graphs in [16], [63], [64], [87], [106], [107],

[129].

2.2.14 Other Topologies

There are several other graph topologies that have been considered in the literature

besides the topologies mentioned above. Research in [34] has shown that an optimal

broadcast algorithm is possible in directed graphs called the Manhattan street net-

work. Broadcasting in generalized chordal rings has been studied in [36]. The work

in [99] shows that the broadcast time of the optimal bipartite double loop graphs is

d + 2 where d is the diameter of the graph. In [101] the optimal triple loop graphs

have been considered and it has been proved that d+2 is the lower bound and d+5 is

the upper bound for the broadcast problem in this kind of graph. In the same paper,

a general upper bound of d + 2k − 1 has been given for multiple loop graphs where

2k is the degree of every vertex. In [104] a linear algorithm for broadcasting in net-

works with no intersecting cycles have been studied. In [103] it has been shown that

a polynomial time solution is possible for broadcasting problems in fully connected

trees. There is also a polynomial time solution for broadcasting in necklace graphs

[90]. A constant approximation algorithm has been presented in [105] for hierarchical

tree cluster networks. In [127] a constant factor approximation algorithm is given

for network of workstations. The broadcast problem has also been studied for other

topologies, such as Kautz graphs [115], pancake and star graphs [20], recursive cir-

culants [147], banyan-hypercube [13], cycle-prefix digraphs [37]. Research has been

made for networks under certain constraints, like bounded degree networks [17], [143]

and planar graphs [114].

2.3 Minimum broadcast graphs

Sometimes, instead of finding the broadcast time of a specific graph, another approach

is to find the graphs with minimum number of edges such that broadcast can be done

within a certain amount of time. A broadcast graph is a connected graph G on n

vertices such that b(G) = dlog ne. The broadcast function B(n) is the minimum

number of edges in any broadcast graph on n vertices. A minimum broadcast graph

(mbg) is a broadcast graph on n vertices with B(n) edges. Finding B(n) is not easy
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even for small values of n. The exact value of B(n) is known when n = 2k and

n = 2k − 2. Research has been done in constructing minimum broadcast graphs [84],

[142], [133], [157]. Farley et al [59] showed that hypercubes are mbgs which results in

B(2m) = m2m−1. This value is obtained by 3 non-isomorphic families of graphs: (1)

the hypercube of dimension k [56], (2) the recursive circulant G(2k, 4) [147] and (3)

the Knödel graph Wk,2k [129].

Khachatrian and Haroutunian [125] and Dinneen et al. [45] independently showed

that B(2m − 2) = (m − 1)(2m−1 − 1) for m ≥ 2. B(n) is known mostly for small

values of n, mainly under 63.

• 1 ≤ n ≤ 16 and n = 32 [59]

• n = 17 [144]

• n = 18, 19 [18], [164]

• n = 20, 21, 22 [142]

• n = 26 [157], [166]

• n = 27, 28, 29, 58, 59, 60, 61 [157]

• n = 30, 31 [18]

• n = 62 [56]

• n = 63 [133]

• n = 127 [165]

• n = 1023, 4095 [160]

It has been proved that it is very difficult to construct minimum broadcast graphs. So

another direction of research has been to connect smaller broadcast graphs together

to construct broadcast graphs on larger number of vertices [15], [25], [26], [45], [46],

[78], [92], [125]. This approach is quite useful for designing graphs with even number

of vertices. An upper bound on B(n) for odd, positive n has been presented in [95].

Recently, a new improved upper bound on B(n) appears in [5]. Figure 15 illustrates

several examples of minimum broadcast graphs with authors name indicated in the

parentheses.
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Figure 15: Minimum broadcast graphs
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Chapter 3

Approximation Algorithm for the

Broadcast Time in k-path Graph

As mentioned in Chapter 1, the broadcasting problem becomes very difficult when

two cycles intersect. In this chapter we consider broadcasting in simple graphs where

the intersection of two cycles is a path. The simplest such graph where several cycles

have only two intersecting vertices is called a k-path graph. A k-path graph is a

collection of k paths of arbitrary lengths connected by a vertex (or a junction) on

both ends. We present a constant approximation algorithm to find the broadcast

time of an arbitrary k-path graph. We also show the optimality of our algorithm for

some subclasses of k-path graph.

3.1 Auxiliary Results

In this section we prove two auxiliary results which will be used later in designing of

our approximation algorithm.

Definition 1. Let Gk = (V,E) be a connected graph consisting of k paths P1, P2, P3, ...,

Pk and two vertices u and v connected to the end points of all paths. Vertices u and

v are called junctions of Gk (see Figure 16).

Let l1 ≥ l2 ≥ ... ≥ lk ≥ 1, where li be the number of vertices in path Pi (excluding

vertices u and v) for all 1 ≤ i ≤ k.

First we assume that the originator is one of the junction vertices.

24



u

v

Pk P4    P3     P2                    P1

Figure 16: k-path graph

Lemma 1. There exists a minimum time broadcast scheme from originator u in Gk

in which the shortest path Pk is informed in the first time unit.

Proof. We start with a minimum time broadcast scheme from originator u where v

receives the message through some path P ′
j and then construct another minimum

time broadcast scheme where u informs P ′
j at time unit one. Finally, we construct

another broadcast scheme where we swap the order in which u informs along the

shortest path Pk and path P ′
j and prove that this is also a minimum time broadcast

scheme. This will prove our claim.

Let Sopt be a minimum time broadcast scheme, bSopt
(u) = b(u,Gk) under which u

informs its adjacent vertices of the k paths in some order P ′
1, P

′
2 ,...,P ′

k with lengths

l′1,...,l
′
k at time units 1, 2, ..., k respectively where P ′

1, P
′
2, ..., P

′
k is the permutation of

the paths P1, ..., Pk and l′1,...,l
′
k is the permutation of l1,...,lk (see Figure 17). Let v

receives the message through path P ′
j at time unit j − 1 + l′j + 1 = l′j + j.

Step 1: Design a new broadcast scheme Sj where u informs the vertices of the k

paths in the order P ′
j , P

′
1, P

′
2,...,P

′
j−1, P

′
j+1,...,P

′
k at time units 1, 2, 3, ..., k shown in

Figure 18. In this scheme, v gets informed at time unit l′j + 1 instead of time unit

l′j + j under scheme Sopt. We will show that Sj is also a minimum time broadcast

scheme for originator u.

Note that paths P ′
j+1, ..., P

′
k will get informed exactly at the same time unit under

both schemes Sopt and Sj. However, under scheme Sj every vertex on the paths P ′
1,
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u

v

k

r+1

j+1j

j-1

1

P'1

Pk

P'j

P'k

Figure 17: Scheme Sopt

P ′
2,..., P

′
j−1 will receive the message exactly one time unit later. Recall that under

Sopt, v is idle at time units l′j + 2, l′j + 3, ..., l′j + j. However, under Sj, v receives the

message j − 1 time units earlier compared to scheme Sopt and can make j − 1 extra

calls, each one informing its adjacent vertices on paths P ′
1, ..., P

′
j−1 respectively. Thus,

bSj
(u) ≤ bSopt

(u) = b(u,Gk). So, Sj is a minimum time broadcast scheme in which v

gets informed through some path from u starting time unit 1.

Step 2: From scheme Sj, make a new scheme Sk where the times at which u sends

the message along the paths Pk and P ′
j are being swapped. Assume that under Sj, u

informs the path Pk (a shortest path) at time r + 1 for some 0 < r < k. Then under

Sk, u informs its adjacent vertices in the paths Pk, P
′
1, P

′
2, ..., P

′
j , ..., P

′
k at time units

1, 2, 3, ..., r + 1, ..., k respectively. The order in which u and v broadcast along the

remaining k − 2 paths is the same in both schemes. To prove that bSk
(u) = bSj

(u) =

b(u,Gk) we have to show that under Sk all vertices of path P ′
j receive the message by

time b(u,Gk). There are two cases to consider:

Case 1: under Sj, v does not inform any vertex of Pk:

Under Sj, v is informed at time l′j + 1 ≤ b(u,Gk) and u informs all the lk vertices of

Pk starting at time unit r + 1. Similarly under Sk, v is informed at time lk + 1 and

u informs at least lk vertices on P ′
j within b(u,Gk). Since l′j + 1 ≥ lk + 2 (otherwise
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u

v

k

r+1

j+1

j

2

1

P'j

Pk

P'j-1P'1

P'k

P'j+1

Figure 18: Scheme Sj

l′j ≤ lk means P ′
j and Pk are identical paths), v has at least one free time unit

immediately after lk +1 to inform along path P ′
j at time unit lk +2. So, v can inform

b(u,Gk) − lk − 1 vertices on path P ′
j . In total there are b(u,Gk) − lk − 1 + lk =

b(u,Gk) − 1 informed vertices on P ′
j under scheme Sk. Since b(u,Gk) ≥ l′j + 1 from

scheme Sj, then b(u,Gk)− 1 ≥ l′j, and all vertices of P ′
j will be informed within time

b(u,Gk) under scheme Sk. Since the broadcast time in the remaining k − 2 paths

remains the same, bSk
(u) ≤ bSj

(u).

Case 2: Assume that under Sj, m vertices of Pk receive the message through

vertex v starting at time l′j + 1 + c for some c ≥ 1 (see Figure 19):

Under Sj, u informs lk − m vertices on Pk starting at time r + 1. Similarly under

Sk, u informs at least lk −m vertices on P ′
j within b(u,Gk). As in Case 1, v informs

along P ′
j at time lk + 2. Thus, v can inform l′j + c − (lk + 1) vertices on P ′

j before

l′j +1+ c time units in addition to another m vertices on P ′
j before b(u,Gk). Together

there are (l′j + c− (lk + 1)) +m+ (lk −m) = l′j + c− 1 informed vertices on P ′
j . But

l′j + c− 1 ≥ l′j since c ≥ 1. This shows that all vertices on P ′
j can be informed within

the optimal broadcast time under Sk. Since the broadcast time in the remaining k−2

paths remains the same, then bSk
(u) ≤ bSj

(u) = b(u,Gk).
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m vertices
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lk - m vertices

v informs at least

l'j+c-(lk+1)+m vertices

u informs 

at least lk - m vertices

lk+2

Figure 19: Sj and Sk where only Pk and P ′
j are shown for the case where v informs Pk

Let us now consider the originator in Gk to be any vertex w on a path Pj, where

1 ≤ j ≤ k (see Figure 20). Let us assume that one of the junctions u is at a shorter

distance from w and let the length of this shorter path wu = d, where d ≥ 1. Then

the length of the path wv = lj + 1− d and d ≤ lj + 1− d.

Lemma 2. There is a minimum time broadcast scheme from originator w in Gk in

which w first sends the information along the shorter path towards vertex u.

Proof. Let Sv be a minimum time broadcast scheme, bSv
(w) = b(w,Gk) under which

w first informs its adjacent vertex of the path wv. We will construct a new broadcast

scheme Su under which w will first inform its adjacent vertex of the path wu. We

will show that bSu
(w) ≤ bSv

(w) = b(w,Gk).

According to scheme Sv, w informs its adjacent vertex of the path wu at time

unit two, and u gets informed at time unit d+1. Now, we construct a new broadcast

scheme Su where w informs its adjacent vertex of the path wu at time unit one, and u

is informed at time unit d. The order in which u and v broadcast along the remaining

k−1 paths is the same in both schemes. However, under Su, every vertex on sub-path

wv of path Pj will receive the message exactly one time unit later compared to Sv.
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w

u

v

lj+1-d

Figure 20: Originator w is any vertex other than junction

To prove that bSu
(w) = b(w,Gk) we consider three cases:

Case 1: under Sv, v is informed through some path other than Pj at time b1 ≤
b(w,Gk):

Let this path be Py. Since v is informed through Py and Py 6= Pj, then Py must

have been informed from u. Under Su, u is informed exactly one time unit earlier.

Subsequently every vertex on Py will receive the message exactly one time unit earlier.

So, v is informed at time unit b1 − 1. v has exactly one free time unit immediately

after b1 − 1 to inform its adjacent vertex on Pj at time unit b1. Since the broadcast

time in the remaining k − 1 paths remains the same, bSu
(w) ≤ bSv

(w).

Case 2: Assume that under Sv, v is informed through Pj and r vertices along the

different paths in Gk receive the message through vertex v within b(w,Gk) time units:

Under Su, v will receive the message exactly one time unit later compared to Sv. So,

r− 1 vertices along the different paths in Gk will receive the message through vertex

v within b(w,Gk). Let Px be the path along which v informs one less vertex. Recall

that u is informed exactly one time unit earlier. Thus, u can inform one extra vertex

along Px within b(w,Gk). Since the broadcast time in the remaining k − 1 paths

remains the same, bSu
(w) ≤ bSv

(w).

Case 3: Assume that under Sv, v is informed through Pj and v does not inform a

vertex in Gk:

Under Sv, v is informed at time unit lj +1−d. Let the adjacent vertices of v in paths
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P1, P2,..., Pj,..., Pk be v1, v2,..., vj,..., vk respectively. Since, under Sv, v does not

inform any vertex in Gk, vertices v1, v2,..., vj−1, vj+1,..., vk must have been informed

within lj+1−d time units from u (see Figure 21). Recall that under Su, u is informed

exactly one time unit earlier and vj will be informed at time unit lj + 1 − d. Now

vertices v1, v2,..., vj−1, vj+1,..., vk will be informed within lj − d time units from u

and one of them can inform v at time unit lj +1−d. So, bSu
(w) ≤ bSv

(w) = b(w,Gk).

w

u

v

vj

v1 vj+1
vk

Adjacent vertices of 

v are informed within

lj+1-d time units from u

v is informed at

lj+1-d time units

w

u

v

vj

v1 vj+1
vk

Adjacent vertices of 

v are informed within

lj-d time units from u

v is informed at

lj+1-d time units from one of v1,..,vk

except vj

vj is informed at

lj+1-d time units

Sv Su

Figure 21: Sv and Su where v does not inform a vertex in Gk

3.1.1 Lower bounds on broadcast time

In this section we will give lower bounds on the broadcast time of Gk from originators

u and w. Recall that l1 ≥ l2 ≥ ... ≥ lk ≥ 1 where li is the length of the path Pi

(excluding vertices u and v) for all 1 ≤ i ≤ k.

Lemma 3. Let Gk be a k-path graph where the originator is a junction vertex u and

l1 ≥ l2 ≥ ... ≥ lk ≥ 1. Then
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(i) b(u) ≥
⌈

lj+lk+j+1

2

⌉

for any j, 1 ≤ j ≤ k − 1.

(ii) b(u) ≥
⌈

k+lk+1
2

⌉

if k > lk + 1.

(iii) b(u) ≥
⌈

2lk+k+lj+j+2

4

⌉

if k > lk + 1.

Proof. (i): By Lemma 1 there exists a minimum time broadcast scheme from orig-

inator u in Gk in which the shortest path Pk is informed in the first time unit.

Considering such minimum time broadcast scheme, u informs along Pk at time unit

one. It takes exactly lk + 1 time units for vertex v to receive the message. Consider

the cycle formed by the path Pk and any path Pj, where 1 ≤ j ≤ k − 1. Under any

minimum time broadcast scheme all vertices in the cycle formed by these two paths

must be informed. u informs the adjacent vertices of the remaining k − 1 paths in

some order and assume it informs along Pj at time unit j + 1 or later. Then at time

unit lk + 1 there are at least lj − (lk + 1 − j) = lj − lk + j − 1 uninformed vertices

in Pj. v sends the message along Pj no sooner than time unit lk + 2. Since, starting

at time lk + 2 onwards, Pj receives the message from both u and v, then at each

time unit 2 new vertices on Pj will get informed. So, b(u) ≥ lk + 1 +
⌈

lj−lk+j−1

2

⌉

=
⌈

lj+lk+j+1

2

⌉

. Suppose, by contradiction u calls path Pj before time j + 1. Then by

pigeonhole principle there exists m, 1 ≤ m ≤ j− 1 such that u calls Pm at time j+1.

Similarly at time unit lk + 1 there are at least lm − lk + j − 1 uninformed vertices in

Pm. If, starting at time lk + 2 onwards, Pm receives the message from both u and

v, then b(u) ≥ lk + 1 +
⌈

lm−lk+j−1
2

⌉

=
⌈

lm+lk+j+1
2

⌉

≥
⌈

lj+lk+j+1

2

⌉

as lm ≥ lj. Hence,

b(u) ≥
⌈

lj+lk+j+1

2

⌉

.

Proof of (ii) goes as follows: v receives the message no sooner than lk + 1 time

units through Pk. After time lk + 1, there are k − (lk + 1) paths with no informed

vertices (see Figure 22). v will inform at least
⌈

k−lk−1
2

⌉

uninformed paths (u informs

the remaining
⌊

k−lk−1
2

⌋

uninformed paths). So, b(u) ≥ lk + 1 +
⌈

k−lk−1
2

⌉

=
⌈

k+lk+1
2

⌉

.

For the proof of (iii), we combine the inequalities in (i) and (ii). We get 2b(u) ≥
⌈

lk+lj+j+1

2

⌉

+
⌈

k+lk+1
2

⌉

≥
⌈

2lk+k+lj+j+2

2

⌉

. Hence, b(u) ≥
⌈

2lk+k+lj+j+2

4

⌉

when k >

lk + 1.

Lemma 4. Let Gk be a k-path graph where the originator is a junction vertex u and

l1 ≥ l2 ≥ ... ≥ lk ≥ 1. Let n be the total number of vertices in Gk. Then

(i) b(u) ≥
⌈

n−lk−2
2(k−1)

+ k+lk
2

⌉

if b(u) ≥ k + lk.
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u

v

lk + 1

2

1

Pk
P'jP'l

k
P'1 P'k-1P'l

k
 + 1

Figure 22: The paths marked in bold contain at least one informed vertex when v gets
informed at time lk + 1. The rest k− lk − 1 paths P ′

lk+1, ..., P
′
k−1 do not have any informed

vertex at time lk + 1. P ′
1, ..., P

′
k−1 is the combination of the paths P1, ..., Pk−1.

(ii) b(u) ≥
⌈

1
3

√

(6n+ 4k2 − 12k − 6klk)− 15
4
+ 6lk−2k+9

6

⌉

if max{k, lk + 1} ≤ b(u) <

k + lk.

Proof. (i): By Lemma 1, u informs along the shortest path Pk at time unit one. It

takes exactly lk+1 time units for vertex v to receive the message. Since b(u) ≥ k+ lk,

then both u and v will be busy informing its adjacent vertices in the remaining k− 1

different paths at time units 2, 3, ..., k and lk + 2, ..., lk + k respectively. By b(u) time

units, u can inform at most lk + 1, b(u) − 1,..., b(u) − (k − 1) vertices in these k

different paths. Similarly, by b(u) time units, v can inform at most b(u) − (lk + 1),

b(u) − (lk + 2),..., b(u) − (lk + k − 1) vertices in the k − 1 different paths. So, n ≤
lk + 1 + {b(u) − 1 +...+ b(u) − (k − 1)} + {b(u) − (lk + 1) + b(u) − (lk + 2) +...+

b(u)− (lk+k− 1)} + 1 ⇒ n ≤ 2(k− 1)b(u)− (k+ lk)(k− 1)+ (lk+2). Hence, b(u) ≥
⌈

n−lk−2
2(k−1)

+ k+lk
2

⌉

.

Proof of (ii): Since max{k, lk + 1} ≤ b(u), it guarantees that u can inform its

adjacent vertices in k different paths at time units 1, 2, ..., k and v receives the mes-

sage at time lk + 1. Similar to proof in (i), by b(u) time units, u can inform at
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most lk + 1, b(u) − 1,..., b(u) − (k − 1) vertices in these k different paths. Similarly,

by b(u) time units, v can inform at most b(u) − (lk + 1), (b(u) − (lk + 1) − 1),...,

(b(u) − (lk + 1) − (b(u) − (lk + 2))) vertices as b(u) < k + lk. So, n ≤ lk + 1 +

{b(u) − 1 +...+ b(u) − (k − 1)} + {b(u) − (lk + 1) + (b(u) − (lk + 1) − 1) +...+

(b(u)− (lk + 1)− (b(u)− (lk + 2)))} + 1

= (k − 1)b(u) - k(k−1)
2

+ (lk + 2) + b(u)(b(u) − lk − 1) - (lk + 1)(b(u) − lk − 1) -
(b(u)−(lk+2)(b(u)−(lk+1))

2
.

⇒ 2n ≤ 3b(u)2 - b(u)(6lk − 2k + 9) + (3l2k + 9lk − k2 + k + 8)

⇒ 3b(u)2 - b(u)(6lk − 2k + 9) - (2n+ k2 − 3l2k − 9lk − k − 8) ≥ 0.

Roots of b(u) are
6lk−2k+9±

√
(6lk−2k+9)2+12(2n+k2−3l2

k
−9lk−k−8)

6
.

Considering the positive root of b(u), we get b(u) ≥
⌈

6lk−2k+9
6

+√
(24n+16k2−48k−24klk−15)

6

⇒ b(u) ≥
⌈

1
3

√

(6n+ 4k2 − 12k − 6klk)− 15
4
+ 6lk−2k+9

6

⌉

.

Similarly we can obtain a lower bound on broadcast time when originator is any

vertex w on a path Pj other than junction vertices u and v. Recall that d ≤ lj +1−d

where the lengths of the paths wu and wv respectively are d and lj + 1 − d. Also

d ≥ 1 and lj is the length of the path Pj .

Lemma 5. Let Gk be a k-path graph where the originator w is any vertex on a path

Pm and the lengths of the paths wu and wv respectively are d and lm + 1 − d, where

d ≥ 1 and lm is the length of the path Pm. Let us assume lm + 2 − 2d = τ(m). If

l1 ≥ l2 ≥ ... ≥ lk ≥ 1 and τ(m) < lk + 1, then

(i) b(w) ≥ d+
⌈

lj+τ(m)+j−1

2

⌉

for any j, 1 ≤ j ≤ k and j 6= m.

(ii) b(w) ≥ d+
⌈

k+τ(m)−1
2

⌉

if τ(m) < k − 1.

(iii) b(w) ≥ d+
⌈

2τ(m)+k+lj+j−2

4

⌉

if τ(m) < k − 1 and 1 ≤ j ≤ k and j 6= m.

Proof. (i): By Lemma 2 there is a minimum time broadcast scheme from originator

w in Gk in which w first sends the information along the shorter path towards vertex

u. Considering this minimum broadcast scheme, u is informed no earlier than d time

units and there are lm +1− d− (d− 1) = lm +2− 2d = τ(m) uninformed vertices on

path wv at time d. Since τ(m) < lk +1, it takes at least d+ τ(m) time units for v to

receive the message. We consider the path along which v gets informed and any path

Pj. Under any minimum broadcast scheme all the vertices in the cycle formed by
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these two paths must be informed. u informs the adjacent vertices of the k− 1 paths

in some order and let it informs Pj at time unit d + j. Then at time unit d + τ(m)

there are at least lj − (d+ τ(m)− (d+ j− 1)) = lj − τ(m)+ j− 1 uninformed vertices

in Pj. v informs Pj no earlier than time unit d+ τ(m) + 1. Similar to the argument

given in the proof of Lemma 3(i), we can write b(w) ≥ d + τ(m) +
⌈

lj−τ(m)+j−1

2

⌉

=

d+
⌈

lj+τ(m)+j−1

2

⌉

.

Proof of (ii) goes as follows: From the proof of Lemma 5(i) it follows that v

receives the message no sooner than d+ τ(m) time units. After time d+ τ(m), there

are k − 1 − τ(m) paths with no informed vertices. v will inform at least
⌈

k−1−τ(m)
2

⌉

uninformed paths (u informs the remaining
⌊

k−1−τ(m)
2

⌋

uninformed paths). So, b(w) ≥

d+ τ(m) +
⌈

k−1−τ(m)
2

⌉

= d+
⌈

k+τ(m)−1
2

⌉

For the proof of (iii), we combine the inequalities in (i) and (ii). We get 2b(w) ≥
2d+

⌈

lj+2τ(m)+j+k−2

2

⌉

. Hence, b(w) ≥ d+
⌈

lj+2τ(m)+j+k−2

4

⌉

for the case when k− 1 >

τ(m) and 1 ≤ j ≤ k and j 6= m.

Lemma 6. Let Gk be a k-path graph where the originator w is any vertex on a path

Pm and the lengths of the paths wu and wv respectively are d and lm + 1 − d, where

d ≥ 1 and lm is the length of the path Pm. Let us assume lm + 2 − 2d = τ(m). If

l1 ≥ l2 ≥ ... ≥ lk ≥ 1 and τ(m) ≥ lk + 1, then

(i) b(w) ≥ d+
⌈

lj+lk+j

2

⌉

for any j, 1 ≤ j ≤ k − 1.

(ii) b(w) ≥ d+
⌈

k+lk
2

⌉

if lk + 1 < k − 1.

(iii) b(w) ≥ d+
⌈

lj+2lk+j+k

4

⌉

if k − 1 > lk + 1 and for 1 ≤ j ≤ k − 1.

Proof. The proof of (i) is similar to the proof of Lemma 5(i) except that considering

the minimum broadcast scheme as given in Lemma 2, v takes at least d+ lk +1 time

units to get informed from u since τ(m) ≥ lk+1. Similarly the number of uninformed

vertices in Pj at time d+ lk +1 will be lj − (d+ lk +1− (d+ j− 1)) = lj − lk + j− 2.

Here we consider j = 1 for the path Pm as well as the path being informed from u

at time d + 1. Also lj = τ(m) for the path Pm. v informs Pj no earlier than time

unit d+ lk +2. Similar to the argument given in the proof of Lemma 3(i), we can get

b(w) ≥ d+ lk + 1 +
⌈

lj−lk+j−2

2

⌉

= d+
⌈

lj+lk+j

2

⌉

.

Proof of (ii): From the proof of Lemma 6(i) it follows that v receives the message no

sooner than d+lk+1 time units. After time d+lk+1, there are k−1−lk−1 = k−lk−2

paths with no informed vertices. v will inform at least
⌈

k−lk−2
2

⌉

uninformed paths (u
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informs the remaining
⌊

k−lk−2
2

⌋

uninformed paths). So, b(w) ≥ d+ lk + 1 +
⌈

k−lk−2
2

⌉

= d+
⌈

k+lk
2

⌉

.

For the proof of (iii), we combine the inequalities in (i) and (ii). We get 2b(w) ≥
2d +

⌈

lj+2lk+j+k

2

⌉

. Hence, b(w) ≥ d +
⌈

lj+2lk+j+k

4

⌉

for the case when k − 1 > lk + 1

and for 1 ≤ j ≤ k − 1.

3.2 Approximation Algorithm

In this section we present the broadcast algorithm Spath for graph Gk. We consider

any vertex x to be the originator. When the originator is u then the algorithm Spath

in Gk starts by informing the shortest path Pk in the first time unit. Starting at time

two onwards u informs the path having the maximum number of vertices. When v

gets informed at time lk + 1, calculate the number of uninformed vertices in each of

the paths P1, P2, ..., Pk−1. Starting at time lk+2 onwards v informs the path with the

maximum number of uninformed vertices till v does not have any adjacent uninformed

vertex.

When the originator is a non junction vertex w on path Pm then the algorithm

Spath in Gk starts by informing the shorter path wu in the first time unit and then

along the longer path wv. u receives the message at time d. At time d there will

be d − 1 informed vertices on wv and lm + 1 − d − (d − 1) = τ(m) uninformed ver-

tices. Depending on the relationship between τ(m) and the length of Pk, u decides

its broadcast strategy. If τ(m) < lk + 1, u broadcasts along the path having the

maximum number of vertices from the remaining paths starting at time d + 1. If

τ(m) ≥ lk+1, u broadcasts along Pk at time d+1 and starting at time d+2 onwards,

it informs the path having the maximum number of vertices. When v gets informed

at time d+min{τ(m), lk + 1}, calculate the number of uninformed vertices in each

of the paths. Starting at time d+min{τ(m), lk + 1}+1 onwards, v informs the path

with the maximum number of uninformed vertices till v does not have any adjacent

uninformed vertex.

Approximation Algorithm Spath:

INPUT: A k-path graph Gk where l1 ≥ l2 ≥ ... ≥ lk ≥ 1 and any originator x

OUTPUT: Broadcast time bSpath
(x) and scheme of Gk
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BROADCAST-SCHEME-Spath(G, l1 ≥ l2 ≥ ... ≥ lk ≥ 1, x)

1. If x = u

1.1. u broadcasts to Pk in the first time unit.

1.2. For each time unit i = 2 to k

1.2.1. u broadcasts along Pi−1 at time i

1.3. v gets informed at time lk + 1.

2. If x = w and w is on path Pm

2.1. w broadcasts along the shorter path wu in the first time unit

and then along the longer path wv.

When u gets informed at time d, there are still τ(m) uninformed vertices

along wv.

2.2. If τ(m) < lk + 1

2.2.1. For each time unit i = 1 to k & i 6= m

2.2.1.1. u broadcasts along Pi at time d+ i

2.3. Else-If τ(m) ≥ lk + 1

2.3.1. u broadcasts along Pk at time d+ 1.

2.3.2. For each time unit i = 1 to k − 1 & i 6= m

2.3.2.1. u broadcasts along Pi at time d+ i+ 1.

2.4. v gets informed at time d+min{τ(m), lk + 1}.
3. Calculate the number of uninformed vertices λj in Pj for j = 1, 2, ..., k − 1

when v gets informed

4. Arrange λj in decreasing order such that λ′
1 ≥ λ′

2 ≥ ... ≥ λ′
k−1

where λ′
1, λ

′
2, ..., λ

′
k−1 is the permutation of λ1, ..., λk−1.

If P ′
j contains λ

′
j uninformed vertices then,

5. For each time unit i = 1 to k

5.1. If v has an uninformed adjacent vertex in P ′
i

5.1.1. If x = u

5.1.1.1. v broadcasts to P ′
i at time lk + 1 + i

5.1.2. If x = w

5.1.2.1. v broadcasts along P ′
i at time d+min{τ(m), lk + 1}+i

Complexity Analysis:

Step 3 takes O(k) time to calculate the number of uninformed vertices in k−1 paths.
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Sorting them in decreasing order in step 4 takes O(k log k) time. Broadcasting done

in steps 1, 2 and 5 can be accomplished in O(|V |) time. Adding all the complexities

we get that the complexity of the algorithm is O(|V |+ k log k).

Recall that in algorithm Spath, when the originator is w on a path Pm, u receives

the message from w at time d and there are τ(m) uninformed vertices on path wv.

Theorem 1. Algorithm Spath is a (1.5 − ε)-approximation for any originator in the

k-path graph Gk when k ≤ lk + 1, where 0 < ε < 0.5.

Proof. 1) when originator is u:

Under algorithm Spath, u informs along Pj at time j+1 for 1 ≤ j ≤ k−1. When v

gets informed at time lk+1, Pj has lj − (lk+1− j) uninformed vertices. v can inform

at most k−1 neighboring vertices along k−1 different paths P1, ..., Pk−1. In the worst

case, consider any path Pj that receives the message from v at time unit lk+1+k−1.

The number of uninformed vertices in path Pj before time unit lk + 1+ k− 1 will be

lj − (lk + 1− j)− (k − 2) = lj − lk + j − k + 1. Since starting at time lk + 1 + k − 1

onwards, Pj receives the message from both u and v, then at each time unit 2 new

vertices on Pj will get informed. So, bSpath
(u) ≤ lk + 1 + k − 2 +

⌈

lj−lk+j−k+1

2

⌉

=
⌈

lj+lk+j+k−1

2

⌉

≤ lj+lk+j+k

2
.

Using Lemma 3(i), we can write
bSpath

(u)

b(u)
≤ lj+lk+j+k

lj+lk+j+1
≤ lj+lk+j+lk+1

lj+lk+j+1
(as k ≤ lk +1)

= 1 + lk
lj+lk+j+1

Since j ≥ 1 and lk ≤ lj,
bSpath

(u)

b(u)
≤ 1 + lk

2lk+2
< 1.5 since lk ≥ 1.

2) when originator is w on a path Pm:

Case 1: k − 1 ≤ τ(m) < lk + 1 :

Under algorithm Spath, u informs along Pj at time d + j where 1 ≤ j ≤ k and

j 6= m. When v gets informed at time d+τ(m), Pj has lj− (τ(m)−j+1) uninformed

vertices. v can inform at most k − 1 neighboring vertices along k − 1 different paths

P1, ..., Pk except Pm. In the worst case, consider any path Pj that receives the message

from v at time unit d+ τ(m) + k− 1. The number of uninformed vertices in path Pj

before time unit d+τ(m)+k−1 will be lj−(τ(m)−j+1)−(k−2) = lj−τ(m)+j−k+1.
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Since starting at time d+ τ(m) + k − 1 onwards, Pj receives the message from both

u and v, then bSpath
(w) ≤ d + τ(m) + k − 2 +

⌈

lj−τ(m)+j−k+1

2

⌉

=
⌈

2d+lj+τ(m)+j+k−3

2

⌉

≤ 2d+lj+τ(m)+j+k−2

2
.

Using Lemma 5(i), we can write
bSpath

(w)

b(w)
≤ 2d+lj+τ(m)+j+k−2

2d+lj+τ(m)+j−1
= 1 + k−1

2d+lj+τ(m)+j−1

≤ 1 + k−1
2d+lj+τ(m)

as j ≥ 1.

Since k ≤ τ(m) + 1 < lk + 2 ≤ lj + 2 and d ≥ 1,
bSpath

(w)

b(w)
≤ 1 + k−1

(lj+2)+(τ(m)+1)−1
<

1 + k−1
2k−1

< 1.5 for k > 1.

Case 2: k − 1 < lk + 1 ≤ τ(m) :

Under algorithm Spath, u informs along Pj at time d+ j + 1 where 1 ≤ j ≤ k − 1

and j 6= m. v is informed at time d + lk + 1 through Pk and Pj has lj − (lk + 1− j)

uninformed vertices. Similarly, at time d + lk + 1 path Pm will have τ(m)− (lk + 1)

uninformed vertices and τ(m) − (lk + 1) < τ(m) − (lk + 1− j) when 1 ≤ j ≤ k − 1.

So, for 1 ≤ j ≤ k − 1 (including j = m) and lm = τ(m), Pj has lj − (lk + 1 − j)

uninformed vertices at time d+ lk+1. v can inform at most k−1 neighboring vertices

along k − 1 different paths P1, ..., Pk−1. In the worst case, consider any path Pj that

receives the message from v at time unit d+ lk+1+k−1. The number of uninformed

vertices in path Pj before time unit d+ lk +1+ k− 1 will be lj − (lk +1− j)− (k− 2)

= lj − lk + j − k + 1. Since starting at time d + lk + 1 + k − 1 onwards, Pj receives

the message from both u and v, then bSpath
(w) ≤ d + lk + 1 + k − 2 +

⌈

lj−lk+j−k+1

2

⌉

=
⌈

2d+lj+lk+j+k−1

2

⌉

≤ 2d+lj+lk+j+k

2
.

Using Lemma 6(i), we can write
bSpath

(w)

b(w)
≤ 2d+lj+lk+j+k

lj+2d+lk+j
= 1 + k

lj+2d+lk+j
.

Note that the lower bound for Lemma 6(i) is true for all 1 ≤ j ≤ k−1. By picking

j = k−1 we get, lj +2d+ lk+ j = lk−1+2d+ lk+k−1 > lk−1+2d+(k−2)+(k−1)

(as lk > k − 2) ≥ 2k, since d ≥ 1 and lk−1 ≥ 1.

Hence,
bSpath

(w)

b(w)
< 1 + k

2k
= 1.5.

Theorem 2. Algorithm Spath is a (4 − ε) approximation for any originator in the

k-path graph Gk when k > lk + 1, where 0 < ε < 1

Proof. 1) when originator is u:

Under algorithm Spath, when v receives the message at time lk + 1 there are no

informed vertices in k−lk−1 paths. Recall that v can inform at most k−1 neighboring
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vertices along k − 1 different paths P1, ..., Pk−1. In the worst case, consider any path

Pj which has been informed from u at time unit k and assume that the same path

has been informed from v at time unit lk + 1 + k − 1. We calculate the time to

inform all the vertices in path Pj. The number of uninformed vertices in Pj before

time lk + 1 + k − 1 will be lj − ((lk + 1 + k − 1) − (k)) = lj − lk. Since starting

at time lk + 1 + k − 1 onwards, it receives the message from both u and v, then

bSpath
(u) ≤ lk + 1 + k − 2 +

⌈

lj−lk
2

⌉

=
⌈

lj+lk+2k−2

2

⌉

≤ l1+lk+2k−1
2

as l1 ≥ lj.

Using Lemma 3(iii), we can write
bSpath

(u)

b(u)
≤ 2 l1+lk+2k−1

2lk+k+lj+j+2
= 4k−2+2l1+2lk

2lk+k+l1+3
(as j = 1).

So,
bSpath

(u)

b(u)
≤ 3 + k−l1−4lk−11

2lk+k+l1+3
.

It can be observed that, (k − l1 − 4lk − 11) < (2lk + k + l1 + 3) and when

k > l1 + 4lk + 11,
bSpath

(u)

b(u)
< 4.

2) when originator is w on a path Pm:

Case 1: τ(m) < lk + 1 and τ(m) < k − 1 :

When v receives the message at time d + τ(m), there are no informed vertices

in k − 1 − τ(m) paths. Recall that v can inform at most k − 1 neighboring vertices

along k − 1 different paths P1, ..., Pk except Pm. In the worst case, we consider any

path Pj which has been informed from u at time unit d + k − 1 and assume that

the same path has been informed from v at time unit d + τ(m) + k − 1, where

1 ≤ j ≤ k and j 6= m. We calculate the time taken to inform all the vertices in

path Pj. The number of uninformed vertices in Pj before time d + τ(m) + k − 1

will be lj − ((d + τ(m) + k − 1) − (d + k − 1)) = lj − τ(m). Since starting at

time d + τ(m) + k − 1 onwards, Pj receives the message from both u and v, then

bSpath
(w) ≤ d+ τ(m) + k − 2 +

⌈

lj−τ(m)

2

⌉

=
⌈

2d+lj+τ(m)+2k−4

2

⌉

. Now, if Pm 6= P1 then

lj ≤ l1, else lj ≤ l2. If we consider l′ ∈ {l1, l2} then bSpath
(w) ≤

⌈

2d+l′+τ(m)+2k−4
2

⌉

(as

lj ≤ l′) ≤ 2d+l′+τ(m)+2k−3
2

.

Using Lemma 5(iii), we can write
bSpath

(w)

b(w)
≤ 2 2d+l′+τ(m)+2k−3

4d+2τ(m)+lj+j+k−2
≤ 4k+4d+2l′+2τ(m)−6

4d+2τ(m)+l′+k−1

(as j ≥ 1 and lj = l′) = 3 + k−8d−4τ(m)−l′−3
4d+2τ(m)+l′+k−1

Again as k − 8d − 4τ(m) − l′ − 3 < 4d + 2τ(m) + l′ + k − 1 and when k >

8d+ 4τ(m) + l′ + 3 we get,
bSpath

(w)

b(w)
< 4.

Case 2: lk + 1 ≤ τ(m) and lk + 1 < k :
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When v receives the message at time d+ lk + 1, there are no informed vertices in

k−lk−2 paths. Recall that v can inform at most k−1 neighboring vertices along k−1

different paths P1, ..., Pk−1. In the worst case, we consider any path Pj (1 ≤ j ≤ k−1

and j 6= m), which has been informed from u at time unit d+ k− 1 and assume that

the same path has been informed from v at time unit d+lk+1+k−1. We calculate the

time taken to inform all the vertices in path Pj. The number of uninformed vertices in

Pj before time d+lk+1+k−1 will be lj−((d+lk+1+k−1)−(d+k−1)) = lj−lk−1.

Similarly the number of uninformed vertices in Pm before time d+ lk +1+ k− 1 will

be τ(m)− (k− 2)− lk − 1 < τ(m)− lk − 1 as k > 2. So, for 1 ≤ j ≤ k− 1 (including

j = m) and lm = τ(m), Pj has at most lj − lk − 1 uninformed vertices. Since starting

at time d + lk + 1 + k − 1 onwards, Pj receives the message from both u and v,

then bSpath
(w) ≤ d + lk + 1 + k − 2 +

⌈

lj−lk−1

2

⌉

=
⌈

2d+lj+lk+2k−3

2

⌉

≤ 2d+lj+lk+2k−2

2
.

Now, if Pm 6= P1 then lj ≤ l1. If (Pm = P1 and τ(m) ≤ l2) then lj ≤ l2 else if

(Pm = P1 and τ(m) > l2) then lj ≤ τ(m). If we consider l′ ∈ {l1, l2, τ(m)} then

bSpath
(w) ≤ 2d+l′+lk+2k−2

2
as lj ≤ l′.

Using Lemma 6(iii), we can write
bSpath

(w)

b(w)
≤ 2 2d+l′+lk+2k−2

4d+2lk+lj+j+k
≤ 4k+4d+2lk+2l′−4

4d+2lk+l′+k+1
(as

j ≥ 1 and lj = l′) = 3 + k−8d−4lk−l′−7
4d+2lk+l′+k+1

Again as k− 8d− 4lk − l′− 7 < 4d+2lk + l′+ k+1 and when k > 8d+4lk + l′+7

we get,
bSpath

(w)

b(w)
< 4.

From Theorem 1 and Theorem 2 we can conclude that in the worst case algorithm

Spath gives (4 − ε) approximation for any originator and the worst case occurs for

k > l1 + 4lk + 8d + 7. However, when k ≤ l1 + 4lk + 8d + 7, algorithm Spath gives

3-approximation for any originator. Moreover if k is smaller, then Spath generates

even better approximation ratio. In particular, calculations similar to above show

that if k ≤ 6d+3lk+2, then Spath gives 2.75-approximation and when k ≤ 2d+ lk+3,

algorithm Spath generates 2-approximation for any originator.

3.2.1 Optimality of the approximation algorithm Spath for

some subclasses of Gk when k ≤ lk + 1

In this section we prove that our algorithm Spath generates the optimal broadcast

time for some cases.

Theorem 3. If k ≤ lk + 1 and lj ≥ lj+1 + 2 for all 1 ≤ j ≤ k − 1, then algorithm
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Spath generates the optimal broadcast time.

Proof. 1) when originator is u:

Under scheme Spath, u informs along Pj at time j + 1 for 1 ≤ j ≤ k − 1. Since

lj ≥ lj+1+2, when v gets informed at time lk+1, the number of uninformed vertices,

call it l′j, in Pj are in the order l′j ≥ l′j+1 + 1 for all 1 ≤ j ≤ k − 2 and l′k−1 ≥ k. As a

result all the vertices of path P1 will be informed no sooner than the vertices of any

other path in Gk. So in the worst case, we consider the time taken to inform all the

vertices in P1. When v receives the message at time unit lk+1, P1 has l1− (lk+1−1)

= l1 − lk uninformed vertices. Since starting at time lk + 2 onwards P1 receives the

message from both u and v, so bSpath
(u) ≤ lk + 1 +

⌈

l1−lk
2

⌉

=
⌈

l1+lk+2
2

⌉

.

Using Lemma 3(i), b(u) ≥
⌈

lj+lk+j+1

2

⌉

for any j. By picking j = 1 we get b(u) ≥
⌈

l1+lk+2
2

⌉

≥ bSpath
(u).

2) when originator is w on path Pm:

Case 1: k − 1 ≤ τ(m) < lk + 1

Under scheme Spath, u informs along Pj at time d + j for 1 ≤ j ≤ k and j 6= m.

Since lj ≥ lj+1+2, when v gets informed at time d+ τ(m), the number of uninformed

vertices, call it l′j, in P ′
j are in the order l′j ≥ l′j+1+1 for all 1 ≤ j ≤ k− 1 and j 6= m.

As a result all the vertices of path P ′
j will be informed no sooner than the vertices of

any other path in Gk. In the worst case, we consider the time taken to inform all the

vertices in P ′
j . If Pm = P1, then P ′

j = P2 else P ′
j = P1. When v receives the message

at time unit d + τ(m), P ′
j has l′j − (d + τ(m) − d) = l′j − τ(m) uninformed vertices.

Starting at time d + τ(m) + 1 onwards, P ′
j receives the message from both u and v,

so bSpath
(w) ≤ d + τ(m) +

⌈

l′j−τ(m)

2

⌉

=
⌈

2d+l′j+τ(m)

2

⌉

. Depending on whether P ′
j = P1

or P ′
j = P2, either l′j ≤ l1 or l′j ≤ l2. If we consider l′ ∈ {l1, l2}, then bSpath

(w) ≤
⌈

2d+l′+τ(m)
2

⌉

as l′j ≤ l′.

Using Lemma 5(i), we can write b(w) ≥
⌈

2d+lj+τ(m)+j−1

2

⌉

≥
⌈

2d+l′+τ(m)
2

⌉

≥ bSpath
(w)

as lj = l′ and j ≥ 1.

Case 2: k − 1 < lk + 1 ≤ τ(m)
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Under algorithm Spath, u informs along Pj at time d + j + 1 for 1 ≤ j ≤ k − 1

and j 6= m. v is informed at time d + lk + 1 through Pk and Pj has lj − (lk + 1− j)

uninformed vertices. Similarly at time d+ lk + 1, path Pm will have τ(m)− (lk + 1)

uninformed vertices and τ(m)− (lk+1) < τ(m)− (lk+1− j) when 1 ≤ j ≤ k−1. So,

for 1 ≤ j ≤ k−1 (including j = m) and lm = τ(m), Pj has lj−(lk+1−j) uninformed

vertices at time d + lk + 1. Since lj ≥ lj+1 + 2, at time d + lk + 1, the number of

uninformed vertices, call it l′j, in P ′
j are in the order l′j ≥ l′j+1+1 for all 1 ≤ j ≤ k− 2

(including j = m). As a result all the vertices of path P ′
j will be informed no sooner

than the vertices of any other path in Gk. In the worst case, we consider the time

taken to inform all the vertices in P ′
j . If Pm 6= P1, then P ′

j = P1 else if (P ′
j = P1 and

τ(m) ≤ l2) then P ′
j = P2 else if (P ′

j = P1 and τ(m) > l2) then P ′
j = Pm. When v

receives the message at time unit d+ lk + 1, P ′
j has l

′
j − (d+ lk + 1− d− 1) = l′j − lk

uninformed vertices. Starting at time d + lk + 2 onwards, P ′
j receives the message

from both u and v, so bSpath
(w) ≤ d+ lk + 1 +

⌈

l′j−lk

2

⌉

=
⌈

2d+l′j+lk+2

2

⌉

. Depending on

whether P ′
j = P1 or P ′

j = P2 or P ′
j = Pm, either l

′
j ≤ l1 or l′j ≤ l2 or l′j ≤ τ(m). If we

consider l′ ∈ {l1, l2, τ(m)}, then bSpath
(w) ≤

⌈

2d+l′+lk+2
2

⌉

as l′j ≤ l′.

Using Lemma 6(i), we can write b(w) ≥
⌈

2d+lj+lk+j

2

⌉

=
⌈

2d+l′+lk+2
2

⌉

≥ bSpath
(w)

as lj = l′ and j = 2.

Theorem 4. If k ≤ lk + 1 and lj = lj+1 for all 1 ≤ j ≤ k − 1, then algorithm Spath

generates the optimal broadcast time.

Proof. As a result, lj = lk.

1) when originator is u:

In scheme Spath, u informs along Pj at time j + 1 for 1 ≤ j ≤ k− 1. When v gets

informed at time lk+1, number of uninformed vertices in Pj will be lj − (lk+1− j) =

lk− (lk+1− j) = j−1. According to scheme Spath, v informs Pk−1, Pk−2, ..., Pj, ..., P1

at times lk + 2, lk + 3, ..., lk + 1+ k− j, ..., lk + k respectively. In general, Pj will have

j−1− (k− j−1) = 2j−k uninformed vertices before lk+1+k− j time units. Since

starting at time lk + 1 + k − j onwards, Pj will now be informed from both u and v,

then bSpath
(u) ≤ lk + k − j +

⌈

2j−k
2

⌉

≤
⌈

2lk+k
2

⌉

.

Now using Lemma 3(i), b(u) ≥
⌈

lk+lj+j+1

2

⌉

≥
⌈

2lk+k
2

⌉

≥ bSpath
(u) (as lj ≥ lk and

j = k − 1).
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2) when originator is w on path Pm:

In this case k− 1 < lk +1 ≤ τ(m) is not possible because of the following reason:

lj = lk for all 1 ≤ j ≤ k − 1.

Recall that τ(m) = lm + 2− 2d = lk + 2− 2d ≤ lk as d ≥ 1.

So τ(m) ≥ lk + 1 is not possible. Thus, we assume that τ(m) < lk + 1.

In scheme Spath, u informs along Pj at time d + j for 1 ≤ j ≤ k and j 6= m.

When v gets informed at time d+ τ(m), number of uninformed vertices in Pj will be

lj−((d+τ(m))−(d+j−1)) = lk−(τ(m)+1−j) = lk−τ(m)+j−1. According to scheme

Spath, v informs P ′
k−1, P

′
k−2, ..., P

′
j , ..., P

′
1 at times d+τ(m)+1, d+τ(m)+2, ..., d+τ(m)+

k−j, ..., d+τ(m)+k−1 respectively where P ′
1, ..., P

′
k−1 is the combination of P1, ..., Pk

except Pm. In general, P ′
j will have lk− τ(m)+ j−1− (k− j−1) = lk− τ(m)+2j−k

uninformed vertices before d + τ(m) + k − j time units. Since starting at time

d+τ(m)+k−j onwards, P ′
j will now be informed from both u and v, then bSpath

(w) ≤
d+ τ(m) + k − j − 1 +

⌈

lk−τ(m)+2j−k
2

⌉

=
⌈

2d+lk+τ(m)+k−2
2

⌉

.

Using Lemma 5(i), we can write b(w) ≥
⌈

2d+lj+τ(m)+j−1

2

⌉

=
⌈

2d+lk+τ(m)+k−2
2

⌉

≥ bSpath
(w) as lj = lk and j = k − 1.

When lj = lj+1 + 1 for all 1 ≤ j ≤ k − 1, algorithm Spath does not generate the

optimal broadcast time, however it gives better approximation than in general case.

Theorem 5. If k ≤ lk + 1 and lj = lj+1 + 1 for all 1 ≤ j ≤ k − 1, then algorithm

Spath is a (4
3
− ε)-approximation for any originator in the k-path graph Gk, where

0 < ε < 0.3.

Proof. As a result, lj = lk + (k − j).

1) when originator is u:

In scheme Spath, u informs along Pj at time j + 1 for 1 ≤ j ≤ k− 1. At time unit

lk+1, when v is informed, any path Pj will have lj−(lk+1−j) = lk+(k−j)−lk−1+j

= k− 1 uninformed vertices. Starting at time lk +2 onwards v informs the path with

maximum number of uninformed vertices. Thus, bSpath
(u) = max {lk + 1 +

⌈

k−1
2

⌉

,
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lk + 1+ 1+
⌈

k−1−1
2

⌉

,..., lk + 1+ (i− 1) +
⌈

k−1−(i−1)
2

⌉

= lk +
⌈

k+i
2

⌉

,..., lk + 1+ k− 2 +
⌈

k−1−(k−2)
2

⌉

= lk + k − 1 +
⌈

1
2

⌉

} = lk + k.

Using Lemma 3(i),
bSpath

(u)

b(u)
≤ 2lk+2k

lk+lj+j+1
≤ 2lk+2k

2lk+k+1
. (as lj = lk + (k − j))

Therefore,
bSpath

(u)

b(u)
≤ 1 + k−1

2lk+k+1
≤ 1 + k−1

2(k−1)+k+1
(as lk ≥ k − 1) = 1 + k−1

3k−1

< 1 + k−1
3k−3

= 1 + 1
3
= 4

3
.

2) when originator is w on path Pm:

Case 1: k − 1 ≤ τ(m) < lk + 1

When v gets informed at time d+ τ(m), number of uninformed vertices in Pj will

be lj − ((d+ τ(m))− (d+ j− 1)) = (lk + k− j)− (τ(m) + 1− j) = lk − τ(m) + k− 1.

Starting at time d+ τ(m) + 1 onwards v informs the path with maximum number of

uninformed vertices. Thus, bSpath
(w) = max {d+τ(m)+

⌈

lk−τ(m)+k−1
2

⌉

, d+τ(m)+1+
⌈

lk−τ(m)+k−1−1
2

⌉

,...,d+τ(m)+(i−1)+
⌈

lk−τ(m)+k−1−(i−1)
2

⌉

=
⌈

2d+lk+τ(m)+k+i−2
2

⌉

,...,d+

τ(m)+k−2+
⌈

lk−τ(m)+k−1−(k−2)
2

⌉

= d+τ(m)+k−2+
⌈

lk−τ(m)+1
2

⌉

} =
⌈

2d+lk+τ(m)+2k−3
2

⌉

≤ 2d+lk+τ(m)+2k−2
2

.

Using Lemma 5(i),
bSpath

(w)

b(w)
≤ 2d+lk+τ(m)+2k−2

2d+lj+τ(m)+j−1
= 2d+lk+lm+2−2d+2k−2

2d+lk+k−m+lm+2−2d+m−1
(as j = m,

lj = lm = lk+k−m, τ(m) = lm+2−2d) = lk+lm+2k
lk+lm+k+1

= 1+ k−1
lk+lm+k+1

= 1+ k−1
2lk+2k−m+1

(as lm = lk+k−m) ≤ 1+ k−1
4k−1−m

(since lk ≥ k−1) ≤ 1+ k−1
3k−1

(as m ≤ k) < 1+ k−1
3k−3

= 1 + 1
3
= 4

3
.

Case 2: k − 1 < lk + 1 ≤ τ(m)

When v gets informed at time d + lk + 1 through Pk, Pj has lj − (lk + 1 − j) =

lk + (k − j) - (lk + 1− j) = k − 1 uninformed vertices for 1 ≤ j ≤ k − 1 and j 6= m.

Similarly at time d + lk + 1, path Pm will have τ(m) − (lk + 1) uninformed vertices.

Now, τ(m) = lm + 2 − 2d ≤ lm (as d ≥ 1) ≤ l1 (as lm ≤ l1) = lk + k − 1. Hence,

τ(m)− (lk + 1) ≤ lk + k − 1− lk − 1 = k − 2. Starting at time d+ lk + 2 onwards v

informs the path with maximum number of uninformed vertices. Thus, bSpath
(w) =

max {d+ lk + 1+
⌈

k−1
2

⌉

, d+ lk + 1+ 1+
⌈

k−1−1
2

⌉

,...,d+ lk + 1+ (i− 1) +
⌈

k−1−(i−1)
2

⌉

=
⌈

2d+2lk+k+i
2

⌉

,...,d+ lk + 1+ k− 3 +
⌈

k−1−(k−3)
2

⌉

= d+ lk + k− 2 +
⌈

2
2

⌉

, d+ lk + 1+
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k − 2 +
⌈

k−2−(k−2)
2

⌉

= d+ lk + k − 1} = d+ lk + k − 1.

Using Lemma 6(i),
bSpath

(w)

b(w)
≤ 2d+2lk+2k−2

2d+lj+lk+j
≤ 2d+2lk+2k−2

2d+2lk+k−1
(as j = k− 1 and lj ≥ lk)

= 1 + k−1
2d+2lk+k−1

< 1 + k−1
3k−3

(as lk > k − 2 and d ≥ 1) = 4
3
.

Consider an instance of a k-path graph Gk where k = 10 and the lengths of the

paths are in the order lj = lj+1 + 1 for all 1 ≤ j ≤ 9. Let us assume l10 = 10. Then

the lengths of the paths P1, P2, ..., P9, P10 are respectively 19, 18, ..., 11, 10. Similar to

subcase 2, under algorithm Spath, bSpath
(u) = k+ lk = k+ l10 = 10+10 = 20. However

we can describe another algorithm Apath under which bApath
(u) = 18.

Let us consider algorithm Apath for the same instance of Gk. Under scheme A,

u informs P10, P5, P4, ..., P1, P9, ..., P6 at time units 1, 2, 3, ..., 6, 7, ..., 10 respectively.

When v gets informed at time 11, the number of uninformed vertices in the paths

P1, ..., P9 forms an arithmetic series with difference 1 in some order starting from 5

upto 13. Starting at time 12 onwards v informs the path with maximum number

of uninformed vertices till v does not have any adjacent uninformed vertex. Thus,

bApath
(u) = max {11 +

⌈

13
2

⌉

, 11 + 1 +
⌈

12−1
2

⌉

, 11 + 2 +
⌈

11−2
2

⌉

,..., 11 + 5} = 18.

In general, let us assume the lengths of the paths P1, P2, ..., Pk−1, Pk are respectively

lk + k − 1, lk + k − 2,...,lk + 1, lk. In order to find bApath
(u), we are going to consider

two cases depending on whether k is even or odd.

i) When k is even:

Under scheme Apath, u informs the adjacent vertices in the paths Pk, P k
2

, P k
2
−1,...,P1,

Pk−1,...,P k
2
+1 at time units 1, 2, 3,..., k

2
+ 1, k

2
+ 2,..., k respectively. When v gets in-

formed at time lk+1, the number of uninformed vertices in path Pj is lj−(lk+1−(k
2
−

j + 1)) for 1 ≤ j ≤ k
2
. Similarly, when k

2
+ 1 ≤ j ≤ k − 1, the number of uninformed

vertices in path Pj is lj−(lk+1−(k
2
+k−j)). In other words, at time lk+1, the number

of uninformed vertices in the paths P1, ..., Pk−1 forms an arithmetic series with differ-

ence 1 in some order starting from k
2
upto

⌈

3k
2

⌉

− 2. Starting at time lk + 2 onwards

v informs the path with maximum number of uninformed vertices. Thus, bApath
(u) =

max {lk +1 +
⌈

3k/2−2
2

⌉

, lk +1+1+
⌈

(3k/2−3)−1
2

⌉

,..., lk +1+ i− 1+
⌈

(3k/2−(i+1))−(i−1)
2

⌉

= lk + i+
⌈

3k−4i
4

⌉

,..., lk + 1 + k
2
} = lk +

⌈

3k
4

⌉

.
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ii) When k is odd:

Under scheme Apath, u informs along Pk, P k−1

2

, P k−1

2
−1, ..., P1, Pk−1, ..., P k−1

2
+1 at time

units 1, 2, 3, ...,k+1
2
, k+1

2
+1,..., k respectively. When v gets informed at time lk+1, the

number of uninformed vertices in path Pj is lj − (lk + 1− (k+1
2

− j)) for 1 ≤ j ≤ k−1
2
.

Similarly, when k+1
2

≤ j ≤ k − 1, the number of uninformed vertices in path Pj is

lj − (lk + 1 − (k−1
2

+ k − j)). In other words, at time lk + 1, the number of unin-

formed vertices in the paths P ′
1, P

′
2, P

′
3, P

′
4, ..., P

′
2i−1, P

′
2i, ..., P

′
k−2, P

′
k−1 are 3k−5

2
, 3k−5

2
,

3k−9
2

, 3k−9
2

,..., 3k−(4i+1)
2

, 3k−(4i+1)
2

,..., k+1
2
, k+1

2
respectively where P ′

1, P
′
2, ..., P

′
k−1 is the

permutation of the paths P1, ..., Pk−1. Starting at time lk + 2 onwards v informs the

path with maximum number of uninformed vertices. Thus, bApath
(u) = max {lk + 1

+
⌈

(3k−5)/2
2

⌉

, lk + 1 + 1 +
⌈

(3k−5)/2−1
2

⌉

,..., lk + 1 + 2i − 2 +
⌈

(3k−(4i+1))/2−(2i−2)
2

⌉

=

lk + 2i− 1 +
⌈

3k−8i+3
4

⌉

, lk + 1+ 2i− 1 +
⌈

(3k−(4i+1))/2−(2i−1)
2

⌉

= lk + 2i+
⌈

3k−8i+1
4

⌉

,...,

lk + 1 + k+1
2
} = lk +

⌈

3k+1
4

⌉

= lk +
⌈

3k
4

⌉

as k is odd.

Together, bApath
(u) = lk +

⌈

3k
4

⌉

Using Lemma 3(i),
bApath

(u)

b(u)
≤ 4lk+3k

2(lk+lj+j+1)
= 4lk+3k

4lk+2k+2
. (as lj = lk + (k − j))

Therefore,
bApath

(u)

b(u)
≤ 1 + k−2

4lk+2k+2
≤ 1 + k−2

4(k−1)+2k+2
(as lk ≥ k − 1) = 1 + k−2

6k−2

< 1 + k−2
6k−12

= 1 + 1
6
= 7

6
.

Observation: Apath algorithm gives better result as compared to Spath only for the

subclass of the graph Gk where lj = lj+1 + 1 and k ≤ lk + 1 since in this case, when

v is informed, the number of uninformed vertices in the remaining k − 1 paths forms

an arithmetic series with difference either 1 or 2 depending on whether k is even or

odd. However, for the broadcast problem in general k-path graph, algorithm Apath

will not yield any better result. In any arbitrary k-path graph, if the longer path has

at least 2 more vertices than its immediate shorter path, then under the scheme Apath,

informing all the vertices in the longer path will be delayed since u always informs

along the middle path first.

3.2.2 Summary of the Results:

Below is the summary of the results for algorithms Spath and Apath.
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Table 1: Summary for k-path problem

Case Algorithm Result

General k-path Spath (4− ε)-approximation
lj ≥ lj+1 + 2 and k ≤ lk + 1 Spath optimal
lj = lj+1 and k ≤ lk + 1 Spath optimal

lj = lj+1 + 1 and k ≤ lk + 1 Spath (4
3
− ε)-approximation

lj = lj+1 + 1, k ≤ lk + 1 and originator is u Apath (7
6
− ε)-approximation
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Chapter 4

Constant Approximation for

Broadcasting in k-cycle Graph

In this chapter we consider broadcasting in simple graphs where cycles intersect at

single vertex. The simplest such graph where several cycles have only one intersecting

vertex is called a k-cycle graph. A k-cycle graph is a collection of k cycles of arbitrary

lengths connected by a central vertex on one end. Note that k-cycle graph is a cactus

graph. Broadcasting in the k-cycle graph is different from broadcasting in the k-path

graph in a way that in k-path graph, after a certain time, broadcasting depends on

the strategy how the two intersecting vertices select the paths to send the message.

However, in k-cycle graph, the entire broadcast scheme is dependent on the single

central vertex. We present a constant approximation algorithm to find the broadcast

time of an arbitrary k-cycle graph. Next we show the optimality of our algorithm for

some subclasses of k-cycle graph. We also present another algorithm to generate the

optimal broadcast time for a particular subclass of k-cycle graph.

4.1 Lower bounds on broadcast time

Definition 2. Let Gk = (V,E) be a connected graph consisting of k cycles C1, C2, C3,

..., Ck and an intersecting vertex u connected on one end point of all cycles. Vertex

u is called central vertex of Gk (see Figure 23).

Let l1 ≥ l2 ≥ ... ≥ lk ≥ 2, where li be the number of vertices in cycle Ci (excluding

vertex u) for all 1 ≤ i ≤ k.
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u

C1

C2

Ci

Ck

Figure 23: k-cycle graph

4.1.1 Lower bounds when originator is the central vertex

In this section we will give lower bounds on the broadcast time of Gk from originator

u.

Lemma 7. Let Gk be a k-cycle graph where the originator is the central vertex u and

l1 ≥ l2 ≥ ... ≥ lk ≥ 2. Then

(i) b(u) ≥ k + 1. (ii) b(u) ≥
⌈

lj+2j−1

2

⌉

for any j, 1 ≤ j ≤ k.

(iii) b(u) ≥
⌈

2k+lj+2j+1

4

⌉

for any j, 1 ≤ j ≤ k.

Proof. (i): Under any minimum time broadcast scheme, k time units are necessary

to inform at least one vertex in each of the k cycles from vetex u. Since lj ≥ 2 for

any j, where 1 ≤ j ≤ k, at least one more time unit is required to inform the second

vertex on the cycle which initially receives the message from u at time unit k. So,

b(u) ≥ k + 1.

(ii): We consider any cycle Cj where 1 ≤ j ≤ k. Under any minimum time

broadcast scheme all vertices in Cj must be informed. u informs the adjacent vertices

of the k cycles in some order and assume it initially informs Cj at time unit j or later.

Then u informs its second neighboring vertex in Cj no sooner than time unit j + 1.

At time unit j there are at least lj − 1 uninformed vertices in Cj. Since, starting

at time j + 1 onwards, Cj receives the message from both directions from u, then

at each time unit 2 new vertices on Cj will get informed. So, b(u) ≥ j +
⌈

lj−1

2

⌉

=
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⌈

lj+2j−1

2

⌉

. Suppose, by contradiction u initially calls path Cj before time j. Then by

pigeonhole principle there exists m, 1 ≤ m ≤ j − 1 such that u initially calls Cm at

time j. Similarly at time unit j there are at least lm−1 uninformed vertices in Cm. If,

starting at time j+1 onwards, Cm receives the message from both directions from u,

then b(u) ≥ j +
⌈

lm−1
2

⌉

=
⌈

lm+2j−1
2

⌉

≥
⌈

lj+2j−1

2

⌉

as lm ≥ lj. Hence, b(u) ≥
⌈

lj+2j−1

2

⌉

.

For the proof of (iii), we combine the inequalities in (i) and (ii). We get 2b(u) ≥
k+1 +

⌈

lj+2j−1

2

⌉

≥
⌈

lj+2j+2k+1

2

⌉

. Hence, b(u) ≥
⌈

lj+2j+2k+1

4

⌉

for any j, 1 ≤ j ≤ k.

Lemma 8. Let Gk be a k-cycle graph where the originator is the central vertex u and

n be the total number of vertices in Gk. Then

(i) b(u) ≥
⌈

n−1
2k

+ k − 1
2

⌉

if b(u) ≥ 2k.

(ii) b(u) ≥
⌈√

(2n− 7
4
)− 1

2

⌉

if k + 1 ≤ b(u) ≤ 2k − 1.

Proof. (i): Since b(u) ≥ 2k, then u will be busy informing its adjacent vertices in k

different cycles at time units 1, 2, ..., 2k. By b(u) time units, u can inform at most

b(u), b(u) − 1,..., b(u) − (2k − 1) vertices in these k different cycles. So, n ≤ b(u) +

b(u) − 1 +...+ b(u) − (2k − 1) + 1 ⇒ n ≤ 2kb(u) − k(2k − 1) + 1. Hence, b(u) ≥
⌈

n−1
2k

+ k − 1
2

⌉

.

(ii): Since k + 1 ≤ b(u) ≤ 2k − 1, then u can inform its adjacent vertices in k

different cycles at time units 1, 2, ..., b(u), where b(u) ≤ 2k − 1. By b(u) time units,

u can inform at most b(u), b(u)− 1,..., 1 vertices in these k different cycles. So, n ≤
b(u) + b(u)− 1 +...+ 1 + 1 ⇒ n ≤ b(u)(b(u)+1)

2
+ 1 ⇒ b(u)2 + b(u) - (2n− 2) ≥ 0.

Roots of b(u) are −1±
√
8n−7

2
. Considering the positive root of b(u), we get b(u) ≥

⌈√

(2n− 7
4
)− 1

2

⌉

.

Let us now consider the originator in Gk to be any vertex w on a cycle Cj, for

some 1 ≤ j ≤ k. Let us assume the length of the shorter path from w to the central

vertex u be d. Then the length of the longer path from w to u = lj + 1 − d and

d ≤ lj + 1− d (see Figure 24).

Lemma 9. There is a minimum time broadcast scheme from w in Gk in which w

first sends the information along the shortest path towards vertex u.

Proof. Let S1 be a minimum broadcast scheme, bS1
(w) = b(w,Gk) under which w

first informs its adjacent vertex along the longer path towards vertex u. We will
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u

C1

C2

Cj

Ck

w

d

Figure 24: k-cycle graph with originator w

construct a new broadcast scheme S2 under which w first sends information towards

the shorter path. We will show that bS2
(w) ≤ bS1

(w) = b(w,Gk).

According to scheme S1, w informs its adjacent vertex along the shorter path at

time two. Now we construct a new broadcast scheme S2 where w informs its adjacent

vertex along the shorter path at time one. The order in which u broadcasts along the

remaining k− 1 cycles is the same in both schemes. However, under S2, every vertex

along the longer path towards vertex u from w will receive the message exactly one

time unit later compared to S1. To prove that bS2
(w) = b(w,Gk) we consider two

cases:

Case 1: under S1, u is informed along the shorter path at time b1 ≤ b(w,Gk):

Under S2 all the vertices along the shorter path will be informed exactly one time unit

earlier. So, u is informed at time b1−1. u has exactly one free time unit immediately

after b1 − 1 to inform its adjacent vertex along the longer path towards w. Since the

broadcast time in the remaining k − 1 paths remains the same, bS2
(w) ≤ bS1

(w).

Case 2: under S1, u is informed along the longer path from w:

Recall the length of the shorter path is d and the length of the longer path is lj+1−d.

Under S1, u is informed along the longer path from w when either d = lj + 1− d or

d+ 1 = lj + 1− d.

When d = lj + 1 − d, it is quite trivial that bS2
(w) ≤ bS1

(w) since the broadcast

time in the remaining k − 1 paths remains the same.
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When d + 1 = lj + 1 − d: Recall that under S2 all the vertices along the shorter

path will be informed exactly one time unit earlier. So u is informed at time unit d

instead of time unit lj + 1− d = d+ 1 under scheme S1. u has exactly one free time

unit immediately after d to inform its adjacent vertex along the longer path towards

w. Since the broadcast time in the remaining k−1 paths remains the same, bS2
(w) ≤

bS1
(w).

4.1.2 Lower bounds when originator is not the central vertex

In this section we will give lower bounds on the broadcast time of Gk from originator

w.

Lemma 10. Let Gk be a k-cycle graph where l1 ≥ l2 ≥ ... ≥ lk ≥ 2 and the originator

is any vertex w on a cycle Cm and the length of the shortest path from w to vertex u

be d. Then

(i) b(w) ≥ d+ k. (ii) b(w) ≥ d+
⌈

lj+2j−2

2

⌉

for any j, 1 ≤ j ≤ k.

(iii) b(w) ≥ d+
⌈

2k+lj+2j−2

4

⌉

for any j, 1 ≤ j ≤ k.

Proof. (i): By Lemma 9 there is a minimum time broadcast scheme from originator

w in Gk in which w first sends the information along the shorter path towards vertex

u. Considering this minimum broadcast scheme, u is informed no earlier than d time

units. It takes another k − 1 time units to inform at least one vertex in each of the

remaining k − 1 cycles from u. Recall that lj ≥ 2 for any j, where 1 ≤ j ≤ k. So, at

least one more time unit is required to inform the second vertex on the cycle which

initially receives the message from u at time unit d+ k − 1. So, b(w) ≥ d+ k.

(ii): Similarly, at least d time units are necessary for u to receive the message from

w. Now, we consider any cycle Cj where 1 ≤ j ≤ k and j 6= m. Under any minimum

time broadcast scheme all vertices in Cj must be informed. u informs the remaining

k − 1 cycles in some order and assume it initially informs Cj at time unit d + j or

later. Then u informs Cj along the second branch no sooner than time unit d+ j+1.

At time unit d+ j there are at least lj − 1 uninformed vertices in Cj. Similar to the

argument given in Lemma 7(ii), we can write b(w) ≥ d+ j +
⌈

lj−1

2

⌉

= d+
⌈

lj+2j−1

2

⌉

≥ d+
⌈

lj+2j−2

2

⌉

.

When j = m, the number of uninformed vertices in Cm at time d, denoted as

τ(m) = lm − (2d − 1). Considering j = 1 and lj = τ(m) for the cycle Cm, we get
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b(w) ≥ d+
⌈

lj+2j−2

2

⌉

for any j, 1 ≤ j ≤ k included m.

For the proof of (iii), we combine the inequalities in (i) and (ii). We get 2b(w) ≥
d+ k + d+

⌈

lj+2j−2

2

⌉

≥ 2d+
⌈

lj+2j+2k−2

2

⌉

. Hence, b(w) ≥ d+
⌈

lj+2j+2k−2

4

⌉

for any j,

1 ≤ j ≤ k.

4.2 Approximation Algorithm

In this section we present broadcast algorithm Scycle for graph Gk. We consider any

vertex x to be the originator. When the originator is u then the algorithm Scycle in

Gk starts by informing the longest cycle C1 in the first time unit.

When the originator is a non-central vertex w on cycle Cm then the scheme Scycle

in Gk starts by informing along the shorter path towards u. u is informed at time d.

u informs the cycle with maximum number of uninformed vertices at time d+ 1.

At time i, where i ≥ 1 when x = u; else i ≥ d + 1, consider the following 3

sets of cycles: a) The set X0 consists of the cycles where there are no informed ver-

tices. Let there be r such cycles arranged in non-increasing order of the number of

uninformed vertices and let the cycle C10 has the maximum number of uninformed

vertices of length l10. b) The set X1 consists of the cycles where at least one vertex

has been informed along one branch from u. Let there be m such cycles arranged in

non-increasing order of the number of uninformed vertices and let the cycle C11 has

the maximum number of uninformed vertices of length l11. c) The set X2 consists of

the cycles which have been informed from u along both directions. Depending on the

lengths of l10 and l11, u decides either to inform C10 or C11 at time i + 1. If there is

no cycle in X1 at time i, then u has no other choice but to inform C10 at time i+ 1.

If u informs C10, then C10 becomes a member of the set X1 from X0. If u informs

C11, then C11 becomes a member of the set X2 from X1. Everytime a new cycle is

being introduced in the set X1, it is placed in non-increasing order of the number of

uninformed vertices. Finally when there is no cycle in X0 (at least one cycle will be

present in X1 at this moment), u broadcasts along the cycle having maximum number

of uninformed vertices from the set X1.

Broadcast Algorithm Scycle:

INPUT: A k-cycle graph Gk where l1 ≥ l2 ≥ ... ≥ lk ≥ 2 and any originator x.
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OUTPUT: Broadcast time bScycle
(x) and scheme of Gk.

BROADCAST-SCHEME-Scycle(Gk, l1 ≥ l2 ≥ ... ≥ lk ≥ 2, x)

0. Consider x as an originator.

1. when x = u, u broadcasts along C1 at time unit 1.

2. when x = w, w first informs along the shorter path towards u.

2.1. u is informed at time d.

2.2. u informs the cycle with maximum number of uninformed vertices

at time d+ 1.

3. At time i, where i ≥ 1 when x = u, else i ≥ d+ 1 consider the following

3 sets of cycles:

3.1. X0 : It consists of the cycles where there are no informed vertices.

Let there are r cycles such that l10 ≥ l20 ≥ ... ≥ lr0, where lj0

is the length of the cycle Cj0 in X0 and 1 ≤ j ≤ r.

C10, C20, ..., Cr0 is the combination of r cycles from C1, ..., Ck.

3.2. X1 : It consists of the cycles where at least one vertex has been

informed along one branch from u. Let there are m cycles such

that l11 ≥ l21 ≥ ... ≥ lm1, where lj1 is the number of uninformed

vertices in the cycle Cj1 in X1 at time i and 1 ≤ j ≤ m. C11, ...,

Cm1 is the combination of m cycles from C1, ..., Ck but not in set X0.

3.3. X2 : It consists of the cycles which has been informed from u along

both directions. Let there are p such cycles and m+ r + p = k.

4. Starting at time i+ 1 onwards until there is no cycle in X0 do:

4.1. If there is at least one cycle in X1

4.1.1. Select l10 and l11

4.1.2. If l10 ≥ l11 − 1

u broadcasts along C10 at time i+ 1.

4.1.3. Else-If l10 < l11 − 1

u broadcasts along C11 at time i+ 1.

4.2. Else-If there is no cycle in X1

u broadcasts along C10 at time i+ 1.

4.3. If u informs C10

update X1 = X1 + {C10} and X0 = X0 − {C10}.
4.4. Else-If u informs C11
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update X2 = X2 + {C11} and X1 = X1 − {C11}.
4.5. For every cycle in X1 do

lj1 = lj1 − 1.

4.6. Arrange the cycles in X1 in decreasing order of the number of

uninformed vertices if u informs along C10.

5. When there are cycles in X1

u broadcasts along the cycle having maximum number of uninformed

vertices.

u

C1

C2

C3

C4
1     2

3

Figure 25: At time unit 3, under algorithm Scycle: X0 = {C3, C4}, X1 = {C2}, X2 = {C1}.
Let at time unit 3, l10 ≥ l11 − 1, where l10 and l11 are the number of uninformed vertices
in C3 and C2 respectively. Then at time unit 4 in scheme Scycle, u informs along C3.
Accordingly update X0 = {C4}, X1 = {C2, C3} and X2 = {C1}

Complexity Analysis:

Step 3.1 does not require any additional cost as the ordering of the cycles in the set

X0 remains the same from the beginning. The ordering of the cycles in step 3.2 is

a direct consequence of the step 4.6. Since the elements in X0 are already in the

sorted order, inserting a new element in the decreasing order in step 4.6 will take

O(log k) time. For k elements it can be accomplished in O(k log k) time. Steps 4.3

and 4.6 take O(k) time to update the information in X0 and X1. Broadcasting done

in steps 1, 2, 4.1, 4.2, 4.5 and 5 will take another O(|V |) time to finish. Adding all

the complexities we get that the complexity of the algorithm is O(|V |+ k log k).
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Theorem 6. Algorithm Scycle is a (2 − ε)-approximation for any originator in the

k-cycle graph Gk.

Proof. 1) when originator is u:

Under algorithm Scycle, at any time unit u informs along the cycle either in X0

or in X1 depending on the lengths of the cycles C10 and C11 where C10 and C11

are the cycles from C1, ..., Ck having maximum number of uninformed vertices in X0

and X1 respectively. Assume that under scheme Scycle, Cj is one of the cycles where

broadcasting finishes at time unit bScycle
(u). In scheme Scycle, Cj has been informed

from u at time 2j − 1 or sooner along its first branch. Let u informs its second

adjacent vertex in Cj at time tj, where 2j − 1 < tj ≤ 2k. At time tj − 1 number

of uninformed vertices in cycle Cj will be lj − (tj − 2j + 1). Since starting at time

tj, Cj receives the message from both directions from u, then bScycle
(u) = tj − 1+

⌈

lj−tj+2j−1

2

⌉

=
⌈

lj+tj+2j−3

2

⌉

≤
⌈

lj+2k+2j−3

2

⌉

≤ lj+2k+2j−2

2
as tj ≤ 2k.

Using Lemma 7(iii), we can write
bScycle

(u)

b(u)
≤ 2

lj+2k+2j−2

lj+2j+2k+1
= 2− 6

lj+2j+2k+1
< 2.

2) when originator is w on cycle Cm:

Under algorithm Scycle, w first sends the information along the shorter path to-

wards vertex u. So u gets informed at time unit d. Consider the cycle Cj, where

1 ≤ j ≤ k and j 6= m. Similar to the proof when originator is u, we consider in the

worst case any cycle Cj which finishes broadcasting in the last time unit in Scycle.

Similarly, u calls its first adjacent vertex in Cj at time d + 2j − 1 or sooner and

informs its second adjacent vertex in Cj at time d + tj, where 2j − 1 < tj ≤ 2k − 1.

The number of uninformed vertices in Cj before time d+ tj will be lj − (tj − 2j + 1).

Now, let us consider the cycle Cm. Since starting at time two onwards w sends the

information along the longer path towards vertex u, the number of informed vertices

in Cm at time d will be 2d − 1. Hence, the number of uninformed vertices in Cm

before time d+ tj will be lm − (2d− 1)− (tj − 1) = lm + 2− 2d− tj = τ(m)− tj + 1

< τ(m) − (tj − 2j + 1) since j ≥ 1 and τ(m) = lm + 1 − 2d. So, for 1 ≤ j ≤ k

(including j = m) and lm = τ(m), Cj has at most lj − (tj − 2j + 1) uninformed

vertices. Since starting at time d+ tj onwards, Cj receives the message from both di-

rections, then bScycle
(w) ≤ d+tj−1+

⌈

lj−tj+2j−1

2

⌉

=
⌈

2d+lj+tj+2j−3

2

⌉

≤
⌈

2d+lj+2k+2j−4

2

⌉

≤ 2d+lj+2k+2j−3

2
as tj ≤ 2k − 1.

Now, using Lemma 10(iii), we can write
bScycle

(w)

b(w)
≤ 2

2d+lj+2k+2j−3

4d+lj+2j+2k−2
= 2− 4d+2

4d+lj+2j+2k−2

< 2.
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The above algorithm Scycle is a (2− ε)-approximation algorithm in general, but it

generates the exact broadcast time for some subclasses of k-cycle graph.

4.3 Optimality of approximation algorithm Scycle

for some subclasses of Gk

In this section we consider several cases depending on the length of Cj and for some

cases we will present an optimal algorithm.

Theorem 7. If lj ≥ lj+1 + 4 for all 1 ≤ j ≤ k − 1, then algorithm Scycle generates

the optimal broadcast time in the k-cycle graph from originator u.

Proof. In scheme Scycle, u first informs one of its adjacent vertices along the cycle

C1 and C1 is placed in the set X1. Since lj ≥ lj+1 + 4, at time one, the number

of uninformed vertices in C1 is at least three more than the number of uninformed

vertices in C2 (C2 is a cycle in X0 having the maximum number of vertices among all

cycles in X0). So, according to scheme Scycle, u informs along C1 at time two. In other

words, u informs the two adjacent vertices along cycle Cj at times 2j − 1 and 2j for

1 ≤ j ≤ k. Since lj ≥ lj+1 + 4, when Cj+1 gets informed from u at time 2(j + 1)− 1,

the number of uninformed vertices, call it l′j in Cj are in the order l′j ≥ l′j+1 for all

1 ≤ j ≤ k − 1. Starting at time 2(j + 1) onwards, Cj+1 also receives the message

from both directions from u similar to Cj. As a result all the vertices in C1 will be

informed no sooner than the vertices of any other cycle in Gk. So in the worst case,

we consider the time taken to inform all the vertices in C1. In scheme Scycle, starting

at time 2 onwards, C1 is informed from both directions from u. Thus, bScycle
(u) ≤

1 +
⌈

l1−1
2

⌉

=
⌈

l1+1
2

⌉

.

Using Lemma 7(ii), for j = 1 we get b(u) ≥
⌈

l1+1
2

⌉

≥ bScycle
(u).

Theorem 8. If lj+1 + 4 ≥ lj ≥ lj+1 + 3 for all 1 ≤ j ≤ k − 1, then algorithm Scycle

is a 1.2-approximation in the k-cycle graph Gk from originator u, for k ≥ 3.

Proof. As a result lk + 4(k − j) ≥ lj ≥ lk + 3(k − j) and the total number of vertices

in Gk, denoted as n ≥ lk + (lk + 3) + ... + (lk + 3(k− 1)) + 1 = klk +
3
2
k(k− 1) + 1.

In scheme Scycle, u first informs one of its adjacent vertices along the cycle C1 and

C1 is placed in the set X1. Since l1 ≥ l2 + 3, at time one, the number of uninformed
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vertices in C1 is at least two more than the number of uninformed vertices in C2 (C2

is a cycle in X0 having the maximum number of vertices among all cycles in X0). So,

according to scheme Scycle, u informs along C1 at time two. In other words, u informs

the two adjacent vertices along cycle Cj at times 2j − 1 and 2j for 1 ≤ j ≤ k. At

time 2j − 1, number of uninformed vertices in Cj will be lj − 1. Now, lk +4(k− j) ≥
lj ≥ lk + 3(k − j) ⇒ lk + 4(k − j) − 1 ≥ lj − 1 ≥ lk + 3(k − j) − 1 > 0 for j ≤ k

and lk ≥ 2. As a result, all the cycles will receive the message twice from u. Since

starting at time 2j onwards, Cj receives the message from both directions from u,

then bScycle
(u) ≤ 2j − 1 +

⌈

lj−1

2

⌉

≤ 2j − 1 +
⌈

lk+4k−4j−1
2

⌉

=
⌈

lk+4k−3
2

⌉

≤ lk+4k−2
2

as

lk + 4(k − j)− 1 ≥ lj − 1.

Now using Lemma 8(i), b(u) ≥
⌈

n−1
2k

+ k − 1
2

⌉

≥
⌈

klk+
3

2
k(k−1)

2k
+ k − 1

2

⌉

=
⌈

2lk+7k−5
4

⌉

.

Hence,
bScycle

(u)

b(u)
≤ 2 lk+4k−2

2lk+7k−5
= 2lk+8k−4

2lk+7k−5
= 1+ k+1

2lk+7k−5
≤ 1 + k+1

7k−1
= 1+ k+1

5k+5+2k−6

≤ 1 + k+1
5k+5

= 1.2, for k ≥ 3 and lk ≥ 2.

Observation: Note that algorithm Scycle gives 7
6
-approximation for k ≥ 10 for

the case lj+1+4 ≥ lj ≥ lj+1+3. Moreover if k is large enough then the approximation

ratio of algorithm Scycle approaches
8
7
.

Theorem 9. If lj = lj+1 + 2 for all 1 ≤ j ≤ k − 1, then algorithm Scycle generates

the optimal broadcast time in the k-cycle graph from originator u.

Proof. As a result lj = lk + 2(k − j) and total number of vertices in Gk, denoted as

n = lk + (lk + 2) + ... + (lk + 2(k − 1)) + 1 = klk + k(k − 1) + 1.

In scheme Scycle, u first informs one of its adjacent vertices along the cycle C1 and

C1 is placed in the set X1. Since l1 = l2 + 2, at time one, the number of uninformed

vertices in C1 is one more than the number of uninformed vertices in C2 (C2 is a cycle

in X0 having the maximum number of vertices among all cycles in X0). So, according

to scheme Scycle, u informs along C2 at time two. In general, during the first k time

units, u informs Cj at time j for 1 ≤ j ≤ k. At time k, number of uninformed vertices

in Cj will be lj − (k − (j − 1)) = lk + 2k − 2j − k + j − 1 = lk + k − j − 1. In other

words, at time k, the number of uninformed vertices in the cycles C1, ..., Ck forms an

arithmetic series with difference 1 starting from lk − 1 up to lk + k − 2. Starting at

time k+1 onwards u informs the cycle with maximum number of uninformed vertices.

Now we are going to consider two cases:

a) k < lk: This ensures that all the cycles will get informed twice from u. So in
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general, u informs the second vertex in cycle Ci at time k + i (1 ≤ i ≤ k). Thus,

bScycle
(u) = max {k +

⌈

lk+k−2
2

⌉

, k + 1 +
⌈

lk+k−3−1
2

⌉

,..., k + i− 1 +
⌈

lk+k−i−1−(i−1)
2

⌉

=

k +
⌈

lk+k−2
2

⌉

,..., k + k − 1 +
⌈

lk−1−(k−1)
2

⌉

= k +
⌈

lk+k−2
2

⌉

} =
⌈

lk+3k−2
2

⌉

.

b) k ≥ lk: Since, at time k, the number of uninformed vertices in the cycles C1, ..., Ck

forms an arithmetic series with difference 1 starting from lk − 1 and k ≥ lk, some

of the cycles will not receive the message from u twice. Assume there are p cycles

C ′
1, ..., C

′
p which will receive the information along its second branch from u starting

at time k+1 onwards, where C ′
1, ..., C

′
p is the combination of p cycles from C1, ..., Ck.

u finishes broadcasting all its adjacent vertices along these p cycles by time k + p.

All the vertices in the remaining k − p cycles must have been informed within k + p

time units. From the proof in part a) it is clear that the time taken to inform any

of the p cycles will be
⌈

lk+3k−2
2

⌉

= k + p − 1 +
⌈

lk+k−2p
2

⌉

. Recall that at time k,

number of uninformed vertices in C ′
p is lk + k − p− 1. As a result, lk + k − 2p is the

number of uninformed vertices in C ′
p before time unit k + p. Since u informs along

C ′
p at time k + p, then lk + k − 2p ≥ 1. Thus, k + p− 1 +

⌈

lk+k−2p
2

⌉

≥ k + p. Hence,

bScycle
(u) ≤

⌈

lk+3k−2
2

⌉

as in a).

Now using Lemma 8(i), b(u) ≥
⌈

n−1
2k

+ k − 1
2

⌉

=
⌈

klk+k(k−1)
2k

+ k − 1
2

⌉

=
⌈

lk−2+3k
2

⌉

≥ bScycle
(u).

Theorem 10. If lj = lj+1 for all 1 ≤ j ≤ k − 1, then algorithm Scycle generates the

optimal broadcast time in the k-cycle graph Gk from originator u.

Proof. Clearly lj = lk.

The order in which u initially informs the cycles is similar to the proof of The-

orem 9. In scheme Scycle, u first informs one of its adjacent vertices along the cycle

C1 and C1 is placed in the set X1. At time one, the number of uninformed vertices

in C1 is one less than the number of uninformed vertices in C2 (C2 is a cycle in X0

having the maximum number of vertices among all cycles in X0). So, u informs along

C2 at time two. In general, during the first k time units, u informs Cj at time j for

1 ≤ j ≤ k. At time k, number of uninformed vertices in Cj will be lj − (k − (j − 1))

= lk − k + j − 1. According to scheme Scycle, starting from time k + 1 onwards, u

informs the adjacent uninformed vertices in the cycles Ck, Ck−1,..., Cj,..., C1 at times

k+1, k+2,..., 2k+1− j,..., 2k respectively. In general, Cj will have lk − k+ j − 1−
(k− j) = lk − 1− 2(k− j) ≥ lk − (2k− 1) uninformed vertices before 2k+1− j time

units as j ≥ 1. There are two cases to consider.
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a) lk ≥ 2k : This guarantees that u has enough time to inform all its adjacent vertices

in k cycles. Starting at time 2k + 1− j onwards, Cj receives the message from both

directions from u. Thus bScycle
(u) ≤ 2k − j +

⌈

lk−1−2k+2j
2

⌉

=
⌈

lk−1+2k
2

⌉

.

b) lk < 2k : As a result, some of the cycles will not receive the message from u twice.

Let us assume there are k−p+1 such cycles C ′
k, ..., C

′
p which will receive the informa-

tion along its second branch from u starting at time k + 1 onwards, where C ′
k, ..., C

′
p

is the combination of k − p + 1 cycles from C1, ..., Ck. u finishes broadcasting all its

adjacent vertices along these k − p+ 1 cycles by time 2k + 1− p. All the vertices in

the remaining p − 1 cycles must have been informed within 2k + 1 − p time units.

From the proof in part a) it is clear that the time taken to inform any of the k−p+1

cycles will be
⌈

lk+2k−1
2

⌉

= 2k− p+
⌈

lk−1−2k+2p
2

⌉

. Now, lk − 1− 2k+2p is the number

of uninformed vertices in C ′
p before time unit 2k+1− p. Since u informs along C ′

p at

time 2k+1− p, then lk − 1− 2k+2p ≥ 1. Thus, 2k− p+
⌈

lk−1−2k+2p
2

⌉

≥ 2k+1− p.

Hence, bScycle
(u) ≤

⌈

lk+2k−1
2

⌉

as in a).

Now using Lemma 8(i), b(u) ≥
⌈

n−1
2k

+ k − 1
2

⌉

(n is the total number of vertices

in Gk) =
⌈

klk
2k

+ k − 1
2

⌉

=
⌈

lk−1+2k
2

⌉

≥ bScycle
(u) as n− 1 = klk.

Theorem 11. If lj ≤ lj+1 + 1 for all 1 ≤ j ≤ k − 1, then algorithm Scycle is a

(1.5− ε)-approximation in the k-cycle graph Gk from originator u.

Proof. As a result lj ≤ lk + k− j and total number of vertices in Gk, denoted as n ≤
lk + (lk + 1) + ... + (lk + k − 1) + 1 = klk +

k(k−1)
2

+ 1.

In scheme Scycle, u first informs one of its adjacent vertices along the cycle C1 and

C1 is placed in the set X1. Since l1 ≤ l2 + 1, at time one, the number of uninformed

vertices in C1 is either exactly the same or one less than the number of uninformed

vertices in C2 (C2 is a cycle in X0 having the maximum number of vertices among

all cycles in X0). So, according to scheme Scycle, u informs along C2 at time two. In

general, during the first k time units, u informs Cj at time j for 1 ≤ j ≤ k. At time k,

number of uninformed vertices in Cj will be lj− (k− (j−1)) ≤ lk+k− j−k+ j−1 =

lk − 1. Starting from time k+1 onwards, u informs along the cycle having maximum

number of uninformed vertices. Now, we are going to consider two cases:

a) k < lk: This ensures that all the cycles receive the message twice from u. Thus,

bScycle
(u) ≤ max{k+

⌈

lk−1
2

⌉

, k+1+
⌈

lk−2
2

⌉

,..., k+(i−1)+
⌈

lk−1−i+1
2

⌉

= k+
⌈

lk+i−2
2

⌉

,...,

k + k − 1 +
⌈

lk−1−(k−1)
2

⌉

} = k +
⌈

lk+k−2
2

⌉

≤ lk+3k−1
2

b) k ≥ lk: By time k, u has informed at least one vertex in each cycle and each cycle
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has at most lk−1 uninformed vertices at time unit k. As a result, it will take at most

another lk−1 time units to inform all the vertices in Gk. Thus, bScycle
(u) ≤ k+lk−1 =

k + 2lk−2
2

< k + 2lk−1
2

< k + lk+k−1
2

= lk+3k−1
2

as k > lk.

Thus, for both cases, we get bScycle
(u) ≤ lk+3k−1

2
.

Now using Lemma 7(ii) for j = k we get,
bScycle

(u)

b(u)
≤ lk+3k−1

lk+2k−1
= 1+ k

lk+2k−1
≤ 1+ k

2k+1

< 1.5 as lk ≥ 2.

Note that 1.5-approximation ratio is achievable when lj = lj+1+1 for 1 ≤ j ≤ k−1.

Next we present another algorithm which is optimal for lj = lj+1 + 1, 1 ≤ j ≤ k − 1

Broadcast Algorithm Acycle:

1. u informs Cd k
2e, Cd k

2e−1, ..., C1, Ck, ..., Cd k
2e+1 at time units 1, 2, ...,

⌈

k
2

⌉

,
⌈

k
2

⌉

+ 1,..., k respectively.

2. Calculate the number of uninformed vertices λj in Cj for j = 1, 2, ..., k

at time k.

3. Arrange λj in decreasing order such that λ′
1 ≥ λ′

2 ≥ ... ≥ λ′
k−1

where λ′
1, λ

′
2, ..., λ

′
k−1 is the permutation of λ1, ..., λk−1.

If C ′
j contains λ

′
j uninformed vertices then,

4. For each time unit i = 1 to k

4.1. If u has an uninformed adjacent vertex in C ′
i

4.1.1. u broadcasts along C ′
i at time k + i

Complexity Analysis: Step 2 takes O(k) time. Sorting in decreasing order in step

3 takes O(k log k) time. Broadcasting done in steps 1 and 4 can be accomplished in

O(|V |) time. Together, complexity is O(|V |+ k log k).

Theorem 12. If lj = lj+1 + 1 for all 1 ≤ j ≤ k − 1, then algorithm Acycle generates

the optimal broadcast time in the k-cycle graph from originator u.

Proof. Similar to the proof in Theorem 11, total number of vertices in Gk, denoted

as n = klk +
k(k−1)

2
+ 1. We will consider two cases.

i) When k is odd: Under scheme Acycle, u informs one of its two adjacent vertices

of the cycles C k+1

2

, C k+1

2
−1, ..., C1, Ck, ..., C k+1

2
+1 at time units 1, 2, ...,k+1

2
, k+1

2
+ 1,...,

k respectively. At time k, the number of uninformed vertices in cycle Cj is lj −
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(k − (k+1
2

− j)) for 1 ≤ j ≤ k+1
2
. Similarly, when k+1

2
+ 1 ≤ j ≤ k, the number

of uninformed vertices in cycle Cj is lj − (j − k+1
2
). In other words, at time k, the

number of uninformed vertices in the cycles C1, ..., Ck forms an arithmetic series with

difference 1 in some order starting from lk − k+1
2

up to lk +
k+1
2

− 2. Starting at time

k + 1 onwards u informs the cycle with maximum number of uninformed vertices.

If 3k+1
2

< lk, then all the cycles will get informed twice from u. Thus, bAcycle
(u) =

max {k +
⌈

2lk+k−3
4

⌉

, k+1+
⌈

2lk+k−7
4

⌉

,..., 2k−1+
⌈

lk−(k+1)/2−(k−1)
2

⌉

} =
⌈

5k+2lk−3
4

⌉

. If
3k+1
2

≥ lk, then similar to Theorem 9.b), there are p cycles which receive the message

along its second branch from u and it takes at most
⌈

5k+2lk−3
4

⌉

≥ k + p time units to

complete broadcasting. Thus, for both cases we get, bAcycle
(u) =

⌈

5k+2lk−3
4

⌉

.

Now using Lemma 8(i), b(u) ≥
⌈

n−1
2k

+ k − 1
2

⌉

=
⌈

klk+k(k−1)/2
2k

+ k − 1
2

⌉

=
⌈

5k+2lk−3
4

⌉

≥ bAcycle
(u).

ii) When k is even: Under scheme Acycle, u informs along C k
2

, C k
2
−1, ..., C1, Ck, ..., C k

2
+1

at time units 1, 2, ...,k
2
, k

2
+1,..., k respectively. At time k, the number of uninformed

vertices in cycle Cj is lj−(k−(k
2
−j)) for 1 ≤ j ≤ k

2
. Similarly, when k

2
+1 ≤ j ≤ k, the

number of uninformed vertices in cycle Cj is lj−(j− k
2
). In other words, at time k, the

number of uninformed vertices in the cycles C ′
1, C

′
2, C

′
3, C

′
4, ..., C

′
2i−1, C

′
2i, ..., C

′
k−1, C

′
k

are lk +
k
2
− 2, lk +

k
2
− 2, lk +

k
2
− 4, lk +

k
2
− 4,..., lk +

k
2
− 2i, lk +

k
2
− 2i,..., lk − k

2
,

lk − k
2
respectively where C ′

1, C
′
2, ..., C

′
k is the permutation of the cycles C1, ..., Ck.

Starting at time k + 1 onwards u informs the path with maximum number of unin-

formed vertices. Similar to case i), when lk ≥ 3k
2
, bAcycle

(u) = max {k +
⌈

lk+k/2−2
2

⌉

,

k+ 1+
⌈

lk+k/2−3
2

⌉

,..., 2k− 1 +
⌈

lk−k/2−(k−1)
2

⌉

} =
⌈

5k+2lk−2
4

⌉

. Similarly, when lk <
3k
2
,

for some p cycles which will be informed twice from u, bAcycle
(u) ≤

⌈

5k+2lk−2
4

⌉

.

Using Lemma 8(i) as in case i), b(u) ≥
⌈

n−1
2k

+ k − 1
2

⌉

=
⌈

5k+2lk−3
4

⌉

=
⌈

5k+2lk−2
4

⌉

≥ bAcycle
(u) as k is even and so 5k + 2lk − 3 is always odd.

4.3.1 Summary of the Results:

Below is the summary of the results for algorithms Scycle and Acycle.
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Table 2: Summary for k-cycle problem

Case Algorithm Result

General k-cycle Scycle (2− ε)-approximation
lj ≥ lj+1 + 4 Scycle optimal

lj+1 + 4 ≥ lj ≥ lj+1 + 3 Scycle 1.2-approximation for k ≥ 3
7
6
-approximation for k ≥ 10

lj = lj+1 + 2 Scycle optimal
lj = lj+1 Scycle optimal

lj ≤ lj+1 + 1 Scycle (1.5− ε)-approximation
lj = lj+1 + 1 Acycle optimal
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Chapter 5

Broadcast Problem in Hypercube

of Trees

In this chapter we continue the work in [103] and consider broadcasting in a hypercube

graph where each vertex of the hypercube is the root of a tree, called hypercube of

trees. Although there is a simple minimum time broadcast scheme for the hypercube,

the problem is much more difficult for hypercube of trees because in a hypercube any

pair of vertices are not neighbors as in a clique. However we were able to design a non-

trivial algorithm to find the broadcast time of any originator for the hypercube of trees

containing one tree. For the general case we present a linear time 2-approximation

algorithm. We extend the result for any arbitrary graph whose nodes contain trees

and design a linear time constant approximation algorithm.

5.1 Hypercube of Trees

Assume that we have a hypercube graph where every vertex is the root of a tree. We

will call the resulting graph hypercube of trees.

Definition 3. The hypercube of dimension k, denoted by Hk, is a simple graph with

vertices representing 2k binary strings of length k, k ≥ 1 such that adjacent vertices

have binary strings differing in exactly one bit position [113].

Definition 4. Consider 2k trees Ti = (Vi, Ei) rooted at ri where 1 ≤ i ≤ 2k. We define

the hypercube of trees, HTk,n = (V,E), to be a graph where V = V1 ∪ V2 ∪ ... ∪ V2k

and E = E1 ∪ E2 ∪ ... ∪ E2k ∪ EHk
where EHk

= {(ri, rj)| ri, rj are vertices of Hk}.
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The roots of the trees, ri, will be called root vertices and the rest of the vertices will

be called tree vertices (see Figure 26).

|V | = n ≥ 2k and |E| = |V | − 2k + k2k−1 = |V |+ 2k−1(k − 2).

r4 (000)                                                                                      r3 (001)

r1 (100)                                                                                      r2 (101)

r5 (110)                     r6 (111)

 r7 (010)                  r8 (011)

T1                                                                                     T2  

T4                                                                                     T3

T5                                 T6

T7                                    T8

Figure 26: Hypercube of Trees HT3,n with 8 trees Ti rooted at ri, 1 ≤ i ≤ 23. Note that
the roots ri include a subgraph which is a hypercube H3.

5.2 Broadcasting in Hypercube of Trees contain-

ing one tree

As mentioned above to find the broadcast time in hypercube of trees is difficult in

general. In this section we design a linear algorithm to determine the broadcast time

of HTk,n containing one tree.

Let G1 be a HTk,n graph where r0 is a root vertex and r0 is the root of a tree T0.

The remaining 2k − 1 root vertices do not contain any tree. Let us also assume that

r0 has m neighbors in T0, vertices v1, v2, ..., vm. vi is the root of the subtree T 0
i ,

1 ≤ i ≤ m. Let us consider b(vi, T
0
i ) = ti and without loss of generality we assume

that t1 ≥ t2 ≥ ... ≥ tm. Then it follows from [162] that b(r0, T0) = max{i+ ti}, where
1 ≤ i ≤ m. Let b(r0, T0) = τ and τ ≥ 1 (see Figure 27).
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Hk

H
0

k-1 H
1

k-1

r0

T0

v1

v2

vm

T
0

1

T
0

2

T
0

m

Figure 27: Hypercube of Trees HTk,n with only tree T0 rooted at r0

5.2.1 Broadcast Algorithm when originator is r0

Consider two cases depending on the relationship between τ and the dimension of the

hypercube in G1. Let all the root vertices will be informed by τ(r) time units. The

algorithm A calls another algorithm Broadcast-Hypercube which returns τ(r). When

a tree vertex is informed there is not much it can do other than following the well

known broadcast algorithm in trees [162], called AT .

Tree Broadcast Algorithm AT :

INPUT: originator ri and tree rooted at ri: Ti

OUTPUT: Broadcast time bAT
(ri, Ti)

TREE-BROADCAST(ri, Ti)

1. ri informs a child vertex in Ti that has the maximum broadcast time in the

subtree rooted at it.

2. Let α1,..., αf be the broadcast times of the f subtrees rooted at ri and

α1 ≥ ... ≥ αf . Then, bAT
(ri, Ti) = max{j + αj} for 1 ≤ j ≤ f .

Broadcast Algorithm A:

INPUT: HTk,n = (V,E), originator r0, b(r0, T0) = τ , m, t1 ≥ t2 ≥ ... ≥ tm

OUTPUT: Broadcast time bA(r0) and broadcast scheme for HTk,n

BROADCAST-SCHEME-A(HTk,n, r0, τ , m, t1 ≥ t2 ≥ ... ≥ tm)

1. If τ ≤ k

1.1. r0 informs another root vertex r1 in the first time unit.
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1.2. τ(r) = BROADCAST-HYPERCUBE(HTk,n, r1, 1).

1.3. For each time unit i = 2 to m+ 1

1.3.1. r0 informs tree vertex vi−1.

2. If τ > k

2.1. If τ ≥ k +m

2.1.1. For each time unit i = 1 to m

2.1.1.1. r0 informs tree vertex vi.

2.1.2. For each time unit i = m+ 1 to m+ k

2.1.2.1. an informed root vertex informs another uninformed root

vertex using any shortest path.

2.2. If k +m− 1 ≥ τ ≥ k + 1

Let j be the largest index such that τ = tj + j

2.2.1. For each time unit i = 1 to j

2.2.1.1. r0 informs tree vertex vi.

2.2.2. At time unit j + 1, r0 informs another root vertex r1.

2.2.3. τ(r) = BROADCAST-HYPERCUBE(HTk,n, r1, j + 1).

2.2.4. For each time unit i = j + 2 to m+ 1

2.2.4.1. r0 informs tree vertex vi−1.

2.2.5. If Hk is informed by time τ

then OUTPUT: bA(r0)

else FOLLOW steps 1.1 to 1.3

3. TREE-BROADCAST(vi, T
0
i ) for 1 ≤ i ≤ m.

Broadcast-Hypercube:

INPUT: HTk,n = (V,E), originator r1, time at which r1 is informed: tr1

OUTPUT: τ(r)

BROADCAST-HYPERCUBE(HTk,n, r1, tr1)

1. Assume r1 is 10...0 (last k − 1 bits consist of zeroes)

2. For each time unit i = tr1 + 1 to tr1 + k − 1

2.1. For all a1, ..., ai−tr1−1 ∈ {0, 1} do in parallel

2.1.1. 1a1...ai−tr1−100...0 sends to 1a1...ai−tr1−110...0

3. For all a1, ..., ak−1 ∈ {0, 1} except r1 do in parallel

3.1. 1a1...ak−1 sends to 0a1...ak−1

4. Return tr1 + k
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Complexity Analysis:

Broadcast-Hypercube takes O(log 2k) = O(k) time to inform the root vertices.

Algorithm A: Steps 1.1 and 1.3 take constant time to run. Step 2.1.2 can be completed

in O(k) time. Also steps 2.1.1 and 2.2 run in constant time. Again, the tree broadcast

algorithm in step 3 takes O(|V |−2k) = O(|VT |) time to run, where |VT | is the number

of tree vertices in G1. Thus, complexity of algorithm is O(|VT |+ k).

Proof of Correctness:

Theorem 13. Algorithm A always generates the minimum broadcast time b(r0).

Proof. Case 1: m ≤ τ ≤ k

At least k time units are necessary to inform all the root vertices of G1. Since r0 is the

root of the tree T0, at least one more time unit is required to broadcast a tree vertex

in T0. So, b(r0) ≥ k + 1. Under algorithm A, the subroutine Broadcast-Hypercube

informs the root vertices by time k+1. Since starting at time two onwards, r0 informs

the adjacent tree vertices in T0, hence bA(r0, T0) = τ + 1 ≤ k + 1 (as τ ≤ k). So,

bA(r0) = b(r0) = k + 1.

Case 2: τ ≥ k +m

At least τ time units are necessary to inform all the tree vertices of G1. So, b(r0) ≥ τ .

Under algorithm A, r0 first informs all the adjacent tree vertices. So all the vertices

in T0 will receive the message by time τ . Starting at time m+ 1 onwards, r0 informs

the root vertices. Since it takes exactly k time units to inform all the root vertices,

hence the root vertices will be informed by m + k time units and m + k ≤ τ . So,

bA(r0) = b(r0) = τ

Case 3: k +m > τ ≥ k + 1

It is always the case that b(r0) ≥ τ . Let us assume that b(r0) = τ . In any

minimum time broadcast scheme in hypercube Hk, every informed vertex cannot be

idle during the time units 1, ..., k in order to complete broadcasting by time k. If

originator u informs a vertex v at time one, and stays idle after time one, then v

can finish broadcasting in Hk by k + 1 time units. Note that initially r0 is the only

informed vertex from which all other root vertices can receive the message. r0 must

make exactly m calls within T0 sooner or later. So, it cannot make k calls within

Hk, since b(r0) = τ ≤ k +m − 1. Since b(r0) = τ and τ = tj + j = max {i + ti} for

1 ≤ j ≤ m, then under any minimum time broadcast scheme, r0 must call v1, ..., vj
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at time units 1, ..., j within T . If r0 cannot make k calls within Hk, then whether r0

makes 1 call or k − 1 calls within Hk, b(r0, Hk) will be the same and equal to k + 1.

The earliest time unit when r0 can call one of its neighbors within Hk is the time

unit j + 1 or later. Thus, all the vertices in Hk can be informed no sooner than time

j + 1 + k. Thus, τ = b(r0) ≥ b(r0, Hk) ≥ j + 1 + k. We will show that algorithm A

generates a j + 1 + k time broadcast scheme in graph G1.

Under algorithm A, r1 receives the message at time j + 1. The subroutine

Broadcast-Hypercube informs the root vertices by time j + 1 + k ≤ τ . r0 informs its

adjacent tree vertices v1, ..., vj, vj+1, ..., vm at time units 1, ..., j, j+2, ...,m+1 respec-

tively. As a result, bA(r0, T0) = max{t1 +1, ..., tj + j, tj+1 + j +2, ..., tm +m+1} = τ

as ti + i < τ ⇒ ti + i+ 1 ≤ τ for all j + 1 ≤ i ≤ m. Thus bA(r0) = b(r0) = τ .

Note that b(r0) ≤ τ + 1, since r0 can call a neighbor in Hk at time 1 and then

perform the minimum time broadcasting in T0 starting time 2. Let us now assume

that b(r0) = τ +1. Under algorithm A, the subroutine Broadcast-Hypercube informs

the root vertices by time k + 1 < τ + 1 since τ > k. Since starting at time two

onwards, r0 informs the adjacent tree vertices in T0, hence bA(r0, T0) = τ + 1. So,

bA(r0) = b(r0) = τ + 1.

In the next section we will develop a broadcast algorithm for any originator in

an arbitrary hypercube of trees, G1. First we assume that the originator is any root

vertex other than r0. Finally we will discuss the broadcast algorithm in G1 when the

originator is any tree vertex.

5.2.2 Broadcasting from a root vertex other than r0

In this section we present the broadcast algorithm Ar for graph G1 when the origina-

tor is any root vertex (say rj) other than r0. Let us assume that rj is at a distance

dr from vertex r0, where k ≥ dr ≥ 1. The algorithm Ar in G1 starts by informing

along the path rjr0 (the shortest among all paths between rj and r0). r0 receives the

message at time dr, and then it sends the message to the tree attached to it.

Broadcast Algorithm Ar:

INPUT: HTk,n = (V,E), originator rj, b(r0, T0) = τ

OUTPUT: Broadcast time bAr
(rj) and broadcast scheme for HTk,n

BROADCAST-SCHEME-Ar(HTk,n, rj, τ)
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1. rj informs along the path rjr0 (the shortest among all paths between rj and

r0) in the first time unit.

2. rj continues to inform the other root vertices using any shortest path.

r0 receives the message at time dr.

3. TREE-BROADCAST(r0, T0).

Complexity Analysis:

Steps 1 and 2 can be completed in O(k) time. The tree broadcast algorithm in step

3 takes O(|VT |)time to run. Complexity of algorithm is O(|VT |+ k).

Proof of Correctness:

Theorem 14. Algorithm Ar always generates the minimum broadcast time b(rj).

Proof. Under algorithm Ar, r0 receives the message at time dr. Starting at time dr+1

onwards, r0 informs the adjacent tree vertices. As a result all the vertices of T0 will be

informed by time τ +dr. Since r0 does not play any role in informing a root vertex, it

will take at most k+1 time units for all the root vertices in G1 to receive the message.

Case 1: τ + dr ≤ k + 1

Algorithm Ar in this case generates bAr
(rj) = k + 1.

Under any broadcast scheme, at least k time units are necessary to inform all the

root vertices of G1. Since r0 is the root of the tree T0, at least one more time unit is

required to broadcast a tree vertex in T0. So, b(rj) ≥ k + 1.

Case 2: τ + dr > k + 1

Algorithm Ar in this case generates bAr
(rj) = τ + dr.

Under any broadcast scheme, r0 is informed no earlier than dr time units. It takes

another τ time units to inform all the tree vertices in T0. So, b(rj) ≥ τ + dr.

5.2.3 Broadcasting from a tree vertex

In this section we will develop a broadcast algorithm from any tree vertex in an arbi-

trary hypercube of trees G1. Assume we are given a graph G1 such that the originator

v is in the subtree T 0
i rooted at the root vertex r0. There is a unique path P in T 0

i

connecting r0 to the originator v. The vertex on the path P adjacent to r0 is denoted

by vi. Let u1, u2, ..., uz be the z neighbors of v in the subtree. One of these vertices

falls on the path P , call this vertex ui. As shown in Figure 28, the graph G1 can be
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restructured by drawing the tree T 0
i rooted at the originator v and vertex vi as one

of its nodes. It can be observed that the remaining subgraph of G1, denoted by G′
1

is attached to T 0
i by a bridge (vi, r0). Since the graph G′

1 is connected to tree T 0
i by

Hk

H0k-1 H1k-1

v T0i

r0

vi

v1

vm

u1 ui uj uz

H1

Hi

Hj
Hz

T01

T0m

G'1

Figure 28: Hypercube of Trees G1 with originator v. The subtree T 0
i is separated from

rest of the graph G′
1

a bridge, the broadcast algorithm in G′
1 is independent of the broadcast algorithm in

T 0
i . Once vertex r0 is informed from vi, it cannot inform any other vertex in T 0

i . It

can only inform the vertices in G′
1 in the minimum possible time unit. However, since

r0 is a root vertex and G′
1 contains the hypercube Hk as its subgraph, broadcast in

G′
1 from r0 can be considered as the broadcast problem in hypercube of trees with

one tree rooted at r0 where the originator is the root vertex r0. We have a broadcast

algorithm to solve this problem in G′
1 from r0. Let TG′

1
be the broadcast tree of

G′
1 from r0 obtained from algorithm A and τm−1 be the broadcast time of r0 in the

remaining m− 1 subtrees.

Broadcast Algorithm Av:

INPUT: G′
1, originator v in subtree T 0

i , r0, τm−1, m− 1, t1 ≥ t2 ≥ ... ≥ tm−1

OUTPUT: Broadcast time bAv
(v) and broadcast scheme for G1

BROADCAST-SCHEME-Av(G
′
1, v, T

0
i , τm−1, m− 1, r0, t1 ≥ t2 ≥ ... ≥ tm−1)

1. TG′

1
= BROADCAST-SCHEME-A(G′

1, r0, τm−1, m− 1, t1 ≥ t2 ≥ ... ≥ tm−1)

2. Attach TG′

1
with T 0

i by the bridge (r0, vi) and let the resulting tree be

labelled as Tv.

3. TREE-BROADCAST(v, Tv).
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Complexity Analysis:

Finding the broadcast time of a tree vertex in an arbitrary hypercube of trees with

one tree is equivalent to solving two problems: (1) Finding the broadcast time of a

root vertex in a hypercube of trees with one tree. As discussed before the complexity

of this algorithm is linear. (2) Finding the broadcast time of a tree vertex in a tree.

The complexity of this algorithm is also linear. Hence, the complexity is O(|V |).

Proof of Correctness:

We can use the optimal broadcast tree of G′
1 obtained from algorithm A and attach

it to the tree T 0
i and solve the broadcast problem in the resulting tree. According to

the broadcast algorithm in trees [162], v informs a child vertex that has the maximum

broadcast time in the subtree rooted at it. The subtrees are labelled by Hj, where

1 ≤ j ≤ z (see Figure 28). The broadcast times b(uj, Hj) can be easily calculated

except when uj = ui, since in this case G′
1 is attached to vi. But we can solve the

broadcast problem in G′
1 for the originator r0 and obtain a broadcast tree TG′

1
. The

weight of r0 will then be initialized as the broadcast time in TG′

1
, call this τG′ . The

optimal time required to inform all the vertices of Hi and G′
1 from ui is equal to the

broadcast time in the tree Hi + (vi, r0) from ui where weight(r0) = τG′ .

5.3 Linear time 2-approximation algorithm in gen-

eral hypercube of trees

In this section we will study the broadcast problem in general hypercube of trees.

5.3.1 Lower bound on the broadcast time

First we assume the originator is any root vertex.

Lemma 11. Let G be a HTk,n where the originator r0 is a root vertex. If b(ri, Ti) is

the broadcast time of the root vertex ri in the tree Ti where 0 ≤ i ≤ 2k − 1 then,

i) b(r0) ≥ max{b(ri, Ti)} ii) b(r0) ≥ k.

Proof. For the proof of (i): Under any broadcast scheme, it takes at least maximum

of {b(ri, Ti)} time units to inform all the vertices of G. Hence, b(r0) ≥ max{b(ri, Ti)}.
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Proof of (ii) goes as follows: At least k time units are necessary to inform all the root

vertices of G. So, b(r0) ≥ k.

Observation:

1. b(r0) = k when no trees are attached in HTk,n.

2. Consider a graph HTk,n where only one tree is being attached at the originator r0.

The tree is a path P of length l ≥ k+1. r0 first informs along P and then informs the

other root vertices. It is easy to see that the root vertices will be informed by k + 1

time units. Similarly all the vertices in P will receive the message by l ≥ k + 1 time

units. Thus, b(r0) = max{b(ri, Ti)}. Therefore, both lower bounds from Lemma 11

are achievable.

Let us now consider the originator is any tree vertex w in a tree Ti, where 0 ≤
i ≤ 2k − 1. Let us assume that w is at a distance d from the nearest root vertex r0,

where d ≥ 1 (see Figure 29).

  Hk

r0

w

uj

u1

Ti

Figure 29: Hypercube of Trees G where the originator is a tree vertex w.

Lemma 12. Let G be a HTk,n where the originator w is any tree vertex in a tree Ti

and the length of the path wr0 is d, where d ≥ 1. If b(w, Ti) is the broadcast time of

the tree Ti from w for 0 ≤ i ≤ 2k − 1 then,

i) b(w) ≥ b(w, Ti) ii) b(w) ≥ max{b(rj, Tj)} for all j 6= i iii) b(w) ≥ k + d.
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Proof. For the proof of (i): w is any tree vertex in a tree Ti for 0 ≤ i ≤ 2k − 1

and it takes at least b(w, Ti) time units to inform all the vertices of G. Hence,

b(w) ≥ b(w, Ti).

Proof of (ii): For the remaining 2k − 1 trees Tj, where 0 ≤ j ≤ 2k − 1 & j 6= i,

under any broadcast scheme, initially rj is the only informed vertex from which the

tree vertices can receive the message. Therefore at least max{b(rj, Tj)} time units are

necessary to broadcast in all the vertices. Hence, b(w) ≥ max{b(rj, Tj)} for all j 6= i.

Proof of (iii): Under any broadcast scheme, r0 is informed no earlier than d time

units. It takes at least another k time units to inform all the root vertices of G. So,

b(w) ≥ k + d.

5.3.2 Approximation Algorithm

In this section we present the broadcast algorithm Shyper for graph G. We consider

any vertex x to be the originator. When the originator is r0 then the algorithm Shyper

in G starts by informing all the vertices of the hypercube. When all the root vertices

are informed, each vertex informs the tree attached to it.

When the originator is w then the algorithm Shyper in G starts by informing along

the path wr0. r0 receives the message at time d. During the next k time units all

the vertices of the hypercube are being informed. Each root vertex will now send the

message to the tree attached to it.

Approximation Algorithm Shyper:

INPUT: HTk,n = (V,E) and any originator x

OUTPUT: Broadcast time bShyper
(x) and broadcast scheme for HTk,n

BROADCAST-SCHEME-Shyper(HTk,n, x)

1. If x = w

1.1. w broadcasts along the shortest path wr0 in the first time unit.

r0 gets informed at time d.

1.2. For each time unit i = d+ 1 to d+ k

1.2.1. an informed root vertex informs another uninformed root vertex

using any shortest path.

2. If x = r0

2.1. For each time unit i = 1 to k
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2.1.1. an informed root vertex informs another uninformed root vertex

using any shortest path.

3. TREE-BROADCAST(ri, Ti) for 0 ≤ i ≤ 2k − 1.

Complexity Analysis:

Steps 1.2 and 2.1 take O(k) time to inform the root vertices. In steps 1.1 and 3,

the tree broadcast algorithm takes O(|VT |) time to run. Complexity of algorithm is

O(|VT |+ k).

Theorem 15. Algorithm Shyper is a 2-approximation for any originator in the graph

HTk,n

Proof. When originator is r0: Considering algorithm Shyper, an upper bound on

broadcast time can be obtained when the tree Ti with broadcast time max {b(ri, Ti)}
is being attached at the root vertex ri which is at distance log 2k = k from originator

r0, where 0 ≤ i ≤ 2k − 1. By time k all the root vertices will be informed. Each root

vertex ri will take b(ri, Ti) time units to broadcast in Ti. As a result all the tree ver-

tices will be informed by time max{b(ri, Ti)}. Thus, bShyper
(r0) ≤ k + max{b(ri, Ti)},

where 0 ≤ i ≤ 2k − 1. Combining Lemma 11(i) and Lemma 11(ii) we can write

b(r0) ≥ 1
2
(max{b(ri, Ti)}+ k). Hence,

bShyper
(r0)

b(r0)
≤ 2max{b(ri,Ti)}+k

max{b(ri,Ti)}+k
= 2.

When originator is w: w is any tree vertex in Ti. Let it is at a distance d from the

nearest root vertex r0. Considering algorithm Shyper, an upper bound on broadcast

time can be obtained when the tree Tj with broadcast time max {b(rj, Tj)} is being

attached at the root vertex rj which is at distance k from r0, where 0 ≤ j ≤ 2k − 1

& i 6= j. r0 receives the message at time d. By time d+ k all the root vertices will be

informed. Each root vertex rj will take b(rj, Tj) time units to broadcast in Tj.

Let u1, u2, .., uq be the q neighbors of w in Ti. One of these vertices falls on the path

wr0, call this vertex ur. uj is the root of the subtree T
j
i , 1 ≤ j ≤ q and b(uj, T

j
i ) = bj.

If b1 ≥ b2 ≥ ... ≥ bq, then it follows from [162] that b(w, Ti) = max{j + bj}, where
1 ≤ i ≤ q. Under algorithm Shyper, w informs ur,u1,...,ur−1,ur+1,uq at time units

1, 2, ..., r, r + 1, q respectively. If b(w, Ti) = j + bj for any 1 ≤ j ≤ r − 1, then

bShyper
(w, Ti) ≤ b(w, Ti) + 1.

Let ur1 , ur2 , .., urp be the p neighbors of ur in T r
i and let urr be the vertex that falls

on the path wr0. Similarly if brj , where 1 ≤ j ≤ p be the broadcast times of p

subtrees rooted at urj and br1 ≥ ... ≥ brp , then b(ur, T
r
i ) = max{j+ brj}. Under algo-

rithm Shyper, ur informs urr , ur1 ,...,urr−1
,urr+1

,...,urp at time units 1, 2, ..., r, r+1, ..., p
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respectively (time units are considered after ur is informed). If b(ur, T
r
i ) = j + brj

for any 1 ≤ j ≤ r − 1, then bShyper
(ur, T

r
i ) ≤ b(ur, T

r
i ) + 1. Thus, bShyper

(w, T r
i )

≤ 1 + b(ur, T
r
i ) + 1 = b(w, T r

i ) + 1. Since the path wr0 has been given the pri-

ority in algorithm Shyper, similarly in the worst case, at every level (upto d levels)

the broadcast time of the subtrees will be delayed by one time unit. Therefore,

bShyper
(w, Ti) ≤ b(w, Ti) + d. As a result all the tree vertices in G will be informed by

time max{b(w, Ti) + d, k + d+max{b(rj, Tj)}}.
If b(w, Ti) + d ≥ max{b(rj, Tj)}+ k + d, then bShyper

(w) ≤ b(w, Ti) + d.

Combining Lemma 12(i) and Lemma 12(iii) we can write b(w) ≥ 1
2
(b(w, Ti) + k + d).

Hence,
bShyper

(w)

b(w)
≤ 2 b(w,Ti)+d

b(w,Ti)+k+d
< 2 as k ≥ 1.

If b(w, Ti) + d < max{b(rj, Tj)}+ k + d, then bShyper
(w) ≤ k + d+ max{b(rj, Tj)}.

Combining Lemma 12(ii) and Lemma 12(iii) we can write b(w) ≥ 1
2
(max{b(rj, Tj)}+

k + d).

Hence,
bShyper

(w)

b(w)
≤ 2

max{b(rj ,Tj)}+k+d

max{b(rj ,Tj)}+k+d
= 2.

5.4 Linear time constant approximation algorithm

in an arbitrary graph whose nodes contain trees

Assume that we have an arbitrary graph H where its vertices are the roots of the

trees. We call the resulting graph arbitrary graph of trees G. In this section we design

a linear time constant approximation algorithm to determine the broadcast time of

G where the broadcast scheme in H is already known.

5.4.1 Lower bound on the broadcast time

Let H contains m vertices. We call the vertices of H as root vertices which contain

trees; the rest are non-root vertices.

First we assume the originator is any root vertex.

Lemma 13. Let G be an arbitrary graph of trees where the originator r0 is a root

vertex. If b(ri, Ti) is the broadcast time of the root vertex ri in the tree Ti, where

1 ≤ i ≤ m then,

i) b(r0) ≥ max {b(ri, Ti), 1 ≤ i ≤ m} ii) b(r0) ≥ b(r0, H)
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Proof. (i): Under any broadcast scheme, it takes at least maximum of b(ri, Ti) time

units to inform all the vertices in G. Hence, b(r0) ≥ max {b(ri, Ti), 1 ≤ i ≤ m}.
(ii): At least b(r0, H) time units are necessary to inform all the vertices in H from

r0. So, b(r0) ≥ b(r0, H).

Next we consider the originator is any non-root vertex rn. Let us assume that rn

is at a distance d1 from the nearest root vertex r0, where d1 ≥ 1.

Lemma 14. Let G be an arbitrary graph of trees where the originator rn is a non-root

vertex and the length of the path rnr0 is d1, where d1 ≥ 1. If b(ri, Ti) is the broadcast

time of the root vertex ri in the tree Ti, where 1 ≤ i ≤ m then,

i) b(rn) ≥ d1+ max {b(ri, Ti), 1 ≤ i ≤ m} ii) b(rn) ≥ b(rn, H)

Proof. (i): Under any broadcast scheme, r0 is informed no earlier than d1 time units.

It takes another maximum of b(ri, Ti) time units to inform all the vertices in G. Hence,

b(rn) ≥ d1+ max {b(ri, Ti), 1 ≤ i ≤ m}.
(ii): At least b(rn, H) time units are necessary to inform all the vertices in H from

rn. So, b(rn) ≥ b(rn, H).

Let us now consider the originator is any tree vertex w in a tree Ti, where 1 ≤ i ≤
m. Let us assume that w is at a distance d2 from the nearest root vertex r0, where

d2 ≥ 1.

Lemma 15. Let G be an arbitrary graph of trees where the originator w is a tree

vertex and the length of the path wr0 is d2, where d2 ≥ 1. If b(w, Ti) is the broadcast

time of the tree Ti from w for 1 ≤ i ≤ m then,

i) b(w) ≥ {b(w, Ti), 1 ≤ i ≤ m} ii) b(w) ≥ max {b(rj, Tj)} for all j 6= i iii) b(w) ≥
d2 + b(r0, H)

Proof. (i): w is any tree vertex in a tree Ti for 1 ≤ i ≤ m. It takes at least b(w, Ti)

time units to inform all the vertices of G. Hence, b(w) ≥ {b(w, Ti), 1 ≤ i ≤ m}.
(ii): For the remaining trees Tj, where 1 ≤ j ≤ m and j 6= i, under any broadcast

scheme, initially the root vertex rj is the only informed vertex from which the rest

tree vertices can receive the message. Therefore at least maximum of {b(rj, Tj)} time

units are necessary to broadcast in all the vertices. Hence, b(w) ≥ max {b(rj, Tj)}.
(iii): Under any broadcast scheme, r0 is informed no earlier than d2 time units. It

takes at least another b(r0, H) time units to inform all the vertices in H from r0. So,

b(w) ≥ d2 + b(r0, H).
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5.4.2 Approximation Algorithm

In this section we present the broadcast algorithm SArbi for graph G. We consider any

vertex x to be the originator. When the originator is r0 then the algorithm SArbi in

G starts by informing all the vertices of H. When all the vertices in H are informed,

each root vertex informs the tree attached to it.

When the originators are w and rn then the algorithm SArbi in G starts by in-

forming along the paths wr0 and rnr0 respectively. When r0 receives the message,

the scheme informs all the vertices of H. Each root vertex will now send the message

to the tree attached to it.

Approximation Algorithm SArbi:

INPUT: G = (V,E) and any originator x

OUTPUT: Broadcast time bSArbi
(x) and broadcast scheme for G

BROADCAST-SCHEME-SArbi(G, x)

1. If x = w

1.1. w broadcasts along the shortest path wr0 in the first time unit.

r0 gets informed at time d2.

1.2. Starting at time d2 + 1 onwards inform all the vertices in H.

2. If x = rn

2.1. rn broadcasts along the shortest path rnr0 in the first time unit.

r0 gets informed at time d1.

2.2. Starting at time d1 + 1 onwards inform all the vertices in H.

3. If x = r0

3.1. Inform all the vertices in H.

4. TREE-BROADCAST(ri, Ti) for 1 ≤ i ≤ m.

Complexity Analysis:

Steps 1.2, 2 and 3 take O(m) time to inform the vertices in H. In steps 1.1 and 4,

the tree broadcast algorithm takes O(|V | −m) = O(|VT |) time to run. Complexity of

algorithm is O(|VT |+m).

Theorem 16. Let us assume there is a minimum time broadcast scheme in H from

any originator. Then, algorithm SArbi is a 2-approximation for any originator in the

graph G.
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Proof. When originator is r0: Considering algorithm SArbi, all the vertices in H

will be informed by b(r0, H) time units from r0, since there is a minimum time

broadcast scheme in H from any originator. Each root vertex ri will take b(ri, Ti)

time units to broadcast in Ti. As a result all the tree vertices will be informed by

time max{b(ri, Ti)}. Thus, bSArbi
(r0) ≤ b(r0, H)+ max{b(ri, Ti)}, where 1 ≤ i ≤

m. Combining Lemma 13(i) and Lemma 13(ii) we can write b(r0) ≥ 1
2
(b(r0, H)+

max{b(ri, Ti)}). Hence, bSArbi
(r0)

b(r0)
≤ 2 b(r0,H)+max{b(ri,Ti)}

b(r0,H)+max{b(ri,Ti)} = 2.

When originator is rn: rn is any non-root vertex in H and is at a distance d1 from

the nearest root vertex r0. Considering algorithm SArbi, all the vertices in H will be

informed by d1 + b(rn, H) time units from rn. Each root vertex ri will take b(ri, Ti)

time units to broadcast in Ti. Similarly, bSArbi
(rn) ≤ d1 + b(rn, H)+ max{b(ri, Ti)},

where 1 ≤ i ≤ m. Combining Lemma 14(i) and Lemma 14(ii) we can write b(rn) ≥
1
2
(d1 + b(rn, H)+ max{b(ri, Ti)}). Hence, bSArbi

(rn)

b(rn)
≤ 2d1+b(rn,H)+max{b(ri,Ti)}

d1+b(rn,H)+max{b(ri,Ti)} = 2.

When originator is w: w is any tree vertex in Ti and is at a distance d2 from the

nearest root vertex r0. The proof is exactly similar to the proof in Theorem 15 for

the case when originator is w. As a result, under algorithm SArbi, all the tree vertices

in G will be informed by time max{b(w, Ti) + d2, b(r0, H) + d2+max{b(rj, Tj)}}.
If b(w, Ti) + d2 ≥ b(r0, H) + d2+max{b(rj, Tj)}, then bSArbi

(w) ≤ b(w, Ti) + d2.

Combining Lemma 15(i) and Lemma 15(iii) we can write b(w) ≥ 1
2
(b(r0, H) + d2 +

b(w, Ti)). Hence,
bSArbi

(w)

b(w)
≤ 2 d2+b(w,Ti)

b(r0,H)+d2+b(w,Ti)
< 2.

If b(w, Ti) + d2 < b(r0, H) + d2+max{b(rj, Tj)}, then bSArbi
(w) ≤ b(r0, H) + d2+

max{b(rj, Tj)}. Combining Lemma 15(ii) and Lemma 15(iii) we can write b(w) ≥
1
2
(d2 + b(r0, H)+ max{b(rj, Tj)}). Hence, bSArbi

(w)

b(w)
≤ 2

d2+b(r0,H)+max{b(rj ,Tj)}
d2+b(r0,H)+max{b(rj ,Tj)}= 2.

Theorem 17. Let us assume there is a c-approximation algorithm for the broadcast

time problem in H from any originator, where c is a constant and c > 1. Then,

(i) Algorithm SArbi is a (2c− ε)-approximation for any originator in the graph G

(ii) Algorithm SArbi is a (1+c)-approximation for any originator x in the graph H

when b(x,H) ≤ max{b(ri, Ti)}, for 1 ≤ i ≤ m

Proof. I) When originator is r0 : Considering algorithm SArbi, all the vertices in H

will be informed by cb(r0, H) time units from r0, since there is a c-approximation

algorithm for the broadcast time problem in H from any originator. Similar to the
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proof of Theorem 16 for the case when originator is r0, we can write bSArbi
(r0) ≤

cb(r0, H)+ max{b(ri, Ti)}, where 1 ≤ i ≤ m. Hence,
bSArbi

(r0)

b(r0)
≤ 2 cb(r0,H)+max{b(ri,Ti)}

b(r0,H)+max{b(ri,Ti)}
= 2c− (2c−2)max{b(ri,Ti)}

b(r0,H)+max{b(ri,Ti)} < 2c for c > 1.

b(r0, H) ≤ max{b(ri, Ti)}:
bSArbi

(r0)

b(r0)
≤ 2 cb(r0,H)+max{b(ri,Ti)}

b(r0,H)+max{b(ri,Ti)} = 2+ 2(c−1)b(r0,H)
b(r0,H)+max{b(ri,Ti)} ≤ 2+ 2(c−1)b(r0,H)

2b(r0,H)
= 1+ c

since b(r0, H) ≤ max{b(ri, Ti)}.

II) When originator is rn : Similar to the proof in Theorem 16 for the case when

the originator is rn and since all the vertices in H will be informed by cb(rn, H) time

units from rn under scheme SArbi, bSArbi
(rn) ≤ d1 + cb(rn, H)+ max{b(ri, Ti)}, where

1 ≤ i ≤ m. Hence,
bSArbi

(rn)

b(rn)
≤ 2d1+cb(rn,H)+max{b(ri,Ti)}

d1+b(rn,H)+max{b(ri,Ti)} = 2c − (2c−2)(d1+max{b(ri,Ti)})
d1+b(rn,H)+max{b(ri,Ti)}

< 2c for c > 1.

b(rn, H) ≤ max{b(ri, Ti)}:
bSArbi

(rn)

b(rn)
≤ 2d1+cb(rn,H)+max{b(ri,Ti)}

d1+b(rn,H)+max{b(ri,Ti)} = 2 + 2(c−1)b(rn,H)
d1+b(rn,H)+max{b(ri,Ti)} ≤ 2 + 2(c−1)b(rn,H)

1+2b(rn,H)

since b(rn, H) ≤ max{b(ri, Ti)} and d1 ≥ 1. Thus,
bSArbi

(rn)

b(rn)
< 2+ 2(c−1)b(rn,H)

2b(rn,H)
= 1+ c.

III) When originator is w : Similar to the proof in Theorem 16 for the case when the

originator is w and since under scheme SArbi, all the vertices in H will be informed

by cb(r0, H) time units from r0, all the tree vertices in G will be informed by time

max{b(w, Ti) + d2, cb(r0, H) + d2+max{b(rj, Tj)}}.
Similarly, if b(w, Ti) + d2 ≥ cb(r0, H) + d2+max{b(rj, Tj)}, then bSArbi

(w)

b(w)
< 2.

If b(w, Ti) + d2 < cb(r0, H) + d2+max{b(rj, Tj)}, then bSArbi
(w) ≤ cb(r0, H) + d2+

max{b(rj, Tj)}. Similarly,
bSArbi

(w)

b(w)
≤ 2

d2+cb(r0,H)+max{b(rj ,Tj)}
d2+b(r0,H)+max{b(rj ,Tj)} = 2c− (2c−2)(d2+max{b(rj ,Tj)})

d2+b(r0,H)+max{b(rj ,Tj)}
< 2c for c > 1.

b(r0, H) ≤ max{b(rj, Tj)}:
Similar to the proof above for the case when the originator is rn and since d2 ≥ 1,

bSArbi
(w)

b(w)
≤ 2 + 2(c−1)b(r0,H)

d2+b(r0,H)+max{b(rj ,Tj)} < 2 + 2(c−1)b(r0,H)
2b(r0,H)

= 1 + c.
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Chapter 6

Broadcasting in Harary-like

Graphs

The topology in distributed computing plays a central role in determining the per-

formance of the system ([113], [120]). The two main constraints on designing a good

topology are cost and reliability. We try to minimize the number of edges, which re-

duces the cost of network. At the same time, the connectivity of the topology should

ensure the network is reliable. Frank Harary in [83] introduced the Harary Graph,

Hk,n which generates the minimal k-connected graph on n vertices. In this chapter

we consider broadcasting in Harary graph. We present a log k−2
2

+1-additive approx-

imation to find the broadcast time in an arbitrary Harary graph. In the next section

for even values of n, we introduce a modified-Harary graph and present a 1-additive

approximation algorithm to find the broadcast time. We show the optimality of our

algorithm for a particular subclass of modified-Harary graph. Then we also show that

modified-Harary graph is a broadcast graph when k is logarithmic of n.

6.1 Diameter of Harary Graph and Lower bound

on Broadcast Time

Frank Harary in [83] first defined the Harary graph.

Definition 1. The Harary graph Hk,n is defined as follows:

Case 1: k is even:

Let k = 2r. H2r,n is constructed as follows: Given two positive integers n and 2r
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with 2r ≤ n, begin by drawing an n-gon and label its points 0, 1, ..., n− 1. Join two

vertices i and j if and only if |i− j| ≡ m mod n, where 1 ≤ m ≤ 2r (see Figure 30).

Case 2: k is odd and n is even:

Let k = 2r + 1. H2r+1,n is constructed by first drawing H2r,n and then adding

edges by joining vertex i to vertex i+ n
2
for 0 ≤ i ≤ n

2
− 1 (see Figure 31).

Case 3: both k and n are odd:

Let k = 2r + 1. H2r+1,n is constructed by first drawing H2r,n and then adding

edges by joining vertex 0 to vertices n−1
2

and n+1
2

and vertex i to vertex i + n+1
2

for

0 < i < n−1
2

(see Figure 32). Here, only vertex 0 has degree k + 1.

In all the 3 cases, n is sufficiently larger than k.

Definition 2. The diameter of a graph G, denoted as D(G) is the greatest dis-

tance between any pair of vertices.
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Figure 30: H6,16 where k is even
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Figure 31: H7,16 where k is odd and n is
even

Properties of Harary Graph:

• When n or k is even, Hk,n is a circulant graph [161].

• It is vertex transitive except for the case when both k and n are odd.

• For every vertex i, where i = 0, ..., n−1, there are two cliques in Hk,n. The first

clique is formed with the set of vertices V1 = {i, (i+1)mod n, ..., (i+
⌊

k
2

⌋

)mod n}
and the second clique contains the set of vertices V2 = {i, (i− 1)mod n, ..., (i−
⌊

k
2

⌋

)mod n}.

• Hn−1,n is the complete graph Kn and H2,n is the cycle Cn.
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Figure 32: H7,17 where both k and n are odd

Hk,n is vertex transitive for the case when both k and n are not odd. When both k

and n are odd, choosing any edges {0, n−1
2
} or {0, n+1

2
} from vertex 0 will be the same.

In practice, Hk,n is vertex transitive for all the cases and vertex 0 is considered as the

originator. Since for every vertex i, where i = 0, ..., n − 1, there are two cliques in

Hk,n formed by the set of vertices in V1 and V2, then from i, we can directly visit any

of the vertices among {(i+1)mod n, ..., (i+
⌊

k
2

⌋

)mod n, (i−1)mod n, ..., (i−
⌊

k
2

⌋

)mod

n}. From any node i, if we visit either node (i+
⌊

k
2

⌋

)mod n or (i−
⌊

k
2

⌋

)mod n, then

it is called a city-tour; otherwise it is called a village-tour.

Lemma 16. There is always a shortest path between any pair of vertices in the Harary

graph Hk,n, if we first take the city-tours as much as possible.

Proof. Let us consider the pair of vertices to be 0 and X. Let us assume a path

Pu where we have taken the maximum possible city-tours from 0 in order to reach

vertex X. In one city-tour we can cover
⌊

k
2

⌋

vertices. Thus, we can have at most
⌊

2X
k

⌋

city-tours. From there, a maximum of one village-tour will take us to vertex X.

Hence, distPu
(0,X) =

⌈

2X
k

⌉

. It can be seen easily that in another path Pv, if we take

the village-tour in between the city-tours, then distPv
(0,X) will still be

⌈

2X
k

⌉

.

Let us consider the third possible path Pw where we consider m village-tours along

with some city-tours in order to reach vertex X, where m > 1. Let us assume that in

m such village-tours, the vertices being covered are c1, c2, ..., cm, where ci <
⌊

k
2

⌋

for

i = 1, ...,m. Let us further assume that τ=c1 + ...+ cm < m
⌊

k
2

⌋

. After m passes, the

vertices still need to be covered are X − τ . If the remaining are all city-tours, then

distPw
(0,X) = m+

⌈

X−τ
k/2

⌉

> m+

⌈

X−mb k
2c

k/2

⌉

≥
⌈

2X
k

⌉

= distPv
(0,X) as τ < m

⌊

k
2

⌋

.
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In [163], the diameter of the Harary graph has been shown.

Lemma 17. [163] Let Hk,n be a Harary graph on n vertices where the degree of each

vertex is at least k. Then,

(i) D(Hk,n) =
⌈

n−1
k

⌉

when k is even.

(ii) D(Hk,n) =
⌈

n+k−3
2(k−1)

⌉

when k is odd.

Lemma 18. Let Hk,n be a Harary graph on n vertices where the degree of each vertex

is at least k and 2n
k
= p for some positive integer p. The broadcast time of Hk,n from

any originator, denoted as b(Hk,n) is

(i) b(Hk,n) ≥
⌈

n−1
k

⌉

when k is even

(ii) b(Hk,n) ≥
⌈

n+k−3
2(k−1)

⌉

when k is odd.

Proof. Since 2n
k

= p, there is exactly one vertex in Hk,n which is at a diametral

distance from the original vertex. Thus, the proof is a direct consequence of the result

in [116], where it has been shown that b(G) ≥ D(G) for any connected graph.

Lemma 19. Let Hk,n be a Harary graph on n vertices where the degree of each vertex

is at least k and 2n
k
6= p for some positive integer p. The broadcast time of Hk,n from

any originator, denoted as b(Hk,n) is

(i) b(Hk,n) ≥
⌈

n−1
k

⌉

+ 1 when k is even

(ii) b(Hk,n) ≥
⌈

n+k−3
2(k−1)

⌉

+ 1 when k is odd.

Proof. Since 2n
k
6= p, there are at least two vertices in Hk,n which are at a diametral

distance from the original vertex. It has been shown in [70], if there exists at least

two vertices at a diametral distance D from vertex u in graph G, then b(G) ≥ D+1.

This completes the proof.

6.2 Approximation Algorithm for Broadcast time

in Harary Graph

Under scheme S, we are going to consider two cases depending on whether k is even

or odd. When k is even, the approximation algorithm S in Hk,n starts by informing

the vertices which can be reached through a city-tour from the originator 0 both in

clockwise as well as in anti-clockwise directions. Every time a vertex receives the
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message, it first informs the vertex by making a city-tour. During the next sequence

of time units, it informs the uninformed vertices in its clique.

When k is odd, the approximation algorithm S in Hk,n starts by informing the

vertex n
2
if n is even or vertex n−1

2
if n is odd at time 1. Similarly, the informed vertex

first sends the message to the vertex along the city-tour. During the next sequence

of time units, it informs the uninformed vertices in its clique.

Broadcast Algorithm S:

INPUT: A Harary Graph Hk,n and originator vertex 0.

OUTPUT: Broadcast time bS(Hk,n) and scheme of Hk,n.

BROADCAST-SCHEME-S(Hk,n, 0)

0. vertex 0 is the originator

1. When k is even:

1.1. For i = 1, ...,
⌈

n
k

⌉

do in clockwise direction

1.1.1. vertex (i− 1)k
2
informs vertex ik

2
at time i.

1.2. For j = 2, ...,
⌈

n
k

⌉

1.2.1. vertex (j − 1)k
2
informs the uninformed vertices in the clique formed

by vertices {(j − 1)k
2
, (j − 1)k

2
+ 1, ..., j k

2
− 1} starting at time j + 1.

1.2.2. Starting at time
⌈

n
k

⌉

+ 1, vertex
⌈

n
k

⌉

k
2
informs the uninformed

vertices in the clique {
⌈

n
k

⌉

k
2
,
⌈

n
k

⌉

k
2
+ 1, ..., (

⌈

n
k

⌉

+ 1)k
2
− 1}.

1.3. For i = 2, ...,
⌈

n
k

⌉

do in anti-clockwise direction

1.3.1. vertex (n− (i− 2)k
2
)mod n informs vertex (n− (i− 1)k

2
)mod n at time i.

1.4. For j = 2, ...,
⌈

n
k

⌉

1.4.1. vertex (n− (j − 2)k
2
)mod n informs the uninformed vertices in the clique

formed by vertices {(n− (j − 2)k
2
)mod n, (n− (j − 2)k

2
)mod n+ 1,...,

(n− (j − 2)k
2
)mod n+ k

2
− 1} starting at time j + 1.

1.4.2. Starting at time
⌈

n
k

⌉

+ 1, (n− (
⌈

n
k

⌉

− 1)k
2
)mod n informs the

uninformed vertices in the clique {(n− (
⌈

n
k

⌉

− 1)k
2
)mod n, (n− (

⌈

n
k

⌉

− 1)k
2
)

mod n+ 1,..., (n− (
⌈

n
k

⌉

− 1)k
2
)mod n+ k

2
− 1}.

2. When k is odd:

2.1. vertex 0 informs vertex n
2
when n is even or vertex n−1

2
when n is odd at

time 1. Let v ∈ {n
2
, n−1

2
}.
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2.2. For i = 2, ...,
⌈

n
2k

⌉

+ 1 do in clockwise direction

2.2.1. vertex (i− 2)k−1
2

informs vertex (i− 1)k−1
2

at time i.

2.2.2. vertex v + (i− 2)k−1
2

informs vertex v + (i− 1)k−1
2

at time i.

2.3. For j = 3, ...,
⌈

n
2k

⌉

+ 1

2.3.1. vertex (j − 2)k−1
2

informs the uninformed vertices in the clique formed

by vertices {(j − 2)k−1
2
, (j − 2)k−1

2
+ 1,..., (j − 1)k−1

2
− 1} starting at time

j + 1.

2.3.2. vertex v + (i− 2)k−1
2

informs the uninformed vertices in the clique

formed by vertices {v + (i− 2)k−1
2
, v + (i− 2)k−1

2
+ 1,..., v + (i− 1)k−1

2
−

1} starting at time j + 1.

2.3.3. Starting at time
⌈

n
2k

⌉

+ 2 onwards:

(i)vertex
⌈

n
2k

⌉

k−1
2

informs the uninformed vertices in the clique {
⌈

n
2k

⌉

k−1
2
,

⌈

n
2k

⌉

k−1
2

+ 1,...,(
⌈

n
2k

⌉

+ 1)k−1
2

− 1}.
(ii)vertex v +

⌈

n
2k

⌉

k−1
2

informs the uninformed vertices in the clique {v+
⌈

n
2k

⌉

k−1
2
, v +

⌈

n
2k

⌉

k−1
2

+ 1,...,v + (
⌈

n
2k

⌉

+ 1)k−1
2

− 1}.
2.4. For i = 3, ...,

⌈

n
2k

⌉

+ 1 do in anti-clockwise direction

2.4.1. vertex (n− (i− 3)k−1
2
)mod n informs vertex (n− (i− 2)k−1

2
)mod n at

time i.

2.4.2. vertex v − (i− 3)k−1
2

informs vertex v − (i− 2)k−1
2

at time i.

2.5. For j = 3, ...,
⌈

n
2k

⌉

+ 1

2.5.1. vertex (n− (j − 3)k−1
2
)mod n informs the uninformed vertices in the

clique formed by vertices {(n− (j − 3)k−1
2
)mod n, (n− (j − 3)k−1

2
)mod n

+1,..., (n− (j − 3)k−1
2
)mod n+ k−1

2
− 1} starting at time j + 1.

2.5.2. vertex v − (i− 3)k−1
2

informs the uninformed vertices in the clique

formed by vertices {v − (i− 3)k−1
2
, v − (i− 3)k−1

2
+ 1,...,v − (i− 3)k−1

2

+k−1
2

− 1} starting at time j + 1.

2.5.3. Starting at time
⌈

n
2k

⌉

+ 2 onwards:

(i)vertex v − (
⌈

n
2k

⌉

− 1)k−1
2

informs the uninformed vertices in the clique

{v − (
⌈

n
2k

⌉

− 1)k−1
2
, v − (

⌈

n
2k

⌉

− 1)k−1
2

+ 1,..., v − (
⌈

n
2k

⌉

− 1)k−1
2

+ k−1
2

− 1}.
(ii)vertex (n− (

⌈

n
2k

⌉

− 1)k−1
2
)mod n informs the uninformed vertices in the

clique {(n− (
⌈

n
2k

⌉

− 1)k−1
2
)mod n, (n− (

⌈

n
2k

⌉

− 1)k−1
2
)mod n+ 1,...,

(n− (
⌈

n
2k

⌉

− 1)k−1
2
)mod n+ k−1

2
− 1}.

Complexity: In every step of the algorithm, a set of informed vertices is informing
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another set of uninformed vertices and will be part of informed vertices in the next

round. Thus the complexity of the algorithm S is O(|V |).

Theorem 18. Algorithm S gives (log k−2
2

+ 1)-additive approximation when 2n
k

= p

for some positive integer p.

Proof. 1. When k is even

SubCase 1.1: when 2n
k
= 2q, for some positive integer q.

In other words in either direction, starting from vertex 0, we can make q city-tours.

Let us label the city-tours as 1, 2, ..., 2q from vertex 0 in the clockwise direction.

Under algorithm S, starting at time 1 in a clockwise direction, vertex 0 makes n
k
= q

city-tours to inform vertex n
k
k
2
= n

2
at time n

k
. Similarly, starting at time 2 in an anti-

clockwise direction, vertex 0 makes q−1 city-tours to inform vertex (n−(n
k
−1)k

2
)modn

= n
2
+ k

2
at time n

k
. All the informed vertices will start informing the uninformed

vertices in their respective cliques no later than n
k
+ 1 time units. Similarly, vertex n

2

will inform the vertices covered by the (q+1)th city-tour starting at time n
k
+1. Since

there are k
2
− 1 uniformed vertices in the clique covered by the (q + 1)th city-tour, it

will take another log(k−2
2
) time units to complete broadcasting in the graph. Thus,

bS(Hk,n) = n
k
+ log(k−2

2
) ≤ b(Hk,n) + 1 + log(k−2

2
) using Lemma 18(i) (since n

k
≤

⌈

n
k

⌉

≤
⌈

n−1
k

⌉

+ 1 ≤ bS(Hk,n) + 1).

SubCase 1.2: when 2n
k
= 2q − 1.

Let us label the city-tours as 1, 2, ..., 2q − 1 from vertex 0 in the clockwise direc-

tion. Under algorithm S, starting at time 1 in a clockwise direction, vertex 0 makes
⌈

n
k

⌉

= q city-tours to inform vertex
⌈

n
k

⌉

k
2
at time n

k
. Similarly, starting at time

2 in an anti-clockwise direction, vertex 0 makes q − 1 city-tours to inform vertex

(n− (
⌈

n
k

⌉

− 1)k
2
)modn = n−

⌈

n
k

⌉

k
2
+ k

2
at time n

k
. All the informed vertices will start

informing the uninformed vertices in their respective cliques no later than n
k
+1 time

units. Similarly, vertex
⌈

n
k

⌉

k
2
will inform the vertices covered by the qth city-tour

starting at time
⌈

n
k

⌉

+1. Since there are k
2
−1 uniformed vertices in the clique covered

by the qth city-tour, it will take another log(k−2
2
) time units to complete broadcast-

ing in the graph. Thus, bS(Hk,n) =
⌈

n
k

⌉

+ log(k−2
2
) ≤ b(Hk,n) + 1 + log(k−2

2
) using

Lemma 18(i).

2. When k is odd
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Under algorithm S, at time unit one, vertex 0 sends a message to vertex n
2
if n is

even, otherwise the message is sent to vertex n−1
2
. Let us assume v ∈ {n

2
, n−1

2
}.

SubCase 2.1. when 2n
k−1

= 2q

In scheme S, starting at time 2 in a clockwise direction, vertices 0 and v each makes
⌈

n
2k

⌉

city-tours to inform vertices
⌈

n
2k

⌉

k−1
2

and v +
⌈

n
2k

⌉

k−1
2

respectively at time
⌈

n
2k

⌉

+1. Similarly, starting at time 3 in an anti-clockwise direction, vertices 0 and v

each makes
⌈

n
2k

⌉

−1 city-tours to inform vertices n−(
⌈

n
2k

⌉

−1)k−1
2

and v−(
⌈

n
2k

⌉

−1)k−1
2

respectively at time
⌈

n
2k

⌉

+1. Thus, in scheme S, there are in total 2
⌈

n
2k

⌉

−1 city-tours

on either side of vertex 0. In general, one can make at most
⌈

n
k−1

⌉

city-tours on either

side of vertex 0. For the sake of clarity, if in a clique, there is an informed vertex u,

we will term it as a clique of u.

Let
⌈

n
k−1

⌉

= p, p is any positive integer ⇒ n
k−1

= p − 1 (taking only the integer

value). Now, n
2k

≤ n
2(k−1)

= p−1
2

⇒
⌈

n
2k

⌉

≤ p+1
2

⇒ 2
⌈

n
2k

⌉

−1 ≤ p =
⌈

n
k−1

⌉

and 2
⌈

n
2k

⌉

−1

is an odd integer.

If
⌈

n
k−1

⌉

is odd, in scheme S the uninformed vertices in the cliques of
⌈

n
2k

⌉

k−1
2

and v − (
⌈

n
2k

⌉

− 1)k−1
2

share a common vertex as 2
⌈

n
2k

⌉

− 1 ≤
⌈

n
k−1

⌉

and 2n
k−1

= 2q.

Similarly, the cliques of v +
⌈

n
2k

⌉

k−1
2

and n − (
⌈

n
2k

⌉

− 1)k−1
2

also share a common

vertex. If
⌈

n
k−1

⌉

is even, cliques of
⌈

n
2k

⌉

k−1
2

and v − (
⌈

n
2k

⌉

− 1)k−1
2

do not share any

common vertex and there are exactly k−1
2

vertices between the cliques. This is also

true for the cliques of v+
⌈

n
2k

⌉

k−1
2

and n− (
⌈

n
2k

⌉

−1)k−1
2

when
⌈

n
k−1

⌉

is even. In both

cases, vertex
⌈

n
2k

⌉

k−1
2

takes exactly another log k−2
2

time units to inform the vertices

in its clique. Thus, bS(Hk,n) =
⌈

n
2k

⌉

+ 1 + log(k−2
2
).

Using Lemma 18(ii), b(Hk,n) ≥
⌈

n+k−3
2(k−1)

⌉

≥
⌈

n+k−3
2k

⌉

≥
⌈

n
2k

⌉

for k ≥ 3.

Hence, bS(Hk,n) ≤
⌈

n+k−3
2(k−1)

⌉

+ 1 + log(k−2
2
) ≤ b(Hk,n) + 1 + log(k−2

2
).

SubCase 2.2. when 2n
k−1

= 2q + 1

Similar to subcase 2.1., under scheme S, at time
⌈

n
2k

⌉

+ 1, vertices
⌈

n
2k

⌉

k−1
2
, v +

⌈

n
2k

⌉

k−1
2
, n− (

⌈

n
2k

⌉

− 1)k−1
2

and v− (
⌈

n
2k

⌉

− 1)k−1
2

receive the message from vertex 0.

Similarly, The number of city-tours can be at most
⌈

n
k−1

⌉

= q + 1 on either side of

vertex 0. There are in total 2
⌈

n
2k

⌉

− 1 city-tours on either side of vertex 0 in S and

2
⌈

n
2k

⌉

− 1 ≤
⌈

n
k−1

⌉

= q + 1.

If q is even, then
⌈

n
k−1

⌉

is odd. Thus, in scheme S the uninformed vertices in the

cliques of
⌈

n
2k

⌉

k−1
2

and v− (
⌈

n
2k

⌉

− 1)k−1
2

share k−1
4

common vertices (as 2n
k−1

= 2q+1

⇒ n
2
= q k−1

2
+ k−1

4
). Similarly, the cliques of v +

⌈

n
2k

⌉

k−1
2

and n− (
⌈

n
2k

⌉

− 1)k−1
2

also
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share k−1
4

common vertices. If q is odd, then
⌈

n
k−1

⌉

is even. As a result, cliques of
⌈

n
2k

⌉

k−1
2

and v− (
⌈

n
2k

⌉

−1)k−1
2

do not share any common vertex and there are exactly
k−1
4

vertices between the cliques. This is also true for the cliques of v +
⌈

n
2k

⌉

k−1
2

and

n− (
⌈

n
2k

⌉

−1)k−1
2
. Thus, either of vertices

⌈

n
2k

⌉

k−1
2
, v+

⌈

n
2k

⌉

k−1
2
, n− (

⌈

n
2k

⌉

−1)k−1
2

or

v−(
⌈

n
2k

⌉

−1)k−1
2

take less than log k−2
2

time units to inform the uninformed vertices in

their respective cliques. However, starting at time
⌈

n
2k

⌉

+2, vertex (n−(
⌈

n
2k

⌉

−2)k−1
2
)

takes exactly log k−2
2

time units to inform the vertices in its clique. Similarly, bS(Hk,n)

≤ b(Hk,n) + 1 + log(k−2
2
) using Lemma 18(ii) for k ≥ 3.

Theorem 19. Algorithm S gives (log k−2
2
)-additive approximation when 2n

k
6= p for

some positive integer p.

Proof. 1. When k is even

Under algorithm S, similar to subcase 1.2 of Theorem 18, at time
⌈

n
k

⌉

, vertices
⌈

n
k

⌉

k
2
and n−

⌈

n
k

⌉

k
2
+ k

2
receive the message from vertex 0 in either direction. Since,

2n
k

6= r, let us assume
⌈

n
k

⌉

= q ⇒ n+c
k

= q for some 1 ≤ c < k. When k
2
≤ c < k

⇒ k
2
≤ kq−n < k ⇒ −k

2
≥ n−kq > −k we get, n−

⌈

n
k

⌉

k
2
+ k

2
= n− q k

2
+ k

2
≤ q k

2
(as

−k
2
≥ n− kq) =

⌈

n
k

⌉

k
2
. So, in scheme S, the uninformed vertices in their respective

cliques overlap each other. Similarly, when 1 ≤ c < k
2
we get,

⌈

n
k

⌉

k
2
< n−

⌈

n
k

⌉

k
2
+ k

2
.

As a result, there are at least c < k
2
vertices that do not overlap. Thus, either

⌈

n
k

⌉

k
2

or n−
⌈

n
k

⌉

k
2
+ k

2
take less than log k−2

2
time units to inform the uninformed vertices

in their respective cliques. However starting at time
⌈

n
k

⌉

+1, vertex (n− (
⌈

n
k

⌉

− 2)k
2
)

takes exactly log k−2
2

time units to inform the vertices in its clique. Similarly, bS(Hk,n)

≤ b(Hk,n) + log(k−2
2
) using Lemma 19(i).

2. When k is odd

This is exactly similar to the subcase 2.2 of Theorem 18. Depending on whether
⌈

n
k−1

⌉

is odd or even, in scheme S the uninformed vertices in the cliques of
⌈

n
2k

⌉

k−1
2

and v − (
⌈

n
2k

⌉

− 1)k−1
2

either share c1 common vertices or do not share any common

vertex. Instead there are exactly c2 vertices between the cliques, where 1 ≤ c1, c2 <
k−1
2
. This is also true for the cliques of v+

⌈

n
2k

⌉

k−1
2

and n− (
⌈

n
2k

⌉

− 1)k−1
2
. Similarly,

starting at time
⌈

n
2k

⌉

+ 2, vertex (n − (
⌈

n
2k

⌉

− 2)k−1
2
) takes exactly log k−2

2
time

units to inform the vertices in its clique. Thus, bS(Hk,n) ≤ b(Hk,n) + log(k−2
2
) using

Lemma 19(ii) for k ≥ 3.

Observations: bS(Hk,n) ≤ b(Hk,n) + log(k−2
2
).
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• Each vertex is connected to k
2
vertices in the clockwise direction and another k

2

vertices in the anti-clockwise direction.

• Every vertex has degree k.

The motivation behind introducing the modified Harary graph MHk,n is that in

MHk,n, a vertex which is at a farther distance from a particular vertex as compared

to Harary graph, can be reached in one time unit. As a result the broadcasting in

MHk,n on the same number of vertices and the same degree can be done in a more

efficient manner as compared to Hk,n, where both k and n are even. In figures 30

and 33, it has been shown that in MH6,16, the farthest vertices that can be reached

directly from vertex 0 are vertices 7 and 9. However in H6,16, vertices 3 and 13 are

the farthest vertices that are connected with vertex 0. As a result broadcasting in

MH6,16 is faster than broadcasting in H6,16.

6.3.1 Diameter of Modified Harary Graph and Lower bound

on Broadcast Time

As the graph is vertex transitive, we will consider vertex 0 as the originator in MHk,n.

We will modify the definitions of city-tours and village-tours for MHk,n. From any

node i in MHk,n, if we visit either node (i + 2
k
2 − 1)mod n or (i − 2

k
2 + 1)mod n,

then it is called a city-tour; otherwise it is termed as village-tour. For any vertex i,

we will denote the set of vertices {i, i+ 1, ..., i+ 2
k
2 − 2} as the region of i.

Lemma 20. Let MHk,n be a modified Harary graph on n vertices where the degree

of each vertex is k. Then D(MHk,n) is
⌈

n
2(2r−1)

⌉

+ r − 1, where r = k
2
.

Proof. The result in Lemma 16 is also applicable in the modified Harary graphMHk,n.

This is attributed to two reasons. Firstly, MHk,n is also a minimal k-connected graph

on n vertices. Secondly, each vertex is connected to k
2
vertices in both clockwise and

anti-clockwise directions. From vertex 0, at most n
2
vertices can be covered from either

clockwise or anti-clockwise direction. To start, we will take the maximum possible

city-tours from vertex 0. In one city-tour we can cover 2r − 1 vertices. Thus, initially

we will traverse through
⌈

n
2(2r−1)

⌉

city-tours. There are 2r − 1 vertices in between

nodes
⌈

n
2(2r−1)

⌉

(2r − 1) and (
⌈

n
2(2r−1)

⌉

− 1)(2r − 1). From either of these 2 nodes, we

can make village-tours which will cover the 2r−1 vertices from either node. So in a
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recursive way, with each village-tour, the number of vertices to be covered reduces to

half. Thus, at most we need r − 1 village-tours in order to cover 2r−1 vertices. This

makes the diameter of the graph to be
⌈

n
2(2r−1)

⌉

+ r − 1.

Lemma 21. Let MHk,n be a modified Harary graph on n vertices where the degree

of each vertex is k. The broadcast time of MHk,n from any originator,

(i) b(MHk,n) ≥
⌈

n
2(2r−1)

⌉

+ r − 1, if n
(2r−1)

= p

(ii) b(MHk,n) ≥
⌈

n
2(2r−1)

⌉

+ r, if n
(2r−1)

6= p

where r = k
2
and p is any positive integer.

Proof. (i) Since n
(2r−1)

= p, there is exactly one vertex inMHk,n which is at a diametral

distance from the original vertex. Thus, the proof is a direct consequence of the result

in [116], where it has been shown that b(G) ≥ D(G) for any connected graph.

(ii) Since n
(2r−1)

6= p, there are at least two vertices in MHk,n which are at a diametral

distance from the original vertex. It has been shown in [70], if there exists at least

two vertices at a diametral distance D from vertex u in graph G, then b(G) ≥ D+1.

Hence, b(MHk,n) ≥
⌈

n
2(2r−1)

⌉

+ r.

6.3.2 Approximation Algorithm for Broadcast time in the

Modified Harary Graph

The approximation algorithm Sm in MHk,n starts by informing the vertices that can

be reached through a city-tour from the originator 0 both in clockwise and in anti-

clockwise directions. Every time an informed vertex first sends the message to an

uninformed vertex along the city-tour. During the next sequence of time units it

informs the uninformed vertices in its region following the REGION-BROADCAST

scheme.

Broadcast Algorithm Sm:

INPUT: A Modified Harary Graph MHk,n and originator vertex 0.

OUTPUT: Broadcast time bSm
(MHk,n) and scheme of MHk,n.

BROADCAST-SCHEME-Sm(MHk,n, 0)

0. vertex 0 is the originator and let r = k
2
.

1. For i = 1, ...,
⌈

n
2(2r−1)

⌉

do in clockwise direction
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1.1. vertex (i− 1)(2r − 1) informs vertex i(2r − 1) at time i.

2. For j = 2, ...,
⌈

n
2(2r−1)

⌉

2.1. vertex (j − 1)(2r − 1) informs the uninformed vertices in its region

starting at time j + 1.

REGION-BROADCAST-RB((j − 1)(2r − 1), r, j).

2.2. Starting at time
⌈

n
2(2r−1)

⌉

+ 1, vertex
⌈

n
2(2r−1)

⌉

(2r − 1) informs its

region. REGION-BROADCAST-RB(
⌈

n
2(2r−1)

⌉

(2r − 1), r,
⌈

n
2(2r−1)

⌉

).

3. For i = 2, ...,
⌈

n
2(2r−1)

⌉

do in anti-clockwise direction

3.1. vertex (n− (i− 2)(2r − 1))mod n informs vertex (n− (i− 1)(2r − 1))

mod n at time i.

4. For j = 2, ...,
⌈

n
2(2r−1)

⌉

4.1. vertex (n− (j − 2)(2r − 1))mod n informs the uninformed vertices in

its region starting at time j + 1.

REGION-BROADCAST-RB((j − 1)(2r − 1), r, j).

4.2. Starting at time
⌈

n
2(2r−1)

⌉

+ 1, vertex (n− (
⌈

n
2(2r−1)

⌉

− 1)(2r − 1))mod

n informs its region.

REGION-BROADCAST-RB((n− (
⌈

n
2(2r−1)

⌉

− 1)(2r − 1))mod n, r,
⌈

n
2(2r−1)

⌉

).

REGION-BROADCAST-RB(u, r, τ)

1. If r = 1, then MHk,n is a cycle and there will be no uninformed vetex in the

region of u.

2. If r = 2, u
τ+1→ (u+ 22 − 1) and u

τ+2→ (u+ 21 − 1), (u+ 22 − 1)
τ+2→ (u+ 22 − 2).

3. If r ≥ 3

3.1. Let c = 1

3.2. While r ≥ 4 do

3.2.1. vertex u informs vertex u+ 2r−1 − 1 at time unit τ + c

3.2.2. SUB-REGION-BROADCAST-SRB(u+ 2r−1 − 1, τ + c)

3.2.3. r = r − 1 and c = c+ 1

3.3. If r = 3

3.3.1. The set of uninformed vertices within the region {u, ..., u+ 23 − 1}
are u+ 1, ..., u+ 6.

3.3.2. u
τ+c+1→ (u+ 3)
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u
τ+c+2→ (u+ 1) (u+ 3)

τ+c+2→ (u+ 6)

(u+ 3)
τ+c+3→ (u+ 4) (u+ 1)

τ+c+3→ (u+ 2) (u+ 6)
τ+c+3→ (u+ 5)

SUB-REGION-BROADCAST-SRB(u+ 2r−1 − 1, τ + c)

0. We will consider the vertices within the region R={u+ 2r−1 − 1,...,u+

2(2r−1 − 1) =u+ 2r − 2}. Let the set of informed vertices in R be I. Initially

I = {u+ 2r−1 − 1} and R is the region for u+ 2r−1 − 1

1. For every vertex, v1 ∈ I do

1.1. v1 informs the farthest uninformed vertex v2 within its own region.

1.2. The set of vertices within {v1, ..., v2} becomes the region for both v1 and

v2.

1.3. Update I = I + v2

0
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Figure 34: REGION-BROADCAST scheme for the region containing vertices {0, 1, ..., 25−
1} except when r = 3

The REGION-BROADCAST scheme for the region containing vertices {0, 1, ..., 25−1}
except when r = 3 has been illustrated in Figure 34. The figures in black are the

labels of the vertices and the figures in red show the broadcast times. We assume

in the figure that vertex 0 informs vertex 31 at time 0. The broadcast times for the

regions {15, ..., 30} and {7, ..., 14} are based on the SUB-REGION-BROADCAST

scheme. Initially I = {15} for the region containing the vertices {15, ..., 30} and

region for vertex 15 is {15, ..., 30}. 15 informs the farthest uninformed vertex within
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its own region (in this case 30) at time 2. The region for vertex 30 is {15, ..., 30} and

I = {15, 30}. In the next time unit, both 15 and 30 respectively inform the farthest

uninformed vertices in their regions. Thus, 15 informs vertex 22 and 30 informs

vertex 23. The region for both vertices 15 and 22 now becomes {15, ..., 22} and that

for vertices 30 and 23 is {23, ..., 30} and I = {15, 30, 22, 23}. Similarly in the next

time unit, all the vertices in set I inform the farthest uninformed vertex in their own

regions.

Under the Sub-Region-Broadcast scheme, when node, u+2r−1−1 sends a message

to its farthest uninformed vertex u+2r−2, it divides the region with u+2r−2− (u+

2r−1−1)+1 = 2r−1 vertices. In the next time unit when both vertices u+2r−1−1 and

u+2r−2 inform their respective farthest uninformed vertices within their region, the

new regions formed will each have 2r−2 vertices. Thus, every time we send a message

to the farthest uninformed vertex, we divide the region into two new regions with

same number of vertices.

Complexity: In all the broadcast schemes Sm, Region-Broadcast and Sub-Region-

Broadcast, at a given time, a set of informed vertices are informing another set of

uninformed vertices and will be part of informed vertices in the next round. This

makes the total complexity of the algorithms to be O(|V |).

Lemma 22. Let MHk,n be a modified Harary graph on n vertices where the degree of

each vertex is k and let r = k
2
. The Sub-Region-Broadcast scheme takes r time units

to broadcast in a region of MHk,n with 2r vertices.

Proof. We will prove the result by method of induction.

Base Case: When r = 1: The region has 2 vertices, 0 and 1. Vertex 0 sends the

message to vertex 1 at time unit one. So base case is true.

Inductive hypothesis: Assume that when r = m, broadcasting can be done by m time

units.

Induction step: Assume r = m + 1. Vertex 0 sends message to vertex 2m+1 − 1.

According to the Sub-Region-Broadcast scheme, in the next time unit both vertices

0 and 2m+1 − 1 will simultaneously inform the vertices in the regions each having 2m

vertices. We know from the inductive hypothesis that it will take m time units to

inform in a region with 2m vertices. However, 0 informs 2m+1 − 1 at time one. Thus,

it will take m+ 1 time units to broadcast in a region with 2m+1 vertices.
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Lemma 23. Let MHk,n be a modified Harary graph on n vertices where the degree

of each vertex is k and let r = k
2
. The Region-Broadcast scheme takes r time units to

broadcast in a region of MHk,n with 2r vertices.

Proof. When r = 2, it is clear from step 2 of Region-Broadcast that it will take 2

time units to complete broadcasting. When r = 3, step 3.3 shows 3 time units are

enough to broadcast. When r ≥ 4, in step 3.2.1, u informs vertices u + 2r−1 − 1,

u + 2r−2 − 1,...,u + 2r−i − 1 at times 1, 2, ..., i respectively (we assume τ = 0 here).

In other words, after time i, we have a region containing 2r−i vertices which will be

operated upon by the Sub-Region-Broadcast scheme. From Lemma 22, we know the

Sub-Region-Broadcast takes r − i time units to finish broadcasting in this region. In

total, i+ r − i = r time units are necessary.

Theorem 20. Algorithm Sm gives 1-additive approximation when n
(2r−1)

= p for some

positive integer p.

Proof. We assume k
2
= r.

Case 1: when n
2r−1

= 2q:

In other words in either direction, starting from vertex 0, we can make q city-tours.

Let us label the city-tours as 1, 2, ..., 2q from vertex 0 in a clockwise direction. Under

algorithm Sm, starting at time 1 in a clockwise direction, vertex 0 makes n
2(2r−1)

= q

city-tours to inform vertex n
2(2r−1)

(2r − 1) = n
2
at time n

2(2r−1)
. Similarly, starting

at time 2 in an anti-clockwise direction, vertex 0 makes q − 1 city-tours to inform

vertex (n− ( n
2(2r−1)

− 1)(2r − 1))modn=n
2
+ 2r − 1 at time n

2(2r−1)
. All the informed

vertices will start informing the uninformed vertices in their respective regions no

later than n
2(2r−1)

+ 1 time units. Similarly, vertex n
2
will inform the vertices covered

by the (q + 1)th city-tour. Since there are 2r vertices in that region, we know from

Lemma 23 that Region-Broadcast scheme will take r time units to finish broadcasting.

Thus, bSm(MHk,n) ≤ n
2(2r−1)

+ r ≤ b(MHk,n) + 1 from Lemma 21(i).

Case 2: n
2r−1

= 2q − 1 is not possible.

Let us assume by contradiction that n
2r−1

= 2q− 1 is possible. Since 2r − 1 is odd,

then n is also odd. This contradicts as in MHk,n, n is even.

Theorem 21. Algorithm Sm is optimal when n
(2r−1)

6= p for some positive integer p.

Proof. We assume k
2
= r.
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This is similar to the result we proved in Case 2 of Theorem 19. Similarly, depend-

ing on whether
⌈

n
2r−1

⌉

is odd or even in scheme Sm, the uninformed vertices in the

regions of n
2(2r−1)

(2r−1) and (n−( n
2(2r−1)

−1)(2r−1)) either share c1 common vertices

or do not share any common vertex. Instead, there are exactly c2 vertices between the

regions, where 1 ≤ c1, c2 < 2r. Thus, these vertices will take less than r time units to

inform the uninformed vertices in their regions using the Region-Broadcast scheme.

However starting at time
⌈

n
2(2r−1)

⌉

+ 1, vertex (n − ( n
2(2r−1)

− 2)(2r − 1)) takes ex-

actly r time units to inform the 2r uninformed vertices using Region-Broadcast (from

Lemma 23). Thus, bSm(MHk,n) ≤
⌈

n
2(2r−1)

⌉

+ r ≤ b(MHk,n) from Lemma 21(ii).

Theorem 22. MH2dlogne−2,n is a broadcast graph.

Proof. From Lemma 21(i), we know that b(MHk,n) ≥
⌈

n

2
k
2
+1−2

⌉

+ k
2
− 1.

When k = 2 dlog ne − 2, 2
k
2
+1 = 2dlogne = n+ c for some positive integer c.

Thus, b(MH2dlogne−2,n) ≥
⌈

n
n−2

⌉

+ log n − 1 − 1 = 2 + log n - 2 = log n. Hence,

MH2dlogne−2,n is a broadcast graph.
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Chapter 7

Diameter Broadcast Problem

In [101] a lower bound on the broadcast time of a general graph G = (V,E) has

been given where G has at least d + 2 vertices that are all at a distance d from a

certain vertex v0. The broadcast time of such a graph cannot be less than d + 2. In

this section we have generalized the above result and obtained a lower bound on the

broadcast time of G which has at least
(

d+k−1
d

)

+ 1 vertices that are all at distance

exactly d from v0, where k ≥ 1. First we consider the simple cases when k = 2, 3.

Lemma 24. If a graph G = (V,E) has more than d + 1 vertices at a distance d

from another vertex v0, then the broadcast time of G satisfies the following inequality:

b(G) ≥ d+ 2.

Proof. We start the proof by noting that at time d there can be only one informed

vertex, vd, at a distance d from the originator, call it v0. Let P = {v0, v1, ..., vd} be

the path from v0 to vd. At time i, vertex vi receives the message and informs vertex

vi+1 at time i+1, where 1 ≤ i ≤ d−1. At time d+1, vd−1 informs a new vertex which

is also at a distance d from v0. Similarly, if all the vertices vi along the path P except

for vd inform a new vertex at time i+ 2 which through a chain of calls can inform a

vertex at distance d from v0 at time d + 1. Since there are d vertices on the path P

(except vd), at most d vertices can be informed at time d + 1. Finally including vd,

there can be at most d+ 1 vertices at a distance d from v0 that are informed at time

d+ 1.

Lemma 25. If a graph G = (V,E) has more than (d+1)d+2
2

vertices at a distance d

from another vertex v0, then the broadcast time of G satisfies the following inequality:

b(G) ≥ d+ 3.
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Proof. Similar to the proof in Lemma 24, at time d there can be only one informed

vertex, vd, at a distance d from the originator, v0 in the path P = {v0, v1, ..., vd}. At
time i, vertex vi receives the message and informs vertex vi+1 at time i + 1, where

1 ≤ i ≤ d − 1. Starting at time d + 1 onwards, vd−1 can inform 2 new vertices at a

distance d from v0 by time d+2. Similarly, vd−2 informs a new vertex at time d which

in turn informs 2 uninformed vertices at a distance d from v0 by time d+2. Through

another branch starting at time d+ 1, vd−2 sends the message to a new vertex which

is also at a distance d from the originator by making a chain of 2 calls. In total, 3

new vertices can be informed through vd−2 by time d+2. Similarly there are exactly

4 new vertices which are at a distance d from v0 that receive the message through

vd−3 by time d + 2. In general, d + 2 − (i + 1) new vertices at a distance d from v0

can be informed through vi by time d+2, where 0 ≤ i ≤ d− 1 (see Figure 35). Thus,

maximum number of vertices at a distance d from v0 that can be informed at time

d+ 2 = 1(vd) +
d−1
∑

i=0

d+ 2− (i+ 1) = 1 + 2 + 3 + ...+ (d+ 1) = (d+ 1)d+2
2
.

Figure 35: Maximum number of vertices that can be at distance d from the originator if
the broadcast time is equal to d+ 2
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Before we prove the general case, we define what is called a binomial tree and look

at some of its properties.

Binomial Tree: A binomial tree is defined recursively. The binomial tree of order 0,

denoted B0 is a single vertex. A binomial tree of order k, denoted Bk is constructed

from two copies of Bk−1 by connecting their roots by an edge. Actually, Bk will have

a root node whose children are roots of binomial trees of orders k− 1, k− 2, ..., 2, 1, 0

(in this order). See Figure 36.

Properties: (i) Bk has 2k vertices.

(ii) Bk has
(

k
d

)

vertices at depth d.

Order     0          1                    2                                            3

Figure 36: Binomial trees of order 0 to 3

The maximum number of vertices that can be informed in a k-broadcast graph

(recall from Chapter 2, k-broadcasting is a variant of broadcasting in which an in-

formed vertex can call up to k of its neighbors in each time unit) by time t ≥ 0 along

paths of length at most d has been shown in Lemma 2 of [94]. We use this result to

generate our case when k = 1.

Lemma 26. In any graph G, the maximum number of vertices which can be informed

in a classical broadcast model by time t ≥ 0 along paths of length at most d is at most
d
∑

i=0

(

t
i

)

.

Proof. Following is a proof by induction.

Base case: When t = 1, there are only two vertices v0 and v1. v0 sends the message
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to v1 at time 1. In this case d is also 1. So base case is true.

Inductive hypothesis: Assume it is true when t = k − 1.

Induction step: Assume t = k. From the inductive hypothesis, the maximum number

of vertices that can be informed by time k− 1 along paths of length l is
(

k−1
l

)

, where

1 ≤ l ≤ d. At time k, at most all the informed vertices which are at a distance l − 1

from the originator will each inform a new uninformed vertex. Thus at time k, the

maximum number of informed vertices which are at a distance l from the originator

will be
(

k−1
l

)

+
(

k−1
l−1

)

=
(

k
l

)

, for 1 ≤ l ≤ d.

Theorem 23. If a graph G = (V,E) has more than
(

d+k−1
d

)

vertices at a distance

d from another vertex v0, where k ≥ 1, then the broadcast time of G satisfies the

following inequality: b(G) ≥ d+ k.

Proof. We will prove the theorem by contradiction. Let the graph G has at least
(

d+k−1
d

)

+ 1 vertices at a distance d from originator vertex v0, where k ≥ 1. Let us

assume that b(G) ≤ d+ k − 1.

In the graph G, during each time unit the number of informed vertices can at

most double when none of the informed vertices remain idle. From Lemma 26, the

maximum number of vertices that can be informed by time d+ k − 1 at a distance d

from v0 is at most
d
∑

i=0

(

d+k−1
i

)

. Thus the broadcast tree ofG is a subtree of the binomial

tree Bd+k−1. Now, Bd+k−1 has
(

d+k−1
d

)

vertices at depth d. Thus the broadcast tree

of G can have at most
(

d+k−1
d

)

vertices at a distance d from v0. This contradicts the

fact that G has
(

d+k−1
d

)

+ 1 vertices at a distance d from v0.
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Chapter 8

Conclusion and Future Work

The broadcast problem in general is an NP-Hard problem and it remains NP-Complete

even for 3-regular planar graph and for a graph whose vertex set can be partitioned

into a clique and an independent set. The broadcast problem is shown to be NP-Hard

to approximate within a factor 3− ε. The best known approximation for broadcast-

ing in general graphs is O( log(|V |)
log log(|V |)). Polynomial time algorithms for the broadcast

problem are only known for some tree like graphs. In particular, there exist linear

algorithms for trees, tree of cycles and necklace graphs. In all these graphs any two

cycles intersect in at most one vertex. Tree of cliques is the only graph where two

cycles intersect in many vertices but there is a O(n log log n) algorithm. However,

solving the broadcast problem for tree of cliques is relatively easy because in clique

any pair of vertices are neighbors.

In the thesis our choice of graph classes is motivated by the longer research path:

to increase the connectivity of the graphs to the extent that there is no constant

approximation algorithm for the broadcast problem in that graph assuming that there

is no constant approximation for broadcasting in general graphs. In this respect we

first study the broadcast problem in the simple graphs where the cycles intersect in

at least one vertex and present a constant approximation algorithm to broadcast in

the graph. In Chapter 3 we consider the simplest graph where cycles intersect only

at 2 vertices, namely k-path graph. As it turns out finding the exact broadcast time

even in the k-path graph is not very simple. We give an approximation algorithm

for the k-path graph, where the approximation ratio is less than 4 in the worst case.

When k is bounded by some finite, large range of values, the approximation ratio
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can be at most 3. It is natural that the problem becomes difficult when k is large

because the graph becomes denser. The main characteristic of this algorithm is its

greedy approach: at each round the junction vertices always inform along the path

having maximum number of uninformed vertices. Our approximation algorithm also

takes advantage of the fact that a minimum time broadcast scheme first informs the

shortest path. This leads to the possibility of generating the optimum broadcast time

when the difference of path lengths between each pair is at least 2. Minimum time

broadcasting in k-path graph is difficult when the number of paths is much larger

than the lengths of the paths or the lengths of the paths form an arithmetic series

with difference 1. The future work in this area of course will be to design a polynomial

algorithm to find the exact broadcast time or to prove that the broadcast problem is

NP-Hard for k-path graph.

In Chapter 4 we consider a simple graph where cycles intersect at a single vertex,

namely k-cycle graph. Finding the exact broadcast time even in this graph is not

trivial. We give an approximation algorithm for the k-cycle graph, with the approx-

imation ratio 2. Our approximation algorithm follows the greedy method where at

every round, the central vertex informs along the cycle having maximum number of

uninformed vertices. This leads us in generating the optimum broadcast time when

the difference of cycle lengths between each pair is at least 4. Minimum time broad-

casting in k-cycle graph is difficult when the lengths of the paths form an arithmetic

series with difference either 1 or 3. The future work in this area will be to design a

polynomial algorithm to find the exact broadcast time or to prove that the broadcast

problem in arbitrary k-cycle graph is NP-Hard.

In Chapter 5 we study broadcasting in hypercube of trees. The algorithm for fully

connected trees and tree of cycles can not be applied to hypercube of trees because

every pair of non-tree vertices in hypercube of trees are not connected. We present a

linear time algorithm to find the broadcast time from any originator for hypercube of

trees containing one tree. Depending on the broadcast times in hypercube and tree,

the algorithm in an optimal way decides when to broadcast in tree or hypercube from

the root vertex. For the general case we present a 2-approximation algorithm to find

the broadcast time from any originator. The two main directions for future work are

proving the NP-Completeness or designing a polynomial algorithm for the broadcast

problem in hypercube of trees.
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In Chapter 6 we consider the broadcast problem in Harary graph Hk,n, which is

the minimal k-connected graph on n vertices. We present a linear log k−2
2

+1-additive

approximation to find the broadcast time in the graph. The approximation algorithm

follows a natural way of initially informing the vertex which is at a farthest distance

from the informed vertex and then informing all the vertices within its clique. The

additive approximation is justified in a sense that the lower bound on broadcast time

can be achieved when there are large numbers of k
2
regions in Hk,n and all the vertices

in a clique will receive the message from the vertices of the previously informed cliques

at the same time. Moreover, when 2n
k
= 4, our broadcast algorithm will take exactly

b(Hk,n) + log k−2
2

+ 1 time units to complete broadcasting. Next we design a new

modified Harary graph where both k, n are even. In modified Harary graph, a vertex

which is at a farther distance from a particular vertex as compared to Harary graph,

can be reached in one time unit. This leads to the possibility of generating a better

approximation algorithm (in this case a linear 1-additive approximation instead of a

linear log k−2
2
+1-additive approximation in case of Harary graph) to find the broadcast

time in the modified Harary graph. Since, the approximation is very close to optimal,

the future work will be to provide a polynomial algorithm for the broadcast problem

in modified Harary graph.

In the line of the graphs being studied in this thesis, there are other graph struc-

tures where cycles intersect in at least one vertex such as the k-cycle of trees and the

cycle of k-path. It is natural to study the broadcast problems in these graphs too.

k-cycle of trees is a k-cycle graph where some or all of its vertices are the roots of

the trees. A natural way to solve the broadcast problem in k-cycle of trees is to first

broadcast all the vertices in the k-cycle. The root vertices will then broadcast in the

trees attached with them. A cycle of k-path is a graph formed by m k-path graphs

such that every junction vertex of a k-path graph is connected to a junction vertex

of its adjacent k-path graph. One way to broadcast in m k-path graphs will be to

inform all the junction vertices as early as possible using the shortest path in every

k-path graph and then broadcast along the longer paths.
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