
A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:
http://wrap.warwick.ac.uk/132682

Copyright and reuse:
This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/287605853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Radio Network Algorithms for
Global Communication

by

Peter Davies

A thesis submitted in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy in Computer Science

University of Warwick
Department of Computer Science

September 2018

Contents

1 Introduction 1
1.1 Distributed Computing . 1
1.2 Radio Networks . 2
1.3 Types of Distributed Problem . 3

2 Models, Problems, and Preliminaries 4
2.1 Ad-Hoc Multi-Hop Radio Network Model 4
2.2 Tasks . 8
2.3 Literature Review . 10
2.4 Overview of Results . 13
2.5 Notation and Conventions . 14

3 Beep Model Communication 15
3.1 Related Work . 15
3.2 Our Results . 16
3.3 Broadcasting . 17
3.4 Multi-Broadcast . 22
3.5 Lower Bounds . 37
3.6 Discussion and Open Problems 43

4 Deterministic Radio Communication 45
4.1 Related Work . 46
4.2 Our Results . 49
4.3 Combinatorial Tools . 50
4.4 Algorithms for Multiple Access Channels 69
4.5 Analysis for Multi-hop Radio Networks 71
4.6 Discussion and Open Problems 73

i

5 Randomized Blind Broadcasting 75
5.1 Related Work . 75
5.2 Our Results . 76
5.3 Overview of Approach . 76
5.4 Protocols . 83
5.5 Broadcast in Undirected Networks with Collision Detection . . . 91
5.6 Discussion and Open Problems 91

6 Randomized Leader Election 93
6.1 Related Work . 93
6.2 Our Results . 95
6.3 Leader Election Frameworks . 95
6.4 Implementation . 99
6.5 Running Times . 106
6.6 Discussion and Open Problems 107

7 Spontaneous Transmissions 108
7.1 Related Work . 108
7.2 Overview of Approach . 109
7.3 Algorithm for Compete . 114
7.4 Analysis of Compete Algorithm 117
7.5 Applying Compete to Broadcasting and Leader Election 124
7.6 Clustering property: Proof of Theorem 81 125
7.7 Discussion and Open Problems 136

ii

Acknowledgements

I would like to thank my supervisor Artur Czumaj, for his guidance, patience,
and support throughout my research.

iii

Declaration

This thesis is submitted to the University of Warwick in support of my appli-
cation for the degree of Doctor of Philosophy. It has been composed by myself
and has not been submitted in any previous application for any degree. The
work presented was carried out by the author. Parts of this thesis have been
published by the author:

Chapter 3:

[17]: Artur Czumaj, Peter Davies: "Communicating with Beeps", pro-
ceedings of the 19th International Conference on Principles of Distributed Com-
puting (OPODIS 2015), pages 1-16, 2015. Extended version appeared as "Com-
municating with Beeps", Journal of Parallel and Distributed Computing
(JPDC), 2019.

Chapter 4:

[22] Artur Czumaj, Peter Davies: "Faster Deterministic Communica-
tion in Radio Networks", proceedings of the 43rd International Colloquium
on Automata, Languages and Programming (ICALP), pages 139:1–139:14, 2016.
Extended version appeared as "Deterministic Communication in Radio
Networks", SIAM Journal on Computing (SICOMP), 47(1), pages 218-240,
2018.

[21] Artur Czumaj, Peter Davies: "Deterministic Blind Radio Net-
works", proceedings of the 32nd International Symposium on Distributed Com-
puting (DISC), 2018.

iv

Chapter 5:

[20] Artur Czumaj, Peter Davies: "Brief Announcement: Randomized
Blind Radio Networks", proceedings of the 32nd International Symposium
on Distributed Computing (DISC), 2018.

Chapter 6:

[18] Artur Czumaj, Peter Davies: "Brief announcement: Optimal Leader
Election in Multi-hop Radio Networks", proceedings of the 2016 ACM
Symposium on Principles of Distributed Computing (PODC), pages 47-49, 2016.
Extended version appeared as "Leader Election in Multi-hop Radio Net-
works", Theoretical Computer Science, 2019.

Chapter 7:

[19] Artur Czumaj, Peter Davies: "Exploiting Spontaneous Transmis-
sions for Broadcasting and Leader Election in Radio Networks", pro-
ceedings of the 2017 ACM Symposium on Principles of Distributed Computing
(PODC), pages 3-12, 2017. PODC 2017 Best Student Paper Award.

v

Abstract

Radio networks are a distributed computing model capturing the behavior of
devices that communicate via wireless transmissions. Applications of wireless
networks have expanded hugely in recent decades due to their convenience and
versatility. However, wireless communication presents practical difficulties, par-
ticularly in avoiding interference between transmissions. The radio network
model provides a theoretical distillation of the behavior of such networks, in
order to better understand and facilitate communication.

This thesis concerns fundamental global communication tasks in the radio
network model: that is, tasks that require relaying messages throughout the
entire network. Examples include broadcasting a message to all devices in a
network, or reaching agreement on a single device to act as a coordinator.

We present algorithms to perform global tasks efficiently, and show improved
asymptotic running times over a range of environments and model variants.
Our results demonstrate an advance over the state of the art in radio network
research, and in many cases reach or approach known lower bounds.

vi

Chapter 1

Introduction

Radio networks are a long-standing distributed computing model, designed to
capture the behavior of devices communicating wirelessly. Originating in the
1980s, during the rapid rise to prominence of distributed computing, they aim
to provide a clean, general, yet powerful theoretical model to underpin the
huge variety of devices, protocols, and physical behaviors involved in wireless
networks.

1.1 Distributed Computing

Distributed computing is, at its heart, the study of decentralized computation:
a collection of entities, each with some individual processing power and memory,
are equipped with some means of communicating with each other. The entities
and communication links together form a network, with potentially far more
power that any of the constituent entities alone. The challenge is to effectively
harness that power, by finding efficient ways for entities to share their resources
and information, in order to complete some joint task.

Originally, the purpose of distributed computing was to reason about local
area networks, small-scale groups of computers linked by technologies such as
Ethernet. Quickly, though, applications expanded to encompass a wide array
of computational architectures, including CPU cores within a chip, telephone
networks, and the Internet. As ambitions of solving computational problems
vastly outstripped the capabilities of any one device, virtually all computational
systems became, in some way, distributed.

1

Due to the varied nature of applications for distributed computing, it is a
very broad field, uniting aspects of mathematics, statistics, computational the-
ory, software and hardware engineering, and physics. Our focus will be on the
theory of communication in radio networks: networks of devices which commu-
nicate wirelessly (which generally means using the electromagnetic spectrum).
Examples of such networks include mobile telephone networks, wireless Internet
and local area networks, and broadcast radio [54].

1.2 Radio Networks

Wireless communication is ubiquitous in modern times, due to its convenience
and adaptability compared to networks using physical connections. However,
the behavior of wireless signals causes communication challenges: interference,
path loss, and obstructions must all be worked around when trying to construct
a reliable wireless network. As a result, the main focus of theoretical radio
network models is to formulate concrete rules as to when transmissions can
and can not be successfully received. Likewise, the problems studied in these
models usually revolve around quickly disseminating information despite these
communication difficulties (as opposed to other common goals in distributed
computing such as efficient allocation of computation and memory resources).

There is a spectrum of approaches one could take to the challenge of formal-
izing wireless transmission rules. On one side, we could attempt to pin down
exactly the physical behavior of the electromagnetic waves, and formulate some
condition based on signal strength which tells us when devices can successfully
receive transmissions. The advantage of doing so would be that hopefully the
model would closely approximate what is possible in reality, allowing highly tai-
lored, efficient algorithms. However, the model would also be highly sensitive to
specific network characteristics and hardware capabilities, so developing versa-
tile, transferable solutions to problems may not be possible. Furthermore, if the
calculations governing successful transmissions are too complex, this complexity
may hinder the development of sophisticated algorithms.

The alternative is to use an abstract model, with simplified criteria for suc-
cessful transmissions. We would wish to simplify in ways that make the model
weaker (i.e. disallow transmissions that could in practice be successful, rather
than allowing transmissions that may fail in practice), since we prefer to give
up some power than risk developing algorithms that fail on real networks. As a

2

result, we may lose some efficiency potential, but we gain a wider applicability
for the model, and simplicity which makes deeper analysis easier.

The radio network model takes this latter approach, reducing the complex
physical phenomena involved in wireless transmission with a graph indicating
which pairs of devices are ‘in range’ of each other. Interference between de-
vices is simplified in a very strict fashion, by assuming that any simultaneous
transmissions a device receives from others within range will interfere and fail,
providing no useful information. In most cases, this simplification errs on the
side of caution, as desired (though it is possible to conceive of circumstances in
which interference from devices outside transmission range hinder transmissions
deemed successful by the model). The advantage of this abstraction is that we
obtain a simple and clean theoretical model which, as we will see, admits some
highly nontrivial theory.

1.3 Types of Distributed Problem

In general, almost any problem in theoretical computer science can be posed in
a distributed setting, but the specifics and applications of the distributed model
will affect which ones are useful and interesting. In the case of radio networks,
the focus of the model is to capture the difficulty of ensuring successful trans-
missions. So, the problems that are studied are mostly based around ensuring
messages from certain devices reach others; we are less concerned about the
content of these messages, or about computations done by the devices.

One major distinction between problems in networks is that of global and
local problems. Global problems are those in which we may require communi-
cation between any pair of devices in the network if we are to reach the correct
solution. Hence, we cannot hope to solve the problem more quickly than we can
relay a message between the furthest two devices, because we may be required
to do just that. By contrast, local problems are those in which each device can
reach the solution by conferring only with nearby devices, those in some local
neighborhood which is strictly smaller than the overall network. In this thesis,
we will be concerned with global problems.

3

Chapter 2

Models, Problems, and
Preliminaries

In this chapter we describe in detail the specific models of radio networks that
we are concerned with, and the problems we study therein.

2.1 Ad-Hoc Multi-Hop Radio Network Model

The main model we study is the ad-hoc multi-hop radio network model.
Here the term ‘ad-hoc’ means that the network has arisen ‘on the fly’, i.e. there
has been no central planning of the positions of the devices involved. ‘Multi-hop’
means that the devices are geographically far apart and cannot all reach each
other directly, so solving global problems will require relaying messages through
the network. We will see how these qualifiers affect the formal definition of our
model shortly.

The network is modeled by a directed graph N = (V,E), where the set of
nodes V corresponds to the set of devices (and henceforth we will refer to the
devices as nodes). A directed edge (v, u) ∈ E means that node v can send a
message directly to node u, i.e. u is within the transmission range of v. To
admit global propagation of information (that is, to ensure that any node could
send information to any other via some sequence of relayed transmission), we
assume that N is strongly connected. This is a necessary assumption if we wish
to study general global problems.

We denote by n the size of |V |, and by D the diameter of N (the distance

4

between the furthest pair of nodes in the graph). Algorithmic running times
will be analyzed with respect to these two parameters.

The defining feature of radio networks is the set of rules governing com-
munication. Nodes operate in discrete, synchronous time steps. In each time
step a node can either transmit a message to all of its out-neighbors at once or
can remain silent and listen to the messages from its in-neighbors. The most
standard radio networks model is the model without collision detection, in
which, if a node v listens in a given round and precisely one of its in-neighbors
transmits, then v receives the message. In all other cases v receives nothing; in
particular, the lack of collision detection means that v is unable to distinguish
between zero of its in-neighbors transmitting and more than one. When we
refer to the running time of an algorithm, we mean the number of time steps
which elapse before completion (i.e., we are not concerned with the number of
calculations nodes perform within time steps).

2.1.1 Variants

Real-world networks have a wide variety of specifications and device capabilities,
and so many variants of the theoretical models have also arisen to match them.
Here we discuss the most common differences between radio network models.

Undirectedness

We initially defined the network to be based on an underlying directed graph.
However, for applications in which the devices all have similar transmission
power, it may be the case that direct reachability is symmetric (i.e. if u can
reach v, then v can reach u). So, it is also of interest to study undirected radio
networks, where the underlying graph N is undirected. This is a stronger model,
and admits new techniques in algorithm design, since in undirected networks it
is possible for nodes within some local area to communicate between themselves.

Collision detection

An important variant is the capability for collision detection. The standard rules
for communication assume no collision detection, i.e. a listening node cannot
distinguish between 0 transmitting in-neighbors, and multiple transmitting in-
neighbors. However, if devices in a specific application are equipped with carrier
sensing (a means of verifying whether any transmissions are in progress), then

5

it is more appropriate to model these two scenarios as being distinguishable.
Hence, in the model with collision detection, listening nodes can hear one
of three distinct outcomes: silence, a transmission, or a collision.

Another recently introduced model is closely related to radio networks with
collision detection: the beep model, introduced by Cornejo and Kuhn [16],
models weak devices whose only receiver capabilities are carrier sensing, i.e. they
do not receive a message even when only one in-neighbor transmits. Listening
nodes can only distinguish between 0 in-neighbors transmitting, and at least one.
Since message content is now irrelevant, we refer to transmissions as beeps, and
any information must be communicated by some pattern of beeps and silence.

Parameter knowledge

In the standard model we will assume that nodes have knowledge of the pa-
rameters n and D. Assumptions of exact knowledge can usually be relaxed
to knowledge of some common upper bounds, say n′ ≥ n and D′ ≥ D. The
limit to which these upper bounds can exceed the true values without affecting
asymptotic running time depends upon the algorithm, but is generally either
linear (i.e. we would require n′ ≤ cn for some constant c, such as in [23]) or
polynomial (i.e. n′ ≤ nc, such as in [14]).

However, due to the ad-hoc nature of the model, it may not always be rea-
sonable to assume that nodes have such knowledge. So, we also study the model
without parameter knowledge, in which nodes have no prior information
about the network whatsoever. We will also call this variant the blind model.

Global clock

Another type of node knowledge which is often assumed is the presence of
a global clock. Under this assumption, nodes all know the absolute time-
step number (the number of time-steps that have elapsed since the algorithm
began). In the weaker model without a global clock, nodes do not have this
information; this makes it more difficult for them to co-ordinate behavior.

Single-hop

Much of the early research into radio networks focused on the single-hopmodel,
where the underlying graph N is a clique rather than an arbitrary strongly
connected graph. That is, all nodes can communicate with each other directly,
and the diameter of the network D = 1. These single-hop networks are also

6

called multiple access channels, and model situations when all of the devices
in the network are geographically close, or share some direct (i.e. non-wireless)
but exclusive communication channel. Single-hop networks are clearly a simpler
model, but in some circumstances algorithms for single-hop networks can be
simulated in multi-hop networks [3] or even transfer across directly (as we will
see in Chapter 4).

Determinism

As in many algorithm design settings, randomization often allows more efficient
algorithms. We will design both randomized algorithms, which assume nodes
each have access to their own stream of random bits, and deterministic algo-
rithms, where they do not. In the deterministic case, we require some means
of breaking symmetry, since otherwise, for example, broadcasting is impossible
on the 4-cycle. So, we assume that each node has a unique integer identifier
(ID) between 0 and some parameter L (which is necessarily at least n). Nodes
can then base their behavior upon their ID.

Other variants and related models

We will limit our scope in this work to the variants of radio networks described
above; however, there is a vast amount of work on similar models. We briefly
mention some of the most closely related:

Our work is on ad-hoc radio networks, designed to model networks of weak
devices, in which the structure may change over time. To model this, we assume
that nodes have no prior knowledge of the underlying communication graph. If
the network infrastructure is more permanent, it may be more appropriate to
assume that nodes do have this knowledge. Networks of this kind are called
known topology.

Since our motivation is primarily derived from the interaction of devices
positioned in physical space, we could consider a geometric representation rather
than a (more general) graph-based model for the communication network. In
particular, the unit disk graph (UDG) model restricts the underlying graph
to the family of disk graphs, which are intersection graphs of identical circles
on the Euclidean plane. This models a top-down view of devices on the ground,
each with the same transmission range.

A further extension of this idea which attempts to capture more specifics
of real-world wireless communication is the SINR (Signal to Interference plus

7

Noise Ratio) or physical model, which replaces the very strict communication
rules of radio networks with a rule based on the physical behavior of electro-
magnetic waves. Rather that hearing a message iff only one of its neighbors
transmits, a node instead hears a message if one neighbor’s transmission is
sufficiently stronger than all others (plus a noise parameter), determined by a
formula based on geometric distances and power-law path loss.

Another popular paradigm among the practical community is cognitive
radio networks: an attempt to better utilize the wireless spectrum, cognitive
radio networks assume devices have access to multiple communication channels,
and can choose on which one to operate each time-step. This would not help
in our setting: since we consider global tasks on a single network, nodes would
almost always be best served by choosing to operate on the same channel. The
cognitive radio network model is instead aimed at real-world scenarios with
multiple overlapping networks and less well-defined communication tasks.

On the more abstract side, much recent work has gone into distributed com-
puting models which remove the communication restrictions of radio networks
and instead focus on how locality and congestion affect graph problems. In the
LOCAL model, nodes can send arbitrary messages to each of their neighbors
(and successfully hear all messages they receive) each time-step. The CON-
GEST model is similar, but restricts message size to O(logn) bits, which raises
the problem of edges becoming congested, i.e. allowing limited information
throughput. The CONGESTED-CLIQUE model is a variant focused only
on congestion: the arbitrary input problem graph (on which we aim to solve some
standard graph problem) is separate from the communication graph, which is
assumed to be a clique (so all nodes can communicate directly with all others).

2.2 Tasks

We will study several of the most fundamental global communication tasks in
radio networks.

2.2.1 Broadcasting and Wake-up

Broadcasting is possibly the most studied problem in radio networks (and
many other distributed computing models), due to its status as the simplest
global communication task. The task is specified as follows:

A single, arbitrary node is designated the source; nodes are aware whether

8

they are the source or not, but non-source nodes do not initially know the
identity of the source. The source node is provided with an arbitrary message,
which we assume can be passed in a single transmission. Our aim is to provide
a schedule, determining when nodes should transmit (and the content of their
transmissions), which ensures that there is some time-step in which all nodes
can correctly output the source message.

Wake-up is a generalization of broadcasting. Nodes begin in a dormant
state in which they can only listen, and wake up either spontaneously, at ar-
bitrary (adversarial) time-steps, or upon successfully hearing a transmission.
Once nodes are awake, they can choose to transmit as normal. The goal is to
ensure that all nodes are woken up, in as few as possible time-steps after the first
spontaneous wake-up. This is a harder task than broadcasting since there are
effectively multiple sources, which reduces the opportunities for co-ordination.
Furthermore, a global clock is not usually assumed for wake-up, whereas for
broadcasting one can be simulated by appending the current time-step to the
source message.

2.2.2 Leader Election

Leader election is the problem of ensuring that all nodes agree on a single
node to be designated leader. Specifically, at the conclusion of a leader election
algorithm, all nodes should output the same node ID, and precisely one node
should identify this ID as its own. Leader election is a fundamental primitive
in distributed computations and, as the most fundamental means of breaking
symmetry within radio networks, it is used as a preliminary step in many more
complex communication tasks. For example, many fast multi-message commu-
nication protocols require construction of a breadth-first search tree (or some
similar variant), which in turn requires a single node to act as root (see e.g.
[12, 26, 27]).

2.2.3 Multi-broadcast and Gossiping

Multi-broadcast, as the name might suggest, is an extension of broadcasting
to accommodate multiple sources. Some subset of source nodes begin with
messages at time-step 0, and all source messages must become known by all
nodes. We will denote the number of sources k. Gossiping is a commonly-
studied special case of multi-broadcast in which k = n, i.e. all nodes are sources.

9

That is, in order for gossiping to be successfully completed, all nodes must have
heard from all other nodes.

Gossiping, and the generalized problem of multi-broadcast, are interesting
problems in ad-hoc radio networks because they incentivize the construction of
some kind of structure in the network. Efficient multi-broadcast algorithms aim
to build up enough network knowledge to perform the task more quickly than
k separate broadcasts.

We will mainly be studying multi-broadcast in the beep model, where mes-
sage sizes are very important. Because of this, we will define two variants of
the multi-broadcast problem: multi-broadcast with provenance, where the
network must become aware of all (source ID, source message) pairs, andmulti-
broadcast without provenance, where the IDs need not be known. Since
we do not assume that messages are unique, we also allow in the case without
provenance that only one copy of each distinct message must be output. That
is, nodes need not be aware of how many sources held each message.

2.3 Literature Review

Here we give an overview of the state of research into global tasks in the most
mainstream model variants, at the time our research began. Later, in each
chapter, we will discuss in more detail the most relevant work and any recent
advances.

Recall that algorithmic running time is stated in terms of the following
parameters: n is the number of nodes in the network, D is the diameter, L
is the range of node labels (assumed for deterministic algorithms), M is the
message range (important in the beep model), and k is the number of sources
for the multi-broadcast task.

2.3.1 Broadcasting

Broadcasting in radio networks has been studied since their inception, with a
wealth of literature in many variants of the model.

Chlamtac and Kutten [5] first studied broadcasting in known topology radio
networks without collision detection. Here the problem is closer to a classical
graph problem than a distributed computing paradigm, since nodes already have
all the information they need and must run a centralized algorithm to compute
a schedule. Their work was improved upon by several authors over the next

10

two decades, culminating in an O(D + log2 n)-time randomized algorithm by
Gąsieniec, Peleg and Xin [32], and then a deterministic algorithm with the same
running time due to Kowalski and Pelc [41]. This is known to be asymptotically
optimal [25].

Work on ad-hoc networks began with Bar-Yehuda et al. [4], who designed the
now-ubiquitous randomized Decay protocol and showed that it can be applied
to global broadcast, running in O((D + logn) · logn) time and succeeding with
high probability. A later Ω(D log n

D + log2 n) lower bound [2, 46] demonstrated
that Decay was almost optimal, and randomized algorithms reaching this lower
bound were subsequently found by Czumaj and Rytter [23], and independently
Kowalski and Pelc [44].

Deterministic algorithms in the ad-hoc model have also been long-studied;
these usually rely on schedules based on types of combinatorial structures, the
existence of which is proven existentially by the probabilistic method. Refine-
ments of these structures gradually reduced running time from quadratic to sub-
quadratic [10] to almost linear [14]. When our research began, the fastest known
deterministic broadcasting algorithms were the O(n log2D)-time algorithm of
Czumaj and Rytter [23] and the O(n logn log logn)-time algorithm of De Marco
[47] . A gap remained between these running times and the Ω(n logD) lower
bound of Clementi et al. [15]. In undirected networks Kowalski [42] achieved an
O(n logD) time algorithm, but this is not known to be optimal since the lower
bound of [15] is only for directed networks.

The algorithms of [23], [15] and [42] assume that nodes have linear-size labels
(i.e. L = O(n)), and are non-explicit due to non-constructive proofs of the
combinatorial structures involved. Significant advances in explicit algorithms
have been made [38, 8], but these remain a poly-logarithmic factor slower.

Since the randomized complexity of broadcast in the most standard model
was settled, more recent work on randomized algorithms has focused on variants
in which the lower bound no longer holds. In particular, Ghaffari, Haeupler and
Khabbazian [28] showed that when collision detection is available this bound can
be surpassed, designing an O(D + log6 n) time algorithm based on simulating
the known-topology approach of [32].

2.3.2 Wake-Up

Wake-up has often been studied in parallel with broadcasting, and both de-
terministic and randomized wake-up algorithms are generally similar to their

11

broadcasting counterparts, though with added complications arising from the
lack of a global clock.

Deterministic wake-up algorithms again followed a gradual path of improve-
ment from quadratic to almost linear time, based on improvements to com-
binatorial structures used for schedules. The fastest known algorithm was
O(n log2 n)-time [6]. Research on randomized algorithms tended to focus on
single-hop networks, but anO(n log2 n)-expected time algorithm due to Chrobak,
Gąsieniec and Kowalski [13] exists for the multi-hop model.

2.3.3 Leader Election

In one of the classic early works in multi-hop radio networks, Bar-Yehuda et
al. [3] developed a general randomized framework of simulating single-hop net-
works with collision detection by multi-hop networks without collision detection.
The framework yields leader election algorithms for multi-hop networks (in di-
rected and undirected networks) running in O(TBC · log logn) expected time
and O(TBC · logn) time w.h.p., where TBC is the time required to broadcast a
message from a single source to the entire network. The same authors also gave
a randomized broadcasting algorithm running in O(D logn+log2 n) time w.h.p.,
thereby yielding a leader election algorithm taking O((D logn+log2 n) log logn)
expected time and O(D log2 n+ log3 n) time w.h.p. With the subsequent faster
broadcast algorithms of [23] and [44], one obtains leader election algorithms
(even in the model without collision detection, and in both directed and undi-
rected graphs) running in O((D log n

D + log2 n) log logn) expected time and
O((D log n

D + log2 n) logn) time w.h.p.
In undirected networks, Ghaffari and Haeupler [27] showed a different method

based on building local clusters and iteratively expanding them by having them
compete with neighboring clusters (a process they call a debate). They show that
in O(log logn) rounds of debates, a single cluster dominates the whole network
(and its center node can be designated leader, completing leader election) with
high probability. Thereby they obtained leader election algorithms in undirected
networks with and without collision detection with improved high-probability
running time of O(log logn) times broadcasting time.

A leader election result by Förster, Seidel and Wattenhofer was one of the
very few existing algorithms for global problems in the beep model. They
achieved an O(D + logL) deterministic running time.

12

2.3.4 Gossiping

Gossiping has been studied in both directed and undirected radio networks. In
the former, the fastest randomized algorithm is an O(n log2 n)-time algorithm
due to Czumaj and Rytter [23], and the fastest deterministic algorithm is the
O(n4/3 log4 n)-time algorithm of [33]. In undirected networks, gossiping can be
performed faster using a ‘token-passing’ graph traversal, after performing leader
election to find a root for the spanning tree. Chlebus, Kowalski and Pelc [12]
showed how to do this in O(n log

3
2
√

log logn) time deterministically, and in
O(n) expected time using randomization.

The more general multi-broadcast problem is less well-studied; nevertheless,
some results are known, notably the O(k logn+D log2 n+log3 n)-time random-
ized algorithm of Khabbazian and Kowalski [40] for undirected networks.

2.4 Overview of Results

We begin, in Chapter 3, by giving algorithms and lower bounds for global tasks
in the beep model, in which nodes can communicate only by patterns of beeps
and silence. This is a comparatively new model for which global communica-
tion is not well understood, and our aim is to provide the first comprehensive
study thereof. We show optimal algorithms for broadcasting, and near-optimal
algorithms for multi-broadcasting (and hence also the special case of gossiping).
As a weaker variant of the radio network model with collision detection, the
beep model also provides a good introduction to some standard radio network
techniques.

In Chapter 4 we present deterministic algorithms for broadcasting and wake-
up in radio networks. In the most standard model, directed networks with pa-
rameter knowledge and without collision detection, we give the fastest known
broadcasting algorithm improving over a long line of previous work and almost
reaching the lower bound. We also show how efficient algorithms for broadcast-
ing and wake-up can be achieved even in the more restrictive and less-studied
model of blind networks, where nodes have no parameter knowledge. In the
process, we show a wake-up algorithm for blind networks that is the fastest
known even with parameter knowledge.

Next, in Chapter 5 we show randomized algorithms for the same model of
blind networks, demonstrating how randomized broadcasting can be performed
efficiently in the absence of parameter knowledge. We start the chapter with an

13

analysis of the classic Decay protocol of Bar-Yehuda et al. [4], and the improved
global broadcasting algorithms of [23, 43], and then discuss the difficulties in
adapting these for the blind network model, and our methods to overcome them.

In Chapter 6, we examine the problem of leader election in radio networks,
giving algorithmic frameworks for the task and showing how they can be imple-
mented in networks with and without collision detection.

Finally, in Chapter 7, we show how, if nodes are permitted to spontaneously
transmit (i.e. transmit before receiving a source message), broadcasting can
be performed more quickly, surpassing the lower bound of [2, 46]. Our result
develops and improves over recent work of Haeupler andWajc [34]. Furthermore,
we demonstrate that the method can be further extended to perform leader
election at no extra asymptotic cost, significantly improving the running time
for that task.

2.5 Notation and Conventions

Our algorithmic running times and lower bounds will be asymptotic, and as
a result we will make certain simplifications of notation which do not have an
impact on asymptotic results:

• We will, in most cases, omit floor and ceiling functions.

• When taking logarithms, we will use the convention log x := max{1, log2 x}.

• Our proofs will often assume that network parameters n and L are ‘suffi-
ciently large’, i.e. larger than some implied constant.

• We will also use ‘sufficiently large’ constants in our proofs, with the nota-
tion c, c1, c2, c3, These are large constant values which are necessary
for calculations, and for which we shall set an appropriate value during
the proof.

• When discussing probabilistic algorithms, we will say that an event occurs
‘with high probability’ (w.h.p.) if it occurs with probability at least 1−n−c

for some constant c ≥ 1.

14

Chapter 3

Beep Model
Communication

As an introduction to some of the techniques we will encounter often when an-
alyzing radio networks, we will first study the simpler beep model. Introduced
recently by Cornejo and Kuhn [16], the beep model attempts to capture the
behavior of very weak devices, making minimal assumptions about their knowl-
edge and capabilities. In addition to the defining feature, that messages cannot
be passed by transmission and information can only be conveyed via beeps and
silence, most work on the beep model (including that presented here) also as-
sumes nodes have no parameter knowledge. A global clock (or the generally
equivalent assumption of synchronous starts, where nodes all wake up in the
same time-step) is usually assumed.

The beep model removes the necessity of scheduling to avoid collisions, which
is the cause of much of the complexity in radio network algorithms. Instead, the
main challenge will be how to most efficiently use beeps to convey information.

3.1 Related Work

Cornejo and Kuhn’s paper [16] introduced the beep model, and presented an
algorithm for interval coloring. This task is a variant of vertex coloring used in
resource allocation problems, and is somewhat specific to the model. Addressing
a more standard problem in distributed computing, Afek et al. [1] presented
an algorithm for finding a maximal independent set, and an algorithm for the

15

related problem of minimum connected dominating set is given in [56].
These results are all for local problems, which can be completed in o(D)

time, i.e. a node can correctly determine its output despite not having time
to send or receive any information from most of the network. The first global
problem to be studied in the beep model was leader election, with a O(D logL)-
time deterministic leader election algorithm given by Förster et al. [26], in
the model without parameter knowledge. A randomized leader election algo-
rithm by Ghaffari and Haeupler [27] also exists, running in almost optimal
O((D + logn log logn) · min{log logn, log n

D})-time, and succeeding with high
probability; however it does require parameter knowledge. This work also in-
troduces the method of “beep waves” to transmit bit strings, a method which
is also employed here for the purpose of broadcast.

Concurrently with this work, Hounkanli and Pelc [36] give a O(D + logM)
time broadcasting algorithm and an O(n2 logM + nD logL)-time gossiping al-
gorithm in the model with parameter knowledge but without a global clock.
Further recent works explore other tasks in various related beeping models
[9, 35, 37].

3.2 Our Results

Our aim here is to provide the first comprehensive study of global communica-
tion algorithms in the beep model. We present the following results:

• An optimal O(D + logM)-time algorithm for broadcasting a logM bit
message, developing and formalizing the “beep waves” method of [27].

• A corresponding Ω(D + logM) lower bound.

• An optimal O(D + D logM
logD)-time algorithm for broadcasting a logM bit

message in directed networks.

• A corresponding Ω(D + D logM
logD) lower bound.

• AnO(k log LM
k +D logL)-time explicit algorithm, and an optimalO(k log LM

k +
D)-time non-explicit algorithm for multi-broadcast with provenance (where
every node must learn all (source ID, source message) pairs).

• A corresponding Ω(k log LM
k +D) lower bound.

16

• An explicit algorithm for multi-broadcast without provenance (where ev-
ery node must learn all unique source messages) takingO(k log M

k +D logL)
time when M > k and O(M +D logL) time when M ≤ k.

• A non-explicit algorithm for multi-broadcast without provenance taking
O(k log M

k + D + logL) time when M > k and O(M + D + logL) time
when M ≤ k.

• A corresponding lower bound of Ω(k log M
k +D) when M > k and Ω(M +

D) when M ≤ k.

These multi-broadcasting algorithms implyO(n log LM
n) and (n log M

n +logL)-
time gossiping algorithms with and without provenance respectively.

3.3 Broadcasting

The first, and most basic, task we will consider in the beep model is that of
broadcasting, where a source node begins with a message of which to inform all
other nodes. Since messages must, in effect, be transmitted “bit by bit” in a
pattern of beeps and silence, algorithmic running time is affected by the length
of the message we must transmit (this is not generally the case in standard radio
networks, where we assume the message can be passed in a single transmission).
So, we introduce a new parameterM to specify message range, and assume that
all messages to be broadcast are integers in [M].

3.3.1 Broadcasting in Undirected Networks

Broadcasting in undirected networks will be performed using a method known
as ‘beep waves’. Beep waves were first introduced by Ghaffari and Haeupler
[27] as a means of transmitting information in the beep model. Variations of
the technique are useful for different circumstances, and here we give a simple
formalization tailored to the task of broadcasting from a single source.

The idea is the following: every three time-steps, starting at zero, the source
transmits a bit of its message, that is it beeps to represent a 1 or remains silent
to represent a 0. All other nodes aim to relay any beep coming from a neighbor
one hop closer to the source, in the next time-step after they hear it. Of course,
nodes do not know the provenance of beeps they hear, but we can ensure that
nodes will not hear any beeps from their own layer since they will themselves be

17

beeping rather than listening. We can also stipulate that nodes become ‘deaf’
and ignore any beeps they hear in time-steps immediately after they transmitted
themselves, and this rules out beeps from the next layer. Then, nodes will only
relay beeps from the previous layer, so the waves of beeps will emanate out from
the source, one distance hop per time-step, and inform all nodes of the source
message.

Algorithm 1 Beep-Wave(s,m) at source s
s beeps at time-step 0
for t = 1 to |m| do

if bit mt is 1 then s beeps in time-step 3t
end for

Algorithm 1 Beep-Wave(s,m) at non-source u
j ← first time-step u hears a beep
while end of message not heard do

if u hears a beep in time-step t ≡ j mod 3 then
u beeps in time-step t+ 1
bit m(u) t−j

3
← 1

end if
end while
output m(u)

Theorem 1. Beep-Wave(s,m) correctly performs broadcast in time O(D +
|m|) = O(D + logM).

Proof. Partition all nodes into layers depending on their distance from the
source s, i.e., layer Li = {v ∈ V : dist(v, s) = i}. We show that a node
in layer Li beeps in time-step t iff 3|t − i and either m t−i

3
= 1 or t = i, by

induction on t.
For t = 0, the claim is trivially true, since the source s ∈ L0 beeps, and all

u in later layers do not.
For t = t′ > 0, the claim is again clearly true for the source s. Consider a

non-source node u ∈ Li, with i ≤ t′. Such a node hears its first beep, from a
neighbor in layer Li−1, at time-step i − 1 by the inductive assumption, and so
sets j = i − 1. Node u can only beep in time-step t′ if t′ ≡ i mod 3, and in
this case it beeps only upon hearing a beep in time-step t′ − 1 (which, by the
inductive assumption, can only come from a node in layer Li−1). So, again by

18

the inductive assumption, m (t′−1)−(i−1)
3

= m t′−i
3

= 1, i.e. u beeps if and only if
the correct conditions are satisfied.

When u beeps in time-step t, m(u) t−1−j
3

= m(u) t−i
3

is set to 1. So, m t−i
3

=
1 ⇐⇒ m(u) t−i

3
= 1, i.e. u’s output message is correct.

By induction the claim is true for all t, and so m t−i
3

= 1 ⇐⇒ m(u) t−i
3

= 1.
Furthermore, after D + 3 logM time-steps, all nodes cease transmission.

This is, to our knowledge, the first formalization of beep waves for the task
of broadcasting, and the first efficient beeping algorithm for the task.

3.3.2 Broadcasting in Directed Networks

Allowing the underlying graph of the network to be directed greatly restricts
what can be done efficiently in the beep model. Beep waves as described above,
which are the basis of almost all efficient beeping algorithms, do not work on
directed graphs since nodes cannot distinguish between new waves from the
source and ‘backtracking’ from further out layers. In particular, a beep-wave
moving through the network can flood all previously reached layers with beeps
every time-step, preventing any further communication until it is completed.

Despite these difficulties, we present an algorithm which broadcasts a mes-
sage in [M] within an optimal O(D logM

logD) time-steps. We assume throughout
that M ≥ D (and this is necessary for the running time, since Ω(D) is a lower
bound for broadcasting).

We first give an algorithm which assumes knowledge of D (Algorithm 2),
and then describe how it can be extended to remove this assumption. To allow
this subsequent extension, we will design Algorithm 2 to broadcast from a set
S of sources rather than a single source.

Algorithm 2 DirectedBroadcast(m,D) at source s ∈ S
beep in time-step 0
for j from 1 to logM

logD do
interpret bits j logD to (j+ 1) logD− 1 of m as an integer xj ∈ [0, D− 1]
beep xj +D + 1 time-steps after previous beep sent

end for
beep 2D + 1 time-steps after previous beep sent

The idea of this algorithm is still similar to beep-waves, in that beeps prop-
agate out from the source set one distance layer per time-step. However, these

19

Algorithm 2 DirectedBroadcast(m,D) at non-source u
when u first hears a beep in time-step i, it beeps in time-step i+ 1
loop

if u hears a beep in time-step t then
u beeps in time-step t+ 1
x← number of time-steps since last beep heard
if x ≤ 2D then append x−D − 1 as a bit-string to m(u)
else output m(u)
end if
u becomes deaf until time-step t+D + 1

end if
end loop
output m(u)

waves could interfere with any layer they have already passed at any later time-
step, so the waves cannot be pipelined as before, and we must instead wait D
time-steps for the wave to complete before anything more can be done. This is
the purpose of nodes becoming deaf for D time-steps after relaying a beep; by
this we mean that even if nodes hear beeps, they act as if they did not.

Since we cannot pipeline the waves, we instead use their timing to convey
additional information; the source set must wait at least D + 1 time-steps be-
tween waves, but if we allow it to choose any delay between D + 1 and 2D
then it can use these D options to convey logD bits of the message. In this
way we improve run-time by a factor of logD over the naive approach (of using
beep-waves with D time-steps delay).

Lemma 2. Algorithm 2 performs broadcast from a set of sources S in O(D logM
logD)

time when D is known.

Proof. Similarly to our analysis of Algorithm 1, we divide nodes into layers based
on their distance from the source set, i.e. layer Li := {v ∈ V : mins∈S dist(v, s) =
i}. As before, nodes hear their first beep in time-step i−1, and first beep them-
selves in time-step i.

Let m′ be the bit-string transmitted by the sources, i.e. with m′0 = 1 and 1s
placed at each interval xj , where xj is the integer value of the jth block of logD
message bits, as described. We prove that a node v ∈ Li beeps in time-step t iff
m′t−i = 1, by induction on t.

The base case t = 0 is obvious, since sources beep and non-sources do not,
as required. Indeed, source nodes clearly have the correct behavior in all time-
steps. For the inductive step t = t′, we examine a non-source node v ∈ Li and

20

divide into two cases:
Case 1: m′t′−i = 1, i.e. v should beep. In this case, by the inductive

assumption, in time-step t′ − 1 all nodes in Li−1 beep, including a neighbor of
v, so we need only show that v is not deaf at this time. This is the case, since,
again by the inductive assumption, v became deaf the last time it beeped (at
time-step t̃ := t′ − 1− xj for appropriate j), and no nodes in layers L≥i−1 have
beeped between time-step t̃+D and t′ − 2.

Case 2: m′t′−i = 0, i.e. v should not beep. If v has beeped since time-step
t′ − (D + 1) steps then it will be deaf and will not beep. Otherwise, the last
time-step in which v beeped (again denoted t̃ := t′ − 1 − xj for appropriate j)
satisfies t̃ < t′ − (D+ 1), in which case by the inductive assumption no node in
layers L≥i−1 beep in time-step t′ − 1, so v is silent in time-step t′ as required.

Having proven that the beeping behavior of each node is as expected, it is
easy to see that nodes can correctly reconstruct the intervals xj and therefore
the messagem from their beeping pattern. Furthermore, all nodes cease beeping
after at most D + 2D logM

logD = O(D logM
logD) time-steps.

This algorithm requires knowledge of D. However, it is easy to see that this
assumption can be removed by using a doubling technique. Since nodes know
their distance from the source after receiving their first beep, we can have them
partition themselves into groups based on an exponentially increasing distance
range, i.e., group i consists of nodes of distance between 2i and 2i+1 from the
source. Then, we simply perform the algorithm in sequence for each group, with
the closest distance layer in the group as the source set and the width of the
group as the value for D.

Theorem 3. There is an algorithm which performs broadcasting in a directed
network in the beep model in O(D logM

logD) time, without knowledge of network
parameters.

Proof. Consider an application of Algorithm 2 to a group i (of width 2i) as
described above. Every beep propagated through the group informs the nodes
of log 2i = i bits of the message, so after logM

i rounds broadcast is completed
within the group. Each round takes at most 2i+1 time-steps, so the total time to
broadcast within the group is O(2i logM

i). Therefore broadcasting is completed

in the whole network within O

(logD∑
i=1

2i logM
i

)
time. This can be bounded as

follows:

21

logD∑
i=1

2i logM
i

≤ logM

 logD
2∑
i=1

2i

i
+

logD∑
i= logD

2

2i

i

≤ logM

 logD
2∑
i=1

2i + 2
logD∑
i= logD

2

2i

logD

≤ logM

(
2
√
D + 4D

logD

)
= O

(
D logM

logD

)
.

3.4 Multi-Broadcast

In this section we present our algorithms for the more complex task of multi-
broadcast, in undirected networks.

3.4.1 Auxiliary Tasks

Our multi-broadcast algorithms will have a modular structure, i.e. we will use
several sub-procedures to solve simpler tasks. We detail these tasks, and the
algorithms we will use to solve them:

Broadcasting

The multi-broadcasting algorithms we present will, as one might expect, use
single-source broadcasting as a sub-routine, and for this we can make use of
Beep-Wave (Algorithm 1). Since we must perform several broadcasts with
several different messages, however, we must take care to ensure that these are
distinguishable. This can be done by encoding the message so that it is obvious
when the beginning and end are, for example by duplicating every bit of the
message and then placing 10 at the beginning and end. Note that this coding
method does not increase the asymptotic length, in bits, of the message, and
that we can decode to find the original message(s), even if there are several,
separated by any number of 0s. We will henceforth assume that all source
messages will be encoded in this way.

Algorithm 1 only functions correctly when called with a single source node,
and so we must somehow have the network agree on which node this source
should be. To achieve this agreement, we will use an existing algorithm for
leader election.

22

Leader Election

Leader election enables all nodes to agree on the ID of one particular node to
designate leader. In our applications, we will always choose the node with the
highest ID in the entire network. More generally, though, leader election can
be used on any subset of nodes, whenever each holds some integer value, to find
the participating node with the highest (or lowest) such value. The values need
not even be unique, since if multiple nodes hold the target value, we can pick
out one by performing leader election again on their IDs.

We wish to be able to perform leader election in O(D logL) time. If we
assume parameter knowledge, there is a straightforward way to do this: we can
perform a binary search for the highest ID, iterating through the bits of the IDs
and having all nodes who are still “in the running” for leader, and who have a 1
in the current position, broadcast. While we cannot use our previous broadcast
procedure with multiple sources, since these nodes need only transmit a single
bit we can still use beep-waves to ensure that the network hears something.
This is sufficient for all nodes to determine whether any have a 1 in the current
position. A similar method to this was used to perform leader election in radio
networks in [14].

Without parameter knowledge, however, the task is much more difficult,
since without estimates of how long broadcasting, for example, will take, we
cannot globally co-ordinate node behavior. Fortunately, one of the few existing
results in the beep model is an algorithm by Förster, Seidel, and Wattenhofer
[26] that achieves this:

Theorem 4. There is an algorithm ElectLeader which performs leader elec-
tion in time O(D logL) without prior knowledge of D or L.

Furthermore, upon completion, all nodes have knowledge of the highest ID,
and can therefore use this as L in future operations.

To perform further tasks after leader election, we require that nodes should
know that leader election is complete and that the next stage should begin.
While the leader election algorithm [26] does not immediately allow all nodes
to agree on a time-step when this is the case, it does provide the property that
the leader is aware of a time-step t = O(D logL) for which all nodes at distance
i from the leader have finished leader election by time-step t + i. That is, a
procedure commencing with a beep wave from the leader at time-step t will
execute successfully. The procedure for diameter estimation we now describe
has precisely this property.

23

Diameter Estimation

Our model assumes that nodes do not have access to any of the network param-
eters. In algorithms for complex tasks, we generally wish to start with a leader
election phase, and this provides all nodes with knowledge of L. However, if
we also wish to know the value of D, we must perform an extra task for this
purpose.

Our diameter estimation procedure (Algorithm 3) works as follows: we take
as input a leader node to co-ordinate the process. An initial beep from the leader
propagates through the network. Having received this beep, nodes beep to ac-
knowledge their existence back to the leader; a modularity restriction on when
nodes can transmit ensures that these beeps only travel backwards through the
layers. While the initial beep from the leader is still reaching further nodes,
acknowledgment beeps will continue to return through the network every three
time-steps. Once all nodes have been reached, this pattern will cease, and the
leader will know the distance of the furthest node, and hence a 2-approximation
of diameter. All of the other nodes have also ceased transmission, and so an
application of Beep-Wave can safely be used to broadcast the diameter esti-
mate.

We split the algorithm into two parts, one performed by the leader, and one
performed by all non-leader nodes, since their behavior is quite different.

Algorithm 3 EstimateDiameter(v) at leader v
v beeps in time-step 2
let t be the first time-step (greater than 3) in which v has not received a beep

for 3 previous time-steps
let D̃ = 2t−8

3
perform Beep-Wave(v, D̃)
output D̃

Algorithm 3 EstimateDiameter(v) at non-leader u
let j be the first time-step in which u receives a beep
u beeps in time-step j + 2
while u has heard a beep in the last 3 time-steps do

any beep u hears in a time-step equivalent to j + 1 mod 3,
it relays in the next time-step

end while
D̃ ← Beep-Wave(v, D̃)
output D̃

24

Lemma 5. EstimateDiameter correctly broadcasts an estimate D̃ satisfying
D ≤ D̃ ≤ 2D, and terminates within O(D) time-steps.

Proof. The first part of the algorithm, in which the leader v beeps in time-
step 2 and other nodes relay beeps after two steps, is effectively a beep wave
propagating outwards from the leader one hop per two time-steps. It is easy to
see that a node at distance i from the leader receives its first beep in time-step
2i, and so sets j = 2i. Furthermore, any node in of distance i + 1 receives
its first beep in time-step 2i + 2, and subsequently beeps itself in time-step
2i + 4 ≡ 2i + 1 mod 3. This meets the modularity requirement for a node
at distance i to relay the beep in the next time-step. Indeed, in general, the
modularity requirement ensures that nodes always relay beeps received from the
nodes 1 hop further from the leader, and never relay beeps from nodes 1 hop
nearer, or the same distance. So, the effect is that a beep wave is sent back to
the leader, every three time-steps, by nodes as they are reached by the initial
wave.

When the leader no longer receives these beep waves (i.e. as soon as 3
consecutive time-steps occur with no beep heard), it can conclude that all nodes
have been reached by the initial beep-wave and have sent a beep-wave back.

Let D′ be the distance from the leader to some the furthest node u. Then,
D ≤ 2D′ ≤ 2D. The leader emits a beep in time-step 2 which travels to this
furthest node in time-step 2D′. Node u then beeps in time-step 2D′ + 2, and
this beep is relayed back to the leader in time-step 3D′ + 1. After another
3 time-steps, the leader knows that it has received the final acknowledgment
beep, and sets t = 3D′ + 4, making its diameter estimate D̃ = 2D′. Hence, as
required, D ≤ D̃ ≤ 2D.

To analyze running time, notice that the leader v reaches its estimate D̃ in
3D′ + 4 = O(D) time-steps, and the final beep-wave of this value takes also
takes O(D + logD) = O(D) time.

Since we are only interested in asymptotic behavior, we will assume, for
ease of notation, that having performed EstimateDiameter as part of a more
complex algorithm we can then make use of the exact value of D. Furthermore,
once leader election and diameter estimation are performed, all nodes have
common linear estimates of D and L and so can agree on a time-step in which
both tasks are complete and further procedures can commence.

25

Message Collection

We next introduce a sub-procedure (Algorithm 4) which will allow the leader to
collect messagesm(S) from a set of sources S, receiving an OR-superimposition
of all the messages. This works similarly to the usual beep-waves procedure,
except that nodes use their distance from the leader (inferred by the time taken
to receive the initial Beep-Wave(v,1)) to ensure that the waves only travel
towards the source, and all messages arrive at the same time. We must have
an input parameter p giving an upper bound on the length of messages, so
that nodes know when the procedure is finished, and we assume that we have
already performed EstimateDiameter and so can make use of D. We denote
by dist(u) the distance from u to the leader node v, which can be determined
during an application Beep-Wave(v,1).

Algorithm 4 CollectMessages(v, S,m(S), p) at node u
perform Beep-Wave(v,1)
for j = 0 to p do

if m(u)j = 1 or u hears a beep in time-step D − dist(u) + 3j − 1 then
u beeps in time-step D − dist(u) + 3j
if u = v then bit m(u)(j−D)/3 ← 1

end if
end for
output m(v)

Lemma 6. CollectMessages(v, S,m(S), p) correctly informs v of the OR-
superimposition of m(S) within O(D + p) time-steps

Proof. It is clear that (excluding the initial beep wave) a node u at distance
dist(u) from the leader v only ever beeps in time steps equivalent to D −
dist(u) mod 3. Furthermore, nodes only relay beeps they hear in time-steps
equivalent to D − dist(u) − 1 = D − (dist(u) + 1) mod 3, i.e. they only relay
beeps from nodes one hop further than them from the leader. So, if any source
node s has m(s)j = 1 for some j, it beeps in time-step D − dist(u) + 3j, and
this is relayed back to the leader one distance-hop per time-step. The leader v
beeps in time-step D−dist(u) + 3j+dist(u) = D+ 3j, and hence correctly sets
m(v)j = 1.

The running time for the initial beep wave is D steps, and for the loop is
3p+D. So, total running time is O(D + p).

26

Message Length Determination

One issue with using CollectMessages is the necessity of prior knowledge of
a common upper bound on message size. We give a simple method of obtaining
this bound (Algorithm 5).

We perform CollectMessages using strings which are as long as the mes-
sages we actually want to collect, but consist of entirely 1s. The superimposition
of these strings is a 1-string of equal length to the longest message. Since the
leader will be able to tell that this string has ended when it hears the sub-
string 10, the procedure can be terminated even without an upper bound for
the CollectMessages call.

Algorithm 5 GetMessageLength(v, S,m(S))
perform p← CollectMessages(v, S,1m(S),∞), terminating

when v hears the substring 10
perform Beep-Wave(v, |p|)
output |p|

Lemma 7. GetMessageLength(v, S,m(S)) correctly informs all nodes of
q = maxs∈S |m(s)| within O(D + q) time-steps

Proof. CollectMessages will terminate after D + 3q steps, since v will hear
the final 1 and then a 0. All other nodes will be inactive and so Beep-
Wave(v, |p|) will successfully inform the network of q (nodes will be aware
that the CollectMessages phase is over and so perform Beep-Wave cor-
rectly, since they either heard a string of contiguous 1s and then a 0 during
CollectMessages, or silence for more than D time-steps).

Running time is O(D + q) for CollectMessages and O(D + log q) for
Beep-Wave, giving O(D + q) total.

3.4.2 Explicit Multi-Broadcast Algorithms

We are now ready to combine these sub-procedure to perform multi-broadcast.
Recall that we consider two variants of the problem: multi-broadcast with prove-
nance, where the network must become aware of all (source ID, source message)
pairs, andmulti-broadcast without provenance, where the IDs need not be known.

27

Multi-Broadcast With Provenance

We first present an algorithm for multi-broadcast with provenance, where all
nodes must be made aware of not only the source messages, but also the IDs of
the sources they originated from.

The idea of the algorithm is essentially to conduct k simultaneous binary
searches to allow a leader to ascertain the IDs of all sources. The process
consists of logL rounds, one for each bit of the IDs. Each node will maintain a
list of known prefixes of source IDs, and we aim to preserve the invariant that,
after round i, all nodes know the first i bits of every source ID. We denote the
number of distinct known prefixes at the start of round i by ki.

At the start of round i, sources know ki distinct i− 1-bit ID prefixes (note
ki may be less than k, since some IDs may share prefixes), and they will each
construct a 2ki-bit string in which each bit corresponds to a particular i-bit
prefix. Specifically, if we denote the known prefixes in lexicographical order by
(p1, p2, . . . , pki), then bit 2j in the new string will represent the prefix pj0, and
bit 2j+ 1 will represent pj1. Each source constructs its string by placing a 1 in
the position corresponding to its own ID’s i-bit prefix, and 0 in all others. We
will denote the string constructed in this manner by source s in round i by Zs,i.

Performing CollectMessages with these strings ensures that the leader
receives the OR-superimposition, which informs it of all i-bit prefixes of source
IDs (since it is aware of which prefix each position corresponds to). It then
broadcasts this back out to the network via the standard beep wave procedure,
and thus the invariant is fulfilled round i. After logL rounds, the IDs of all
sources are known in entirety by all nodes. We then perform one final Col-
lectMessages procedure, this time to collate all of the messages the sources
wish to broadcast to the network. We construct a k logM -bit string in which
the jth block of logM bits corresponds to the message of the jth source (in lexi-
cographical order of ID). Each source individually fills in its own message in the
appropriate block, leaving all other bits as 0. We denote the string constructed
in this manner by source s as m̃s. Performing CollectMessages on these
strings ensures that the full string of messages arrives at the leader, who then
broadcasts it back out to the network.

Theorem 8. Multi-Broadcast With Provenance(S,m(S)) correctly per-
forms multi-broadcast with provenance within O(k log LM

k +D logL) time-steps.

Proof. The three sub-procedure calls in the initial ‘set-up’ phase take a total of

28

Algorithm 6 Multi-Broadcast With Provenance(S,m(S))
v ← ElectLeader
D ← EstimateDiameter(v)
logM ← GetMessageLength(v, S,m(S))
for i = 1 to logL do

Zi ← CollectMessages(v, S, ZS,i, 2ki)
perform Beep-Wave(v, Zi)

end for
m̃← CollectMessages(v, S, m̃S , k · logM)
perform Beep-Wave(v, m̃)

O(D logL+ logM) time-steps, and provide a leader node and knowledge of D
and logM .

Round i of the main loop of the algorithm takes O(D + ki) time, since it
consists of performing CollectMessages on strings of length O(ki), and then
Beep-Wave on a string of the same length. Furthermore, since the number of
known prefixes at most doubles each round, ki ≤ 2i−1. Hence, there exists some
constant c such that total time for the loop is bounded by:

logL∑
i=1

c(D + ki) = cD logL+ c

log k∑
i=1

ki +
logL∑

i=log k+1
ki

≤ cD logL+ c

log k∑
i=1

2i−1 +
logL∑

i=log k+1
k

≤ cD logL+ c(k + k(logL− log k)) = O(D logL+ k log L

k
) .

The final call to CollectMessages then takes a further O(D + k logM)
time, and so total running time is O(D logL+k log L

k +k logM) = O(k log LM
k +

D logL)
Correctness follows since each round of the loop informs the leader of the next

bit in each ID prefix, and it then broadcasts this information to the network.
After logL rounds, all nodes know all source IDs and each source s can correctly
construct its string m̃s. The OR-superimposition of these strings, broadcast to
all nodes, is a list of messages in source ID order, which fulfills the goal of the
algorithm.

29

Multi-Broadcast Without Provenance

It may be the case that we do not need to know where messages originated from,
or the number of duplicate messages; for example when using short control
messages instructing all nodes to perform some action, for which provenance
might be irrelevant. For this reason, we also study the variant of multi-broadcast
where nodes need only know one copy of each unique source message, and no
source IDs.

The main difference in concept for our multi-broadcast without provenance
algorithm (Algorithm 7) is that the concurrent binary searches are performed
on the bits of the source messages rather than the IDs. However, this requires
O(D logM) time, which is too slow when k < D and L < M , and so we first
run Algorithm 6, curtailing it when our number ki of known ID prefixes (which
is a lower bound for k) exceeds D, in order to efficiently deal with these cases.

If k ≤ D then the call to algorithm 6 will complete multi-broadcast (meet-
ing the requirements for the case without provenance, since they are strictly
weaker than those with provenance). Otherwise, we move onto performing bi-
nary searches on the bits of the message. This functions in much the same way
as in Algorithm 6, except that we do not need the final CollectMessages
and Beep-Wave stage since the network is already aware of all source mes-
sages upon completion of the main loop. We will use k̃i to denote the number
of i − 1-bit message prefixes known to nodes at the start of round i of the for
loop, and Z̃s,i to be the string constructed by source s in round i by placing a
1 in the position corresponding to the i-bit prefix of its message and 0 in all
others.

Algorithm 7 Multi-Broadcast Without Provenance(S,m(S))
perform Multi-Broadcast With Provenance(S,m(S)) until ki > D
if it did not complete then

for i = 1 to logM do
Z̃i ← CollectMessages(v, S, Z̃S,i, 2k̃i)
perform Beep-Wave(v, Z̃i)

end for
end if

Theorem 9. Multi-Broadcast Without Provenance(S,m(S)) correctly
performs multi-broadcast without provenance within O(k log M

k +D logL) time-
steps if k < M , and O(M +D logL) time-steps if k ≥M .

30

Proof. By the same argument as for Theorem 6, each round of the main loop
informs all nodes of the next bit in each message prefix. Therefore, after logM
rounds we have performed multi-broadcast without provenance.

We separate the running-time proof into four cases:

(1) k ≤ D and k < M ;

(2) k ≤ D and k ≥M ;

(3) k > D and k < M ;

(4) k > D and k ≥M .

Case 1: k ≤ D and k < M . For the k ≤ D case, the number of unique i-
bit source ID prefixes ki will never exceed D (since it is bounded above
by k), and so the all to Multi-Broadcast With Provenance will
successfully perform multi-broadcast (with provenance, and therefore also
without) in O(k log LM

k + D logL) = O(k logL + k log M
k + D logL) =

O(k log M
k +D logL) time-steps.

Case 2: k ≤ D and k ≥M . As above, the call to Multi-Broadcast With
Provenance will successfully perform multi-broadcast in O(k log LM

k +
D logL) = O(k logL+D logL) = O(D logL) time-steps.

Case 3: k > D and k < M . Since k > D, the call will not complete multi-
broadcast, but its “set-up” phase will provide a leader v and knowledge
of D and logM , so these steps are not duplicated in our description of
Algorithm 7. Each round of the main loop then informs every node of the
next bit in each unique message prefix, and so after logM rounds we are
done.

Let t be the round of the loop at which the call to Multi-Broadcast
With Provenance terminates. Running time for the call is then bounded
above (for some constant c) by

cD logL+
t∑
i=1

c(D + ki) ≤ cD logL+
t∑
i=1

2cD

≤ cD logL+
logL∑
i=1

2cD

= 3cD logL = O(D logL) ,

31

where the first inequality is due to the fact that ki ≤ D until termination.

Running time for the main loop of Algorithm 7 is bounded above (again
for some constant c) by:

logM∑
i=1

c(D + k̃i) = cD logM + c

log k∑
i=1

k̃i +
logM∑

i=log k+1
k̃i

≤ cD logM + c

log k∑
i=1

2i−1 +
logM∑

i=log k+1
k

≤ cD logM + c(k + k(logM − log k))

= O(D logM + k log M
k

) .

Total time is therefore

O(D logL+D logM + k log M
k

) = O(D logL+D log M
k

+D log k + k log M
k

)

= O(k log M
k

+D logL) ,

where the last expression holds since D log k ≤ D logL and D log M
k ≤

k log M
k .

Case 4: k > D and k ≥M . The call to Multi-Broadcast With Prove-
nance will fail and take O(D logL) time as before. Running time for the
main loop of Algorithm 7 is now bounded by:

logM∑
i=1

c(D + k̃i) = cD logM + c

logM∑
i=1

k̃i ≤ cD logM + c

logM∑
i=1

2i−1

≤ cD logM + cM = O(D logM +M) .

Since M ≤ k ≤ L, total running time is O(M +D logL).

Combining cases: When M > k total running time is O(k log M
k +D logL),

and when M ≤ k, total running time is O(M +D logL).

It may seem nonintuitive that Algorithm 7 achieves multi-broadcast in fewer
then the k logM time-steps required for a single node to directly transmit or

32

hear the messages, since this might seem to be a natural lower bound. The
improvement stems from implicit compression of the messages within the algo-
rithm’s method.

3.4.3 Faster Non-Explicit Multi-Broadcast

A very recent result by Dufoulon, Burman, and Beauquier [24] improves the run-
ning time for leader election in the beep model to an optimal O(D+logL). This
allows them to slightly improve the running time of our explicit multi-broadcast
with provenance algorithm (Algorithm 6) to O(k log LM

k + Dmin{k, logL}).
However, it does not directly lead to significantly faster algorithms, because
leader election was not a bottleneck in our analysis. In this section, we show how
to exploit this improved leader election procedure to attain an optimal algorithm
for multi-broadcast with provenance, and near-optimal for multi-broadcasting
without provenance.

We take a different approach from Algorithms 6 and 7, using a new type of
superimposed code to collect information. A superimposed code is a function
which maps each element of its domain to a unique binary codeword, in such
a way that information can be inferred from the binary OR-superimposition of
a set of codewords. In our case, we define a (k,X)-choice superimposed code
which guarantees that, given the superimposition of any k codewords, there are
at most O(k) codewords that could have been included in the superimposition
(because all of the others have a 1 where the superimposition has a 0).

We will say one binary string a is dominated by another string b (denoted
a � b) if ai ≤ bi∀i. Our goal now is to show that any superimposition of k
codewords dominates at most O(k) others.

Definition 10. A (k,X)-choice superimposed code of length ` is an in-
jective function C : X → {0, 1}` such that for every set K ⊆ X with |K| := k,
the size of the set Y = {u ∈ X : C(u) �

∨
v∈K C(v)} is at most 9k.

This set Y is the set of all codewords dominated by the superimposition.
Note that while the definition specifies superimpositions of exactly k codewords,
the set Y is also size O(k) for any superimposition of fewer than k codewords,
since these can be arbitrarily extended to k codewords without reducing the size
of Y .

Lemma 11. For any k,X with k ≤ |X|, there exists a (k,X)-choice superim-
posed code of length 9k ln |X|k .

33

Proof. This is the first example we will see of a proof of existence by the prob-
abilistic method, which will be very useful to us later in Chapter 4. The idea
is that we prove the existence of some combinatorial object by randomly gener-
ating a candidate object, and then proving that it satisfies the required criteria
with positive probability. Then, some such object must exist. The downside of
this type of argument is that it is existential, i.e. does not tell us how to con-
struct the object, and so algorithms making use of the object are non-explicit.

Let x = |X|. We randomly generate a candidate code C : X → {0, 1}`, by
choosing each bit of each code-word independently to be:

• 1 with probability 1
2k and 0 otherwise, for the first 6k ln x

k bits.

• 1 with probability 1
2 and 0 otherwise, for the last 3k ln x

k bits.

The last 3k ln x
k ≥ 3 ln x bits are solely to ensure that no two code-words are

the same (i.e. C is injective as required), which is the case since the probability
that two particular codewords agree on those bits is at most (1

2)3 ln x ≤ x−2.07.
Taking a union bound over all

(
x
2
)
≤ 1

2x
2 pairs of codewords, the probability

that any two are the same is at most 1
2x

2 · x−2.07 ≤ 1
2 .

For the rest of our analysis we consider only the first 6k ln x
k bits. Fix some

subset K ⊆ X of size k. Clearly for all u ∈ K, C(u) �
∨
v∈K C(v). The

probability that any particular bit
∨
v∈K C(v)i is 0 is at least

∏
v∈K

Pr [C(v)i = 0] ≥
∏
v∈K

(1− 1
2k) ≥

∏
v∈K

4− 1
2k = 4− k

2k = 1
2 .

We can then show that any codeword not inK is unlikely to be dominated by
K’s superimposition. For any u /∈ K, the probability that C(u) �

∨
v∈K C(v)

is at most

∏
i∈[`]

Pr
[
¬

(
C(u)i = 1 ∧

∨
v∈K

C(v)i = 0
)]
≤
∏
i∈[`]

(1− (1
2k ·

1
2))

≤
∏
i∈[`]

e
−1
4k = e

−`
4k

So, the probability that |Y \K| ≥ 8k (i.e. |Y | ≥ 9k) is at most:(
X

8k

)
(e
−`
4k)8k ≤

(ex
8k

)8k
e−2` ≤ e8k ln x

k−2` ≤ e−4k ln x
k

34

There are at most
(
x
k

)
≤ e2 ln x

k possible sets K, and by a union bound over
all of them, the probability some set K does not satisfy the condition is at most
e−2k ln x

k . By another union bound, the probability that the codewords are not
unique or the condition is not satisfied is at most e−2k ln x

k + 1
2 < 1. Since there

is a non-zero probability that C is a valid (k,X)-choice superimposed code, such
a code must exist.

We now describe how choice superimposed codes can be used for multi-
broadcast, in Algorithm 8.

We perform the same ‘set-up’ phase as in Algorithms 6 and 7, electing a
leader and obtaining knowledge of diameter D and message length logM . Using
the leader election algorithm of [24], though, this only requires O(D + logL +
logM) time.

Next, we repeatedly perform rounds in which we attempt to collect the source
messages, encoded using choice superimposed codes. The rounds have a param-
eter j which doubles each time, starting at a value such that j log M

j = D (since
the rounds will have running time Θ(D+j log M

j), and we wish to start with the
two factors equal). For each round, let Cj be a (j, [M])-choice superimposed code
of length 9j ln M

j . We perform CollectMessages(v, S, Cj(m(S)), 9j ln M
j)

and broadcast the resulting string using Beep-Wave. By the properties of
choice superimposed codes, if we have j ≥ k, then the size of the set Y of
dominated codewords is at most 9j.

When this is the case, we proceed to a final call of CollectMessages.
Each source node creates a string m̃S of length |Y |, where the bth bit of the
string corresponds to the bth codeword in Y (in lexicographical order). It sets
the bit corresponding to the codeword it used for its message to 1, and all others
to 0. CollectMessages, performed on these strings and re-broadcast, then
informs all nodes of the codewords (and hence the source messages) in use.

Theorem 12. Algorithm 8 correctly performs multi-broadcast without prove-
nance within O(k log M

k +D+logL) time-steps if k < M , and O(M+D+logL)
time-steps if k ≥M .

Proof. The three sub-procedure calls in initial “set-up” phase take a total of
O(D + logL + logM) time-steps, and provide a leader node and knowledge of
D and logM .

A round of the algorithm’s loop with parameter j takes O(D + j log M
j)

time, since it consists of performing CollectMessages on strings of length

35

Algorithm 8 Non-Explicit Multi-Broadcast(S,m(S))
v ← ElectLeader
D ← EstimateDiameter(v)
logM ← GetMessageLength(v, S,m(S))
Let j satisfy j log M

j = D
repeat

Zj ← CollectMessages(v, S, Cj(m(S)), 9j ln M
j)

perform Beep-Wave(v, Zj)
i← |Y |
j ← 2j

until i ≤ 9j
m̃← CollectMessages(v, S, m̃S , i)
perform Beep-Wave(v, m̃)

O(j log M
j), and then Beep-Wave on a string of the same length. The loop

terminates when j ≤ k (assuming k ≤ M
2 ; if k ≥ M

2 it terminates when j ≤ M
2 ,

since |Y | ≤M).
Let j′ be the initial value of j, i.e. j′ log M

j′ = D.
We analyze running time of the loop and final CollectMessages call,

separating into three cases:

(1) j′ ≥ min k, M2 ;

(2) j′ ≤ k < M
2 ;

(3) j′ ≤ M
2 ≤ k;

Case 1: j′ ≥ min k, M2 . The loop terminates after the first round, takingO(j′ log M
j′) =

O(D) time. The final CollectMessages call takes O(j′) = O(D) time.

Case 2: j′ ≤ k < M
2 . Total running time of the loop is at most

c

log k∑
q=log j′

(
D + 2q log M2q

)
≤ c(D log k

j′
+

log k∑
q=1

(2q logM − q2q))

≤ c(j′ log M
j′

log k

j′
+ 2log k+1 logM − (log k − 1)2log k+1)

≤ c(k log M
k

+ log 2M
k

2log k+1)

≤ 5ck log M
k

,

for some constant c.

36

The final CollectMessages call takes O(k) time.

Case 3: j′ ≤ M
2 ≤ k. Total running time of the loop is at most

c

log M
2∑

q=log j′

(
D + 2q log M2q

)
≤ c(D log M

2j′ +
log M

2∑
q=1

(2q logM − q2q))

≤ c(j′ log M
j′

log M

2j′ + 2logM logM − (logM − 2)2logM)

≤ c(M2 + 2M)

≤ 3cM ,

for some constant c.

The final CollectMessages call takes O(M) time.

Combining these cases, we can see that Algorithm 8 performs multi-broadcast
without provenance within O(k log M

k + D + logL) time-steps if k < M
2 , and

O(M +D + logL) time-steps if k ≥ M
2 .

We can use the same algorithm to perform multi-broadcast with provenance,
simply by having each node v append its ID to its source message m(v). Then,
messages are drawn from the set [L]× [M] of size LM . Replacing M by LM in
the statement and proof of Theorem 12 gives the following:

Theorem 13. Algorithm 8 correctly performs multi-broadcast with provenance
within O(k log LM

k +D) time-steps.

3.5 Lower Bounds

In this section we give lower bounds for the main communications tasks we
have considered: broadcasting (in undirected and directed networks) and multi-
broadcast. All of these lower bounds follow a similar approach: given n, D, L,
M , and for multi-broadcasting k, we first fix a network N with n nodes and
diameter D. Then, we specify a distribution of input instances by choosing
uniformly at random the identifier assignment ID (from the set of all injec-
tive functions [n] → [L]). Since we prove lower bounds against randomized
algorithms, we will also assume that nodes have as input a random string y

drawn independently from some distribution Y . Finally, we choose the input

37

message(s) m at random. The distribution we will choose from depends upon
the task for which we give a lower bound:

• For broadcasting we choose a single message m uniformly at random from
[M];

• For multi-broadcasting without provenance we uniformly choose a size-k
subset of messages from [M], which we will denote by m ∈

([M]
k

)
;

• For multi-broadcasting with provenance we instead drawm from the prod-
uct of k independent (possibly non-unique) messages with a size-k subset
of IDs, i.e. m ∈ [M]k ×

([L]
k

)
. Source nodes use these IDs rather than

those specified previously.

To encode node behavior, we will denote by P vt ∈ {B,L} the behavior of a
node v at a time-step t, where B means that v beeps, and L that it listens. We
further denote P v≤t the sequence of v’s behavior up to time-step t. We will also
need to model what v would hear upon listening, which we denote Qvt ∈ {H,S},
where H means that v would hear a beep (i.e. has a neighbor u with Put = B),
and S that it would hear silence. Likewise, we denote Qv≤t := {Qvt′}t′≤t.

We then note that v’s output after time-step t must depend entirely on
ID(v), y, Qv≤t, and if v is a source, mv. Our goal now will be to show that if
insufficient time has passed, the probability that a node v’s output is correct will
be o(1). We do this by arguing that ID(v) and y are independent of v’s correct
output, and that Qv≤t provides insufficient information to reliably recover this
output.

3.5.1 Undirected Networks

We will first show lower bound for broadcasting and multi-broadcast in undi-
rected networks. The bound for broadcasting will be derived as a special case of
the multi-broadcasting bound, so we begin with multi-broadcast without prove-
nance.

The network N we will use as a lower bound is the following: we place one
node in each layer 1 to D, and all other nodes in layer 0. An edge will be
present between nodes u and v if they are in consecutive layers, i.e. |layer(u)−
layer(v)| = 1. (Note that we assume here that n − D ≥ k, but since we are
concerned with asymptotic results, if this is not the case we can simply use
k′ = k

2 and D′ = D
2 instead.)

38

As described above, we choose uniformly at random y ∈ Y , ID ∈ [n]→ [L],
and m ∈

([M]
k

)
to generate our input distribution.

We show a lemma which states effectively that a node further than t steps
from the source nodes cannot receive any information about source messages
before time-step t:

Lemma 14. For a time-step t, and for a node v in layer i with i > t, P v≤t is
independent of m.

Proof. We prove the claim by induction on t. Trivially it is true when t = 1,
since any node v in layer i > 0 is not a source, and P v0 is determined based only
on ID(v) and y, which are independent of m.

Assuming the claim is true for t = j, and proving for t = j + 1, for a node
v in layer i > j + 1, P v≤j+1 is dependent entirely on ID(v), y, and Qv≤j . Qv≤j
is dependent only on the values Pu≤j for neighbors u of v, and since these nodes
are in layers at least i − 1 > j, these Pu≤j values are also independent of m by
the inductive assumption.

An easy corollary gives an Ω(D) lower bound:

Corollary 15. Any multi-broadcast algorithm running on N has o(1) success
probability, conditioned on it terminating in fewer than T < D − 1 time-steps.
Asymptotic behavior refers to when M →∞.

Proof. Consider a node v in layer D. The output of v after time-step T must
depend entirely on ID(v), y, and Qv≤T . Qv≤T depends only on Pu≤T for neighbors
u of v, and since these nodes are in layers at least D−1 > T , by Lemma 16 this
is independent of m. So, since m is chosen uniformly from

([M]
k

)
independently

of v’s output, the probability that the output is correct is at most
(
M
k

)−1.

We now show the Ω(k log M
k) term of the lower bound by arguing that if an

algorithm terminates faster than this, Q≤T contains insufficient information to
correctly recover m:

Lemma 16. Any multi-broadcast algorithm running on N has o(1) success prob-
ability, conditioned on it terminating in T ≤ k

2 log M
k time-steps.

Proof. The output of any non-source node v at time-step T must depend entirely
on ID(v), y, and Q≤T . ID(v) and y are independent of m, and Q≤T takes one
of only 2T ≤

(
M
k

) k
2 values.

39

For each m, let qm maximize Pr [OUTPUTv = m|Q≤T = qm]. Note that∑
m∈[M] Pr [OUTPUTv = m|Q≤T = qm] ≤ M

k

k
2 , since each possible value of

Q≤T contributes at most 1 in total. Then,

Pr [OUTPUTv is correct] =
(
M

k

)−1 ∑
m∈([M]

k)
Pr [OUTPUTv = m|m = m]

≤
(
M

k

)−1 ∑
m∈([M]

k)
Pr [OUTPUTv = m|m = m, Q≤T = qm]

≤
(
M

k

)−1(
M

k

) k
2

≤
(
M

k

)−k (
M

k

) k
2

=
(
M

k

)− k2
.

Since these results were proven on the same input distribution, we can com-
bine them:

Theorem 17. For k < M
2 , any multi-broadcast without provenance algorithm

running on N has o(1) success probability, conditioned on it terminating within
1
4 (D + k log M

k) time-steps.

Proof. From Corollary 15 and Lemma 16, an algorithm has o(1) success prob-
ability conditioned on it terminating within max{D − 1, k2 log M

k } ≥
1
4 (D +

k log M
k) time-steps.

With slight adjustments, we can also obtain a lower bound when k ≥ M
2 :

Theorem 18. For k ≥ M
2 , any multi-broadcast without provenance algorithm

running on N has o(1) success probability, conditioned on it terminating within
1
8 (D +M) time-steps.

Proof. We follow the same lines as the proof of Theorem 17, but when specifying
our input distribution we only randomly select messages for k′ = M

2 of the
sources (the rest we can choose arbitrarily, and in fact can assume are known
by all nodes a priori). Then, we reach the same result as Theorem 17 for for
algorithms terminating within 1

4 (D + k′ log M
k′) = D

4 + M
8 time-steps.

We can also easily adapt for multi-broadcast with provenance:

40

Theorem 19. Any multi-broadcast with provenance algorithm running on N

has o(1) success probability, conditioned on it terminating within 1
4 (D+k log LM

k)
time-steps.

Proof. We again follow the same lines as the proof of Theorem 17, but when
specifying our input distribution we now take source inputs to the product of
non-unique messages and unique IDs, i.e. m is drawn uniformly at random
from the set [M]k ×

([L]
k

)
, which has size Mk ·

(
L
k

)
≥
(
LM
k

)k. We can then
show analogously that conditioning on termination within k

2 log LM
k time-steps,

probability of correct output is at most
(
LM
k

)− k2 . The proof that D − 1 time-
steps are required is unchanged. So, an algorithm has o(1) success probability
conditioned on it terminating within max{D− 1, k2 log LM

k } ≥
1
4 (D+ k log LM

k)
time-steps.

An asymptotically optimal lower bound for broadcasting is a special case of
Theorem 17:

Theorem 20. Any broadcasting algorithm running on N has o(1) success prob-
ability, conditioned on it terminating within 1

4 (D + logM) time-steps.

Proof. Follows from Theorem 17, by setting k = 1.

3.5.2 Directed Networks

Next, we show that our algorithm for broadcasting in the directed beep model
is also optimal.

Our network N will be as follows, given parameters n and D, we again divide
the nodes into D + 1 layers; this time layer 0 contains only the source node s,
layers 1 to D − 1 each contain a single non-source node, and layer D contains
all other nodes. Then we let a directed edge (u, v) be present in the network if
layer(u) ≥ layer(v)− 1, with the exception that we do not put edges between
pairs of nodes in layer D. That is, a node has edges to the node in the next
layer, and to all nodes in previous layers.

Consider a fixed broadcasting algorithm running on N for t time-steps. We
will denote variable sets Xi

t to be the set of time-steps at most t in which a node
in layer i beeps and no nodes in later layers do. We now show, in effect, that all
information a node receives about the source message is contained within these
sets:

41

Lemma 21. For time-step t, a layer i, and for any node v in layer j > i, P v≤t
is dependent entirely on ID, y, and Xi

t−1.

Proof. We prove the claim by induction on t. The base case t = 0 is trivially
true, since all non-source nodes’ input in the time-step 0 is included in ID and
y, and so their choice to beep is also fully dependent on these.

For the inductive step, assuming the claim is true for t < t′, we prove for t′.
P v≤t is dependent entirely on ID, y, and Qv≤t′−1. This latter term is dependent
on the value of Pu≤t′−1 for all in-neighbors u of v.

If i < j − 1, these values are dependent entirely on ID, y, and Xi
t′−2 by the

inductive assumption. All information in Xi
t′−2 is contained in Xi

t′−1, so the
claim holds.

If i = j− 1, however, the inductive assumption cannot be applied to Pw≤t′−1,
where w is the in-neighbor of v in layer j − 1. In this case, Pw≤t′−1 can be
determined entirely from Xi

t′−1 and the values Pu≤t′−1 for all nodes u in layers
at least j. By the inductive assumption, these values Pu≤t′−1, are dependent
entirely upon ID, y, and Xi

t′−1, hence so are Pw≤t′−1 and P v≤t′ .

We can node prove our lower bound by arguing that if running time is too
short, these sets Xi

t contain insufficient information to recover m:

Theorem 22. Any algorithm for broadcasting in directed networks which runs
in o(D logM

logD) expected time has o(1) success probability.

Proof. We consider a node v in layer D. Let c ≥ 3 be an arbitrarily large
constant. By Lemma 21, the output of such a node v after T ≤ D logM

c2 logD time-
steps can be expressed as a function of ID, y (both of which independent of m),
and Xi

T−1, for any i < D. We will denote random variable xi = |Xi
T−1|.

For each m ∈ [M], let Xmaxim be the value of Xi
T−1 which maximizes

Pr
[
OUTPUTv = m|Xi

T−1 = Xmaxim,m = m
]

subject to xi ≤ logM
c logD .

There are at most

logM
c logD∑
xi=1

(
T

xi

)
≤ logM
c logD

(
Te

logM
c logD

) logM
c logD

= logM
c logD

(
eD

c

) logM
c logD

≤ 2
logM
c = M

1
c

42

possible values of Xi
t−1 with xi ≤ logM

c logD . Therefore,

∑
m∈[M]

Pr
[
OUTPUTv = m|Xi

T−1 = Xmaxim,m = m, xi ≤ logM
c logD

]
≤M 1

c ,

since each possible value of Xi
T−1 contributes at most 1 in total to the sum.

Then, for any i,

Pr
[
OUTPUTv is correct|xi ≤ logM

c logD

]
≤ 1
M

∑
m∈[M]

Pr
[
OUTPUTv = m|m = m, xi ≤ logM

c logD

]

≤ 1
M

∑
m∈[M]

Pr
[
OUTPUTv = m|Xi

T−1 = Xmaxim,m = m, xi ≤ logM
c logD

]

≤ M
1
c

M
= M

1
c−1 .

Now assume for the sake of contradiction that a broadcasting algorithm
finishes within expected time E [T] ≤ D logM

c2 logD and succeeds with probability

p ≥ 2
c . Then, for all i < D we must have that Pr

[
xi > logM

c logD

]
≥ p−M 1

c−1 > p
2 ,

and so E
[
xi
]
> p logM

2c logD . Since the sets Xi
t are disjoint,

∑
i<D x

i ≤ T , and
therefore

E [T] > pD logM
2c logD = D logM

c2 logD .

This is a contradiction, and so it must be the case that E [T] > D logM
c2 logD .

Since c is arbitrarily large, we have shown that any algorithm with Ω(1) success
probability must take Ω(D logM

logD) expected time, and conversely, any algorithm
taking o(D logM

logD) expected time has o(1) success probability.

3.6 Discussion and Open Problems

Models for networks of very weak devices, such as the beep model, are growing
in popularity as such devices become cheaper and more commercially viable;
examples of their use include sensor networks and RFID tagging. Our aim here
is to provide the first systematic study of algorithms for global tasks in such
a model. Our running times are mostly optimal, with the only major grounds
for improvement being an optimal explicit multi-broadcast algorithm. However,

43

there are several other interesting aspects of the beep model which could merit
further research.

One crucial concern in networks of this type is that energy is often highly
constrained: we may wish to minimize the amount of times nodes transmit (and
possibly even listen; we could introduce a third option of ‘do nothing’ in a time-
step). A study of how little energy is required to complete communication tasks
in the beep model would be interesting.

Another research direction is further weaken the assumptions of the model,
in order to make it as widely applicable as possible. The major assumption
remaining is that time-steps are synchronous, i.e. that nodes local clocks all
‘tick’ at the same rate and beeps are heard immediately. There are several
possible ways of modeling asynchronicity, and exploring what can be done in
asynchronous beeping networks. One work in this direction is [37].

44

Chapter 4

Deterministic Radio
Communication

In this chapter we present deterministic algorithms for broadcasting and wake-
up, in single-hop (multiple access channel) and multi-hop radio networks, with
and without parameter knowledge.

Recall that in the task of wake-up, nodes begin in a dormant state, and some
non-empty subset of nodes spontaneously ‘wake up’ at arbitrary (adversarially
chosen) time-steps. Nodes are also woken up if they receive messages. Nodes
cannot participate (by transmitting) until they are woken up, and our goal is to
ensure that eventually all nodes are awake. We assume nodes have access only
to a local clock: they can count the number of time-steps since they woke up,
but there is no global awareness of an absolute time-step number.

The task of broadcasting is usually described as follows: one node begins with
a message, and it must inform all other nodes of this message via transmissions.
However, to enable our results to transfer from multiple access channels (single-
hop radio networks) to multi-hop radio networks, in this chapter we will instead
use broadcasting to refer to a more generalized task. Our broadcasting task
will be defined similarly to wake-up, with the only difference being that nodes
have access to a global clock, informing them of the absolute time-step number.
(In multiple access channels, this task is usually also referred to as wake-up,
specifying global clock access, but here we will call it broadcasting to better
differentiate.)

Notice that the standard broadcasting task in radio networks is a special case

45

of this task, in which only one node spontaneously wakes up. A global clock
can be simulated by appending the number of the current global time-step to
each transmitted message (and since all message chains originate from the same
source node, these time-step numbers will agree).

4.1 Related Work

We survey the history of the study of deterministic broadcasting and wake-up
in radio networks.

4.1.1 Wake-up.

The wake-up problem (with only local clocks) has been studied in both multi-
ple access channels and multi-hop radio networks (often separately, though the
results usually transfer directly from one to the other). It has been commonly
assumed in the literature that network parameters are known, and that IDs are
small (L = nO(1)).

The first sub-quadratic deterministic wake-up protocol for radio networks
was given in by Chrobak et al. [13], who introduced the concept of radio syn-
chronizers to abstract the essence of the problem. They give an O(n5/3 logn)-
time protocol for the wake-up problem. Since then, there have been several
improvements in running time, making use of the radio synchronizer machin-
ery: firstly to O(n3/2 logn) [7], and then to O(n log2 n) [6]. However, without
the assumption of small labels, all of these running times are increased. The
algorithm of [7] with label size as a parameter would give O(n log2 L) time. All
of these algorithms, like those we present here, are non-explicit.

There has been some work on wake-up in multiple access channels without
knowledge of network parameters: firstly an O(L4 log5 L) algorithm [31], and
then an improvement to O(L3 log3 L) [49]. It was believed that this algorithms
in this setting were necessarily much slower than those for when parameters were
known; for example, [49] states “a crucial assumption is whether the processors
using the shared channel are aware of the total number n of processors sharing
the channel, or some polynomially related upper bound to such number. When
such number n is known, much faster algorithms are possible.”

There are no direct results for wake-up in radio networks with unknown
parameters, but the algorithm of [49] can be applied to give O(nL3 log3 L) time.

46

4.1.2 Broadcasting

The task of broadcasting has been extensively studied for various network mod-
els for many decades. For the most relevant model here, directed radio networks
with unknown structure and without collision detection, the first sub-quadratic
deterministic broadcasting algorithm was proposed by Chlebus et al. [10], who
gave an O(n11/6)-time broadcasting algorithm. After several small improve-
ments [11, 48], Chrobak et al. [14] designed an almost optimal algorithm that
completes the task inO(n log2 n) time, the first to be only a poly-logarithmic fac-
tor away from linear dependency. Kowalski and Pelc [43] improved this bound to
obtain an algorithm of complexity O(n logn logD) and Czumaj and Rytter [23]
gave a broadcasting algorithm running in time O(n log2D). Finally, De Marco
[47] designed an algorithm that completes broadcasting in O(n logn log logn)
time steps. These results approached the best lower bound known, Ω(n logD)
time due to Clementi et al. [15]. Again, however, these results generally assume
small node labels (L = O(n), though some of the earlier results only require
L = O(nc) for some constant c), and their running time results do not hold oth-
erwise. The situation where node labels can be large is less well-studied, though
it is easy to see that the algorithm of [14] still works, requiring O(n log2 L)
time. In undirected networks, broadcast can be performed in O(n logD) time
[42], and in multiple access channels, a O(n log L

n) time algorithm exists [15].
All of these algorithms are, like those presented here, non-explicit.

These results also intrinsically require parameter knowledge. Without knowl-
edge of n, L, or D, the fastest algorithm known is the O(L) time algorithm of
[31] for multiple access channels. This algorithm is explicit, but has the strong
added restriction that the first node wakes up at global time-step 0. It also does
not transfer to multi-hop radio networks, so the best running time therein is the
O(DL3 log3 L) given by the algorithm of [49].

4.1.3 Previous Approaches

Almost all deterministic broadcasting protocols with sub-quadratic complexity
(that is, since [10]) have made use of the concept of selective families (or some
similar variant thereof, such as selectors). These are families of sets for which
one can guarantee that any subset of [n] := {1, 2, . . . , n} below a certain size
has an intersection of size exactly 1 with some member of the family. They
are useful in the context of radio networks because if the members of the fam-
ily are interpreted to be the set of nodes which are allowed to transmit in a

47

particular time-step, then after going through each member, any node with an
active in-neighbor and an in-neighborhood smaller than the size threshold will
be informed. Most of the recent improvements in broadcasting time have been
due to a combination of proving smaller selective families exist, and finding
more efficient ways to apply them (i.e., choosing which size of family to apply
at which time).

One of the drawbacks of selective-family based algorithms is that applying
them requires coordination between nodes. For the problem of broadcast, this
means that nodes cannot alter their behavior based on the time since they
were informed, which might be desirable in order to optimize running time.
For the problem of wake-up, this is even more of a difficulty; since we cannot
assume a global clock, we cannot synchronize node behavior and hence cannot
use selective families at all.

To tackle this issue, Chrobak et al. [13] introduced the concept of radio syn-
chronizers, which they used to design an efficient wake-up algorithm. These are
a development of selective families which allow nodes to begin their behavior
as soon as they are informed, rather than waiting for the start of the next ap-
plication of the selective family. A further extension to universal synchronizers
in [7] allowed effectiveness across all in-neighborhood sizes. The downside of
this new approach is that having nodes begin immediately gives rise to a far
greater number of possible starting-time scenarios that have to be accounted for
during the probabilistic proof, which in turn requires the synchronizers to be
larger. This is the cause of the gap between the O(n log2 n)-time synchronizer-
based wake-up algorithm of [7] and the O(n log2D)-time selective family-based
broadcasting algorithm of [23].

The proofs of existence for selective families and synchronizers follow similar
lines: a probabilistic candidate object is generated by deciding on each element
independently at random with certain carefully chosen probabilities, and then it
is proven that the candidate satisfies the desired properties with positive prob-
ability, and so such an object must exist. The proofs are all non-constructive
(and therefore all resulting algorithms non-explicit; cf. [38, 8] for explicit con-
struction of selective families).

Returning to the problem of broadcasting, a breakthrough came in 2010 with
a paper by De Marco [47] which took an approach inspired by radio synchro-
nizers but adapted to make use of a global clock. As with radio synchronizers,
nodes begin their own transmission patterns immediately upon being informed,
constructed with transmission probabilities that decay over time. These be-

48

havior patterns are collated into a transmission matrix, about which appro-
priate selective properties can be proven. The difference from synchronizers
is that the global clock is used to coordinate behavior within short phases,
within which all nodes’ transmission probabilities decay exponentially. Because
of this, the O(n log2 n) synchronizer running time of [6] could be improved to
O(n logn log logn), which beats the O(n log2D) time algorithm of [23] for net-
works of large diameter.

4.2 Our Results

We present three algorithms in this chapter. The first, Algorithm 11, is
a broadcasting algorithm for the most traditional setting: directed multi-
hop radio networks with parameter knowledge and small node labels. We
achieve O(n logD log logD) running time, improving over the O(n log2D) and
O(n logn log logn) running times of [23, 47] and coming within a log-logarithmic
factor of the Ω(n logD) lower bound.

Our approach can be seen as a compromise between classical selective fam-
ilies and the transmission matrix formulation of De Marco [47]. Rather than
have nodes begin their behavioral patterns immediately (as in the latter), or
wait (possibly up to Θ(n) time) for the start of the next selective family as in
the former, we instead divide time into blocks of size Θ̃(nD), and have nodes
wait until the start of the next block to participate. The block size is sufficiently
small that total time spent waiting does not become a dominant factor, but
sufficiently large that we significantly restrict the set of circumstances we must
account for (which we will call instances), and by doing so improve running
time.

The second and third algorithms are designed for blind networks, in which
nodes have no parameter knowledge. This model presents several new difficul-
ties, since most previous work relies heavily upon nodes being able to base their
behavior on n and D. We show that even in this more restrictive setting effi-
cient communication can be achieved: we show the existence of a broadcasting
algorithm requiring time O(n logL log logn), and a wake-up algorithm requiring
time O(n logL logn

log logn), in both single-hop and multi-hop networks.
These running times match or even improve over the previous fastest algo-

rithms for networks with parameter knowledge: the broadcasting result matches
that of De Marco [47], and the wake-up algorithm surpasses the O(n log2 L) time

49

algorithm of [7].

4.3 Combinatorial Tools

Our communications protocols rely upon the existence of objects with certain
combinatorial properties, and we will separate these more abstract results from
their applications to radio networks. In this section, we will define the combi-
natorial objects we will need. Then, in Sections 4.4–4.5, we will demonstrate in
detail how these combinatorial objects can be used to obtain fast algorithms for
broadcasting and wake-up.

The broad purposes of these combinatorial objects are the same: we define a
collection of all possible circumstances (which we call instances) that we need to
hit (have intersection of size one, corresponding to a successful transmission in
our algorithms) with our combinatorial object. We show that there exists objects
that have this property by the probabilistic method: we randomly generate a
candidate, find a lower bound on the probability that it hits any particular
instance, and then take a union bound over all instances of the probability that
they are not hit. We can then find that with non-zero probability all instances
are hit, so an object hitting all instances must exist.

4.3.1 Selective Families

We begin with a discussion about selective families, whose importance in the
context of broadcasting was first observed by Chlebus et al. [10]. A selective
family is a family U = {U1, U2, . . . , Uh} of subsets of [n] such that every subset
of [n] below a certain size has intersection of size exactly 1 with a member of
the family. For the sake of consistency with successive definitions, rather than
defining the family of subsets, we will instead use the equivalent definition of a
function S : [n]→ {0, 1}h. The correspondence between these two formulations
is that S(v)j = 1 ⇐⇒ v ∈ Uj .

Definition 23. A function S : [n] → {0, 1}h is an (n, k)-selective family of
size h if for any K ⊆ [n] with 1 ≤ |K| ≤ k, there exists j, 1 ≤ j ≤ h, such that∑
v∈K S(v)j = 1. We say that such j hits K.

Our instances in this case are just the subsets K.
The following standard lemma (see, e.g., [15]) posits the existence of (n, k)-

selective families of size O(k log n
k). This has been shown to be asymptotically

50

optimal [15].

Lemma 24 (Small selective families). For any 1 ≤ k ≤ n, there exists an
(n, k)-selective family of size O(k log n

k).

Proof. We wish to randomly generate a random candidate selective family S,
and maximize the probability of it hitting each instance (set K). For each
v ∈ [n], we will choose the bits of S(v) independently at random, but with
different probabilities: since we need to hit sets between sizes 1 and k, we must
choose the probabilities of bits being 1 to be between Θ(1) and Θ(1

k). So, letting
c be a constant to be determined later, we will divide the bits into log k ranges,
for which the ith range contains c2i log n

k bits which are independently 1 with
probability 1

2i and 0 otherwise. Then, the total size h of the selective family is
at most 2ck log n

k .
The purpose of choosing probabilities in this way is that if, for any set K,

the sum over K of the probabilities of S(v)j being 1 is close to constant, then
the probability that exactly one S(v)j is 1 is also close to constant. To formalize
this, we show Lemma 25, variants of which have been used in several previous
works, such as [47].

Lemma 25. Let xv, v ∈ K, be independent {0, 1}-valued random variables
with Pr [xv = 1] ≤ 1

2 , and let f = E
[∑

v∈K xv
]

=
∑
v∈K Pr [xv = 1]. Then

Pr
[∑

v∈K xv = 1
]
≥ f4−f .

Proof.

Pr
[∑
v∈K

xv = 1
]

=
∑
u∈K

Pr [xu = 1 ∧ xv = 0∀v 6= u]

≥
∑
u∈K

Pr [xu = 1] ·Pr [xv = 0∀v]

≥ f ·Pr [xv = 0∀v] = f ·
∏
v∈K

(1−Pr [xv = 1])

≥ f ·
∏
v∈K

4−Pr[xv=1] = f · 4−
∑

v∈K
Pr[xv=1] = f4−f .

Let K be a fixed subset of [n] with size k′ ≤ k, and let j be a fixed column
in the ith range.

∑
v∈K Pr [S(v)j = 1] = k′

2i , so by Lemma 25, the probability
that j hits K is at least k′

2i 4
− k′

2i . Note that when i ≥ log k′, this probability is
at least k′

2i 4
−1 = k′

2i+2 . Since the columns j are all independent, the probability

51

that no column hits K is at most

log k∏
i=1

(
1− k′

2i 4
− k′

2i

)c2i log n
k

≤
log k∏

i=dlog k′e

(
1− k′

2i+2

)c2i log n
k

≤
log k∏

i=dlog k′e

e−
k′c2i log n

k
2i+2

≤ e−
k′ log k

2k′
c log n

k
4

≤ e−
k′c log n

2k′
8

≤ e−
k′c log n

k′
9 .

We now set c = 27, so that Pr [K is not hit] ≤ e−3k′ log n
k′

The number of subsets K of size k′ is
(
n
k′

)
≤ ek

′ log n
k′ . Taking a union bound

over these, the probability that any set K of size k′ is not hit is at most:

ek
′ log n

k′ · e−3k′ log n
k′ = e−2k′ log n

k′

We take another union bound, this time over all values of k′ between 1 and
k. Thus, the probability that any set K is not hit is at most:

k∑
k′=1

e−2k′ log n
k′ < 1

So, there is a non-zero probability that S does indeed hit all K, i.e. meets
the criteria for an (n, k)-selective family of size at most O(k log n

k). Therefore,
such an object must exist.

Application to radio networks

During the course of radio network protocols we can “apply” a selective family S
on an n-node network by having each node v transmit in time-step j if and only
if v has a message it wishes to transmit and S(v)j = 1 (see, e.g., [10, 15]). Some
previous protocols involved nodes starting to transmit immediately if they were
informed of a message during the application of a selective family (or a variant
called a selector designed for such a purpose), but here we will require nodes to

52

wait until the current application is completed before they start participating.
That is, nodes only attempt to transmit their message if they knew it at the
beginning of the current application.

The result of applying an (n, k)-selective family is that any node u which
has between 1 and k active neighbors before the application will be informed of
a message upon its conclusion. This is because there must be some time-step j
which hits the set of u’s active neighbors, and therefore exactly one transmits
in that time-step, so u receives a message. This method of selective family
application in radio networks was first used in [10].

4.3.2 Block Transmission Schedules

Next, we introduce block transmission schedules, which are a new type of combi-
natorial object designed for use in our fast broadcasting algorithm. The major
difference between block transmission schedules and the transmission schedules
of De Marco [47] is that we divide time into blocks of some length B, and say
that nodes only become active (and start transmitting) at the beginning of the
next block after they wake up.

As mentioned, our aim with all of our combinatorial is to hit all possible
instances. We assume that n and D are fixed, and define our instances here.

Definition 26. For k ≤ n, a k-instance X is a set K ⊆ [n], |K| = k, with
activation function ω : K → N satisfying |{v ∈ K : ω(v) ≤ ω(K) + 1}| ≥ n

D .

The activation function ω maps each node to the block in which it becomes
active when our algorithm is run on this instance. This means that the activation
function depends on the algorithm, but there is no circular dependency: whether
nodes become active in time-step j only depends on the algorithm’s behavior in
previous time-steps, and the algorithm’s behavior at time-step j only depends
on the activation function up to j. We will also extend ω to sets of nodes in the
instance by ω(K) := minv∈K ω(v).

The condition |{v ∈ K : ω(v) ≤ ω(K) + 1}| ≥ n
D is because our

block transmission schedules are only designed to inform nodes with active in-
neighborhoods of size at least n

D . We will use selective families to inform smaller
neighborhoods, and will take less than B time to do so. So, the instances we
need to cover with our block transmission schedules are those that contain at
least n

D active nodes within the first B time-steps, and so fail to be informed
by selective family.

53

Having defined our instances, we can now explain the reason for introducing
the blocks: since we only care about the block in which nodes become active,
rather than the exact time-step, we will be able to significantly cut down the
number of instances we must consider.

We now define block transmission schedules:

Definition 27. For a function h : [n] → N, an (n,D)-block transmission
schedule of delay h is a function T : [n] → {0, 1}h(n) such that for any k-
instance, there is some time-step j ≤ Bω(K)+h(k) with

∑
v∈K T (v)j−Bω(v) =

1.

Node v will refer to entry T (v)j−Bω(v) to determine whether to transmit in
time-step j. Then, for any set of nodes K with n

D ≤ k, some nodes in the set
first become active at time-step Bω(K), and so an (n,D)-block transmission
schedule ensures that one node transmits alone within the next h(k) time-steps.

Existence of small block transmission schedules

We will show the existence of small block transmission schedules in the following
theorem.

Theorem 28. There exists an (n,D)-block transmission schedule of delay
h, where h(k) = O(k logD log logD).

We will prove the existence of a small block transmission schedules by ran-
domly generating a candidate T , and proving that it indeed has the required
properties with positive probability.

Let c be a constant to be chosen later. Let z = 2 log logD be the phase
length: within every z-length phase, our construction probabilities will decay
exponentially to allow nodes to correctly ‘guess’ in-neighborhood size. To this
end, let ρ(j) = j mod z, i.e. ρ is a function which tells us how far through its
phase a time-step j is.

We will set our block size B = c nD z logD. Recall that nodes wait until the
next block after waking up to become active. We will set our delay function
h(k) = c2kz logD, which is O(k logD log logD) as claimed in Theorem 28.

Our candidate object T will be generated as follows: for each node v, we
independently choose each entry T (v)i to be 1 with probability

cz logD
(B + i)2ρ(i)+1 .

54

.
Our first step is to cut down the number of k-instances we must consider.

There are
(
n
k

)
possible choices of K, and this cannot be reduced. We can,

however, reduce the number of possible activation functions ω. Fix a basic
time-step j, let Kj be the set of nodes awake by time-step j, and let kj = |Kj |.
We make the following observations:

• We can assume ω(K) = 0, since otherwise we simply subtract ω(K) from
all activation times without affecting node behavior.

• We need only consider instances with j ≤ h(kj) + B ∀j < h(k). This is
because if there is some j < h(k) with j > h(kj) +B, then we can curtail
the k-instance to be a kj-instance consisting only of the nodes in Kj . If
this latter instance is hit within h(kj) time, then the former instance will
also be hit. Note that it is not possible that kj < n

D (which would make
the curtailed instance invalid), because we assumed in Definition 26 that
|{v ∈ K : ω(v) ≤ 1}| ≥ n

D .

Henceforth we consider only curtailed instances with ω(K) = 0.
We would like to have a measure of the expected number of transmissions

in that time-step, with respect to some fixed k-instance. We will call this the
load:

Definition 29. The load f(j) of a time-step j is given by:

f(j) :=
∑
v∈Kj

cz logD
(B + j −Bω(v))2ρ(j)+1 .

Our aim is to ensure that the load is within some constant range as often
as possible, since if the load f(j) is bounded by constants then there is a good
probability that j hits the instance, which we can show using Lemma 25. since

Load is just a sum of independent {0, 1}-valued variables T (v)i, and since
for all nodes v and j ≥ Bω(v) we have

cz logD
(B + j −Bω(v))2ρ(j)+1 ≤

cz logD
2B ≤ 1

2 ,

we can plug in xv = T (v)j−Bω(v) to Lemma 25 and find that the probability of
hitting a k-instance in time-step j is at least f(j)4−f(j).

We bound the load of basic time-steps from below:

55

Lemma 30. All basic time-steps j have f(j) ≥ 1
3c .

Proof. Due to our curtailing of instances, we have j ≤ h(kj) +B. So,

f(j) =
∑
v∈Kj

cz logD
2(B + j −Bω(v))

≥
∑
v∈Kj

cz logD
2(2B + h(kj))

= ckjz logD
2(2cz nD logD + c2kjz logD)

≤ 1
3c (assuming c ≥ 4).

We next examine time-steps at the end of phases, i.e., with j mod z ≡ −1,
and call these ending time-steps. Note that for ending time-steps,

f(j) =
∑
v∈Kj

cz logD
(B + j −Bω(v))2z .

We bound the load of (a constant fraction of) ending time-steps from above:

Lemma 31. Let F denote the set of ending time-steps j such that f(j) ≤ 1.
Then |F| ≥ c2k logD

2 .

Proof. The total load over all ending time-steps can be bounded as follows:

∑
ending timestep j

f(j) ≤
h(k)/z∑
i=1

f(iz − 1) =
c2k logD∑
i=1

f(iz − 1) .

Applying the definition of f , f(iz − 1) is equal to:

∑
v∈Kiz−1

cz logD
(B + iz − 1−Bω(v))2z ,

56

So,

∑
ending timestep j

f(j) ≤
c2k logD∑
i=1

∑
v∈Kiz−1

cz logD
(B + iz − 1−Bω(v))2z

≤ cz logD
2z

∑
v∈K

c2k logD∑
i=1

1
B + iz − 1

≤ ckz logD
log2D

∫ c2k logD

0

di

B + iz − 1

= ckz

logD ·
ln(B + c2zk logD − 1)− ln(B − 1)

z

=
ck ln B+c2zk logD−1

B−1
logD

≤ ck ln 2cD
logD ≤ ck .

Therefore, at most ck ending time-steps have load higher than 1, and so at
least c2k logD − ck ≥ c2k logD

2 ending time-steps have f(j) ≤ 1.

We can use Lemma 31 to show that we have sufficiently many time-steps
with load within the interval [1

3c , 1]:

Lemma 32. Let F be the set of time-steps Bω(K) < j ≤ Bω(K) + h(k) with
1
3c ≤ f(j) ≤ 1. Then |F| ≥ c2k logD

2 .

Proof. It can be seen that load decreases by at most a multiplicative factor of
3 between consecutive time-steps (since the contribution of each node decreases
by at most a factor of 3). So, since every base time-step has load at least 1

3c , for
every ending timestep j with f(j) ≤ 1, there is some j′ in the preceding phase
with 1

3c ≤ f(j′) ≤ 1.

Since these time-steps have constant load, they have constant probability of
hitting:

Lemma 33. For any time-step j ∈ F , the probability that j hits is at least 1
5c .

Proof. By Lemma 25, the probability that j hits is at least f(j)4−f(j). This is
minimized over the range [1

3c , 1] at f(j) = 1
3c and is therefore at least 4−

1
3c

3c ≥
1
5c .

57

We now need to know how many unique (r, k)-instances we must hit. Since
we are only concerned with the first h(k) time-steps after the first node wakes
up, we need only consider (k)-instances which are unique within this time range.

Lemma 34. For any (sufficiently large) k, the number of unique (up to the first
h(k) steps after activation) k-instances is at most 22k logD.

Proof. There are
(
n
k

)
≤ (enk)k possible choices for set K. The number of possible

wake-up functions ω : K → [h(k)/B] for a fixed K is at most (h(k)
B)k = (ckDn)k,

and so the total number of k-instances is at most (enk
ckD
n)k = (ecD)k ≤ 22k logD.

This allows us to use a union bound over all k-instances to show that the
probability that any are not hit is small.

Lemma 35. For any (sufficiently large) k, the probability that T does not hit
all k-instances is at most 2−2k logD.

Proof. Fix some k-instance. The probability that it is not hit within h(k) time-
steps is at most

∏
j∈F

(1− 1
5c) ≤ e−

|F|
5c ≤ e−

ck logD
10 = 2−

ck logD
10 ln 2 .

Hence, if we set c = 14, by a union bound the probability that any k-instance
is not hit is at most 22k logD · 2−

14k logD
10 ln 2 ≤ 2−2k logD .

We can now prove our main theorem on block transmission schedules (The-
orem 28):

Proof. By Lemma 35 and a union bound over k, the probability that T does not
hit all instances is at most

∑n
k= n

D
2−2k logD < 1. Therefore T is an (n,D)-block

transmission schedule of delay h with non-zero probability, so such an object
must exist.

4.3.3 Unbounded Universal Synchronizers

For the task of wake-up in blind radio networks, i.e., in the absence of a global
clock or parameter knowledge, we will define an object called an unbounded
universal synchronizer for use in our algorithm. This will be an infinite
object, in which a node’s behavior depends entirely on its ID and the amount
of time since it woke up.

58

We begin by defining the instances our algorithm must account for:

Definition 36. An (r, k)-instance X is a set K of k nodes with∑
v∈K

log v = r

and wake-up function ω : K → N.

(By using v as an integer here, we are abusing notation to mean the ID of
node v.)

Here r is the main parameter we will use to quantify how ‘large’ our input
instance is. By using the sum of logarithms of IDs (which approximates the total
number of bits needed to write all IDs in use), we capture both the number of
participating nodes and the length of IDs. We require r to be an integer, so we
round down accordingly, but we omit floor functions for clarity since they do
not affect the asymptotic result. Since we are only concerned with asymptotic
behavior, we can also assume that r is larger than a sufficiently large constant.

The wake-up function ω maps each node to the time-step (not the block,
as for block transmission schedules) it wakes up (either spontaneously or by
receiving a transmission) when our algorithm is run on this instance. As before,
this means that the wake-up function depends on the algorithm, but there is
no circular dependency: whether nodes wake-up in time-step j only depends on
the algorithm’s behavior in previous time-steps, and the algorithm’s behavior
at time-step j only depends on the wake-up function up to j.

We now define the combinatorial object that will be the basis of our algo-
rithm:

Definition 37. For a function h : N × N → N, an unbounded universal
synchronizer of delay h is a function S : N→ {0, 1}N such that for any (r, k)-
instance, there is some time-step j ≤ ω(K)+h(r, k) with

∑
v∈K S(v)j−ω(v) = 1.

The unbounded universal synchronizer S is a function mapping node IDs to a
sequence of 0s and 1s, which tell nodes when to listen and transmit respectively.
In our wake-up algorithm, a node v becomes active immediately upon waking
up, and so refers to entry S(v)j−ω(v) to determine whether to transmit in time-
step j. It does not know the value j, but can count from ω(v).

We will apply this object to perform wake-up as follows: each node v trans-
mits a message in time-step j (with its time-step count starting upon waking up)
iff S(v)j = 1. Then, the property guarantees that at some time-step j within

59

h(r, k) time-steps of the first node waking up, any (r, k)-instance will have a
successful transmission. We call this S ‘hitting’ the (r, k)-instance at time-step
j. So, our aim is to show the existence of such an object, with h growing as
slowly as possible.

Our main technical result in this section is the following:

Theorem 38. There exists an unbounded universal synchronizer of delay
h, where h(r, k) = O

(
r log k

log log k

)
.

Our approach to proving Theorem 38 will be to randomly generate a candi-
date synchronizer, and then prove that with positive probability it does indeed
satisfy the required property. Then, for this to be the case, at least one such
object must exist.

Our candidate S : N→ {0, 1}N will be generated by independently choosing
each S(v)j to be 1 with probability c log v

j+2c log v and 0 otherwise, where c is a
constant to be chosen later.

While S is drawn from an uncountable set, we will only be concerned with
events that depend upon a finite portion of it, and countable unions and in-
tersections thereof. Therefore, we can use as our underlying σ-algebra that
generated by the set of all events Ev,j = {S : S(v)j = 1}, where v, j ∈ N, with
the corresponding probabilities Pr [Ev,j] = c log v

j+2c log v .
We set delay function h(r, k) = c2r log k

log log k .
We can again make some observations which allow us to restrict the instances

we consider:

• We can assume ω(K) = 0, since otherwise we simply subtract ω(K) from
all activation times without affecting node behavior.

• We need only consider instances with j ≤ h(rj , kj) ∀j < h(r, k), because
if there is some j < h(k) with j > h(rj , kj) then we can curtail the (r, k)-
instance to be an (rj , kj)-instance consisting only of the nodes in Kj . If
this latter instance is hit within h(rj , kj) time, then the former instance
will also be hit.

To analyze the probability of hitting (r, k)-instances, again define the load of
a time-step f(j) to be the expected number of transmissions in that time-step:

Definition 39. For a fixed (r, k)-instance, the load f(j) of a time-step j is
defined as ∑

v∈Kj

Pr [v transmits] =
∑
v∈Kj

c log v
j − ω(v) + 2c log v .

60

We now seek to bound the load from above and below, since when the load
is close to constant we have a good chance of hitting.

Lemma 40. All time-steps j ≤ h(r, k) have f(j) ≥ log log k
2c log k .

Proof. Fix a time-step j ≤ h(r, k), let Kj be the set of nodes awake by time-step
j, and let kj = |Kj | and rj =

∑
v∈Kj log v, analogous to r and k. Due to our

curtailing of instances, we have j ≤ h(rj , kj). So,

f(j) ≥
∑
v∈Kj

c log v
j + 2c log v ≥

crj
h(rj , kj) + 2crj

≥ crj
2c2rj log kj
log log kj

≥ log log kj
2c log kj

≥ log log k
2c log k .

Having bounded load from below, we also seek to bound it from above.
Unfortunately, the load in any particular time-step can be very high, but we
can get a good bound on at least a constant fraction of the columns.

Lemma 41. Let F denote the set of time-steps j ≤ h(r, k) such that log log k
2c log k ≤

f(j) ≤ log log k
3 . Then |F | ≥ c2r log k

2 log log k .

Proof. The total load over all time-steps can be bounded as follows:

∑
j≤h(r,k)

f(j) =
∑

j≤h(r,k)

∑
v∈Kj

c log v
j − ω(v) + 2c log v

≤
∑
v∈K

∑
ω(v)<j≤h(r,k)

c log v
j − ω(v) + 2c log v

≤
∑
v∈K

c log v
∑

j≤h(r,k)

1
j + 2c log v

≤
∑
v∈K

c log v ln 2h(r, k)
4c log v .

We require a good upper bound for this last expression, but this is tricky
since we don’t know which nodes are in K. So, we partition K by ranges of
node ID, and deal with each of the ranges separately.

Let Ki = {v ∈ K : r
k·2i ≤ log v < r

k·2i−1 }, for i ∈ N, and K ′ = {v ∈ K :
log v ≥ r

k}
We next show that each of the ranges cannot contribute too much of the

61

total of IDs. If, for any i, we have
∑
v∈Ki log v > r

2i , then

r < 2i
∑
v∈Ki

log v ≤ 2i
∑
v∈Ki

r

k · 2i ≤ r .

This gives a contradiction, so we must have
∑
v∈Ki log v ≤ r

2i . Then,

∑
j≤h(r,k)

f(j) ≤
∑
v∈K

c log v ln 2h(r, k)
4c log v

≤
∑
i≥1

∑
v∈Ki

c log v ln h(r, k)
2c log v +

∑
v∈K′

c log v ln h(r, k)
2c log v

≤
∑
i≥1

∑
v∈Ki

c log v ln h(r, k)
2c r
k·2i

+
∑
v∈K′

c log v ln h(r, k)
2c rk

=
∑
i≥1

∑
v∈Ki

c log v ln ck2i−1 log k
log log k +

∑
v∈K′

c log v ln ck log k
2 log log k

≤
∑
i≥1

cr2−i(2 ln k + (i− 1) ln 2) + 2cr ln k ≤ 5cr ln k ≤ 8cr log k .

Therefore, at most 24cr log k
log log k time-steps have load higher than log log k

3 . Since
by Lemma 40 all time-steps have load at least log log k

2c log k ,we have |F | ≥ h(r, k) −
24cr log k
log log k ≥

c2r log k
2 log log k (provided we pick c ≥ 7).

We can use Lemma 25 to show that the probability that we hit on our ‘good’
time-steps (those in F) is high:

Lemma 42. For any time-step j ∈ F , the probability that j hits is at least
log log k
3c log k .

Proof. log log k
2c log k ≤ f(j) ≤ log log k

3 , and so f(j)4−f(j) is minimized at f(j) =
log log k
2c log k and is therefore at least log log k

2c log k 4−
log log k
2c log k ≥ log log k

3c log k .

We now bound the number of possible instances we must hit:

Lemma 43. For any (sufficiently large) r, the number of unique (r, k)-instances
is at most 25r.

Proof. The total number of bits used in all node IDs in the instance is at most r.
There are at most 2r+1 possible bit-strings of length at most r, and at most 2r

ways of dividing each of these into substrings (for individual IDs), giving at most

62

22r+1 sets of node IDs. The number of possible wake-up functions ω : K → N is
at most h(r, k)k, since all nodes must be awake by h(r, k) time or the instance
would have been curtailed.

h(r, k)k = 2k logh(r,k) ≤ 21.1k log r = 21.1(k log k+k log r
k) ≤ 21.3(k log(k0.9)+r) ≤ 22.9r .

So, the total number of possible (r, k)-instances is at most 22r+1+2.9r ≤
25r.

Lemma 44. For any (sufficiently large) r, the probability that S does not hit
all (r, k)-instances is at most 2−3r

Proof. Fix some (r, k)-instance. The probability that it is not hit within h(k, r)
time-steps is at most

∏
j∈F

(1− log log k
3c log k) ≤ e−|F |

log log k
3c log k ≤ e− 2

3 cr = 2− 2cr
3 ln 2 ,

by Lemma 42. Hence, if we set c = 9, by a union bound the probability that
any (r, k)-instance is not hit is at most 25r · 2− 18r

3 ln 2 ≤ 2−3r .

We can now prove our main theorem on unbounded universal synchronizers
(Theorem 38):

Proof. By Lemma 44 and a union bound over r, the probability that S does
not hit all instances is at most

∑
r∈N 2−3r < 1. Therefore S is an unbounded

universal synchronizer of delay g with non-zero probability, so such an object
must exist.

4.3.4 Unbounded Transmission Schedules

Our final combinatorial structure is the unbounded transmission sched-
ule, for broadcasting in blind networks. This combines some aspects of block
transmission schedules and some of unbounded universal synchronizers:

Since we have access to a global clock we can use absolute time-step values,
as we did for block transmission schedules. However, we cannot use blocks, since
in blind networks nodes do not know what the appropriate block size should
be. One might think that we can also not use phases (the short periods over
which transmission probability rapidly decays), since the length of these is also
based on network parameter n, but it transpires that we can instead have phase

63

length depend on the current time-step number, though this does significantly
complicate the calculations.

As for unbounded universal synchronizers, our combinatorial object must be
infinite, since nodes know a bound on completion time.

We formally unbounded transmission schedules below. We use the same
definition of (r, k)-instances as in the previous section, for unbounded universal
synchronizers.

Definition 45. For a function h : N×N→ N, an unbounded transmission
schedule of delay h is a function T : N×N→ {0, 1}N such that T (v, ω(v))j = 0
for any j < ω(v), and for any (r, k)-instance there is some time-step j ≤ ω(K)+
h(r, k) with

∑
v∈K T (v, ω(v))j = 1.

The difference here from an unbounded universal synchronizer is that nodes
now know the global time-step in which they wake up, and so their transmission
patterns can depend upon it. This is the second argument of the function T .
The other difference in the meaning of the definition is that the output of T
now corresponds to absolute time-step numbers, rather than being relative to
each node’s wake-up time as for unbounded universal synchronizers. That is,
the jth entry of a node’s output sequence tells it how it should behave in global
time-step j, rather than j time-steps after it wakes up.

Our existence result for unbounded transmission schedules is the following:

Theorem 46. There exists an unbounded transmission schedule of delay
h, where h(r, k) = O (r log log k).

Our method will again be to randomly generate a candidate unbounded
transmission schedule T , and then prove that it satisfies the required property
with positive probability, so some such object must exist.

Let c be a constant to be chosen later. Our candidate object T will be
generated as follows: for each node v, we generate a transmission sequence sv,j ,
j ∈ N, with sv,j independently chosen to be 1 with probability c log v log log j

j+2c log v log log j
and 0 otherwise.

However, these will not be our final probabilities for generating T . To make
use of our global clock, we will divide time into short phases during which
transmission probability will decay exponentially. The lengths of these phases
will be based on a function z(j) := 2d1+log log log je, i.e., log log j rounded up to
the next-plus-one power of 2. An important property to note is that for all i,
z(i)|z(i + 1). We also generate a sequence pv,j , j ∈ N of phase values, each

64

chosen independently and uniformly at random from the real interval [0, 1].
These, combined with the global time-step number and current phase length,
will give us our final generation probabilities.

We set T (v, ω(v))j to equal 1 iff sv,j−ω(v) = 1 and pv,j−ω(v) ≤
2−j mod z(j−ω(v)).

It can then be seen that

Pr [T (v, ω(v))j = 1] = c log v log log(j − ω(v))
(j − ω(v) + 2c log v log log(j − ω(v)))2j mod z(j−ω(v)) .

The reason we split the process of random generation into two steps (using
our phase values) is that now, if we shift all wake-up times in an (r, k)-instance
by the same multiple of z(x), then node behavior in the first x time-steps after
ω(K) does not change. We will require this property when analyzing T .

Our probabilistic analysis is with respect to the σ-algebra generated by all
events Ev,ω(v),j = {T : T (v, ω(v))j = 1}, with v, ω(v), j ∈ N, and with the
corresponding probabilities given above.

Let load f(j) of a time-step j be again defined as the expected number
of transmissions in that time-step:

f(j) :=
∑
v∈Kj

c log v log log(j − ω(v))
(j − ω(v) + 2c log v log log(j − ω(v)))2j mod z(j−ω(v)) .

We will set our delay function h(r, k) = c2r log log k.
Again we make some observations that allow us to narrow the circumstances

we must consider: firstly that we can again assume that r is larger than a suffi-
ciently large constant, and secondly that we need only look at curtailed instances
(i.e., we can assume j − ω(K) ≤ h(rj , kj)∀j < h(r, k)). This time, however, we
cannot shift instances to begin at time-step 0, because node behavior is depen-
dent upon global time-step number.

We follow a similar line of proof as before, except with some extra com-
plications in dealing with phases. We first consider only time-steps at the
beginning of each phase, i.e., time-steps ω(K) < j ≤ ω(K) + h(r, k) with
j mod z(h(r, k)) ≡ 0, and we will call these basic time-steps. Notice that for
basic time-steps,

f(j) =
∑
v∈Kj

c log v log log(j − ω(v))
j − ω(v)2c log v log log(j − ω(v)) .

65

We bound the load of basic time-steps from below:

Lemma 47. All basic time-steps j have f(j) ≥ 1
2c .

Proof. Fix a basic time-step j, let Kj be the set of nodes awake by time-step j,
and let kj = |Kj | and rj =

∑
v∈Kj log v, analogous to r and k. If kj = k, then

f(j) ≥
∑
v∈K

c log v log log(j − ω(v))
j − ω(v) + 2c log v log log(j − ω(v))

≥
∑
v∈K

c log v log log h(r, k)
h(r, k) + 2c log v log log h(r, k)

≥
∑
v∈K

c log v log log k
2c2r log log k ≥

cr

2c2r = 1
2c .

If kj < k, then due to our curtailing of instances, we have j − ω(K) ≤
h(rj , kj). So,

f(j) ≥
∑
v∈Kj

c log v log log(j − ω(v))
j − ω(v) + 2c log v log log(j − ω(v))

≥
∑
v∈K

c log v log log h(rj , kj)
h(rj , kj) + 2c log v log log h(r, k)

≥
∑
v∈K

c log v log log kj
2c2rj log log kj

≥ crj
2c2rj

= 1
2c .

We next examine time-steps at the end of phases, i.e., with ω(K) < j ≤
ω(K) + h(r, k) and j mod z(h(r, k)) ≡ −1, and call these ending time-steps.
Note that for ending time-steps,

f(j) =
∑
v∈Kj

c log v log log(j − ω(v))
(j − ω(v) + 2c log v log log(j − ω(v)))2z(j−ω(v))−1 .

We bound the load of (a constant fraction of) ending time-steps from above:

Lemma 48. Let F denote the set of ending time-steps j such that f(j) ≤ 1.
Then |F| ≥ c2r

2 .

Proof. Let t be the first ending time-step. The total load over all ending time-
steps can be bounded as follows:

66

∑
ending timestep j

f(j) ≤
h(r,k)/z(h(r,k))∑

i=0
f(t+ iz(h(r, k))) ≤

c2r∑
i=0

f(t+ iz(h(r, k))) .

Applying the definition of f , f(t+ iz(h(r, k))) is equal to:

∑
v∈Kt+iz(h(r))

c log v log log(t+ iz(h(r, k))− ω(v))2−z(t+iz(h(r,k))−ω(v))−1

t+ iz(h(r, k))− ω(v) + 2c log v log log(t+ iz(h(r, k))− ω(v)) ,

which is bounded from above when t− ω(v) = 0:

f(t+ iz(h(r, k))) ≤
∑

v∈Kt+iz(h(r))

c log v log log(iz(h(r)))2−z(iz(h(r,k)))

iz(h(r, k)) + 2c log v log log(iz(h(r, k)))

≤
∑

v∈Kt+iz(h(r,k))

c log v log log(iz(h(r, k)))
iz(h(r, k))2z(iz(h(r,k))) .

So,

∑
ending timestep j

f(j) ≤
c2r∑
i=0

∑
v∈Kt+iz(h(r,k))

c log v log log(iz(h(r, k)))
iz(h(r, k))2z(iz(h(r,k)))

≤
∑
v∈K

c2r∑
i=0

c log v log log(iz(h(r, k)))
iz(h(r, k))2z(iz(h(r,k)))

≤
∑
v∈K

c2r∑
i=0

2c log v log log(iz(h(r, k)))
iz(h(r, k)) log2(iz(h(r, k)))

≤
∑
v∈K

2c log v
∞∑
i=0

log log(iz(h(r, k)))
iz(h(r, k)) log2(iz(h(r, k)))

≤ 10cr .

Here the last inequality follows since the second sum converges to a constant
less than 5, which can be seen by inspection of the first three terms and using
the integral bound

∫∞
2

log log x
x log2 x

< 2.
Therefore, at most 10cr ending time-steps have load higher than 1, and

so at least c2r − 10cr ≥ c2r
2 (provided we set c ≥ 5) ending time-steps have

f(j) ≤ 1.

67

We can use Lemma 48 to show that we have sufficiently many time-steps
with load within the interval [1

2c , 1]:

Lemma 49. Let F be the set of time-steps ω(K) < j ≤ ω(K) + h(r, k) with
1
2c ≤ f(j) ≤ 1. Then |F| ≥ c2r

2 .

Proof. It can be seen that load decreases by at most a multiplicative factor of
3 between consecutive time-steps (since the contribution of each node decreases
by at most a factor of 3). So, since every base time-step has load at least 1

2c , for
every ending timestep j with f(j) ≤ 1, there is some j′ in the preceding phase
with 1

2c ≤ f(j′) ≤ 1.

Since these time-steps have constant load, they have constant probability of
hitting:

Lemma 50. For any time-step j ∈ F , the probability that j hits is at least 1
3c .

Proof. By Lemma 25, the probability that j hits is at least f(j)4−f(j). This is
minimized over the range [1

2c , 1] at f(j) = 1
2c and is therefore at least 4−

1
2c

2c ≥
1
3c .

We now need to know how many unique (r, k)-instances we must hit. Since
we are only concerned with the first h(r, k) time-steps after the first node wakes
up, we need only consider (r, k)-instances which are unique within this time
range.

Lemma 51. For any (sufficiently large) r, the number of unique (up to the first
h(r, k) steps after activation) (r, k)-instances is at most 25r.

Proof. As before (in Lemma 43) there are at most 22r+1 sets of node IDs. The
number of possible wake-up functions ω : K → N for a fixed ω(K) is again at
most h(r, k)k, and though we are using a different delay function to the previous
section, the calculations used to prove Lemma 43 still hold.

h(r)k = 2k logh(r,k) ≤ 21.1k log r = 21.1(k log k+k log r
k) ≤ 21.3(k log(k0.9)+r) ≤ 22.9r .

However, now our object does depend on ω(K), though as we noted we can
shift all activation times by a multiple of z(h(r, k)) and behavior during the
time-steps we analyze is unchanged. So our total number of instances to con-
sider is multiplied by z(h(r, k)), and is upper bounded by 22r+1+2.9rz(h(r, k)) ≤
25r .

68

Lemma 52. For any (sufficiently large) r, the probability that T does not hit
all (r, k)-instances is at most 2−3r.

Proof. Fix some (r, k)-instance. The probability that it is not hit within h(r, k)
time-steps is at most

∏
j∈F

(1− 1
3c) ≤ e−

|F|
3c ≤ e− cr6 = 2− cr

6 ln 2 .

Hence, if we set c = 34, by a union bound the probability that any (r, k)-
instance is not hit is at most 25r · 2− 34r

6 ln 2 ≤ 2−3r .

We can now prove our main theorem on unbounded transmission schedules
(Theorem 46):

Proof. By Lemma 52 and a union bound over r, the probability that T does
not hit all instances is at most

∑
r∈N 2−3r < 1. Therefore T is an unbounded

transmission schedule of delay h with non-zero probability, so such an object
must exist.

4.4 Algorithms for Multiple Access Channels

Armed with our combinatorial objects, our algorithms are now extremely simple,
and are the same for multiple access channels as for multi-hop radio networks.

Let:

• W be an (ñ, D̃)-block transmission schedule of delay h1, where ñ ≥ n and
D̃ are parameters to be chosen later and h1(k) = O(k log D̃ log log D̃),

• X be an unbounded universal synchronizer of delay h2, where h2(r, k) =
O
(
r log k

log log k

)
,

• Y be an unbounded transmission schedule of delay h3, where h3(r, k) =
O(r log log k)

• Z be an (ñ, ñ
D̃

)-selective family of size O(ñ
D̃

log D̃).

Our algorithms are simply applications of these objects. We give the algo-
rithms for blind networks first, since their application is the most straightfor-
ward:

69

Algorithm 9 Blind wake-up at a node v
for j from 1 to ∞, in time-step ω(v) + j, do

v transmits iff X(v)j = 1
end for

Theorem 53. Algorithm 9 performs wake-up in multiple access channels in
time O

(
n logL logn

log logn

)
, without knowledge of n or L.

Proof. By the definition of an unbounded universal synchronizer, there is some
time-step within

h2(r, n) = O

(
r logn

log logn

)
= O

(
n logL logn

log logn

)
time-steps of the first activation in which only one node transmits, and this
completes wake-up.

Algorithm 10 Blind broadcasting at a node v
for j from 1 to ∞, in time-step j, do

v transmits iff Y (v, ω(v))j = 1
end for

Theorem 54. Algorithm 10 performs broadcasting in multiple access channels
in time O(n logL log logn), without knowledge of n or L.

Proof. By the definition of an unbounded transmission schedule, there is some
time-step within h3(r, n) = O(r log logn) = O(n logL log logn) time-steps of
the first activation in which only one node transmits, and this completes broad-
casting.

The natural application of the block transmission schedule is as follows:

Algorithm 11 Broadcasting at a node v - main process
for j from 1 to h1(n), in time-step Bω(v) + j, do

v transmits iff W (v)j = 1
end for

However, recall that unlike universal synchronizers and transmission sched-
ules, we had some restrictions on our definition of k-instances that our block

70

transmission schedule would hit. In particular, we require that kB ≥ ñ
D̃
, i.e. at

least ñ
D̃

nodes are active by time-step B. To ensure that this is always the case,
we use a background process which is run concurrently with the main process
(e.g. by performing the main process in odd time-steps and the background
process in even ones). This background process is simply a repeated application
of the (ñ, ñ

D̃
)-selective family Z:

Algorithm 11 Broadcasting at a node v - background process
for time-step j from start of next selective family after v wakes up, to h1(n),
do

v transmits iff Z(v)j mod |Z| = 1
end for

I.e. when nodes wake up, they wait until the start of the next selective family
application and participate from then on. By the definition of a selective family,
within 2|Z| = O(ñ

D̃
log D̃) ≤ B time-steps, there will have been a successful

transmission, or at least ñ
D̃

nodes will be active. Thus, we satisfy the necessary
condition for k-instances.

Theorem 55. If ñ ≥ n, Algorithm 11 performs broadcasting in multiple access
channels in time O((ñ

D̃
+ n) log D̃ log log D̃).

Proof. Due to the background process, by time-step B at least ñ
D̃

nodes will be
active. Then, by the definition of an (ñ, D̃)-block transmission schedule, there
is some time-step within the first h1(n) = O(k log D̃ log log D̃) in which only
one node transmits, and this completes broadcasting. So, total time is at most
O(B + n log D̃ log log D̃) = O((ñ

D̃
+ n) log D̃ log log D̃).

Unlike Theorems 53 and 54, we do not obtain a running time improvement in
multiple access channels, since an O(n)-time algorithm already exists (assuming
linear labels) [15], and this is what Theorem 55 will give if we set ñ = n, D̃ = 1.
However, this formulation allows us to transfer our results directly to multi-hop
radio networks, where we do achieve a running time improvement.

4.5 Analysis for Multi-hop Radio Networks

To see how our results on multiple access channels (Theorems 53, 54, and 55)
transfer directly to multi-hop radio networks, we apply an analysis method that
reduces a multi-hop instance to a succession of single-hop instances.

71

The idea is that we fix a shortest path p = (p0, p1, . . . pd) from some source
node s to some target node v, and then classify all nodes into layers depending
on the furthest node along the path to which they are an in-neighbor, i.e., layer
Li = {u : max j such that (u, pj) ∈ E = i}. Note that some nodes may not be
in any layer; these can be discounted from the analysis.

We wish to quantify how long a layer can remain leading, that is, the furthest
layer to contain awake nodes. The key point is that we can regard these layers
as multiple access channels: though they are not necessarily cliques, all we need
is for a single node in the layer to transmit and then the layer ceases to be
leading. Once the final layer ceases to be leading, the target node v must be
informed, and since this node was chosen arbitrarily we obtain a time-bound for
informing the entire network. Thereby the problem is reduced to a sequence of
at most D single-hop instances, whose sizes sum to at most n (since each node
can be in at most one layer).

Therefore we can use the following lemma (Lemma 56) to analyze how our
algorithms perform in radio networks:

Lemma 56. Let h : [n] → N be a non-decreasing function, and define Y to be
the supremum of the function

∑D
i=1 h(ki), where non-negative integers ki satisfy

the constraint
∑n
i=1 ki ≤ n. If a broadcast or wake-up protocol ensures that any

layer of size k remains leading for no more than h(k) time-steps, then all nodes
wake up within Y time-steps.

Proof. Let ki = |Li|. Layer Ld must be leading (and thus node v active) once no
other layers are leading, and so this occurs within

∑d
i=1 h(ki) time-steps after

layer L1 becomes leading. Since
∑d
i=1 h(ki) ≤

∑D
i=1 h(ki) and

∑D
i=1 ki ≤ n,

this is no more than Y time-steps.
Since v was chosen arbitrarily, all nodes must be active within Y time-steps

of s becoming active.

Theorem 57. Algorithm 9 performs wake-up in radio networks in time
O(n logL logn

log logn), without knowledge of n or L.

Proof. By Theorem 53, any layer of size k remains leading for no more than
h(k) time-steps, where h(k) = O(k logL log k

log log k).
∑D
i=1 h(ki) is then maximized

by setting k1 = n and ki = 0 for every i > 1. So, by Lemma 56, wake-up is
performed for the entire radio network in O(n logL logn

log logn) time.

Theorem 58. Algorithm 10 performs broadcasting in radio networks in time
O(n logL log logn), without knowledge of n or L.

72

Proof. By Theorem 54, any layer of size k remains leading for no more than h(k)
time-steps, where h(k) = O(k logL log log k).

∑D
i=1 h(ki) is then maximized by

setting k1 = n and ki = 0 for i > 1. So, by Lemma 56, broadcasting is performed
for the entire radio network in O(n logL log logn) time.

Recall that the combinatorial objects used for Algorithm 11 depended on
parameters n and D, which for multiple access channels we treated as free
variables. In multi-hop radio networks, they of course denote network size and
diameter, and these are the values we use for the combinatorial objects.

Theorem 59. Algorithm 11, using ñ = n and D̃ = D, performs broadcasting
in radio networks in time O(n logD log logD).

Proof. By Theorem 55, any layer of size k remains leading for no more than
h(k) time-steps, where h(k) = O((nD + k) logD log logD). The value of the
sum

∑D
i=1 h(ki) is O(n logD log logD) for any choice of ki. So, by Lemma 56,

broadcasting is performed for the entire radio network in O(n logD log logD)
time.

4.6 Discussion and Open Problems

We present the fastest known deterministic algorithms for broadcasting and
wake-up, both with and without parameter knowledge.

None of these algorithms are known to be optimal. The best lower bound for
both broadcasting and wake-up is Ω(n logD) [15]; our broadcasting algorithm
therefore comes within a log-logarithmic factor, but our wake-up algorithm re-
mains a logarithmic factor away. Algorithms meeting the lower bound would be
interesting, as would an Ω(n logD) lower bound for undirected networks (cur-
rently the bound only holds for directed networks).

As mentioned, almost all deterministic broadcasting protocols with sub-
quadratic complexity have relied on selective families or variants thereof, and
have been non-explicit results. Our work here is also non-explicit, but while
this is standard for deterministic radio network algorithms, it may present more
of an issue in blind networks, since our combinatorial structures are infinite
(though if parameters are known, the algorithms can be run using truncated
structures to avoid this issue). It is not clear how the protocols we present could
be performed by devices with bounded memory, and as such this work is more
of a proof-of-concept than a practical algorithm. However, it is possible that

73

our method could be adapted so that nodes’ behavior could be generated by a
finite-size (i.e. a function of ID) program; this would be a natural and inter-
esting extension to our work, and would overcome the problem. Of course, an
efficient explicit algorithm would be even more desirable, but for now this seems
out of reach: the best explicit algorithm known to date, even with parameter
knowledge, is a long way from optimality [38].

Another issue with Algorithms 9 and 10 in blind networks is that nodes must
perform the protocol indefinitely, and never become aware that broadcasting has
been successfully completed. However, this is unavoidable in the blind model:
Chlebus et al. [10] prove that acknowledged broadcasting without parameter
knowledge is impossible.

Some variants of the model also merit interest, in particular the model with
collision detection. It is unknown whether the capacity for collision detection
improves deterministic broadcast time, as it does for randomized algorithms [28].
Collision detection does remove the requirement of spontaneous transmissions
for the use of the O(n) algorithm of [10], but a synchronized global clock would
still be required. Wake-up can also be considered in this model, though only
if hearing a collision does not wake up a node, since otherwise the problem is
trivial.

74

Chapter 5

Randomized Blind
Broadcasting

In this chapter we turn our attention to randomized algorithms for broadcasting.

5.1 Related Work

The first major randomized broadcasting result was a seminal paper of Bar-
Yehuda et al. [4], who designed the Decay protocol and used it to obtain an
almost optimal randomized broadcasting algorithm achieving the running time
of O((D+ logn) · logn), and succeeding with high probability. This bound was
later improved by Czumaj and Rytter [23], and independently Kowalski and
Pelc [44], who gave randomized broadcasting algorithms that complete the task
in O(D log n

D +log2 n) time with high probability. This running time matched a
known Ω(D log n

D + log2 n) lower bound for the task [2, 46]. All of these results
hold for directed networks as well as undirected ones.

More recently, Ghaffari, Haeupler and Khabbazian [28] showed that collision
detection can be used to surpass this lower bound, attaining an O(D + log6 n)
time algorithm. In 2016, work by Haeupler and Wajc [34] demonstrated that
even without collision detection, the lower bound could be beaten assuming
spontaneous transmissions were permitted; that is, nodes have access to a global
clock and are allowed to transmit before receiving the source message. We
discuss and extend this work in Chapter 7. However, these algorithms only
work in undirected networks.

75

All of these results also intrinsically require parameter knowledge, and al-
gorithms that do not require such knowledge have been little studied. The
closest analogue in the literature is the work of Jurdzinski and Stachowiak [39],
who give algorithms for wake-up in single-hop radio networks under a wide
range of node knowledge assumptions. Their Use-Factorial-Representation al-
gorithm is the most relevant; the running time is given as O((logn log logn)3)
for high-probability wake-up with a global clock (a slightly stronger task than
broadcasting) in single-hop networks, but a similar analysis as we present here
would demonstrate that the algorithm also performs broadcasting in multi-hop
networks in O((D + logn) log2 n

D log3 log n
D) time.

5.2 Our Results

We present a randomized algorithm for broadcasting in (directed or undi-
rected) blind networks without collision detection which succeeds with high
probability within time O(D log n

D log2 log n
D + log2 n). This improves over

the O((D + logn) log2 n
D log3 log n

D) time that could be obtained by apply-
ing our analysis method to the Use-Factorial-Representation algorithm of Ju-
rdzinski and Stachowiak [39], and comes within a poly-log log factor of the
Ω(D log n

D + log2 n) lower bound.
We also present an algorithm for directed blind networks with collision de-

tection, whose O(D log n
D log log log n

D + log2 n) running time comes even closer
to the lower bound (we note that, to our knowledge, it has not been proven that
the lower bound still holds in this setting1, though it would be very surprising
if it did not).

Finally, we make the observation that in undirected networks with collision
detection, the O(D + log6 n)-time algorithm of [28] can be simulated without
parameter knowledge at no extra cost.

5.3 Overview of Approach

We will begin by applying our analysis approach to show how the existing
algorithms for networks with parameter knowledge [4, 23] achieve their running
times, and then describe the changes that need to be made for blind networks.

1Newport [52] proves a similar lower bound, but in a setting where nodes remain dormant
until hearing the source message, i.e. are not woken by collisions.

76

5.3.1 Analysis of Decay

The idea of the classic Decay protocol is to have nodes transmit with expo-
nentially decaying probabilities, between 1

2 and 1
n . Then, in some step, the

inverse of the transmission probability will be within a constant factor of the
number of participating nodes, in which case, by Lemma 62, we have a constant
probability of successful transmission.

One round of the Decay protocol is as follows (Algorithm 12):

Algorithm 12 Decay at a node v
for i = 1 to logn do

v transmits its message with probability 2−i.
end for

We analyze the Decay protocol by fixing some uninformed node v with some
number δ of active in-neighbors. There will be at least one time-step during the
round of Decay such that 2i−1 ≤ δ ≤ 2i. Then, the expected number of in-
neighbors of v that transmit is δ · 2−i, which is in the interval [1

2 , 1]. Since all
nodes are transmitting with probability at most 1

2 , we can apply Lemma 25 to
find that exactly one transmits with probability at least 1

4 . So, every logn time-
steps we independently have probability at least 1

4 of a successful transmission.
The total time taken to inform v is then stochastically majorized by logn+X,
where X is a geometric random variable with parameter 1

4 logn .
What we now need to obtain a running time for broadcasting in multi-hop

networks is a randomized analogue of Lemma 56, where instead of some fixed
bound h on the time taken to inform a single-hop instance, we instead have a
geometric random variable. We achieve this by exploiting a lemma from [23],
which gives a concentration bound on the sum of geometric random variables:

Lemma 60 (Lemma 3.5 of [23]). Let X1, . . . , XD be a sequence of independent
integer-valued random variables, each Xi geometrically distributed with param-
eter pi, 0 < pi < 1. For every i, let µi = 1/pi, and let M be the set of unique
µi, i.e. M = {µi : 1 ≤ i ≤ D}. If

∑d
i=1 µi ≤ N , then for any positive real β,

Pr
[
D∑
i=1

Xi ≤ 2 ·N + 8 ln(|M |/β) ·
∑
z∈M

z

]
≥ 1− β .

We adapt this slightly for our purposes:

77

Corollary 61. Let X1, . . . , XD be a sequence of independent integer-valued ran-
dom variables, each Xi geometrically distributed with parameter 1/µi, µi ∈ N.
Let µmax be the maximum µi. If

∑D
i=1 µi ≤ N , then for any positive β ≤

1
logµmax ,

Pr
[
D∑
i=1

Xi ≤ 4N + 65µmax ln(1/β)
]
≥ 1− β .

Proof. Let M be the set of all powers of 2 up to µmax, i.e. M = {2i : 1 ≤ i ≤
dlogµmaxe}; then |M | = dlogµmaxe and

∑
z∈M z ≤ 4µmax. For all i, let X ′i be

a geometric random variable with µ′i equal to µi rounded up to the next power
of 2 (and p′i = 1/µ′i accordingly). Note that X ′i majorizes Xi. Then, by Lemma
60, for positive β ≤ 1

logµmax ,

1− β ≤ Pr
[
D∑
i=1

X ′i ≤ 2 ·
D∑
i=1

µ′i + 8 ln(|M |/β) ·
∑
z∈M

z

]

≤ Pr
[
D∑
i=1

X ′i ≤ 4 ·
D∑
i=1

µi + 8 ln(dlogµmaxe/β) · 4µmax

]

≤ Pr
[
D∑
i=1

Xi ≤ 4N + 65µmax ln(1/β)
]
.

Using this bound, we have a recipe for getting from these geometric random
variables to a running time for a broadcasting algorithm:

Lemma 62. Let µ : [D] × [n] → [n] be a function which is non-decreasing
in its second argument. Let N be the maximum of

∑D
d=1 µmax(d, δd), subject

to
∑D
d=1 δd ≤ n, and let µmax be the maximum value of µ. If an algorithm

for broadcasting guarantees that any node v at distance dv from the source with
neighborhood of size δv is informed within time Xv of a neighbor being informed,
where Xv is stochastically majorized by a geometric random variable with pa-
rameter 1

µ(dv,δv) , then with probability at least 1
n , broadcasting is completed in

the whole network within 4N + 91µmax logn time.

Proof. Fix some arbitrary target node u and some shortest (s, u) path p = (s =
p0, p1, . . . , pdv = v). Classify nodes into layers as follows: let layer Li be the set
of all nodes whose latest out-neighbor path node is pi. We call a layer leading
if it is the furthest layer containing an active node. We wish to bound the time

78

ti that a layer Li can remain leading, since the total time taken to inform u

is then at most
∑D
i=1 ti. This time ti is stochastically majorized by geometric

random variable with parameter 1
µ(i,|Li|) , since only nodes in the intersection

of u’s neighborhood and Li can participate in informing u while Li is leading.
Then, applying Corollary 61,

Pr
[
D∑
i=1

ti ≤ 4N + 65µmax ln(n2)
]
≥ 1− n−2 ,

i.e. with probability at least 1 − n−2, u is informed within time 4N +
91µmax logn, and taking a union bound over all nodes u, the whole network is
informed within this time with probability at least 1− n−1.

We will be using Lemma 62 to analyze our blind broadcasting algorithms,
and it is somewhat more complex than is necessary to analyze Decay; the
function µ in Lemma 62 allows the bound for single-hop instances to depend
upon number of active nodes and distance from the broadcasting source s, which
is unnecessary for Decay. However, using the same analysis framework will
highlight the differences between our algorithms and preceding work.

Returning to Decay, we found that time to inform single-hop instances is
majorized by logn+X, where X is a geometric random variable with parameter

1
4 logn . So, by plugging µ(d, δ) = 4 logn for all d, δ into Lemma 62, we find that
broadcasting is completed in D logn + 4

∑D
i=1 4 logn + 91 · 4 log2 n = O((D +

logn) logn) time with high probability.

5.3.2 Randomized Selecting Sequences

As described, a phase of Decay ‘guesses’ active in-neighborhood size δ in in-
creasing order: in the first time-step it is successful if 1 ≤ δ ≤ 2, in the second
inf 2 ≤ δ ≤ 4, and so on for all logn 2-factor ranges of δ between 1 and n. The
order is important, since δ can increase during the course of the round of Decay
as new nodes wake up; for example if guesses were made in reverse order, then a
situation in which δ = 1 for the first logn

2 time-steps, and then δ = n− 1 for the
remaining ones, would prevent any step from having good success probability.

This becomes an issue if we wish to alter the rate with which ranges of δ
are guessed. Currently all ranges are guessed once every logn time-steps, i.e.
we use probability 2−i with rate 1

logn for all i ∈ [logn]. We will see that by
adjusting these rates we can improve the algorithmic running time. If we do

79

so, however, it becomes less obvious in what order we should make our guesses.
However, as noticed by Czumaj and Rytter [23], if we use a random order, or
selecting sequence, then we still guess correctly with frequency roughly equal to
the rate, with high probability. We can implement a random selecting sequence
by having the source node generate it and append it to the source message.

The Decay algorithm with random selecting sequence would look as follows:

Algorithm 13 Decay - random selecting sequence
for each j ∈ [T], s generates a random variable xj uniformly from [logn].
s appends variables xj to the source message.
for j from 1 to T , in time-step j, do

active nodes transmit with probability 2−xj .
end for

Here T is some estimate for how long the algorithm should be run, which we
would set to be O((D + logn) logn). To analyze this algorithm, we note that
there is a 1

logn probability of choosing the correct xj , in which case we have
a successful transmission with probability at least 1

4 as before. So, the time
taken for a single-hop instance is majorized by a geometric random variable
with parameter 1

4 logn , and we can apply Lemma 62 and find that broadcasting
is performed in O((D + logn) logn) time as before.

5.3.3 Rates for Optimal Broadcasting

Now that we are using a randomized selection sequence, we can easily adjust
the rates with which we choose each neighborhood size range. That is, we can
modify Algorithm 13 so that the distribution of the xj is no longer uniform. We
will still need the support of the distribution to be [logn], since we need to be
able to inform any neighborhood between sizes 1 and n eventually. However,
the observation made by Czumaj and Rytter [23] which allowed them to achieve
optimal O(D log n

D + log2 n) time was that neighborhoods larger than n
D can be

chosen less frequently, since there cannot be as many of them.
Specifically, we use a distribution Y which is a simplified version of that

given in [23]:

Pr [xi = y] =

 1
4 log n

D
, if 1 ≤ y < 2 log n

D

1
4 min{y2,logn} , if 2 log n

D ≤ y ≤ logn
,

80

with xi = 0 with any remaining probability. This is a well-defined distribution
since the sum of the rates is at most 1 (and we can let xi take an arbitrary value
with any remaining weight):

2 log n
D−1∑

y=1

1
4 log n

D

+
logn∑

y=2 log n
D

(
1

4y2 + 1
4 logn

)
≤ 1

2 +
∞∑
y=2

1
4y2 + 1

4 ≤ 1 .

We can use this distribution Y for a broadcasting algorithm as follows (Al-
gorithm 14):

Algorithm 14 Broadcasting [23]
for each j ∈ [T], s generates a random variable xj from distribution Y .
s appends variables xj to the source message.
for j from 1 to T , in time-step j, do

active nodes transmit with probability 2−xj .
end for

Our analysis framework can then be applied to this algorithm; by recall-
ing that when 2xj = Θ(δ) we have a constant probability of successful trans-
mission, we have a function µ to plug into Lemma 62 which now depends on
in-neighborhood size:

µ(d, δ) =

O(log n
D), if 1 ≤ δ < (nD)2

O(min{log2 δ, logn}), otherwise
.

Lemma 62 tells us that we complete broadcasting in time O(N+µmax); here
µmax is clearly O(logn). N is O(D log n

D), since this is clearly an upper bound
for the contribution of the layers with δ < (nD)2, and the contribution of larger
layers is at most O(D

2

n log2(n
2

D2)) = O(D · Dn log2 n
D) = O(D).

So, broadcasting is completed in O(D log n
D + log2 n) time, succeeding with

high probability.

5.3.4 Difficulties in Blind Networks

The O(D log n
D +log2 n) time algorithm of [23] is optimal (assuming no collision

detection or spontaneous transmissions), due to the matching lower bound of
[46]. However, it intrinsically requires knowledge of parameters n and D, since

81

both the time bound T and the distribution X depend upon them. In blind
networks, we must find some way of avoiding this dependence. For T this is not
a major problem; we can simply use a ‘double-and-test’ type technique, where
we try the algorithm with T = 1, 2, 4, 8, . . . until we are successful.

Finding a distribution Y which does not depend on n and D is more difficult,
and this is the main technical challenge of the work. We will see that we can
still approach the optimal O(D log n

D +log2 n) running time using a distribution
which is only dependent upon T , and, when collision detection is available,
distance d from the source (though the latter causes more complications, as we
will see shortly).

Our algorithm for blind broadcasting without collision detection, where node
transmission probabilities only depend on the doubling parameter T , would fit
into the following framework (Algorithm 15):

Algorithm 15 Blind Broadcast Framework - Take 1
for t = 1 to ∞ do

let T = 2t

for each j ∈ [T], s generates a random variable xj from distribution Y .
s appends variables xj to the source message.
for j from 1 to T , in time-step j, do

active nodes v transmit with probability 2−xj .
end for
reset time-step numbers and set non-source nodes to inactive.

end for

As one can see, this framework is similar to Algorithm 14 except that T is
iteratively doubling, and that we must set Y to be independent of parameters
n and D. However, this is not the final framework we will use, because, as
mentioned, we can improve running time when collision detection is available
by using nodes’ distance from the source.

A simple application of beep waves, as we saw in Chapter 3, can inform
nodes of their exact distance from the source node within O(D) time, even in
directed networks: in time-step 1, the source node emits a ‘beep’ (a transmission
with arbitrary content), and in every subsequent step, all nodes who hear either
a transmission or a collision in a time-step themselves ‘beep’ in the next time-
step. In this way, the wave of beeps emanates out from the source, one distance
hop per time-step, and the time-step number in which a node hears its first beep

82

is equal to its distance from the source. If we perform this beep-wave procedure
before our main algorithm, we can assume every node v knows its distance dv
from the source (actually, since we cannot tell when the procedure has ended,
we must use time multiplexing, for example performing beep waves during odd
time-steps and the main algorithm during even ones, but this does not affect
asymptotic running time).

We then wish to have nodes base their transmission probabilities on dv as
well as T . However, we cannot incorporate this information into the distribution
Y , since Y is global, whereas dv is different for each node. So, we must instead
use dv when nodes choose their local transmission probabilities, i.e. where they
previously used probability 2−xj , we now need some expression involving dv.

So, our final framework looks as follows (Algorithm 16):

Algorithm 16 Blind Broadcast Framework - Take 2
for t = 1 to ∞ do

let T = 2t

s randomly generates a sequence S ∈ [C]T with uniform i.i.d. entries.
for each j ∈ [T], s generates a random variable xj from distribution YSj ,T .
s appends S and variables xj to the source message.
for j from 1 to T , in time-step j, do

active nodes v transmit with probability pSj ,dv,T (xj).
end for
reset time-step numbers and set non-source nodes to inactive.

end for

Here we have a constant number c of different global distributions, dependent
on T , each of which is equipped with a local probability function, dependent on
dv and T . We call this pair of global distribution and local probability function
a protocol. The protocol to use in each time step is randomly chosen by the
source, and these choices are appended to the source message along with the
variables xj .

5.4 Protocols

We now specify the protocols, that is, pairs of global distribution and local
probability function, which we use in Algorithm 16 to perform broadcast.

83

5.4.1 Networks Without Collision Detection

In networks without collision detection, we use two different protocols, i.e. c = 2.
We will call the protocol designed to account for most circumstances General-
Broadcast; in this protocol, the source ‘guesses’ a neighborhood size from 1 to
∞ in each time-step, with a probability that decreases in neighborhood size in
order for the total probability to sum to at most 1. Transmission probabilities
are independent of parameter T . If we used only this protocol, we would obtain
a running time of O((D + logn) log n

D log2 log n
D). In low diameter networks

(when D < logn), we improve upon this with Shallow-Broadcast protocol,
which informs networks of low diameter in O(log2 n) time by assuming that
T ≈ log2 n and using this to approximate the maximum in-neighborhood size
to account for.

Shallow-Broadcast Distribution Y1 is given by Pr [xj = y] = c1√
T

for all
y ∈ [

√
T
c1

]. Probability function p1,dv,T (xj) = 2−xj .

Lemma 63. If D ≤ logn, Shallow-Broadcast performs broadcasting in
O(log2 n) time with high probability.

Proof. We consider the iteration in which (c1 logn)2 ≤ T ≤ 2(c1 logn)2. Fix
a time-step j, and let u be an inactive node with a set ∆ of active neighbors,
δ = |∆| ≥ 1. With probability 1

c , j is a Shallow-Broadcast time-step. Then,
with probability c1√

T
≥ 1√

2 logn , xj is chosen such that 2δ ≤ 2xj ≤ 4δ, in which
case 1

4 ≤
∑
u∈∆ Pr [u transmits] ≤ 1

2 , so by Lemma 25, Pr [v is informed] ≥
1
4 · 4

− 1
4 ≥ 1

6 . So, in each time-step, u is informed with probability at least
1
c ·

1√
2 logn ·

1
6 ≥

1
9c logn . Time taken to inform u is therefore stochastically

majorized by a geometric random variable with parameter 1
9c logn . Using Lemma

62 with µ(d, δ) = 9c logn for all d, δ, we can conclude that the network will be
informed within 4N + 91µmax logn ≤ 36cD logn + 819c log2 n time with high
probability. We set c1 = 30c to ensure that the iteration we analyze is sufficiently
long, and thus broadcast is performed in O(log2 n) time.

General-broadcast Distribution Y2 is given by Pr [xj = y] = 1
3y log2 y

for
all y ∈ N (and xj = 0 with the remaining probability). Probability function
p2,dv,T (xj) = 2−xj .

We first check that Y2 is a well-defined probability distribution, which is the
case since

∑
y∈N

1
3y log2 y

≤ 1
2 +

∫∞
2

dy
3y log2 y

≤ 1.

84

Lemma 64. If D ≥ logn, General-Broadcast performs broadcasting in
O(D log n

D log2 log n
D) time with high probability.

Proof. We consider the iteration in which

c2D log n

D
log2 log n

D
≤ T ≤ 2c2D log n

D
log2 log n

D
.

Fix a time-step j, and let u be an uninformed node with a set ∆ of informed
neighbors, δ = |∆| ≥ 1. With probability 1

c , j is a General-Broadcast time-
step. Then, with probability at least 1

3 log(4δ) log2 log(4δ) ≥
1

6 log δ log2 log δ , xj is
chosen such that 2δ ≤ 2xj ≤ 4δ, in which case 1

4 ≤
∑
u∈∆ Pr [u transmits] ≤ 1

2 ,
so by Lemma 25, Pr [v is informed] ≥ 1

4 · 4
− 1

4 ≥ 1
6 . So, in each time-step,

u is informed with probability at least 1
c ·

1
6 log δ log2 log δ ·

1
6 ≥

1
36c log δ log2 log δ .

Time taken to inform u is therefore stochastically majorized by a geometric
random variable with parameter 1

36c log δ log2 log δ . Using Lemma 62 with µ(d, δ) =
36c log δ log2 log δ for all d, δ, we can conclude that the network will be informed
within

4N + 91µmax logn ≤ 144cD log n

D
log2 log n

D
+ 3276 log2 n log2 logn

≤ 3500cD log n

D
log2 log n

D

time with high probability. We set c2 = 3500c to ensure that the iter-
ation we analyze is sufficiently long, and thus broadcast is performed in
O(D log n

D log2 log n
D) time.

To perform broadcasting in networks without collision detection, we apply
the framework of Algorithm 16 using the Shallow-Broadcast and General-
Broadcast protocols.

Theorem 65. Broadcasting can be performed in networks without collision de-
tection in O(D log n

D log2 log n
D + log2 n) time, with high probability.

Proof. Follows from Lemmas 63 and 64.

5.4.2 Undirected Networks With Collision Detection

For directed networks, as mentioned, we first perform a beep wave which allows
each node v to use its distance dv from the source. This is the only way in which
we use collision detection; afterwards we apply Algorithm 16 as before.

85

We add two new protocols to the two already defined, i.e. we now use
c = 4. The main new protocol is Deep-Broadcast, which assumes that T ≈
D log n

D log log log n
D and dv ≈ D, and uses this to approximate (nD)2, the largest

neighborhood size for which it accounts. This only works well for nodes which
do indeed have dv ≈ D and δv ≤ (nD)2 , but for our analysis method this covers
most nodes of importance, and we use General-Broadcast to deal with the
remaining nodes. By including Deep-Broadcast we speed up broadcasting
to O(D log n

D log log log n
D) when D > logn log2 logn, but when D is below

this, the running time of General-Broadcast still dominates. So, we also
add Semi-Shallow-Broadcast, which works quickly for networks with logn ≤
D ≤ logn log2 logn.

Semi-Shallow-Broadcast Distribution Y3,T is given by

Pr [xj = y] =

√

c2
3 log2 T log logT

2T , if 1 ≤ y ≤
√

T
c2

3 log2 T log logT

1
3y log logT , if

√
T

c2
3 log2 T log logT < y ≤

√
T log2 T
c2

3 log logT

.

We let xj = 0 with any remaining probability.
Probability function p3,dv,T is given by p3,dv,T (xj) = 2−xj .
We first check that the distribution Y3,T is well defined, which is the case

since √
T

c2
3 log2 T log logT∑

y=1

√
c23 log2 T log log T

2T <
3
4 ,

and

√
T log2 T
c2

3 log logT∑
y=
√

T

c2
3 log2 T log logT

+1

1
3y log log T ≤

√
T log2 T
c2

3 log logT∫
√

T

c2
3 log2 T log logT

dy

3y log log T

≤ ln(log2 T)
3 log log T <

1
4 .

Lemma 66. If logn ≤ D ≤ logn log2 logn, Semi-Shallow-Broadcast per-
forms broadcasting in O(D logn log log logn) time with high probability.

86

Proof. We consider the iteration in which

c3D logn log log logn ≤ T ≤ 2c3D logn log log logn .

Fix a time-step j, and let u be an uninformed node with a set ∆ of informed
neighbors, δ = |∆| ≥ 1. With probability 1

c , j is a Semi-Shallow-Broadcast
time-step. The probability that xj is chosen such that 2δ ≤ 2xj ≤ 4δ is at least

√
c23 log2 T log log T

2T ≥

√
c23 log2(2c3D logn log log logn) log log(2c3D logn log log logn)

4c3D logn log log logn

≥

√
c23 log2 logn log log logn
4c3D logn log log logn

≥

√
c3 log2 logn

4 log2 n log2 logn
=
√
c3

2 logn ,

if log(4δ) ≤
√

T
c2

3 log2 T log logT , and

1
3 log(4δ) log log T ≥

1
3 log(4n) log log T ≥

1
4 logn log log logn ,

otherwise. Note that it is not possible that log(4δ) >
√

T log2 T
c2

3 log logT , since that
would give

log(4δ) ≥

√
c3D logn log log logn log2 T

c23 log log(c3D logn log log logn)

≥

√
c3 log2 n log2 logn log log logn

4c23 log log logn

≥ logn log logn
2
√
c3

> log(4n) ,

i.e. δ > n, which is a contradiction.
So, an appropriate value of xj is chosen with probability at least

1
4 logn log log logn , in which case 1

4 ≤
∑
u∈∆ Pr [u transmits] ≤ 1

2 , so by Lemma
25, Pr [v is informed] ≥ 1

4 · 4
− 1

4 ≥ 1
6 . Therefore, in each time-step, u is in-

formed with probability at least 1
c ·

1
4 logn log log logn ·

1
6 ≥

1
24c logn log log logn .

87

Time taken to inform u is therefore stochastically majorized by a geomet-
ric random variable with parameter 1

24c logn log log logn . Using Lemma 62 with
µ(d, δ) = 24c logn log log logn for all d, δ, we can conclude that the network will
be informed within

4N + 91µmax logn ≤ 96cD logn log log logn+ 2184c log2 n log log logn

≤ 2280cD logn log log logn

time with high probability. We set c3 = 2280c to ensure that the iter-
ation we analyze is sufficiently long, and thus broadcast is performed in
O(D logn log log logn) time.

Deep broadcast Distribution Y4,T is given by Pr [xj = y] = 1
T for all y ∈ [T].

Probability function p4,dv,T is given by p4,dv,T (xj) = 2
− xi

c4dv log log T
dv .

Lemma 67. If D ≥ logn(log logn)2, Deep-Broadcast and General-
Broadcast together complete broadcasting in O(D log n

D log log log n
D) time,

with high probability.

Proof. We consider the iteration in which

c24D log n

D
log log log n

D
≤ T ≤ 2c24D log n

D
log log log n

D
.

Fix a time-step j, and let v be an uninformed node with a set ∆ of informed
neighbors, δ = |∆|. Denote by d v’s distance from the source.

If d < D
log2 log n

D
or δ > (nD)2, we analyze General-Broadcast time-steps,

and conclude, as in the proof of Lemma 64, that the time taken to inform
v is stochastically majorized by a geometric random variable with parameter

1
36c log δ log2 log δ .

Otherwise, we analyze Deep-Broadcast time-steps:
There is some real value x′ ∈ [1, T] such that

∑
u∈∆ p4,dv,T (x′) = 1

2 , since
the value of this sum is continuous in x, is at least

∑
u∈∆

2
− 1
c4du log log T

du ≥ 2
− 1
c4(d−1) log log T

d−1 > 2−1 = 1
2 ,

88

when x = 1, and is at most

∑
u∈∆

2
− T

c4du log log T
du ≤

∑
u∈∆

2
−

c2
4D log n

D
log log log n

D

D log log
c2

4D log n
D

log log log n
D

D

≤
∑
u∈∆

2−
c2

4D log n
D

log log log n
D

2D log log log n
D

≤ (n
D

)2 · 2− 1
2 c

2
4 log n

D = 2(2− 1
2 c

2
4) log n

D

≤ 2−1 = 1
2 ,

when x = T .
Then the value of the sum at x′ + c4d log log log n

D + 1 is at least

∑
u∈∆

2
−
x′+c4d log log log n

D
+1

c4du log log T
du ≥

∑
u∈∆

2
− x′

c4d log log T
d · 2

−
c4d log log log n

D
+1

c4(d−1) log log T
d−1

≥ 2
−1−

d log log log n
D

+1

(d−1) log log T
d−1

≥ 2−1−
2d log log log n

D
d log log log n

D = 1
8 .

If xj is chosen to be any of the integer values between x′ and x′ +
c4d log log log n

D + 1, then by Lemma 25, the probability that v is informed is at
least 1

8 · 4
− 1

8 ≥ 1
10 . So, the overall probability that v is informed in time-step j

is at least

1
c
· 1

10 ·
c4d log log log n

D

T
≥

c4d log log log n
D

20cc24D log n
D log log log n

D

= d

20cc4D log n
D

.

We are now in a position to apply Lemma 62 with

µ(d, δ) =

20cc4D log n

D

d , if d ≥ D
log2 log n

D
and δ ≤ (nD)2

36c log δ log2 log δ otherwise.

We can bound N , the maximum of
∑D
d=1 µ(d, δd), subject to

∑D
d=1 δd ≤ n,

as follows: the maximum contribution of terms falling under the first case is at
most

89

D∑
d= D

log2 log n
D

20cc4D log n
D

d
≤ 20cc4D log n

D
(1 +

∫ D

D
log2 log n

D

di

i
)

≤ 20cc4D log n

D
(1 + ln(log2 log n

D
))

≤ 48cc4D log n

D
log log log n

D
,

the maximum contribution of terms where d < D
log2 log n

D
is at most

D

log2 log n
D

· 36c log
n log2 log n

D

D
log2 log

n log2 log n
D

D

≤
37cD log n

D log2 log n
D

log2 log n
D

= 37cD log n

D
,

and the maximum contribution of terms where δ ≥ (nD)2 is at most

D2

n
· 36c log(n

D
)2 log2 log(n

D
)2 ≤ 73cD · D

n
log n

D
log2 log n

D
≤ 73cD .

So, summing these contributions,

N ≤ 48cc4D log n

D
log log log n

D
+ 37cD log n

D
+ 73cD

≤ 50cc4D log n

D
log log n

D
.

We can also see that the maximum µ value µmax is at most
20cc4 logn log2 logn. So, applying Lemma 62, we can conclude that the net-
work will be informed within

4N + 91µmax logn ≤ 200Cc4D log n

D
log log log n

D
+ 1820Cc4 log2 n log2 logn

≤ 200cc4D log n

D
log log log n

D
+ 1820cc4 · 2D log n

D

≤ 3840cc4D log n

D
log log log n

D

time with high probability. Here in the second inequality, we are using that
D ≥ logn(log logn)2. We set c4 = 3840c to ensure that the iteration we analyze

90

is sufficiently long, and thus broadcast is performed in O(D log n
D log log log n

D)
time.

Theorem 68. Broadcasting can be performed in networks with collision detec-
tion in O(D log n

D log log log n
D + log2 n) time, with high probability.

Proof. We perform a beep-wave to ensure that all nodes v know their distance dv
from the source, and then apply the framework of Algorithm 16 using Shallow-
Broadcast, General-Broadcast, Semi-Shallow-Broadcast, and Deep-
Broadcast, i.e. c = 4. If D ≤ logn, then by Lemma 63 we complete broad-
casting in O(log2 n) time. If logn ≤ D ≤ logn log2 logn, then by Lemma 66
we complete broadcasting in O(D logn log log logn) = O(D log n

D log log log n
D)

time. If D > logn log2 logn, then by Lemma 67 we complete broadcasting in
O(D log n

D log log log n
D) time. This gives a total asymptotic running time of

O(D log n
D log log log n

D + log2 n).

5.5 Broadcast in Undirected Networks with
Collision Detection

In undirected networks in which collision detection is available, the fastest algo-
rithm with known network parameters is the O(D + log6 n)-time result of [28].
This algorithm involves utilizing beep-wave type methods to set up a structure
known as a gathering spanning tree, which arose in work on known-topology
radio networks [32] and admits a fast broadcasting schedule atop it. To achieve
the O(D+log6 n)-time bound, constant-factor upper bounds on D and logn are
required. However, since the running time does not contain a product of these
two quantities, the algorithm can be simulated without parameter knowledge
by using a doubling parameter T , where T is used as an upper bound for both
D and log6 n, and the algorithm is run for T time in each iteration. Then, when
T exceeds both D and log6 n, which happens within O(D + log6 n) time, the
algorithm will succeed.

5.6 Discussion and Open Problems

We present the first dedicated randomized broadcasting algorithms for networks
without parameter knowledge, and show near-optimal running times. There are

91

still complexity gaps to close; in particular, algorithms reaching O(D log n
D +

log2 n) would be interesting, as would a matching lower bound for directed
networks with collision detection. An improvement we would like our algorithms
to have is a deterministic selecting sequence (similarly to [23]), which would
allow them to be used with multiple sources. Another possible extension to our
work here is to achieve acknowledged broadcasting, i.e. to ensure that by some
time-step, all nodes know that broadcasting has been successfully completed
and can cease transmissions. This would solve the issue with our algorithms
here that nodes must continue transmissions indefinitely. However, it is not
clear if acknowledged broadcasting is possible in this model; as mentioned in
Chapter 4, Chlebus et al. [10] show that, using deterministic algorithms and
without collision detection, it is not.

92

Chapter 6

Randomized Leader
Election

We now consider the problem of leader election, and design randomized algo-
rithms for networks with and without collision detection.

6.1 Related Work

Work on leader election in radio networks started in the 1970s with the single-
hop network model. In this setting, in the model with collision detection, leader
election can be performed deterministically in O(logn) time, which was proven
to be optimal by Greenberg and Winograd [30]. While randomization provides
no benefit if a high probability bound is required, as a Ω(logn) lower bound also
exists [29, 51], Willard [55] gave an algorithm with the expected running time
of O(log logn) and showed that this bound is also asymptotically optimal. (We
note, however, that this result assume that nodes do not know the value of n,
nor a linear upper bound.) For the single-hop network model without collision
detection, deterministic leader election has complexity Θ(n logn) [15, 45], and
randomized leader election has expected time complexity O(logn) [46] and high
probability time complexity O(log2 n) [39].

While the complexity of leader election in single-hop networks is now well
understood, the complexity of the problem in multi-hop networks has been less
developed.

In the seminal work initiating the study of the complexity of communication

93

protocols in multi-hop radio networks, Bar-Yehuda et al. [3] developed a general
randomized framework of simulating single-hop networks with collision detection
by multi-hop networks without collision detection. The framework yields leader
election algorithms for multi-hop networks (in directed and undirected networks)
running in O(TBC ·log logn) expected time and O(TBC ·logn) time w.h.p., where
TBC is the time required to broadcast a message from a single source to the entire
network. The same authors also gave a randomized broadcasting algorithm
running in O(D logn + log2 n) time w.h.p., thereby yielding a leader election
algorithm taking O((D logn+ log2 n) log logn) expected time and O(D log2 n+
log3 n) time w.h.p.

The next improvement came with faster algorithms for broadcast due to
Czumaj and Rytter [23], and independently Kowalski and Pelc [44], which re-
quire only O(D log n

D + log2 n) time w.h.p. Combining these algorithms with
the simulation framework of Bar-Yehuda et al., one obtains leader election al-
gorithms (even in the model without collision detection, and in both directed
and undirected graphs) running in O((D log n

D +log2 n) log logn) expected time
and O((D log n

D + log2 n) logn) time w.h.p.
Recently, Ghaffari and Haeupler [27] took a new approach, which yielded

faster leader election algorithms in undirected networks. The main idea of this
work is to randomly select a small (logarithmic) number of candidates for the
leader and then repeatedly run “debates” to reduce the number of candidates
to one. Standard random sampling technique allows one to choose in constant
time a random set of Θ(logn) candidates, with high probability. Then, by
running a constant number of broadcasting computations and neighborhood
exploration algorithms (this phase is called a “debate” in [27] and it relies heavily
on the assumption that the network is undirected), one can reduce the number
of candidates by a constant factor. Using this approach, Ghaffari and Haeupler
gave a leader election algorithm (in undirected networks) that in O((D log n

D +
log3 n) ·min{log logn, log n

D}) rounds elects a single leader w.h.p. For the model
with collision detection, the same work [27] used a similar approach to elect
a leader in O((D + logn log logn) ·min{log logn, log n

D}) rounds w.h.p. These
algorithms are nearly optimal, and are the fastest currently known for undirected
networks and for worst-case running time.

94

6.2 Our Results

We present a framework for leader election in multi-hop radio networks which
yield randomized leader elections taking O(broadcasting time) in expectation,
and another which yields algorithms taking fixed O(

√
logn)-times broadcasting

time. Both succeed with high probability.
We show how to implement these frameworks in radio networks without

collision detection, and in networks with collision detection (in fact in the strictly
weaker beep model). In doing so, we obtain the first optimal expected-time
leader election algorithms in both settings, and also improve the worst-case
running time in directed networks without collision detection by an O(

√
logn)

factor.

6.3 Leader Election Frameworks

We first give frameworks for leader election in radio network-like scenarios which
are independent of the specific communication rules of the models involved.

6.3.1 Verify and Eliminate

Our leader election frameworks will be based upon the use of two sub-
procedures, which we will call Verify and Eliminate. In broad terms, these
procedures are both means of utilizing a global broadcast to collect some infor-
mation about the current state of a leader election attempt.

Verify The purpose of Verify is to determine whether the input set (which
in our application will be a set of candidate leaders) is of size 0, 1, or greater
than 1. Further, in the case that the set is of size exactly 1 (which is what we
hope for), all nodes receive the ID of its sole member.

Formally, Verify(C) takes as input a subset of nodes C and outputs a pair
(m(v), b) ∈ [L]× {0, 1, 2} to each node v, satisfying the following conditions:

• b =

0 if |C| = 0;

1 if |C| = 1;

2 otherwise;

• if C consists of only a single element c, then m(v) = ID(c) for all nodes v.

95

Here b carries the information about the size of C, and if |C| = 1 as required,
m(v) gives the candidate ID. Otherwise, we make no restrictions on m(v).

Eliminate Eliminate has stronger requirements than Verify. Rather than
just returning information about the size of the input set, it instead returns an
output set which is of size at least 1, and strictly smaller than the input set (as
long as this was of size greater than 1). In our application, this will allow us to
thin out a set of candidate leaders by (at least) one per iteration, until we reach
a single leader.

Formally, Eliminate(C) takes as input a subset of nodes C and outputs a
pair (m(v), C ′) ∈ [L]× 2V to each node v, satisfying the following conditions:

• 1 ≤ |C ′| < max{|C|, 2};

• if C consists of only a single element c, then m(v) = ID(c) for all nodes v.

In both of these procedures, sets given as input or output are implicit; that
is, that each node receives, or outputs, only the information of whether it is
itself a member of the set (rather than full knowledge of the set). Furthermore,
we will be considering randomized implementations of these procedures, and so
will ensure that our implementations meet the specified requirements with high
probability.

We will show how to implement these sub-procedures in our network models
later; first we describe how to use them to build general leader election frame-
works.

6.3.2 Leader Election Frameworks

In this section we will show how the Verify and Eliminate procedures can
be combined into frameworks for leader election. While in this work we are
focused on radio networks, in general these frameworks could extend to other
distributed computing models.

Variable time

We first give the framework for a leader election algorithm whose running time
is a random variable, which is O(broadcasting time) in expectation.

The idea is simple: we repeatedly randomly choose a set of candidate leaders,
and terminate when the set we chose is of size 1.

96

Algorithm 17 Leader Election, variable time
loop

each v ∈ V chooses to be in the set C of candidates with probability
Θ(1

n)
(m(V), b)← Verify(C)
if b = 1 then output m(V), terminate

end loop

Theorem 69. If Verify(C) is implemented in t time to succeed with high
probability, then Algorithm 17 performs leader election in O(t) expected time,
succeeding with high probability.

Proof. Assume for the sake of the analysis that if the algorithm has run un-
successfully for n

2 iterations, it terminates. With probability at least 1 − n−1

2 ,
Verify returns the correct result for these n

2 iterations. Notice that in any par-
ticular iteration, the probability that |C| = 1 is bounded above by a constant,
and denote this constant c. With probability at least 1−cn2 one of the iterations
will have had |C| = 1, so the algorithm will correctly perform leader election
with probability at least (1− n−1

2)(1− cn2) ≥ 1− n−1. Since c is constant, ex-
pected number of iterations until |C| = 1 is also a constant k. Expected number
of iterations until termination is therefore at most k(1− n−1

2) + n
2
n−1

2 < k + 1,
i.e., a constant, and since the running time of each iteration is dominated by
that of Verify, expected running time is O(t).

Fixed time

Next we give another framework for leader election whose running time is fixed,
and therefore has better worst-case performance. This framework is slightly
more complex, and consists of two main phases. In the first, each node chooses to
be a candidate with probability Θ(logn

n), which ensures that Θ(logn) candidates
are chosen with high probability. Then we repeatedly have candidates drop
out with probability 1

2 , and use the Verify procedure to check that we did
not remove all candidates. Doing this Θ(x) times (where x is some parameter
between 1 and logn to be fixed presently) ensures that only Θ(logn

x) candidates
remain, w.h.p. Then, in the second phase, we repeatedly use Eliminate to
remove candidates one at a time, until only a single one remains.

The running time of the algorithm will be dominated by the Θ(x) calls to
Verify and the Θ(logn

x) calls to Eliminate. Therefore, if we let t and u be the

97

Algorithm 18 Leader Election, fixed time
each v ∈ V chooses to be in the set C of candidates with probability Θ(logn

n)
loop Θ(x) times

each v ∈ C chooses to be in C ′ with probability 1
2

(m(v), b)← Verify(C ′)
if b 6= 0 then C ← C ′

end loop
loop Θ(logn

x) times
(m(v), C)← Eliminate(C)

end loop
output m(v), terminate

running times of Verify and Eliminate respectively, we see that to optimize
our overall running time we should set x =

√
u
t logn.

Theorem 70. Algorithm 18 performs leader election in O(
√
tu logn) time and

succeeds with high probability.

Proof. With high probability, Θ(logn) nodes choose to be candidates in C. First
we will analyze how many candidates remain after the first loop. Let y be the
number of rounds of the loop during which |C| > 2 logn

x , and consider only these
rounds. We call such a round i successful if 5|C|

6 > |C ′| ≥ 1. The probability
that any round is not successful is at most:

Pr [|C ′| = 0] + Pr
[
|C ′| ≥ 5|C|

6

]
≤
(

1
2

)|C|
+
(|C|

5|C|
6

)(
1
2

) 5|C|
6

=
(

1
2

)|C|
+
(|C|
|C|
6

)(
1
32

) |C|
6

≤
(

1
2

)|C|
+
(
e · |C|
|C|
6

) |C|
6

·
(

1
32

) |C|
6

=
(

1
2

)|C|
+
(

3e
16

) |C|
6

≤ 2× 0.9|C| ≤ 0.9
logn
x .

Note that this is still true conditioned on the randomness of all previous
rounds, and so the total number of unsuccessful rounds is majorized by a bino-

98

mially distributed variable Bin(y, p), where p = 0.9
logn
x . If y ≥ 20x then

Pr
[
at least y

2 rounds are unsuccessful
]
≤ Pr

[
Bin(y, p) ≥ y

2
]

≤ e−
1
2y(ln 1

2p+ln 1
2(1−p))

≤ e−
y
2 ln 0.9−

logn
x

2 ≤ e−
y
2 ln e

0.1 logn
x

= e−
y logn

20x ≤ n− log e .

So either y < 20x (i.e., after 20x rounds |C| < 2 logn
x), or with high proba-

bility at least 10x of the first 20x rounds are successful and so |C| has reduced
by a factor of at least

(5
6
)10x, and hence is below logn

x .
Then, since Eliminate reduces |C| by at least 1 per round, after Θ(logn

x)
rounds only one candidate remains, and leader election is complete.

The running time is dominated by Θ(x) rounds of Verify and Θ(logn
x)

rounds of Eliminate. With x =
√

u logn
t , this gives a total running time of

O(
√
tu logn).

6.4 Implementation

We now show how to implement Verify(C) and Eliminate(C) in the models
we consider: radio networks without collision detection, and with collision de-
tection. In the latter case, we will actually use the strictly weaker beep model,
as any algorithm that works in the beep model also works in radio networks
with collision detection.

6.4.1 Radio Networks Without Collision Detection

Our algorithms will make use of some existing techniques for the radio network
model, namely methods for broadcasting messages within local neighborhoods
and throughout the entire network.

Local and global broadcast

For local broadcasting, we will utilize the classical Decay protocol of [4] (see
Algorithm 12 from Chapter 5). Recall that each round of Decay (taking logn
time-steps) results in a successful transmission with probability at least 1

4 .
While Decay has a very localized effect, to achieve global tasks we will need

more complex primitives. In particular, we will also need a method of propa-

99

gating information globally. For this we employ another previous result from
the literature, which yields a Partial Multi-Broadcast(S, f) algorithm with
the following properties:

• S ⊆ V is a set of source nodes;

• f : S → {0, 1}`, where ` = O(logn) is a message length parameter, is a
function giving each source a message to broadcast; in our applications,
this will either be a node ID, or a single bit “1”;

• Each node v interprets some bit-string m(v) upon completion;

– if S = ∅, then m(v) = ε (the empty string) for all v;

– if S 6= ∅, then ∀v ∈ V ∃s ∈ S with m(v) = f(s), i.e., each node
interprets some source’s message.

To achieve this, we use the broadcasting algorithm of Czumaj and Rytter
[23], performed with every node in S operating as a single source and with
nodes interpreting the first transmission they receive to be their output message
m(v). We require the deterministic selecting sequence version of their algorithm,
rather than the randomized selecting sequence version discussed in Chapter 5,
on which Algorithm 14 is based. This is because the latter requires global shared
randomness, which is not available when we have multiple sources.

Lemma 71 (From [23]). There is a Partial Multi-Broadcast algorithm running
in time O(D log n

D + log2 n), which succeeds with high probability.

Armed with procedures for both local and global message dissemination, we
can implement Verify and Eliminate:

Subprocedure implementation

In radio networks without collision detection, our implementations of Verify
and Eliminate both run in time TBC = O(D log n

D + log2 n) time, and we can
in fact combine them into the same process (Algorithm 19; here the output
triple contains the necessary outputs for both Verify and Eliminate). The
idea of both is to make use of Partial Multi-Broadcast to inform all nodes
of at least one candidate ID, check if any neighboring nodes received different
IDs, and performing Partial Multi-Broadcast again to inform the network
if this was the case. To meet the stricter requirements of Eliminate, we have

100

nodes who detected differing IDs broadcast the highest ID they heard in this
final phase. Then, if there are multiple candidates, at least one of the candidates
(the one with the lowest ID) becomes aware of another with a higher ID and
drops out.

We note that this implementation is similar to the method used by Bar-
Yehuda, Goldreich and Itai [3] to simulate algorithms for single-hop networks
within multi-hop networks.

Algorithm 19 Verify&Eliminate(C), no-CD
m(v)← Partial Multi-Broadcast(C, ID(C))
if m(v) 6= ε then

for i = 1 to ID length do
let v ∈ Si if the ith bit of v’s message m(v)i is 1
perform four rounds of Decay(Si)
if v receives a node ID but m(v)i = 0 then

v becomes a member of the set W of witnesses
m(v)← highest ID v knows

end if
end for
p(v)← Partial Multi-Broadcast(W,m(W))
if p(v) > ID(v) then v drops out of C
if p(v) = ε then v outputs (m(v), C, 1), procedure terminates
v outputs (m(v), C, 2), procedure terminates

else
v outputs (m(v), C, 0), procedure terminates

end if

Theorem 72. Algorithm 19 performs both Verify and Eliminate within time
O(TBC) = O(D log n

D + log2 n), and succeeds with high probability.

Proof. If C is empty, the initial call of Partial Multi-Broadcast will involve
no transmissions, so all nodes will output (ε, ∅, 0), satisfying the requirements.

If |C| = 1 then all nodes will receive the ID of its sole member. Therefore
there will be no iteration of the for loop in which one node performs Decay
and another does not, and so no nodes will become witnesses. Then, the second
invocation of Partial Multi-Broadcast will involve no transmissions, so
nodes output (m(v), C, 1) with m(v) being the ID of C’s member, as required.

If |C| > 1 then there will be at least one pair of neighboring nodes who
received different IDs during the first step. Since IDs are Θ(logn)-bit strings
chosen uniformly at random, with high probability every pair of IDs differs on
Ω(logn) positions (this can easily be seen by taking a union bound over all pairs).

101

For each such position, after four rounds of Decay the node whose received
ID has a 1 in the position will inform the neighboring node with constant
probability. Since this event is independent for each of the Ω(logn) positions,
with high probability the Decay phase succeeds in at least one of them. This
results in a node becoming a witness. So, in the second call of Partial Multi-
Broadcast, all nodes receive some message and output (m(v), C, 2). Clearly
this satisfies the conditions of Verify. For Eliminate we require that at least
one node dropped out of C. To see this, consider the node v in C which had
the lowest ID before the procedure. In the second Partial Multi-Broadcast
call it receives an ID from some witness. The witness compared at least two
IDs and picked the highest to broadcast. Therefore the ID it picked must have
been higher than v’s, so v will drop out of C.

The running time is dominated by two calls of Partial Multi-Broadcast
taking O(D log n

D + log2 n) time, and by O(logn) rounds of Decay, taking
O(log2 n) time. Therefore total running is O(D log n

D + log2 n).

6.4.2 Radio Networks With Collision Detection

When collision detection is available, we can speed up the Verify procedure
by utilizing beep waves for broadcasting. As mentioned, our implementations
for this setting actually work for the strictly weaker beep model.

Beep waves (see Chapter 3) are a means of propagating information through
the network one bit at a time via waves of collisions. For our specific purposes,
we require procedure Multi-Beep-Wave(S, f) which satisfies the following:

• S ⊆ V is a (possibly empty) set of source nodes;

• f : S → {0, 1}`, where ` = O(logn) is some message length parameter, is
a function giving each source a bit-string to broadcast.

• Each node interprets a string m(v);

– If S = ∅, then m(v) = ε (the empty string) for all v;

– If S = {s}, for some s ∈ V , then ∀v ∈ V , m(v) = f(s);

– If |S| > 1, then for all v, m(v) 6= ε. Furthermore, there exists w ∈ V
and two distinct u, v ∈ S (we allow w ∈ {u, v}) such that m(w) =
f(u) ∨ f(v) ∨m, for some bit-string m.

102

The last condition may seem convoluted; the reason for it is that, while we
cannot guarantee messages are correctly received as in the single source case, we
will at least need some means of telling that there were indeed multiple sources.
This will be detailed later, but for now we require that, as well as all nodes
receiving some non-empty message, at least one receives the logical OR of two
source messages, possibly with some extra 1s. We achieve these conditions with
Algorithm 20.

Note that this method only works in undirected networks, since in directed
networks it is impossible to prevent beep waves from interfering with subsequent
ones, and consequently broadcasting in directed networks in the beep model is
much slower (see Chapter 3).

Algorithm 20 Multi-Beep-Wave(S, f) at a node v
initialize m(v)i = 0 ∀i ∈ [`]
if v ∈ S then

v beeps in time-step 0
for i = 1 to ` do

if the ith bit of f(v) is 1 then v beeps in time-step 3i and m(v)i ← 1
else v receives a beep in time-step 3i and m(v)i ← 1

end for
else

Let j be the time-step in which v receives its first beep
v beeps in time-step j + 1
for i = 1 to ` do

if v receives a beep in time-step j + 3i then
v beeps in time-step j + 3i+ 1 and m(v)i ← 1

else
m(v)i ← 0

end if
end for

end if

We prove that the algorithm has the desired behavior:

Lemma 73. If Multi-Beep-Wave(S, f) is run with S = {s}, then ∀v ∈ V ,
m(v) = f(s).

Proof. Partition all nodes into layers depending on their distance from the
source s, i.e., layer Li = {v ∈ V : dist(v, s) = i}. We first note that a node in
layer i beeps for the first time in time-step i, since this first beep will propagate
through the network one layer per time-step. The algorithm then ensures that
such a node will beep only in time-steps equivalent to i mod 3, and only if a

103

beep was heard in the previous step. Since all neighbors of the node must be
in layers i− 1, i, and i + 1, only messages from neighbors in layer i− 1 can be
relayed (as these are the only neighbors whose beeps are in time-steps equivalent
to i− 1 mod 3). It is then easy to see that layers act in unison, and beep if and
only if the previous layer beeped in the previous time-step.

Lemma 74. If Multi-Beep-Wave(S, f) is run with |S| > 1 then there exists
w ∈ V and two distinct u, v ∈ S (we allow w ∈ {u, v}) such that m(w) =
f(u) ∨ f(v) ∨m, for some bit-string m.

Proof. Let u, v be the closest pair of sources in the graph. Let w be the midpoint
on the shortest u → v path (if the path is of odd length, pick either midpoint
arbitrarily).

If w is a source, then we can assume, without loss of generality, that w = u

and v is an adjacent source. Then if f(w)i = 1 or f(v)i = 1, w receives or
transmits a beep in time-step 3i and sets m(w)i = 1, so we are done.

Otherwise, assume without loss of generality that dist(w, u) ≤ dist(w, v) ≤
dist(w, u) + 1, and denote j := dist(w, u)− 1. w receives its first beep in time-
step j. Then, since u is the closest source to every node along the shortest u→ w

path and v is the closest source to every node along the shortest v → w path,
beeps from u and v will always be relayed along these paths. So, if f(u)i = 1,
w receives a beep in time-step j + 3i, and if f(v)i = 1, w receives a beep in
time-step dist(v, w) − 1 + 3i = j + 3i or j + 3i + 1 (unless w beeps itself in
time-step j + 3i+ 1, i.e., it received a beep in time-step j + 3i). In either case,
m(w)i is set to 1.

Lemma 75. Algorithm 20 correctly achieves the Beep-Wave conditions in
O(D + `) time-steps.

Proof. Correctness for the cases |S| = 1 and |S| > 1 follow from Lemmas 73–74,
and the case S = ∅ follows since no node ever beeps. To analyze the running
time: clearly all sources will have ceased transmission after O(`) time, and since
beeps are propagated through the network one layer per time-step, it may be a
further D time-steps before a source’s last beep is heard by the whole network,
yielding O(D + `) time.

Subprocedure implementation

We adapt Verify to make use of Multi-Beep-Wave, which in these circum-
stances is faster than Partial Multi-Broadcast.

104

Algorithm 21 Verify(C) in radio networks with collision detection
m(v)← Beep-Wave(C, ID*(C))
if m(v) 6= ε then

if m(v) has more than 10 logn 1s then v becomes a member of witness set W
p(v)← Beep-Wave(W, 1)
if p(v) = ε then v outputs (m(v), 1), procedure terminates
else v outputs (m(v), 2), procedure terminates

else
v outputs (m(v), 0), procedure terminates

end if

The idea of this algorithm is similar to that of Algorithm 19, except that
now to identify ID clashes we use a property of Multi-Beep-Wave rather than
rounds of Decay.

To do so we must make a change to candidate IDs: when we have a clash
of IDs, what we will get is the logical OR superimposition of the bit-strings,
as per the specification of Multi-Beep-Wave. Hence, if all IDs have the same
number of 1s, we will be able to identify such a clash since there will be more
1s than a single ID. So, in our Verify algorithm we use ID* to mean original
ID with 10 logn extra bits appended, with the purpose of padding the number
of 1s to exactly 10 logn.

Theorem 76. Algorithm 21 performs Verify within time O(D + logn).

Proof. If C is empty, the initial call of Multi-Beep-Wave will involve no
transmissions, so all nodes will output (ε, 0), satisfying the requirements.

If |C| = 1 then all nodes will receive the ID of its sole member, which has
exactly 10 logn 1s. Therefore there will be no witnesses, the second invocation
of Multi-Beep-Wave will involve no transmissions, so nodes output (m(v), 1)
with m(v) being the ID of C’s member, as required.

If |C| > 1 then by the properties of Multi-Beep-Wave at least one node
will receive the logical OR superimposition of two IDs (and possibly some other
string). Since the IDs are unique w.h.p. (and this remains true with our mod-
ification to ID*), this superimposition must have more than 10 logn 1s. So, at
least one node will become a witness and will broadcast during the second invo-
cation of Beep-Wave, and therefore all nodes will output (m(v), 2) as required.

The running time is dominated by two calls of Multi-Beep-Wave taking
O(D + logn) time.

We cannot use similar methods to speed up Eliminate, since the single

105

bit of information that witnesses broadcast is not sufficient to guarantee that
at least one candidate will drop out, and we cannot quickly broadcast longer
messages from multiple sources without interference. Furthermore, even with a
faster Eliminate sub-procedure, our fixed running time framework would still
yield an algorithm slower than the O((D+ logn log logn) min{log logn, log n

D})
time algorithm of [27]. Therefore we only use our variable-time framework for
networks with collision detection.

6.5 Running Times

We can now plug the running times of our implementations of the Verify and
Eliminate sub-procedures (given by Theorems 72 and 76) into our framework
results (Theorems 69 and 70) to obtain the following leader election results:

Theorem 77. Leader election can be performed in radio networks (either di-
rected or undirected) without collision detection within O(D log n

D +log2 n) time
in expectation, succeeding with high probability.

Proof. Follows immediately from Theorems 69 and 72.

This running time is asymptotically optimal, and improves by a Θ(log logn)
factor over the previous best result of [27].

Theorem 78. Leader election can be performed in radio networks (either di-
rected or undirected) without collision detection in O((D log n

D + log2 n)
√

logn)
time, succeeding with high probability.

Proof. Follows immediately from Theorems 70 and 72.

While this algorithm is slower than that of [27], it has the benefit of work-
ing in directed networks as well as undirected. In directed networks, it is a
Θ(
√

logn) factor faster than previous results.
Though these results are given by two different frameworks, we can easily

combine them into a single algorithm, either by interspersing steps of the two al-
gorithms alternately, or by running Algorithm 17 forO((D log n

D+log2 n)
√

logn)
time and then running Algorithm 18. Consequently, we can achieve good ex-
pected and worst case running times concurrently.

For undirected networks in the model with collision detection and in the
beep model, we can obtain the following stronger bound:

106

Theorem 79. Leader election can be performed in undirected radio networks
with collision detection within O(D+logn) time in expectation, succeeding with
high probability.

Proof. Follows immediately from Theorems 69 and 76.

6.6 Discussion and Open Problems

We present a framework for leader election in radio networks which yield ran-
domized leader elections taking optimal O(broadcasting time) in expectation,
and another which yields algorithms taking fixed O(

√
logn)-times broadcasting

time. Both these algorithms succeed with high probability. We then showed
implementations of the framework in radio networks with and without collision
detection.

Some of these results have since been partially superseded: the O(D+logn)-
time deterministic leader election algorithm of [24], for the undirected beep
model, improves over Theorem 79. Furthermore, we show a randomized leader
election algorithm for undirected networks without collision detection taking
O(D logn

logD + logO(1) n) worst-case time in Chapter 7, which improves over The-
orems 77 and 78 in most circumstances. However, these theorems remain the
strongest results for leader election in directed networks.

Indeed, directed networks are the setting in which it seems further improve-
ment should be most possible. Currently, there are no leader election algorithms
known for directed networks which exploit collision detection at all, so an open
question is whether collision detection adds any power here. Furthermore, while
the expected running time of Theorem 77 is optimal, worst case running time
is still a

√
logn-factor away from the lower bound, and one would wish to close

this gap.

107

Chapter 7

Spontaneous Transmissions

In Chapter 5 we saw an O(D log n
D + log2 n)-time broadcasting algorithm based

on those developed by Czumaj and Rytter [23] and Kowalski and Pelc [44]. We
also mentioned that this running time is known to be optimal [2, 46]. However,
Kushilevitz and Mansour’s Ω(D log n

D) time lower bound crucially relies on the
assumption that spontaneous transmissions are not allowed, i.e. that nodes can
only participate once they have received the source message. In this chapter we
describe how spontaneous transmissions can be exploited to improve running
times and break this lower bound for broadcasting and leader election.

7.1 Related Work

We will be considering undirected multi-hop networks without collision detec-
tion, with a global clock and parameter knowledge. In this setting, the fastest
randomized broadcasting algorithm until very recently was the O(D log n

D +
log2 n)-time algorithm of [23, 44], which is optimal in the absence of spontaneous
transmissions. The fastest leader election algorithms were that of Ghaffari and
Haeupler [27], attaining O(D log n

D + log3 n) · min{log logn, log n
D} worst-case

running time with high probability of success, and Algorithm 17 from Chap-
ter 6, which runs in O(D log n

D + log2 n) expected time and also succeeds with
high probability. For a more comprehensive history of broadcasting and leader
election algorithms, see Chapters 5 and 6 respectively.

In 2016, Haeupler and Wajc [34] demonstrated that allowing spontaneous
transmissions can lead to faster broadcasting algorithms, by designing a ran-

108

domized algorithm that completes broadcasting in O(D logn log logn
logD + logO(1) n)

time, succeeding with high probability. This is the only algorithm that beats
the lower bound of Ω(D log n

D +log2 n) [2, 46] in the model with no spontaneous
transmissions, and indeed is the only non-trivial use of spontaneous transmis-
sions in radio networks, to our knowledge (though they have previously been
used for naive Round-Robin type procedures as part of deterministic algorithms,
e.g. [10]). Given that for the model that allows spontaneous transmissions any
broadcasting algorithm requires Ω(D + log2 n) time (cf. [2, 53]), the algorithm
due to Haeupler and Wajc [34] is almost optimal (up to an O(log logn) factor)
whenever n is polynomial in D.

7.1.1 Our Results

We extend the approach recently developed by Haeupler and Wajc [34] to de-
sign a fast randomized algorithm for both broadcasting and leader election,
running in time O(D logn

logD + logO(1) n), and succeeding with high probability
(Theorem 83). When D = Ω(logc n) for a sufficiently large constant c, these
running time bounds improve the fastest previous algorithms for broadcasting
and leader election by factors O(log logn) and O(logn log logn), respectively.
More importantly, whenever n is polynomial in D (i.e., n = O(Dc), for some
constant c ≥ 1), this running time is O(D), which is asymptotically optimal
since time D is required for any information to traverse the network.

Our algorithm is the first to achieve optimality over this range of parame-
ters, and is also the first instance (in this model) of leader election time being
asymptotically equal to fastest broadcasting time, since the former is usually a
harder task in radio network models.

Note: We assume throughout that D = Ω(logc n) for some sufficiently large
constant c. If this is not the case, then the O(D log n

D + log2 n)-time algorithm
of [23, 44] should be used instead.

7.2 Overview of Approach

We describe how to design a single procedure which performs both broadcasting
and leader election:

109

7.2.1 Broadcasting, Leader Election, and Compete

To perform both broadcasting and leader election using the same algorithm, we
study an auxiliary problem, which we call Compete, which generalizes both
tasks. Recall that in broadcasting, one particular node, called the source, has
a message which must become known to all other nodes. Meanwhile, in leader
election, all nodes must agree on a designated leader node.

Compete has a similar flavor to broadcasting, but instead of transmitting
a single message from a single source to all nodes in the network, it takes as its
input a source set S ⊆ V , in which every source s ∈ S has a message (of integer
value) it wishes to propagate, and guarantees that upon completion all nodes
in N know the highest-valued source message.

It is easy to see how the Compete process generalizes broadcasting: it
is simply invoked with the source as the only member of the set S. To per-
form leader election, one can probabilistically generate a small set (e.g., of size
Θ(logn)) of candidate leaders, and then perform Compete using this set, with
IDs as the messages to be propagated. Therefore, to design efficient random-
ized broadcasting and leader election algorithms, it is sufficient to design a fast
randomized algorithm for Compete.

Our approach to study Compete (and hence also broadcasting and leader
election problems) follows the methodology recently applied for fast distributed
communication primitives by Ghaffari, Haeupler, Wajc, and others (see, e.g.,
[27, 34]). In order to solve the problem, we split computations into three parts.
First, all nodes in the network will communicate with their local neighborhood
to create some clustering of the network. Then, using this clustering, the nodes
will perform some computations within each cluster, so that all nodes in the
cluster share some useful knowledge. Finally, the knowledge from the clusters
will be utilized to efficiently perform global communication.

7.2.2 Clusterings, Partition, and Schedulings

To implement this approach efficiently, we follow a similar line to that of Hae-
upler and Wajc [34] and rely on a clustering procedure of Miller et al. [50],
adapted for the radio network model. We consider a partitioning of the input
network into clusters in distributed setting, such that

• each node identifies one particular node as its cluster center,

110

• any node which is a cluster center to any other must be cluster center to
itself, and

• the subgraph of nodes identifying any particular node as their cluster
center is connected.

Haeupler and Wajc provide a means of achieving such a clustering with useful
properties. In what follows, the term “strong diameter” refers to diameter using
only edges within the relevant cluster (i.e. disallowing ‘short-cuts’ which involve
leaving the cluster and returning).

Lemma 80 (Lemma 3.1 of [34]). Let 0 < β ≤ 1. Any network on n nodes can
be partitioned into clusters such that:

• each cluster has strong diameter O(logn
β) with high probability, and

• every edge is cut by this partition (has its endpoints in distinct clusters)
with probability O(β).

This algorithm can be implemented in the radio network setting in O(log3 n
β)

rounds.

We will not prove this lemma, but we give a brief explanation of the method:

Clustering Method

The clustering algorithm can be described very simply (though the radio net-
work implementation is less simple): each node v independently generates δv,
an exponentially distributed random variable with parameter β (i.e. a variable
taking values in R≥0 with Pr [δv ≤ y] = 1− e−βy). Then, v joins the cluster of
the node u which minimizes dist(u, v)− δu.

The purpose of the variables δv is to break symmetry, and cause some
nodes to be more prone to becoming cluster centers than others. The ex-
ponential distribution is chosen because of its memorylessness property: if
we condition on δv exceeding some threshold t, then the amount that δv

exceeds t is distributed identically to δv’s original distribution (formally,
Pr [δv ≤ t+ y|δv ≥ t] = Pr [δv ≤ y]).

This property can give us an intuition for why every edge is cut with proba-
bility O(β). Fix an edge e and let v be an endpoint. For e to be cut, there must
two distinct nodes u,w such that 0 ≤ (dist(u, v) − δu) − (dist(w, v) − δw) ≤ 1
(this is necessary for w to be v’s cluster center, and u to be the cluster center

111

of e’s other endpoint). But by the memorylessness property, this is equal to
Pr [δw] ≤ 1, which is 1− e−β = O(β). Note that this is not a formal argument;
for detailed proof see [34].

We can also see why each cluster has strong diameter O(logn
β): with high

probability, all δv will be O(logn
β). Then, for any node u further from v than

that, dist(u, v)− δu ≥ 0 ≥ dist(v, v)− δv, so u can never be v’s cluster center.
This means that weak cluster diameter is O(logn

β); to see that the same is true
of strong diameter, notice that if a node w is v’s cluster center, then it must
also be cluster center to all nodes on the (w, v)-shortest path. Therefore, the
strong diameter of a cluster is at most twice the weak diameter.

Using the Clusterings

The clustering provided by the application of Lemma 80 will be denoted by
Partition(β).

This framework will be used in our central result, Theorem 81, which states
that upon applying Partition(β) with β randomly chosen from some range
polynomial in D, with constant probability the expected distance from some
fixed node to its cluster center is O(logn

β logD).

Theorem 81. Let j be an integer chosen uniformly at random between
0.01 logD and 0.1 logD, and let β = 2−j. For any node v, with probability
at least 0.55 (over choice of j), the expected distance from v to its cluster center
upon applying Partition(β) is O(logn

β logD).

We prove this result in Section 7.6.
Theorem 81 applies to the clustering method in any setting, not just radio

networks, and hence it may well be of independent interest. It improves over
the result of [34] that expected distance to cluster center is O(logn log logn

β logD).
The approach described above is combined with a means of communicating

within clusters from [28] using the notion of schedules. These schedules are
adapted from results on radio networks with known topology [32].

Lemma 82 (Lemma 2.1 of [34]). A network of diameter D and with n nodes
can be preprocessed in O(D logO(1) n) rounds, yielding a schedule which allows
for one-to-all broadcast of k messages in O(D + k logn + log6 n) rounds with
high probability. This schedule satisfies the following properties:

• for some prescribed node r, the schedule transmits messages to and from
nodes at distance ` from r in O(`+ log6 n) rounds with high probability;

112

• the schedule is periodic with period O(logn): it can be thought of as restart-
ing every O(logn) steps.

Whenever we refer to computing or using schedules during our algorithms,
we mean using the method from Lemma 82. We note that, as shown in Lemma
4.2 of [34], we can perform this preprocessing in such a way that it succeeds with
high probability despite collisions, at a multiplicative O(logO(1) n) time cost.

7.2.3 Algorithm Structure

The general approach of our algorithm proceeds as follows: First there is a
preprocessing phase, in which we partition the network using Partition(β)
from Lemma 80, and compute schedules within the clusters using Lemma 82.
Then we broadcast the message through the network using these computed
schedules within clusters. Any shortest (u, v)-path p crosses O(|p|β) clusters in
expectation, and communication within these clusters takes O(logn

β logD) expected
time, so total time required should be O(|p| logn

logD) = O(D logn
logD).

Of course, this omits many of the technical details, and we encounter several
difficulties when trying to implement the approach. Firstly, Theorem 81 only
bounds expected distance to cluster center with constant probability. However,
by generating many different clusterings, with different random values of β, and
curtailing application of the schedules after O(logn

β logD) time, we can ensure that
we do make sufficient progress with high probability. A second issue is that these
values of β must somehow be coordinated, which we solve by using an extra layer
of “coarse” clusters, similarly to [34]. Thirdly, collisions can occur between nodes
of different clusters during both precomputation and broadcasting phases. We
take several measures to deal with these collisions in our algorithms and analysis.

7.2.4 Advances over Previous Works

The idea of performing some precomputation locally and then using this local
knowledge to perform a global task occurs frequently in distributed computing.
In our setting, the most similar prior work is the O(D logn log logn

logD + logO(1) n)-
time broadcasting algorithm due to Haeupler and Wajc [34]. Here we summarize
our main technical differences from that paper and other related works:

• It was known from [34] that when Partition(β) is run with 1/β ran-
domly selected from a range polynomial in D, the expected distance from
a node to its cluster center is O(logn log logn

β logD). We improve this result with

113

Theorem 81, which states that with constant probability this distance is
O(logn

β logD).

• We demonstrate how, by switching clusterings frequently and curtailing
their schedules after O(logn

β logD) time, we can improve the fastest time for
broadcasting in radio networks.

• We show that, with a different method of analysis and an algorithmic
background process to deal with collisions, we can extend this method
to also complete leader election, a task usually considered to be more
difficult.

7.3 Algorithm for Compete

As mentioned in Section 7.5, since our broadcasting and leader election protocols
require the same asymptotic running time and use similar methods, we combine
their workings into a single generalized procedure Compete.

Compete takes as input a source set S ⊆ V of nodes, in which every source
s ∈ S has a message it wishes to propagate, and guarantees, with high proba-
bility, that upon completion all nodes know the highest-valued source message.
The process takes O(D logn

logD + |S|D0.125 + logO(1) n) time (cf. Theorem 83),
which is within the O(D logn

logD + logO(1) n) time claimed for broadcasting and
leader election, as long as |S| = O(D0.875). Here this constant exponent of D
is somewhat arbitrary, and could be improved by modifying constants in our
algorithm and analysis, but this value is sufficient for our needs.

Our efficient algorithm for Compete consists of two processes which run
concurrently, alternating between steps of each. The main Compete process is
designed to propagate messages quickly through most of the network, and the
background process is slower, with the purpose of “papering over the cracks” in
the main process; in this case that means passing messages across coarse cluster
boundaries.

114

Algorithm 22 Compete(S)
1) Compute a coarse clustering using Partition(β′) with β′ = D−0.5.
2) Compute a schedule within each coarse cluster.
3) Within each coarse cluster, for each integer j ∈ [0.01 logD, 0.1 logD], com-
pute D0.2 different fine-grained clusterings using Partition(β) with β = 2−j .
4) Compute schedules within all fine-grained clusterings.
5) Each coarse cluster center computes a D-length sequence of randomly
chosen fine-grained clusterings to use.
6) Transmit this sequence within each coarse cluster, using the coarse cluster
schedules.
7) For each fine-grained clustering in the sequence perform Intra-Cluster
Propagation(O(logn

β logD)), with β corresponding to the clustering.

In the main process, we first compute a coarse clustering, that is, one with
comparatively large clusters, which we need to spread shared randomness. Then,
within the coarse clusters we compute many different fine-grained clusterings,
i.e., sub-clusterings with smaller clusters. These are the clusterings we will use
to propagate information through the network. We will henceforth refer to the
clusters of the fine-grained clusterings as fine-grained clusters.

The coarse clusters generate and transmit a random sequence of these fine-
grained clusterings, which tells their members in what order to use the fine-
grained clusterings for this propagation (this was the sole purpose of the coarse
clustering). We show that, upon using a clustering with β chosen at random
and applying Intra-Cluster Propagation(O(logn

β logD)), we have a constant
probability of making sufficient progress towards our goal of information prop-
agation. We can treat the progress made during each application of Intra-
Cluster Propagation as being independent, since we use a different random
clustering each time (and with high probability, whenever we choose a clustering
we have used before, we have made sufficient progress in between so that the
clusters we are analyzing are far apart and behave independently). Therefore we
can use a Chernoff bound to show that with high probability we make sufficient
progress throughout the algorithm as a whole.

An issue with the main process, though, is that at the boundaries of the
coarse clustering, collisions between coarse clusters can cause Intra-Cluster
Propagation to fail. To rectify this, we interleave steps of the main process
with steps of a background process, e.g., by performing the main process during

115

even time-steps and the background process during odd time-steps.

Algorithm 23 Compete(S) - Background Process
1) Compute D0.2 different fine-grained clusterings using Partition(β) with
β = D−0.1.
2) Compute a schedule within each cluster, for each clustering.
3) Cycling through clusterings in round-robin order, perform Intra-Cluster
Propagation(O(logn

β))

The background process is simpler: it follows a similar line to the main
process, but does not use a coarse clustering, only fine-grained clusterings. This
means that we do not have the shared randomness we use in the main process,
so we cannot choose β randomly (we instead fix β = D−0.1) and we cannot
use a random ordering of fine-grained clusterings (we instead use a round-robin
order). As a result, we must run Intra-Cluster Propagation for longer to
achieve a constant probability of making good progress, and so the propagation
of information is slower (if we were to rely on the background process alone, we
would only achieve O(D logn+ logO(1) n) time for Compete).

However, the upside is that there are no coarse cluster boundaries, and so
the progress is made consistently throughout the network. Therefore, we can
analyze the progress of our algorithm using the faster main process most of the
time, and switching to analysis of the background process when the main process
reaches a coarse cluster boundary. Since the coarse clusters are comparatively
large, their boundaries are reached infrequently, and so we can show that overall
the algorithm still makes progress quickly.

Both Compete processes make use of Intra-Cluster Propagation as
a primitive, which utilizes the computed clusters and schedule to propagate
information. Specifically, the procedure facilitates communication between the
cluster center and nodes within ` hops.

Algorithm 24 Intra-Cluster Propagation(`)
Broadcast the highest message known by the cluster center to all nodes within
` distance.
All such nodes which know a higher message participate in a broadcast to-
wards the cluster center.
Broadcast the highest message known by the cluster center to all nodes within
` distance.

116

Here we apply Lemma 82: after computing schedules, it is possible to
broadcast between the cluster center and nodes at distance at most ` in time
O(`+ logO(1) n). That is, on an outward broadcast all nodes within distance `
of the cluster center hear its message, and on an inward broadcast the cluster
center hears the message of at least one participating node. This would be suffi-
cient in isolation, but since we perform Intra-Cluster Propagation within
all fine-grained clusters at the same time, we will describe a background process
to deal with collisions between fine-grained clusters in the same coarse cluster.
As before, we intersperse the steps of the main process and background process,
performing one step of each alternately.

Algorithm 24 Intra-Cluster Propagation Background Process
Repeat until main process is complete:
for i = 1 to logn do

with probability 2−i (coordinated within clusters) perform one round of
Decay;

otherwise remain silent for logn steps.
end for

The background process aims to individually inform nodes that border other
fine-grained clusters, and therefore may have collisions that prevent them from
participating properly in the main process. The goal is to ensure that eventually
(we will bound the amount of time that we may have to wait), such a node’s
cluster will be the only neighboring cluster to perform Decay (algorithm 12),
which ensures that the node will then hear its cluster’s message (with constant
probability).

7.4 Analysis of Compete Algorithm

In this section we prove the following guarantee on the behavior of Compete:

Theorem 83. Compete(S) informs all nodes of the highest message in S

within O(D logn
logD + |S|D0.125 + logO(1) n) time-steps, with high probability.

The precomputation phase of Compete, that is, steps 1–6 of the main pro-
cess and steps 1-2 of the background process, requires O(D0.5 logO(1) n) = O(D)
time, and upon its completion we have all the schedules required to perform
Intra-Cluster Propagation. As in [34], we can ignore collisions during

117

these precomputation steps, since we can simulate each transmission step with
O(logn) rounds of Decay to ensure their success without exceeding O(D) total
time.

We first prove a result that allows us to use Intra-Cluster Propaga-
tion to propagate messages through the network. During a fixed application
of Intra-Cluster Propagation, we call a node valid if it can correctly send
and receive messages to/from its cluster center despite collisions between fine-
grained clusters.

Lemma 84. For some constant c, upon applying Intra-Cluster
Propagation(`) with ` = DΩ(1), a fixed node u at distance at most `

c from
its cluster center is valid with probability at least 0.99.

Proof. Let u be a node at distance d from its cluster center, and call nodes
on the shortest path from u to the cluster center that border another fine-
grained cluster risky. We make use of a result of [34] (a corollary of Lemma 3.6
used during the proof of Lemma 4.6) which states that any node is risky with
probability O(β). Therefore the expected number of risky nodes on the path is
O(dβ).

Let v be a risky node bordering q fine-grained clusters, and consider how long
v must wait to be informed if it has a neighbor in its own cluster that wishes to
inform it. Whenever 2−i is within a constant factor of 1

q during the background
process, Decay has Ω(1

q) probability of informing v from its own cluster. This
is because with probability Ω(1

q), v’s cluster is the only cluster bordering v to
perform Decay, and in this case v is informed with constant probability. Since
this value of 2−i recurs every O(log2 n) steps, the time needed to inform v is
O(q log2 n) in expectation.

We use another result from [34], Corollary 3.9, which states that with high
probability all nodes border O(logn

logD) = O(logn) clusters. Therefore the total
amount of time spent informing risky nodes is O(dβ · log3 n) = O(d) in expecta-
tion, and since O(d+logO(1) n) time is required to inform non-risky nodes using
the main process, u can communicate with its cluster center in O(d+ logO(1) n)
expected time. By choosing sufficiently large c, by Markov’s inequality v is valid
with probability at least 0.99.

This will allow us to use Intra-Cluster Propagation to propagate in-
formation locally. To make a global argument, we will analyze the Compete
algorithm’s progress along paths by partitioning said paths into length D0.12

118

subpaths. We call the set of all nodes within distance D0.11 of a subpath its
neighborhood, and we call a subpath good if all nodes in its neighborhood are
in the same coarse cluster (and bad otherwise). We will show that we pass
messages along good subpaths quickly under the main Compete process, and
along bad subpaths more slowly under the background process.

For each pair of vertices, fix a canonical shortest path between them. When
we refer to ‘all shortest paths’ we mean just these canonical paths, not all others
of the same length. To show that there are not too many bad subpaths along
these shortest paths, we make use of the following result from [34]:

Lemma 85 (Corollary 3.8 of [34]). After running Partition(β) the probability
of a fixed node u having nodes from t distinct clusters at distance d or less from
u is at most (1− e−β(2d+1))t−1.

Therefore the probability of a node u having nodes from two different coarse
clusters within D0.11 distance is at most

1− e−D
−0.5(2D0.11+1) ≤ 1− e−3D−0.39

≤ 3D−0.39 .

Taking the union bound over all nodes in a subpath, we find that any length-
D0.12 subpath is bad with probability upper bounded by D0.12 · 3D−0.39 ≤
D−0.26.

Lemma 86. All shortest paths p have O(D0.63) bad subpaths, with high proba-
bility.

Proof. Fix some shortest path p. As in the proof of Lemma 4.3 of [34], we first
condition on the event that all exponentially distributed random variables δv
used when computing the coarse clustering are at most 2D0.5 logn, which is the
case with high probability. Then, the events that two length-D0.12 subpaths
of distance at least 5D0.5 logn apart are bad are independent, since they are
not affected by any of the same δv. If we label the length-D0.12 subpaths of
p in order from one end of the path to the other, and group them by label
mod 6D0.38 logn, then the badness of every subpath is independent from all
the others in its group. Hence, the number of bad subpaths in each group is
binomially distributed, and is O(D

D0.12·6D0.38 logn ·D
−0.26) = O(D0.24) with high

probability by a Chernoff bound. By the union bound over all of the groups, the
total number of bad subpaths is O(D0.62) with high probability. If we allow this
amount to be as high as O(D0.63), we can reduce the probability that we exceed

119

it to n−c for an arbitrarily large constant c. We can then take a union bound
over all n2 shortest paths, and find that they all have O(D0.63) bad subpaths
with high probability.

Having bounded the number of bad subpaths, we can show we can pass
messages along them using the background process, quickly enough that we do
not exceed the algorithm’s stated running time in total. Note that here, and
henceforth, we will refer to messages by their place in increasing lexicographical
order out of all messages of nodes in S. That is, by message j we mean the jth

highest message in S.

Lemma 87 (Bad subpaths). Let p be any (u, v)-subpath of length at most
D0.12. Let j be the minimum, over all nodes v in p’s neighborhood, of the
highest message known by v at time-step t. If, at timestep t, u knows a message
higher than j, then by time-step t′ = t+O(D0.121) all nodes in p know a message
at least as high as j + 1 with high probability.

Proof. We analyze only the background process, and consider separately each
fine-grained clustering used in the sequence between time-steps t and t′. For
any such clustering, let w be the furthest node along p which knows a message
at least as high as j + 1. We call the clustering good if:

• all nodes in w’s cluster are O(D0.1 logn) distance from the cluster center;

• the node x which is D0.1

c nodes along p from w is in its cluster as w;

• x and w are valid (recall that this means they succeed in Intra-Cluster
Propagation).

By Lemma 80 the first event occurs with high probability, by Corollary 3.7
of [34] we can make the probability of the second event an arbitrarily high
constant by our choice of c, and by Lemma 84 and a union bound, the third
event occurs with probability at least 1− 2(1− 0.99) = 0.98, conditioned on the
first. Therefore the clustering is good with probability at least 1

2 , by applying
a union bound again.

By a Chernoff bound, Ω(D0.02) of the clusterings applied between times t
and t′ will be good. Consider each good clustering in turn. After applying such
a clustering, w’s cluster will be informed of an ID higher than j. Every time
this occurs, w advances at least D0.1

c steps, and so by time t′ the entire path
knows a message at least as high as j + 1.

120

We now make a similar argument for the good subpaths, but since we can use
the main Compete process without fear of collisions from other coarse clusters,
we get a better time bound:

Lemma 88 (Good subpaths). Let p be any good (u, v)-path of length at most
D0.12. Let j be the minimum, over all nodes v within D0.11 distance p, of the
highest message known by v at time-step t. If, at timestep t, u knows a message
higher than j, then by time-step t′ = t + O(D0.12 logn

logD) all nodes in p know a
message at least as high as j + 1 with high probability.

Proof. We analyze only the main procedure, and consider separately each fine-
grained clustering used in the sequence between time-steps t and t′. For any
such clustering, let w be the furthest node along p which knows a message at
least as high as j + 1. We call the clustering good if:

• w is at distance at most c1 logn
β logD from its cluster center;

• the node x which is D0.1

c nodes along p from w is in the same cluster as
w;

• x and w are valid (recall that this means they succeed in Intra-Cluster
Propagation).

By Theorem 81, and using Markov’s inequality, we can choose c1 such that
the first event occurs with probability at least 0.54, conditioned on all previous
randomness. By Corollary 3.7 of [34], we can choose c2 so that the second
event occurs with probability at least 0.99, also conditioned on all previous
randomness. By Lemma 84 the probability that x and w are valid, conditioned
on the first event, is at least 0.98. Therefore each fine-grained clustering is good
with probability at least 1

2 (by the union bound).
Let S be the set of all clusterings applied between time-steps t and t′. We are

interested in the quantity
∑
s∈S is good β

−1
s . Note that this majorizes the quan-

tity
∑
s∈S xs, where the xs are independent Bernoulli variables which take value

β−1
s with probability 1

2 and 0 otherwise. The expected value of this quantity is
1
2
∑
s∈S is good β

−1
s ≥ c

3D
0.12. By Hoeffding’s inequality,

Pr
[∑
s∈S

xs ≤
c

6D
0.12

]
≤ e
−

2|S|2(c6D
0.12)2∑

s∈S
β
−2
s ≤ e−

2|S|(c6D
0.12)2

D0.1 ≤ e− log2 n .

By time t′, w has advanced at least
∑

s∈S
xs

c2
≥ c

6D
0.12 steps along p, and so

121

by choosing a sufficiently large constant in the big-Oh notation for t′, we can
ensure that every node in p knows a message at least as high as j + 1.

We combine the results from Lemmas 86–88 to show how to propagate mes-
sages along any shortest path between two nodes.

Lemma 89 (All shortest paths). Let u and v be any nodes in N, p be the
(canonical) shortest (u, v)-path, and let b be the number of bad length-D0.12

subpaths of p. If u knows a message at least as high as i at time-step t, then by
time-step t + O(|p| logn

logD + (i + b)D0.125), v knows a message at least as high as
i with high probability.

Proof. Let k be the maximum of the constants implied by the asymptotic nota-
tion of Lemmas 87 and 88. We will prove the claim of the lemma at time-step
t+ k(|p| logn

logD + (2i+ b)D0.125), using a nested induction. Our ‘outer’ induction
shall be on the value i.
Base case: i = 1. Path p trivially contains at most |p|

D0.12 good sub-paths,
and b bad sub-paths. Applying Lemmas 87–88, the time taken to inform v of a
message at least as high as 1 is at most

|p|
D0.12 · kD

0.12 logn
logD + b · kD0.121 ≤ k

(
|p| logn
logD + (2i+ b)D0.125

)
.

Inductive step: We can now assume the claim for i = ` − 1 (Inductive As-
sumption 1), and prove the inductive step i = `. We do this using a second
induction, on |p|.

Induction on |p|. Base case: |p| ≤ D0.12. Path p is a single subpath. If p
is good, then by Inductive Assumption 1, all nodes within D0.11 of p know an
ID at least as high as `− 1 by time-step

t+ k

(
(|p|+D0.11) logn

logD + 2(`− 1)D0.125
)

.

Then, by Lemma 88, v knows an ID at least as high as ` by time-step

t+ k

(
(|p|+D0.11) logn

logD + 2(`− 1)D0.125
)

+ kD0.12 logn
logD

≤ t+ k

(
|p| logn
logD + 2`D0.125

)
.

122

If p is bad then by Inductive Assumption 1, all nodes within D0.11 of p know
an ID at least as high as `− 1 by time-step

t+ k

(
(|p|+D0.11) logn

logD + (2(`− 1) + 1)D0.125
)

.

Then, by Lemma 87, v knows an ID at least as high as i by time-step

t+ k

(
(|p|+D0.11) logn

logD + (2`− 1)D0.125
)

+ kD0.121

≤ t+ k

(
|p| logn
logD + (2`+ 1)D0.125

)
.

Induction on |p|. Inductive step: Having proved the base case, we can now
assume the claim for i = ` and |p| < q (Inductive Assumption 2), and prove the
inductive step |p| = q.

Let u′ be the start node of the last subpath of p. If this subpath is good, then
by Inductive Assumption 2, u′ knows an ID at least as high as ` by time-step

t+ k

(
(|p| −D0.12) logn

logD + (2`+ b)D0.125
)

.

By Inductive Assumption 1, all nodes within D0.11 of p know a message at
least as high as `− 1 by time-step

t+ k

(
(|p|+D0.11) logn

logD + (2(`− 1) + b+ 1)D0.125
)

≤ t+ k

(
(|p| −D0.12) logn

logD + (2`+ b)D0.125
)

.

Therefore, by Lemma 88, v knows a message at least as high as ` by time-step

t+ k

(
(|p| −D0.12) logn

logD + (2`+ b)D0.125
)

+ kD0.12 logn
logD

= t+ k

(
|p| logn
logD + (2`+ b)D0.125

)
.

If the subpath is bad, then by Inductive Assumption 2, u′ knows an ID at

123

least as high as ` by time-step

t+ k

(
(|p| −D0.12) logn

logD + (2`+ b− 1)D0.125
)

≤ t+ k

(
(|p|+D0.11) logn

logD + (2`+ b− 1)D0.125
)

.

By Inductive Assumption 1, all nodes within D0.11 of p know a message at least
as high as `− 1 by time-step

t+ k

(
(|p|+D0.11) logn

logD + (2(`− 1) + b)D0.125
)

.

Therefore, by Lemma 87, v knows a message at least as high as ` by time-step

t+ k

(
(|p|+D0.11) logn

logD + (2`− 2 + b)D0.125
)

+ kD0.121

≤ t+ k

(
|p| logn
logD + (2`+ b)D0.125

)
.

This completes the proof of Lemma 89 by induction.

We are now ready to prove Theorem 83:

Proof of Theorem 83. The precomputation phase takes at most O(D+logO(1) n)
time. Upon beginning the Intra-Cluster Propagation phase, one node u
knows the highest message. Therefore by Lemma 89, each node v hears this
message within O(dist(u,v) logn

logD + (|S| + b)D0.125) time-steps, with high proba-
bility. By Lemma 86, b = O(D0.63) for all nodes v, and so total running time is
O(D logn

logD + |S|D0.125 + logO(1) n).

7.5 Applying Compete to Broadcasting and
Leader Election

It is not difficult to see that Compete can be used to perform both broadcasting
and leader election.

Theorem 90. Compete({s}) completes broadcasting in O(D logn
logD + logO(1) n)

time with high probability.

124

Proof. Compete informs all nodes of the highest message in the message set in
time O(D logn

logD + logO(1) n), with high probability. Since this set contains only
the source message, broadcasting is completed.

Algorithm 25 Leader Election

1) Nodes choose to become candidates in C with probability Θ(logn
n).

2) Candidates randomly generate Θ(logn)-bit IDs.

3) Perform Compete(C).

Theorem 91. Algorithm 25 completes leader election within time O(D logn
logD +

logO(1) n), with high probability

Proof. With high probability |C| = Θ(logn) and all candidate IDs are unique.
Conditioning on this, Compete informs all nodes of the highest candidate ID
within time O(D logn

logD + logO(1) n), with high probability. Therefore leader elec-
tion is completed.

7.6 Clustering property: Proof of Theorem 81

In this section we prove the last remaining part of our analysis, a key property of
the clustering method in our algorithm, Partition(β), as described in Theorem
81.

What we must show to prove Theorem 81 is that if j is an integer chosen
uniformly at random from the interval [0.01 logD, 0.1 logD], and if β = 2−j ,
then in algorithm Partition(β) as described above, for any node v, with prob-
ability at least 0.55 (over choice of j), the expected distance from v to its cluster
center upon applying Partition(β) is O(logn

β logD).

7.6.1 Bounding Expected Distance to Cluster Center

Our first step in proving Theorem 81 is to obtain a bound on the distance to
the cluster center which is based upon the number of nodes at each distance
layer from v. To this purpose, let Ai(v) be the set of nodes at distance i from
v and denote xi = |Ai(v)|. Denote x ∈ ND0 to be the vector with these xi as
coefficients.

125

Denote Tx,β =
∑D
i=0 ixie

−iβ and Bx,β =
∑D
i=0 xie

−iβ . Denote

Sx,β = Tx,β
Bx,β

=
∑D
i=0 ixie

−iβ∑D
i=0 xie

−iβ
.

These quantities will be used in the following key auxiliary lemma describ-
ing the expected distance from any fixed v to its cluster center after applying
Partition(β).

Lemma 92. For any fixed node v and value β with D−0.01 ≤ β ≤ D−0.1, the
expected distance from v to its cluster center upon applying Partition(β) is at

most 5
∑D

i=0
ixie

−iβ∑D

i=0
xie−iβ

= 5Sx,β.

Proof. We compute the expected distance to cluster center:

E[distance from v to its cluster center]

=
D∑
i=0

i ·Pr [v’s cluster center is distance i away]

=
D∑
i=1

i ·

 ∑
u∈Ai(v)

Pr [u is v’s cluster center]

 .

We concentrate on this latter probability and henceforth fix u ∈ Ai(v) to
be some node at distance i from v. For simplicity of notation, let Pu,v denote
Pr [u is v’s cluster center]. We note that

Pu,v =
∫ ∞
i

βe−βpPr [u is v’s cluster center|δu = p] dp

by conditioning on the value of δu over its whole range and multiplying by the
corresponding probability density function (we can start the integral at i since
if δu < i then u cannot be v’s cluster center).

Having conditioned on the value of δu, we can evaluate the probability that
u is v’s cluster center based on the random variables generated by other nodes.
Since the events that each other node ‘beats’ u are now independent, Pu,v is
equal to:∫ ∞

i

βe−βp
∏
w 6=u

Pr [δw − dist(v, w) < δu − dist(v, u)|δu = p] dp .

126

We can simplify by grouping the nodes w based on distance from v, though
we must be careful to include a 1

Pr[δu<p] term to cancel out u’s contribution to
the resulting product:

Pu,v =
∫ ∞
i

βe−βp

Pr [δu < p]

D∏
k=0

∏
w∈Ak(v)

Pr [δw − k < p− i] dp .

Plugging in the cumulative distribution function for the δw yields:

Pu,v =
∫ ∞
i

βe−βp

1− e−βp
D∏
k=0

∏
w∈Ak(v)

1− e−β(p−i+k)dp .

We use the standard inequality 1 − y ≤ e−y for y ∈ [0, 1], here setting
y = e−β(p−i+k), and account for the second product by taking the contents to
the power of xk:

Pu,v ≤
∫ ∞
i

βe−βp

1− e−βp
D∏
k=0

∏
w∈Ak(v)

e−e
−β(p−i+k)

dp

=
∫ ∞
i

βe−βp

1− e−βp
D∏
k=0

e−e
−β(p−i+k)xkdp .

We can also remove the remaining product by taking it as a sum into the
exponent, and re-arranging some terms yields:

Pu,v ≤
∫ ∞
i

βe−βp

1− e−βp e
−eβ(i−p)

∑D

k=0
xke
−βk

dp

=
∫ ∞
i

βe−βp

1− e−βp e
−eβ(i−p)Bx,βdp ,

where for succinctness we use our definition Bx,β =
∑D
i=0 xie

−iβ .
At this point we split the integral and bound the parts separately, since they

exhibit different behavior:
Pu,v ≤ J +K ,

where,

J =
∫ 1

β

i

βe−βp

1− e−βp e
−eβ(i−p)Bx,βdp and K =

∫ ∞
1
β

βe−βp

1− e−βp e
−eβ(i−p)Bx,βdp .

127

To bound J , we make use of the following bound on Bx,β :

Bx,β =
D∑
k=0

xke
−kβ ≥

dD2 e∑
k=0

e−kβ ≥
∫ D

2

−1
e−zβdz = −1

β
(e−

βD
2 − e−β) ≥ 1

2β .

This gives

J ≤
∫ 1

β

i

βe−βp

1− e−βp e
−eβ(i−p) 1

2β dp .

Since eβ(i−p) ≥ e−1, we obtain,

J ≤
∫ 1

β

1

βe−βp

1− e−βp e
− 1

2eβ dp = βe−
1

2eβ

∫ 1
β

1

e−βp

1− e−βp dp .

We can then use that
∫ b
a

e−βp

1−e−βp = 1
β log (1−eβb)

(1−eβa) + a − b to evaluate J ≤
e−

1
2eβ log (1−e)

(1−eβ) . Since eβ > 1 + β, re-arranging yields J ≤ e−
1

2eβ log e−1
β .

Finally, since we can assume that 1
β ≥ logc n for some sufficiently large c, we

obtain,
J ≤ e−

log2 n
2e log e− 1

β
≤ n−2 .

We now turn our attention to K =
∫∞

1
β

βe−βp

1−e−βp e
−eβ(i−p)Bx,βdp. Since 1 −

e−βp ≥ 1− e−1 > 1
2 , we get

K <

∫ ∞
1
β

2βe−βpe−e
−βpeβiBx,βdp .

Using that e−e−βp ≤ 1− 1
2e
−βp (since 0 ≤ e−βp ≤ 1), we obtain,

K <

∫ ∞
1
β

2βe−βp(1− 1
2e
−βp)e

βiBx,βdp .

Evaluating the integral, using∫ ∞
a

e−βp(1− 1
2e
−βp)c =

(e−aβ − 2)(1− 1
2e
−aβ)c + 2

β(1 + c) ,

we obtain

K < 2
(e−1 − 2)(1− 1

2e
−1)eβiBx,β + 2

1 + eβiBx,β
≤ 4
eβiBx,β

.

128

We can now combine our calculations to prove the lemma. Since xi = |Ai(v)|,
we have: E[distance from v to its cluster center] is at most

D∑
i=1

i
∑

u∈Ai(v)

Pu,v ≤
D∑
i=1

ixi(J +K)

<

D∑
i=1

ixi

(
n−2 + 4

eβiBx,β

)

≤ n−2
D∑
i=1

Dxi +
4
∑D
i=1 ixie

−βi

Bx,β

≤ D

n
+ 4Sx,β ≤ 5Sx,β .

7.6.2 Simplifying the Bound Via Transformations

By Lemma 92, we must now bound the value of Sx,β =
∑D

i=0
ixie

−iβ∑D

i=0
xie−iβ

. To simplify

our analysis, we will apply two transformations to x which will provide us with
useful properties for bounding, while not decreasing any Sx,β by more than a
constant factor.

First transformation

The first transformation we apply will be to collate coefficients of x into indices
which are just the powers of 2. That is, we sum the coefficients of x over regions
of doubling size.

Let f : RD+1 → RD+1 be given by

f(x)i =

∑4i−1
`=2i x` if i = 2k for some k ∈ N0,

0 otherwise.

We can bound Sx,β in terms of Sf(x),β .

Lemma 93. For all x ∈ ND0 , Sx,β ≤ 11Sf(x),β.

Proof. We start with the following auxiliary claim.

Claim 94. Consider an expression of the form
∑D

i=0
iwi∑D

i=0
wi

, where all wi are non-

negative. Let p be an integer with p <
∑D

i=0
iwi∑D

i=0
wi

. For all i < p let 0 ≤ w′i ≤ wi,

and for all i ≥ p let w′i ≥ wi. Then
∑D

i=0
iw′i∑D

i=0
w′
i

> p.

129

Intuitively, consider
∑D

i=0
iwi∑D

i=0
wi

as a weighted average of the i (with weights

wi). The claim then says that for any p which is less than the value of the
average, increasing the weights for indices higher than p and reducing them for
indices lower than p cannot reduce the weighted average below p.

Proof of Claim 94.∑D
i=0 iw

′
i∑D

i=0 w
′
i

=
∑D
i=0 iwi +

∑D
i=0 i(w′i − wi)∑D

i=0 w
′
i

=

∑D

i=0
iwi∑D

i=0
wi
·
∑D
i=0 wi +

∑p−1
i=0 i(w′i − wi) +

∑D
i=p i(w′i − wi)∑D

i=0 wi +
∑D
i=0(w′i − wi)

>
p ·
∑D
i=0 wi +

∑p−1
i=0 p(w′i − wi) +

∑D
i=p p(w′i − wi)∑D

i=0 wi +
∑D
i=0(w′i − wi)

=
p ·
(∑D

i=0 wi +
∑D
i=0(w′i − wi)

)
∑D
i=0 wi +

∑D
i=0(w′i − wi)

= p .

We apply Claim 94 to analyze the effect of the transformation f , in particular
to compare Sf(x),β with Sx,β . First we find an expression for Sx,β in a form for
which we can use the claim:

Sx,β =
∑D
i=0 ixie

−iβ∑D
i=0 xie

−iβ
=
∑D
i=0 iwi∑D
i=0 iwi

,

where wi = xie
−iβ .

Next we do the same for Sf(x),β :

Sf(x),β =
∑logD
k=0 2k

∑2k+2−1
`=2k+1 x`e

−2kβ∑logD
k=0

∑2k+2−1
`=2k+1 x`e−2kβ

=
∑D
`=2 2blog `−1cx`e

−2blog `−1cβ∑D
`=2 x`e

−2blog `−1cβ
.

We multiply both the numerator and denominator by a scaling factor to
make the expression more comparable to Sx,β . Let q := blogSx,βc. Our scaling
factor will be e−2q−1 .

Sf(x),β =
∑D
`=2 2blog `−1cx`e

−2blog `−1cβ∑D
`=2 x`e

−2blog `−1cβ
≥
∑D
`=2

l
4x`e

(−2q−1−2blog `−1c)β∑D
`=2 x`e

(−2q−1−2blog `−1c)β
=
∑D
i=0 iw

′
i

4
∑D
i=0 w

′
i

,

130

where w′i =

xie(−2q−1−2blog i−1c)β if i ≥ 2,

0 otherwise.
We set p = 3 · 2q−2, and verify that we meet all of the conditions of the

Claim 94:
Firstly we need that all wi and w′i are non-negative, which is obviously the

case.
Secondly we need that p <

∑D

i=0
iwi∑D

i=0
wi

, which is true since

p < 2q ≤ Sx,β =
∑D
i=0 iwi∑D
i=0 wi

.

Thirdly we need w′i ≤ wi for all i < p and w′i ≥ wi for all i ≥ p. To show
this, note that

w′i ≥ wi ⇐⇒ (−2q−1 − 2blog i−1c)β ≥ −iβ ⇐⇒ 2q−1 + 2blog i−1c ≤ i .

When i ≤ 2q−1, clearly 2q−1 + 2blog i−1c > i, so w′i ≤ wi.
When 2q−1 < i < p, 2q−1 + 2blog i−1c = 2q−1 + 2q−2 = p > i, so w′i ≤ wi.
When p ≤ i < 2q, 2q−1 + 2blog i−1c = 2q−1 + 2q−2 = p ≤ i, so w′i ≥ wi.
When 2q ≤ i, 2q−1 + 2blog i−1c ≤ 2q−1 + 2log i−1 ≤ 2q−1 + i

2 ≤ i, so w
′
i ≥ wi.

Therefore we have all the necessary conditions to apply Claim 94, yielding∑D

i=0
iw′i∑D

i=0
w′
i

> p. Then,

Sf(x),β ≥
∑D
i=0 iw

′
i

4
∑D
i=0 w

′
i

>
p

4 ≥
3q
16 >

3Sx,β

32 >
Sx,β

11 .

This completes the proof of Lemma 93.

Second transformation

Having applied f to ensure that only power-of-2 coefficients of x are non-zero,
we apply a second transformation to ensure that the coefficients are not “too
decreasing”; in particular, we guarantee that each power-of-2 coefficient is at
least half the previous one.

131

Let g : RD+1 → RD+1 be given by

g(x)i =

∑
`≤i

`x`
i if i = 2k for some k ∈ N0,

0 otherwise.

This definition achieves our aim since when i is a power of 2,

2g(x)2i = 2
∑
`≤2i

`x`
2i =

∑
`≤2i

`x`
i
≥
∑
`≤i

`x`
i

= g(x)2i .

Similarly to Lemma 93, we can bound Sx,β in terms of Sg(x),β .

Lemma 95. For all x ∈ ND0 which have xi = 0 for all i /∈ {2k : k ∈ N0},
Sx,β ≤ 2Sg(x),β.

Proof. We start by taking our Sg(x),β expression and substituting the sum index
to account only for powers of two, since all other coefficients are 0:

Sg(x),β =
∑D
i=0 ig(x)ie−iβ∑D
i=0 g(x)ie−iβ

=
∑logD
k=0 2kg(x)2ke

−2kβ∑logD
k=0 g(x)2ke−2kβ

.

We now substitute in the definition of g(x), and switch order of summation
in the denominator, applying some straightforward bounds in the process.

Sg(x),β ≥
∑logD
k=0 2kx2ke

−2kβ∑logD
k=0

∑k
`=0

2`x2`
2k e−2kβ

=
∑logD
k=0 2kx2ke

−2kβ∑logD
`=0

∑logD
k=`

2`x2`
2k e−2`β

.

We simplify the denominator by noting that 2`
2k ≤ 1, reaching an expression

which matches Sx,β :

Sg(x),β ≥
∑logD
k=0 2kx2ke

−2kβ

2
∑logD
`=0 x2`e−2`β

≥ Sx,β

2 .

7.6.3 Bounding After Transformation

Now that we have shown in Lemmas 93 and 95 that the transformations f and
g do not decrease Sx,β by more than a constant factor, we show how they help
to bound the value of Sx,β . Let x′ be the vector obtained after applying the two
transformations to x, i.e., x′ = g ◦ f(x). We begin with the following lemma.

Lemma 96. x′ has the following properties:

132

• x′i = 0 for all i /∈ {2k : k ∈ N0};

• x′1 ≥ 2;

• ||x′||1 =
∑D
i=0 x

′
i ≤ 2n;

• 2x′2i ≥ x′i for all i.

Proof. The first property is obvious due to transformation f . The second is true
since x′1 ≥ f(x)1 = x2 + x3 ≥ 2. The third is the case since f does not increase
L1-norm and g at most doubles it, and the fourth follows from transformation
g.

Our argument will be based on examining the ratios between consecutive
non-zero (i.e. power-of-two) coefficients in x′. To that end, define ki = log x′2i+1

x′
2i

for all i ≤ logD, and note that ki ≥ log 1
2 = −1 for all i and

∑logD
i=0 ki ≤ logn

by Lemma 96.
We first show a condition on these ki which guarantees that Sx′,β (and hence

Sx,β) is O(logn
β logD) for some particular value of β:

Lemma 97. If for fixed j and for all m ≥ 8 we have

j+log logn
logD+m∑

`=j+log logn
logD

k` ≤ 2m logn
logD

then Sx′,2−j = O(2j logn
logD).

The intuition behind this lemma is that the cluster center of a node is likely
within our desired radius of O(2j logn

logD) unless the network expands very rapidly
just outside that radius.

Proof. We first split Tx′,2−j (the numerator of Sx′,2−j) into three parts, which
we will bound separately:

Tx′,2−j =
D∑
i=0

ix′ie
−i2−j =

logD∑
i=0

2ix′2ie
−2i−j = P +Q+R ,

where P =
j+log logn

logD+8∑
i=0

2ix′2ie
−2i−j , Q =

j+log logn∑
i=j+log logn

log +9
2ix′2ie

−2i−j , and R =

logD∑
i=log logn+1

2ix′2ie
−2i−j .

133

We now bound these parts. P is the largest, and we require that P =
O(2j logn

logD)Bx′,2−j (recall that Bx′,2−j =
∑D
i=0 x

′
ie
−i2−j).

P =
j+log logn

logD+8∑
i=0

2ix′2ie
−2i−j ≤

j+log logn
logD+8∑
i=0

2562j logn
logD x′2ie

−2i−j

≤ 2562j logn
logD

logD∑
i=0

x′2ie
−2i−j = 2562j logn

logD Bx′,2−j .

Using the condition of Lemma 97, we can show that Q is also
O(2j logn

logD)Bx′,2−j . Let m ≥ 9. We begin by re-expressing x′2j+m logn
logD

:

x′2j+m logn
logD

= x′2j logn
logD

j+log logn
logD+m−1∏

`=j+log logn
logD

x′2`+1

x′2`
= x′2j logn

logD
2

j+log logn
logD+m−1∑

`=j+log logn
logD

k`

.

We can then apply the condition of the Lemma:

x′2j+m logn
logD

≤ x′2j logn
logD

22m−1 logn
logD .

We make some re-arrangements to reach a form containing Bx′,2−j :

x′2j+m logn
logD

≤ e
2j logn

logD 2−j22m−1 logn
logD x′2j logn

logD
e−

2j logn
logD 2−j

≤ e
logn
logD 22m−1 logn

logD

D∑
i=0

x′ie
−i2−j

= 2(2m−1+log e) logn
logDBx′,2−j .

We can use this to bound Q as follows:

Q =
j+log logn∑

i=j+log logn
logD+9

2ix′2ie
−2i−j = 2j logn

logD

log logn∑
m=9

2mx′2j+m logn
logD

e−2m+log logn
logD

≤ 2j logn
logD

log logn∑
m=9

2m · 2(2m−1+log e) logn
logDBx′,2−j · e−2m+log logn

logD
.

134

Rearranging terms, we obtain,

Q = 2j logn
logD Bx′,2−j

log logn∑
m=9

2m+(2m−1+log e) logn
logD−2m logn

logD

≤ 2j logn
logD Bx′,2−j

log logn∑
m=9

2−2m−2 logn
logD ≤ 2j logn

logD Bx′,2−j .

R is always negligible, since the e−2i−j term is very small for large i.

R =
logD∑

i=j+log logn+1
2ix′2ie

−2i−j ≤
logD∑

i=j+log logn+1
Dx′2ie

−2 logn ≤ 2Dn1−2 log e ≤ 1 .

So,

Sx′,2−j = P +Q+R

Bx′,2−j
≤

256 2j logn
logD Bx′,2−j + 2j logn

logD Bx′,2−j + 1
Bx′,2−j

≤ 2582j logn
logD .

Finally, we can show that there are many j for which the condition of Lemma
97 holds. The intuition here is that the condition only fails for a region in which
the network is rapidly expanding, and since D and n are already fixed it cannot
be rapidly expanding everywhere.

Lemma 98. The number of integers j, 0.01 logD ≤ j ≤ 0.1 logD, for
which there is i ≥ 8 satisfying

∑j+log logn
logD+i

`=j+log logn
logD

k` > 2i logn
logD is upper bounded

by 0.04 logD.

Proof. Consider the following process: take integers i with 0.01 logD ≤ i ≤
0.1 logD in increasing order. If there is some i′ ≥ i + 8 such that

∑i′

`=i k` >

2i′−i logn
logD , then call all values between i and the largest such i′ ‘bad’, and con-

tinue the process from i′ + 1. Let b denote the number of bad i. The average
ki over all bad i must be at least 28 logn

9 logD , and since all ki are bounded below by
−1 and sum to at most logn, we have

28 logn
9 logD b+ (−1)(0.09 logD − b) ≤ logn ,

and so

b ≤ logn+ 0.09 logD
28 logn
9 logD + 1

≤ 1.09 logn
28 logn
9 logD

≤ 0.04 logD .

135

For every j satisfying the condition of the lemma, j+ log logn
logD must be bad,

and so the number of such j is also at most 0.04 logD.

We are now ready to prove our main result, Theorem 81.

Proof of Theorem 81. With probability at least 1− 0.04
0.1−0.01 ≥ 0.55, for all i ≥ 8

we have that
j+log logn

logD+i∑
`=j+log logn

logD

k` ≤ 2i logn
logD .

Then, Sx′,2−j = O(2j logn
logD) by Lemmas 97 and 98. Applying Lemmas 93 and

95, we get Sx,2−j = O(2j logn
logD). Finally, applying Lemma 92, we find that

the expected distance from v to its cluster center is at most O(2j logn
logD). This

completes the proof of Theorem 81.

7.7 Discussion and Open Problems

As we have seen throughout this thesis, the tasks of broadcasting and leader elec-
tion in radio networks are longstanding, fundamental problems in distributed
computing. Our contribution in this chapter is a new algorithm for these prob-
lems that improve running times for both to O(D logn

logD +logO(1) n), and succeeds
with high probability. When D = Ω(logc n) for a sufficiently large constant c,
these running time bounds improve the fastest previous algorithms for broad-
casting and leader election by factors O(log logn) and O(logn log logn), respec-
tively. More importantly, whenever n is polynomial in D, i.e. n = DO(1), the
obtained running time is O(D), which is asymptotically optimal since time D
is required for any information to traverse the network.

There is no better lower bound than Ω(D+log2 n) for broadcasting or leader
election when spontaneous transmissions are allowed, so the most immediate
open question is to close that gap. While a tighter analysis of our method
might trim the additive polylog(n) term significantly, it is difficult to see how
the Ω(log2 n) term could be reached without a radically different approach.
Similarly, the Θ(D logn

logD) term seems to be a limit of the clustering approach,
and reducing it to D would likely require significant changes. In fact, we would
not be surprised if our upper bound O(D logn

logD) were tight for D = Ω(logc n) for
a sufficiently large constant c.

136

An interesting question is whether spontaneous transmissions can help in
directed networks, which would be very surprising, or for deterministic protocols.

137

Bibliography

[1] Y. Afek, N. Alon, Z. Bar-Joseph, A. Cornejo, B. Haeupler, and F. Kuhn.
Beeping a maximal independent set. In Proceedings of the 25th Interna-
tional Symposium on Distributed Computing (DISC), pages 32–50, 2011.

[2] N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. A lower bound for radio
broadcast. Journal of Computer and System Sciences, 43(2):290–298, 1991.

[3] R. Bar-Yehuda, O. Goldreich, and A. Itai. Efficient emulation of single-hop
radio network with collision detection on multi-hop radio network with no
collision detection. Distributed Computing, 5(2):67–71, 1991.

[4] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the time-complexity of
broadcast in multi-hop radio networks: An exponential gap between de-
terminism and randomization. Journal of Computer and System Sciences,
45(1):104–126, 1992.

[5] I. Chlamtac and S. Kutten. On broadcasting in radio networks - prob-
lem analysis and protocol design. IEEE Transactions on Communications,
33(12):1240–1246, 1985.

[6] B. Chlebus, L. Gąsieniec, D. R. Kowalski, and T. Radzik. On the wake-up
problem in radio networks. In Proceedings of the 32nd Annual International
Colloquium on Automata, Languages and Programming (ICALP), pages
347–359, 2005.

[7] B. Chlebus and D. R. Kowalski. A better wake-up in radio networks. In Pro-
ceedings of the 23rd Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 266–274, 2004.

138

[8] B. Chlebus and D. R. Kowalski. Almost optimal explicit selectors. In Pro-
ceedings of the 15th International Symposium on Fundamentals of Compu-
tation Theory (FCT), pages 270–280, 2005.

[9] B. S. Chlebus, G. De Marco, and M. Talo. Naming a channel with beeps.
Fundamenta Informaticae, 153(3):199–219, 2017.

[10] B. S. Chlebus, L. Gąsieniec, A. Gibbons, A. Pelc, and W. Rytter. Deter-
ministic broadcasting in unknown radio networks. Distributed Computing,
15(1):27–38, 2002.

[11] B. S. Chlebus, L. Gąsieniec, A. Östlin, and J. M. Robson. Determinis-
tic radio broadcasting. In Proceedings of the 27th Annual International
Colloquium on Automata, Languages and Programming (ICALP), pages
717–728, 2000.

[12] B. S. Chlebus, D. R. Kowalski, and A. Pelc. Electing a leader in multi-hop
radio networks. In Proceedings of the 16th International Conference on
Principles of Distributed Systems (OPODIS), pages 106–120, 2012.

[13] M. Chrobak, L. Gąsieniec, and D. R. Kowalski. The wake-up problem in
multihop radio networks. SIAM Journal on Computing, 36(5):1453–1471,
2007.

[14] M. Chrobak, L. Gąsieniec, and W. Rytter. Fast broadcasting and gossiping
in radio networks. Journal of Algorithms, 43(2):177–189, 2002.

[15] A. E. F. Clementi, A. Monti, and R. Silvestri. Distributed broadcasting
in radio networks of unknown topology. Theoretical Computer Science,
302(1-3):337–364, 2003.

[16] A. Cornejo and F. Kuhn. Deploying wireless networks with beeps. In
Proceedings of the 24th International Symposium on Distributed Computing
(DISC), pages 148–262, 2010.

[17] A. Czumaj and P. Davies. Communicating with beeps. In Proceedings
of the 19th International Conference on Principles of Distributed Systems
(OPODIS), pages 1–16, 2015.

[18] A. Czumaj and P. Davies. Brief announcement: Optimal leader election in
multi-hop radio networks. In Proceedings of the 35th Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC), pages 47–49, 2016.

139

[19] A. Czumaj and P. Davies. Exploiting spontaneous transmissions for broad-
casting and leader election in radio networks. In Proceedings of the 36th
Annual ACM Symposium on Principles of Distributed Computing (PODC),
pages 3–12, 2017.

[20] A. Czumaj and P. Davies. Brief announcement: Randomized blind radio
networks. In Proceedings of the 32nd International Symposium on Dis-
tributed Computing (DISC), 2018.

[21] A. Czumaj and P. Davies. Deterministic blind radio networks. In Pro-
ceedings of the 32nd International Symposium on Distributed Computing
(DISC), 2018.

[22] A. Czumaj and P. Davies. Deterministic communication in radio networks.
SIAM Journal on Computing, 47(1):218–240, 2018.

[23] A. Czumaj and W. Rytter. Broadcasting algorithms in radio networks with
unknown topology. Journal of Algorithms, 60(2):115–143, 2006.

[24] F. Dufoulon, J. Burman, and J. Beauquier. Brief announcement: Beeping
a time-optimal leader election. In Proceedings of the 37th Annual ACM
Symposium on Principles of Distributed Computing (PODC), 2018.

[25] M. Elkin and G. Kortsarz. Polylogarithmic additive inapproximability of
the radio broadcast problem. SIAM Journal on Discrete Mathematics,
19(4):881–899, 2005.

[26] K.-T. Förster, J. Seidel, and R. Wattenhofer. Deterministic leader election
in multi-hop beeping networks. In Proceedings of the 28th International
Symposium on Distributed Computing (DISC), pages 212–226, 2014.

[27] M. Ghaffari and B. Haeupler. Near optimal leader election in multi-hop
radio networks. In Proceedings of the 24th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 748–766, 2013.

[28] M. Ghaffari, B. Haeupler, and M. Khabbazian. Randomized broadcast in
radio networks with collision detection. In Proceedings of the 32nd Annual
ACM Symposium on Principles of Distributed Computing (PODC), pages
325–334, 2013.

140

[29] M. Ghaffari, N. Lynch, and S. Sastry. Leader election using loneliness de-
tection. In Proceedings of the 25th International Symposium on Distributed
Computing (DISC), pages 268–282, 2011.

[30] A.G. Greenberg and S. Winograd. A lower bound on the time needed in the
worst case to resolve conflicts deterministically in multiple access channels.
Journal of the ACM, 32(3):589–596, 1985.

[31] L. Gąsieniec, A. Pelc, and D. Peleg. The wakeup problem in synchronous
broadcast systems. SIAM Journal on Discrete Mathematics, 14(2):207–222,
2001.

[32] L. Gąsieniec, D. Peleg, and Q. Xin. Faster communication in known topol-
ogy radio networks. In Proceedings of the 24th Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 129–137, 2005.

[33] L Gąsieniec, T Radzik, and Q Xin. Faster deterministic gossiping in di-
rected ad hoc radio networks. In Algorithm Theory - SWAT 2004, pages
397–407, 2004.

[34] B. Haeupler and D. Wajc. A faster distributed radio broadcast primitive.
In Proceedings of the 35th Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC), pages 361–370, 2016.

[35] K. Hounkanli, A. Miller, and A. Pelc. Global synchronization and consen-
sus using beeps in a fault-prone mac. In Proceedings of the International
Symposium on Algorithms and Experiments for Sensor Systems, Wireless
Networks and Distributed Robotics (ALGOSENSORS), pages 16–28, 2016.

[36] K. Hounkanli and A. Pelc. Deterministic broadcasting and gossiping with
beeps. CoRR abs/1508.06460, 2015.

[37] K. Hounkanli and A. Pelc. Asynchronous broadcasting with bivalent beeps.
In Proceedings of the 23rd International Colloquium on Structural Informa-
tion and Communication Complexity (SIROCCO), pages 291–306, 2016.

[38] P. Indyk. Explicit constructions of selectors and related combinatorial
structures, with applications. In Proceedings of the 13th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 697–704, 2002.

141

[39] T. Jurdziński and G. Stachowiak. Probabilistic algorithms for the wakeup
problem in single-hop radio networks. Theory of Computing Systems,
38(3):347–367, 2005.

[40] M Khabbazian and D Kowalski. Time-efficient randomized multiple-
message broadcast in radio networks. In Proceedings of the 30th Annual
ACM Symposium on Principles of Distributed Computing (PODC), pages
373–380, 2011.

[41] A Kowalski, D.and Pelc. Optimal deterministic broadcasting in known
topology radio networks. Distributed Computing, 19(3):185–195, Jan 2007.

[42] D. Kowalski. On selection problem in radio networks. In Proceedings of
the 24th Annual ACM Symposium on Principles of Distributed Computing
(PODC), pages 158–166, 2005.

[43] D. Kowalski and A. Pelc. Faster deterministic broadcasting in ad hoc radio
networks. SIAM Journal on Discrete Mathematics, 18:332–346, 2004.

[44] D. Kowalski and A. Pelc. Broadcasting in undirected ad hoc radio networks.
Distributed Computing, 18(1):43–57, 2005.

[45] D. Kowalski and A. Pelc. Leader election in ad hoc radio networks: A keen
ear helps. Journal of Computer and System Sciences, 79(7):1164–1180,
2013.

[46] E. Kushilevitz and Y. Mansour. An Ω(D log(N/D)) lower bound for broad-
cast in radio networks. SIAM Journal on Computing, 27(3):702–712, 1998.

[47] G. De Marco. Distributed broadcast in unknown radio networks. SIAM
Journal on Computing, 39(6):2162–2175, 2010.

[48] G. De Marco and A. Pelc. Faster broadcasting in unknown radio networks.
Information Processing Letters, 79:53–56, 2001.

[49] G. De Marco, M. Pelegrini, and G. Sburlati. Faster deterministic wakeup
in multiple access channels. Discrete Applied Mathematics, 155(8):898–903,
2007.

[50] G. Miller, R. Peng, and S. Xu. Parallel graph decompositions using random
shifts. In Proceedings of the 25th Annual ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), pages 196–203, New York, NY,
2013. ACM Press.

142

[51] K. Nakano and S. Olariu. Uniform leader election protocols for radio net-
works. IEEE Transactions on Parallel and Distributed Systems, 13(5):516–
526, 2002.

[52] Calvin Newport. Radio network lower bounds made easy. In Distributed
Computing, pages 258–272, 2014.

[53] D. Peleg. Time-efficient broadcasting in radio networks: A review. In
Proceedings of the 4th International Conference on Distributed Computing
and Internet Technology (ICDCIT), pages 1–18, 2007.

[54] B. Walke. Mobile radio networks, volume 2. John Wiley & Sons, 1999.

[55] D. E. Willard. Log-logarithmic selection resolution protocols in a multiple
access channel. SIAM Journal on Computing, 15(2):468–477, 1986.

[56] J. Yu, L. Jia, D. Yu, G.s Li, and X. Cheng. Minimum connected dominating
set construction in wireless networks under the beeping model. In 2015
IEEE Conference on Computer Communications (INFOCOM), pages 972–
980. IEEE, 2015.

143

	Introduction
	Distributed Computing
	Radio Networks
	Types of Distributed Problem

	Models, Problems, and Preliminaries
	Ad-Hoc Multi-Hop Radio Network Model
	Tasks
	Literature Review
	Overview of Results
	Notation and Conventions

	Beep Model Communication
	Related Work
	Our Results
	Broadcasting
	Multi-Broadcast
	Lower Bounds
	Discussion and Open Problems

	Deterministic Radio Communication
	Related Work
	Our Results
	Combinatorial Tools
	Algorithms for Multiple Access Channels
	Analysis for Multi-hop Radio Networks
	Discussion and Open Problems

	Randomized Blind Broadcasting
	Related Work
	Our Results
	Overview of Approach
	Protocols
	Broadcast in Undirected Networks with Collision Detection
	Discussion and Open Problems

	Randomized Leader Election
	Related Work
	Our Results
	Leader Election Frameworks
	Implementation
	Running Times
	Discussion and Open Problems

	Spontaneous Transmissions
	Related Work
	Overview of Approach
	Algorithm for Compete
	Analysis of Compete Algorithm
	Applying Compete to Broadcasting and Leader Election
	Clustering property: Proof of Theorem 81
	Discussion and Open Problems

