2,134 research outputs found

    Evaluating 35 Methods to Generate Structural Connectomes Using Pairwise Classification

    Full text link
    There is no consensus on how to construct structural brain networks from diffusion MRI. How variations in pre-processing steps affect network reliability and its ability to distinguish subjects remains opaque. In this work, we address this issue by comparing 35 structural connectome-building pipelines. We vary diffusion reconstruction models, tractography algorithms and parcellations. Next, we classify structural connectome pairs as either belonging to the same individual or not. Connectome weights and eight topological derivative measures form our feature set. For experiments, we use three test-retest datasets from the Consortium for Reliability and Reproducibility (CoRR) comprised of a total of 105 individuals. We also compare pairwise classification results to a commonly used parametric test-retest measure, Intraclass Correlation Coefficient (ICC).Comment: Accepted for MICCAI 2017, 8 pages, 3 figure

    Modeling Structural Brain Connectivity

    Get PDF

    Connectivity-based parcellation of the thalamus explains specific cognitive and behavioural symptoms in patients with bilateral thalamic infarct

    Get PDF
    A novel approach based on diffusion tractography was used here to characterise the cortico-thalamic connectivity in two patients, both presenting with an isolated bilateral infarct in the thalamus, but exhibiting partially different cognitive and behavioural profiles. Both patients (G.P. and R.F.) had a pervasive deficit in episodic memory, but only one of them (R.F.) suffered also from a dysexecutive syndrome. Both patients had an MRI scan at 3T, including a T1-weighted volume. Their lesions were manually segmented. T1-volumes were normalised to standard space, and the same transformations were applied to the lesion masks. Nineteen healthy controls underwent a diffusion-tensor imaging (DTI) scan. Their DTI data were normalised to standard space and averaged. An atlas of Brodmann areas was used to parcellate the prefrontal cortex. Probabilistic tractography was used to assess the probability of connection between each voxel of the thalamus and a set of prefrontal areas. The resulting map of corticothalamic connections was superimposed onto the patients' lesion masks, to assess whether the location of the thalamic lesions in R.F. (but not in G. P.) implied connections with prefrontal areas involved in dysexecutive syndromes. In G.P., the lesion fell within areas of the thalamus poorly connected with prefrontal areas, showing only a modest probability of connection with the anterior cingulate cortex (ACC). Conversely, R.F.'s lesion fell within thalamic areas extensively connected with the ACC bilaterally, with the right dorsolateral prefrontal cortex, and with the left supplementary motor area. Despite a similar, bilateral involvement of the thalamus, the use of connectivity-based segmentation clarified that R.F.'s lesions only were located within nuclei highly connected with the prefrontal cortical areas, thus explaining the patient's frontal syndrome. This study confirms that DTI tractography is a useful tool to examine in vivo the effect of focal lesions on interconnectivity brain patterns

    Deep learning based pipeline for fingerprinting using brain functional MRI connectivity data

    Get PDF
    In this work we describe an appropriate pipeline for using deep-learning as a form of improving the brain functional connectivity-based fingerprinting process which is based in functional Magnetic Resonance Imaging (fMRI) data-processing results. This pipeline approach is mostly intended for neuroscientists, biomedical engineers, and physicists that are looking for an easy form of using fMRI-based Deep-Learning in identifying people, drastic brain alterations in those same people, and/or pathologic consequences to people’s brains. Computer scientists and engineers can also gain by noticing the data-processing improvements obtained by using the here-proposed pipeline. With our best approach, we obtained an average accuracy of 0.3132 ± 0.0129 and an average validation cost of 3.1422 ± 0.0668, which clearly outperformed the published Pearson correlation approach performance with a 50 Nodes parcellation which had an accuracy of 0.237.Thanks to Eduarda Sousa for support. NFL was supported by a fellowship of the project MEDPERSYST - POCI-01-0145-FEDER-016428, funded by Portugal’s FCT. This work was also supported by NORTE-01-0145-FEDER-000013, and NORTE 2020 under the Portugal 2020 Partnership Agreement through the FEDER, plus it was funded by the European Commission (FP7) “SwitchBox - Maintaining health in old age through homeostasis” (Contract HEALTH-F2-2010-259772), and co-financed by the Portuguese North Regional Operational Program (ON.2 – O Novo Norte), under the QREN through FEDER, and by the “Fundação Calouste Gulbenkian” (Portugal) (Contract grant number: P-139977; project “TEMPO - Better mental health during ageing based on temporal prediction of individual brain ageing trajectories”). We gratefully acknowledge the support of the NVIDIA Corporation with their donation of a Quadro P6000 board used in this research. This work was also supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Automated individual-level parcellation of Broca's region based on functional connectivity

    Get PDF
    Broca's region can be subdivided into its constituent areas 44 and 45 based on established differences in connectivity to superior temporal and inferior parietal regions. The current study builds on our previous work manually parcellating Broca's area on the individual-level by applying these anatomical criteria to functional connectivity data. Here we present an automated observer-independent and anatomy-informed parcellation pipeline with comparable precision to the manual labels at the individual-level. The method first extracts individualized connectivity templates of areas 44 and 45 by assigning to each surface vertex within the ventrolateral frontal cortex the partial correlation value of its functional connectivity to group-level templates of areas 44 and 45, accounting for other template connectivity patterns. To account for cross-subject variability in connectivity, the partial correlation procedure is then repeated using individual-level network templates, including individual-level connectivity from areas 44 and 45. Each node is finally labeled as area 44, 45, or neither, using a winner-take-all approach. The method also incorporates prior knowledge of anatomical location by weighting the results using spatial probability maps. The resulting area labels show a high degree of spatial overlap with the gold-standard manual labels, and group-average area maps are consistent with cytoarchitectonic probability maps of areas 44 and 45. To facilitate reproducibility and to demonstrate that the method can be applied to resting-state fMRI datasets with varying acquisition and preprocessing parameters, the labeling procedure is applied to two open-source datasets from the Human Connectome Project and the Nathan Kline Institute Rockland Sample. While the current study focuses on Broca's region, the method is adaptable to parcellate other cortical regions with distinct connectivity profiles
    • …
    corecore