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Broca’s region is a part of  the inferior frontal cortex known to be involved in language 
processing and is comprised of  two distinct cytoarchitectonic areas, 44 and 45. The work 
described in the the present thesis aims to make use of  prior knowledge of  the anatomical 
locations and connectivity differences within Broca’s region to delineate the extent and 
boundaries of  areas 44 and 45 in individual brains. The thesis is comprised of  two main projects. 

The first project presents an initial application of  a novel functional connectivity visualization 
technique for the manual parcellation of  cortical areas in individual brains. This technique makes 
use of  connectivity priors in conjunction with morphological information to manually delineate 
the extent and boundaries of  cortical areas in individual brains. Results are presented from the 
application of  the technique to the subdivision of  Broca’s region into its constituent areas 44 and 
45 in a large number of  individuals. Group-level comparisons of  the resulting manual labels are 
consistent with previous findings regarding the connectivity and morphology of  areas 44 and 45, 
and the manually labeled datasets can therefore be considered as the current gold standard for 
targeted individual-level in vivo cortical parcellation. 

The second project builds on the results of  project 1 by developing an automated and data-
driven cortical parcellation technique that mimics the manual labeling approach to produce area 
labels with comparable precision at the individual level. While the manual parcellation method 
provides a reliable way to define cortical regions, it is also highly labor- and time-intensive and 
relies heavily on the expertise of  the user. For this reason, the development of  an observer-
independent alternative technique is an important step in the overall research agenda. The 
automated parcellation technique is again applied to the sub-parcellation of  Broca’s region into 
its constituent areas 44 and 45 in a large number of  individual brains, and the results of  the 
manual and automated labeling approaches are compared at the individual level. 

The methods presented as part of  the two main projects have a number of  potential applications 
within both research and clinical contexts, which are discussed in the final chapter of  the current 
thesis. Additionally, future research directions relevant to the two main projects are described. 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Chapter 1 - Introduction to topic and methods 

___________________________________________________________________________ 

1.1 Broca’s region 

1.1.1 History and discovery 

One of  the fundamental guiding principles of  human cognitive neuroscience is the idea that the 

cerebral cortex can be subdivided into a number of  distinct regions that serve different cognitive 

functions. This idea of  functional modularity originates from the 19th century movement known 

as phrenology, led by Franz Joseph Gall and Johann Gaspar Spurzheim. According to the theory 

of  phrenology, aspects of  a person’s intellectual faculties and personality could be determined by 

the size and shape of  bumps on the skull (Figure 1.1; Gall and Spurzheim 1818). Although 

phrenology has long since been disregarded as pseudoscience, later historical lesion case studies 

provided evidence for the concept of  functional modularity of  the brain, which now serves as a 

cornerstone of  modern neuroscience.  

   

Figure 1.1: A phrenological map of  the human cranium. It was believed that the shape and size of  bumps on the 
skull determine aspects of  a person’s personality and intellectual faculties. (image from Bilz 1894 via Wikimedia 
Commons) 
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Perhaps the most well-known examples of  historical lesion case studies are those by French 

physician Pierre Paul Broca (Broca 1861a, b, and c). In 1861, Broca encountered a 51-year-old 

male patient named Leborgne who was unable to speak any words other than “tan”, but was 

otherwise unimpaired. After Leborgne’s death, an autopsy revealed a lesion in the frontal part of  

the left cerebral hemisphere, as predicted by lingering claims of  phrenologists that language 

function originated in the left frontal lobe. A few months later, Broca encountered a second 84-

year-old patient named Lelong, who presented with similar aphasic symptoms as the result of  a 

stroke. Lelong’s vocabulary was limited to only five simple words, some of  which were 

mispronounced, including his own name. Once again, autopsy revealed severe damage to the 

same region of  the lateral frontal lobe (Figure 1.2), which led to the conclusion that articulated 

language must be localized in the third convolution of  the left inferior frontal gyrus. 

 

Figure 1.2: The brains of  Broca’s patients, Leborgne (A and B) and Lelong (C and D). Both patients’ brains 
exhibited damage to the inferior frontal cortex. (image from Dronkers et al. 2007) 
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Within the following years, Broca collected a number of  similar lesion cases to support his 

hypothesis, the careful documentation of  which was central to establishing the role of  the left 

inferior frontal gyrus in speech production. This region is now known as Broca’s region and is 

one of  the most widely studied brain areas due to its historical significance and established 

involvement in language processing. 

1.1.2 Cytoarchitectonic differentiation and macroscopic landmarks 

Traditionally, Broca’s region refers to the posterior part of  the inferior frontal gyrus, but it can be 

subdivided into two distinct cytoarchitectonic areas: Brodmann areas 44 and 45 (Figure 1.3). By 

staining the cell bodies of  neurons and glial cells in tissue samples (known as Nissl staining), six 

layers of  neurons in the cerebral cortex can be identified, which are referred to by roman 

numerals I-VI. Cytoarchitectonic differentiation refers to defining cortical areas and their 

boundaries based on differences in the cellular architecture of  these cortical layers. 

Area 44 is described as dysgranular due to its not fully developed cortical layer IV. This is the 

fundamental cytoarchitectonic feature that distinguishes it from its neighboring areas, including 

caudally adjacent premotor area 6, which is agranular due to an absence of  layer IV, and rostrally 

adjacent area 45, in which layer IV is fully developed. Area 45 is described as granular cortex due 

to its well developed layer IV, containing small stellate neurons, which distinguishes it from 

neighboring area 44. Area 45 also contains many unusually large pyramidal cells, known as 

magnopyramidal neurons, in the deepest part of  layer III, which distinguishes it from its 

surrounding prefrontal areas (Figure 1.3; Petrides and Pandya 2002). Due to the rostral-caudal 

progression from granular area 45 to dysgranular area 44 to agranular area 6, area 44 has been 

described a transitional area between the orofacial part of  premotor area 6 and the ventral 

prefrontal cortex (Petrides 2013). It is also worth noting that area 45 can be further subdivided 

into cytoarchitectonic subregions 45A and 45B, based mainly on the relative development of  

layer IV (Gerbella 2010). However, since the studies presented in the current thesis do not 
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attempt to distinguish areas 45A and 45B, these two subregions will henceforth be referred to 

collectively as area 45. 

Figure 1.3: Photomicrographs showing the cytoarchitectonic structure of  homologue areas 44 and 45 in the 
macaque monkey, defined by the same criteria as used to define these regions in the human brain. Note that layer 
IV is fully developed in area 45, but not in area 44. (Image from Petrides and Pandya 2009) 

Macroscopically, area 44 is located on the pars opercularis, which is defined as the portion of  the 

inferior frontal gyrus that lies ventral to the inferior frontal sulcus and anterior to the inferior 

precentral sulcus. Area 45 is located on the pars triangularis, which is located between the 

horizontal and anterior ascending rami of  the lateral fissure on the inferior frontal gyrus, and is 

dorsally bounded by the inferior frontal sulcus. The macroscopic landmark separating areas 44 

and 45 is therefore the anterior ascending ramus of  the lateral fissure (Figure 1.4; Amunts et al. 

1999, 2010; Petrides and pandya 1994, 2002). While the macroscopic definitions of  cortical areas 

are based on the findings from cytoarchitectonic studies, it is important to note that individual-
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level observer-independent delineation of  the cytoarchitectonic borders of  areas 44 and 45 did 

not reveal consistent correspondence with sulcal contours (Amunts et al. 1999). 

  

Figure 1.4: Macroscopic landmarks used to define areas 44 and 45 in individual brains based on 
cytoarchitectonic studies. aalf, anterior ascending ramus of  the lateral fissure; cs, central sulcus; ds, diagonal sulcus; 
half, horizontal anterior ramus of  the lateral fissure; ifs, inferior frontal sulcus; iprs, inferior precentral sulcus; lf, 
lateral fissure; Op, pars opercularis; Tr, pars triangularis; ts, triangular sulcus. 

1.1.3 Functional dissociation 

The cytoarchitectonic differentiation of  areas 44 and 45 is corroborated by functional 

dissociation. Early direct cortical stimulation studies in humans by Penfield and Roberts (1959) 

provided the first evidence of  functional differentiation between areas 44 and 45. Specifically, 

they showed that stimulation of  area 6, which lies directly posterior to area 44, causes 

vocalization, while stimulation of  area 44 and caudal area 45 leads to speech arrest (see also 

Rasmussen and Milner, 1975; Ojemann et al., 1989). Contrary to these results, a recent direct 

cortical stimulation study localized speech arrest to the ventral premotor cortex, and not area 44, 

while finding foci for anomia/paraphasia within the inferior and middle frontal gyri (Tate et al. 

2014). Modern functional magnetic resonance imaging (fMRI) studies have also suggested a 
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functional specialization of  areas 44 and 45. Though there is some discrepancy regarding the 

precise range of  functions that can be attributed to these two areas, it is generally agreed that 

while area 44 is mainly involved in speech production, area 45 is more involved in higher-level 

semantic aspects of  language processing such as verbal fluency (Amunts et al. 2004; Heim et al. 

2005; Katzev et al. 2013) and controlled cognitive retrieval of  verbal information (e.g. Petrides et 

al. 1995; Poldrack et al. 1999). 

1.1.4 Connectivity differences 

Based on findings from macaque monkey tract-tracing as well as diffusion-weighted magnetic 

resonance imaging (dMRI) studies, areas 44 and 45 are known to differ in their structural 

connectivity to superior temporal and inferior parietal regions in both macaque monkeys and 

humans (Figure 1.6; Petrides and Pandya 2002, 2009). The classical arcuate fasciculus links 

Broca’s region with the superior temporal region and, in addition, provides an indirect 

connection via its local links with the inferior parietal region (Figure 1.5; Catani et al. 2005). 

Figure 1.5: Tractography reconstruction of  the arcuate fasciculus, which forms a core part of  the classical 
Perisylvian language network. Broca’s region is connected to Wernicke’s territory in the temporal lobe via direct  
(red) and indirect (green and yellow) pathways. The indirect pathways additionally connect Geschwind’s territory 
of  the inferior parietal cortex. (Image from Catani et al. 2005) 
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This parietal region is in turn connected with ventrolateral frontal areas via the superior 

longitudinal fasciculus and to temporal areas via the extreme capsule fasciculus. More specifically, 

area 44 connects to the rostral inferior parietal lobule via the third branch of  the superior 

longitudinal fasciculus, and area 45 connects to the superior temporal gyrus and superior 

temporal sulcus via the extreme capsule fasciculus (Anwander et al. 2007; Frey et al. 2008; 

Petrides and Pandya 2009). 

  

Figure 1.6: Schematic summary of  the anatomical connectivity of  ventrolateral frontal and inferior parietal 
cortex in the macaque monkey. Corresponding colors indicate connectivity between regions. Note the distinct 
connectivity of  area 44 and 45 homologues. R, rostral; VR, ventrorostral; VC, ventrocaudal; DC, dorsocaudal; 
d, dorsal; v, ventral; a, anterior; p, posterior; STS, superior temporal sulcus; ProM, proisocortical motor area. 
(Image from Margulies and Petrides 2013) 

A study by Kelly et al. (2010) used spectral clustering to investigate functional connectivity in the 

human brain using resting-state fMRI (rs-fMRI) and provided preliminary evidence that the 

distinct connectivity profiles of  areas 44 and 45 are consistent between humans and macaques. 

However, specific differences proved difficult to distinguish using group-level analysis due to the 
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high degree of  individual variability in the topography of  cortical areas. Following on from this 

study, recent work by Margulies and Petrides (2013) was able to distinguish areas 44 and 45 from 

each other and neighboring regions using seed-based resting-state functional connectivity in 

individual brains. Consistent with known structural connectivity differences, the main 

distinguishing functional connectivity features were found in the superior temporal and inferior 

parietal regions. The study presented in Chapter 2 of  this thesis builds on this work, and specific 

differences in functional connectivity between areas 44 and 45 are discussed in detail in section 

2.2.4. Additionally, Figure 2.2 provides a schematic summary of  the known differences in 

connectivity patterns of  areas 44 and 45, as well as neighboring premotor area 6, in the human 

brain. 

1.2 General methods 

1.2.1 Cortical parcellation 

Methods that aim to identify meaningful subdivisions or boundaries between cortical regions 

based on homogeneity within and differences between areas in their structure, function, and 

connectivity, can be collectively described as parcellation techniques. Perhaps the most well-

known map of  the human cerebral cortex is that produced by Korbinian Brodmann in 1909, 

who used a parcellation technique based on the cytoarchitectonic features (i.e. the size, shape, 

distribution, and other properties of  cell bodies) of  the cortical layers in postmortem brains to 

subdivide the human cerebral cortex into 52 distinct areas (Figure 1.7; Brodmann 1909). For 

historical reasons, Brodmann’s schematic map of  the human cerebral cortex is still widely used as 

a reference for the identification of  cortical regions in the fields of  human neuroimaging and 

cognitive neuroscience, but with the rapid development of  high-resolution neuroimaging 

techniques, it is now possible to characterize brain areas in vivo based on macro-scale structural 

and functional properties. These developments represent a significant leap forward in 
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neuroscience and have opened the door for studying the relationship and correspondence 

between structure and function in the living human brain. 

 

Figure 1.7: Brodmann’s map of  the human cerebral cortex. The cortex is divided into 52 distinct regions based 
on cytoarchitectonic features (image from Brodmann, Korbinian: Vergleichende Lokalisationslehre der 
Grosshirnrinde, 1909. via Wikimedia Commons) 

1.2.2 Distributive processing and functional networks 

In the context of  cognitive neuroscience, the theory of  distributive processing (Mesulam 1990) 

suggests that brain areas are highly interconnected and process information in a distributed 

manner. Although originally thought of  as competing and contradictory theories of  brain 

functioning,  the concepts of  functional modularity and distributed processing are not mutually 

exclusive, and provide the most intuitive explanation of  brain functioning when combined to 

complement the concept of  functional networks. 

While the shift in neuroscientific research towards a network-based approach for understanding 

brain function is relatively recent, the notion of  brain networks has been around much longer. 

Brodmann (1909) argued that the cytoarchitectonic boundaries he observed were functionally 

significant, and that each cortical area plays a role in a larger and more distributed functional 

network (Amunts and Zilles 2015). It is now widely agreed that brain-behavior relationships are 
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both localized, or modular, and distributed and that complex cognitive domains are likely to arise 

from interactions between multiple distributed brain regions with complex computational 

architectures. Such functional networks can be defined as either local, if  they are confined to 

immediately neighboring areas or a single cytoarchitectonic region, or large-scale, if  they are 

composed of  several interconnected local networks (Mesulam 1990). 

Due to the inevitable complexity of  brain organization given this type of  network structure, it is 

necessary extend the concept of  a functional module to include information regarding its role 

and position within large-scale brain networks, rather than assigning it a single definitive 

function. Functional connectivity information therefore provides an appropriate basis upon 

which to define cortical regions.  

1.2.3 Resting-state fMRI and functional connectivity 

Functional magnetic resonance imaging (fMRI) is a neuroimaging method that uses local 

changes in blood flow as a proxy for brain activity. This technique relies on the so-called blood 

oxygenation-level dependent (BOLD) effect as the basis for image contrast (Ogawa 1990). When 

a specific brain region increases its activity in response to a stimulus, there is a corresponding 

increase in the amount of  oxygen consumed in that region of  the brain. Owing to the inherent 

differences in the paramagnetic properties of  oxygenated and deoxygenated blood, fMRI allows 

us to detect these local changes and gain an approximate measure of  neural activity in different 

brain regions over time. 

While classical fMRI studies rely on task-induced BOLD responses (for example by localizing 

brain regions that increase activity during mental arithmetic), resting-state fMRI (rs-fMRI) 

instead measures the intrinsic spontaneous low-frequency fluctuations in BOLD activity 

occurring in the absence of  explicit task performance or stimuli (Figure 1.8; Biswal 1995). By 

correlating the time-courses of  these intrinsic fluctuations across different brain regions, we can 
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infer that regions whose activity fluctuate at the same or similar frequencies must be functionally 

connected, facilitating the study of  brain organization via functional networks (Van Den Heuvel 

and Pol 2010). Using rs-fMRI, one can thereby derive the functional connectivity “fingerprints” 

characterizing different cortical regions serving different cognitive functions, and use this 

information as the basis for a variety of  applications, including cortical parcellation. 

  

Figure 1.8: Theoretical data showing the percentage of  BOLD change over time as measured by classical task-
based (blue) and resting-state (orange) fMRI. Presentation of  stimuli during a task induce spikes in BOLD 
response, while the resting state is characterized by spontaneous low-frequency BOLD fluctuations. 

Although measures of  functional and structural connectivity are fundamentally different due to 

the vastly different underlying measurements, there is evidence that functional connectivity 

derived from rs-fMRI reflects the underlying anatomy and  provides meaningful insight to brain 

network organization (see Fox and Raichle 2007 for a review of  this topic). This evidence comes 

largely through comparison to macaque monkey tract tracing studies, which allow for precise 

descriptions of  neuronal projections by the direct injection of  axonal tracer molecules into 

particular regions of  the cortex (Vincent et al. 2007; Margulies et al. 2009; Mars et al. 2011; 

Hutchison and Everling 2012; Hutchison et al. 2013; Sallet et al. 2013). Additional support for 

the consistency between functional and structural connectivity in humans comes from diffusion-
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weighted MRI studies. dMRI is able to provide an indirect measure of  structural connectivity in 

vivo, by quantifying the diffusion of  water molecules along the axons that make up white matter 

fiber bundles (Le Bihan et al. 1986). A review of  eight studies that directly compared results 

from dMRI and rs-fMRI found an overall positive correlation between structural and functional 

connectivity strengths derived from the two imaging modalities (Damoiseaux and Greicius 2009). 

An advantage of  rs-fMRI is that while dMRI is currently limited to resolving large-scale fiber 

bundles, rs-MRI is sensitive to both local and large-scale functional connectivity (Sepulcre et al. 

2010). However, it is important to note that functional connectivity derived from rs-fMRI has 

been observed between regions that are not directly anatomically connected (Vincent et al. 2007; 

Honey et al. 2009; Miranda-Dominguez et al. 2014). It is likely that the presence of  such 

functional connections is due to indirect structural connectivity (i.e. two regions are connected 

via a third region). 

1.2.4 Visualization and exploration of  high-dimensional data 

The most basic way to represent functional connectivity information is as a two-dimensional 

matrix, where each point in the matrix represents the probability of  connectivity (as measured by 

the correlation or similarity of  the BOLD time-courses) between two points in the brain. With 

the advent of  high-resolution neuroimaging techniques, such connectivity matrices often consist 

of  hundreds of  thousands of  data points, requiring several gigabytes of  computational memory, 

even without the addition of  essential information regarding the anatomical location of  each of  

those data points. This high dimensionality and resolution of  functional connectivity data 

presents one of  the biggest challenges of  resting-state fMRI research, both in dealing with the 

sheer size of  the datasets and in producing informative data visualizations. 

For this reason, current functional connectivity visualization techniques rely on dramatically 

reducing the dimensionality of  the data in order to make sense of  it (see Margulies et al. 2013 for 

a review of  connectivity visualization techniques). For example, a popular method for aiding 
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resting-state functional connectivity analyses is seed-based connectivity visualization. Using this 

technique, one can display the connectivity pattern of  a user-defined region of  interest (ROI) on 

the brain in order to observe the spatial organization of  that region’s connectivity profile. In its 

most interactive form, such as is implemented in the open-source software, brainGL (Böttger et 

al. 2014), the user simply clicks on any region on the cortical surface, and the corresponding row 

of  the underlying correlation matrix is displayed on the cortical surface (Figure 1.9). 

 

Figure 1.9: An illustration of  seed-based functional connectivity analysis. An ROI, or seed, representing a vertex 
on the cortical surface is selected, and the corresponding connectivity vector is extracted from the whole-brain 
connectivity matrix and displayed on the cortical surface. The resulting map represents the strength of  connectivity 
between the selected vertex and the rest of  the cortical surface. 

While this technique facilitates easy and interactive identification of  distinct connectivity patterns 

of  single regions of  interest, it does not provide a method to map the extent and boundaries of  

the cortical areas that the chosen seed regions belong to, as this requires comparing the 

connectivity patterns of  multiple neighboring seed regions simultaneously. This problem 

highlights the importance of  the development of  novel functional connectivity data visualization 

techniques designed to facilitate precise cortical parcellation. Additionally, seed-based 

connectivity analysis requires the investigator to pre-select an ROI, which could induce a 

selection bias. For this reason, the development of  data-driven approaches for functional 

connectivity analysis is of  high interest in the field of  rs-fMRI research. 
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1.2.5 Data-driven cortical parcellation using resting-state fMRI 

A different approach to dealing with the complexity of  rs-fMRI data is to reduce its 

dimensionality by grouping data points that are similar into modules or networks to facilitate 

interpretation. Another focus of  research within the field of  rs-fMRI has therefore been on the 

development of  data-driven cortical parcellation techniques based on functional connectivity 

(Thirion et al. 2014). These methods take as input either the timeseries of  individual data points, 

or vertices on the cortex, or the corresponding connectivity vector, and subsequently make use 

of  a various clustering algorithms to group data points according to the similarity of  their 

connectivity patterns. This results in a set of  non-overlapping regions or networks exhibiting 

homogeneity within and heterogeneity between their connectivity profiles (see for example Yeo  

and Krienen et al. 2011; Kahnt et al. 2012). While the resulting network maps have a variety of  

valuable applications such as serving as functional atlases of  cortical regions, interpreting and 

evaluating their validity as definitive maps of  the cerebral cortex is difficult. Most common 

clustering algorithms, such as k-means (Arthur and Vassilvitskii 2007) and hierarchical clustering 

(Murtagh and Legendre 2011), require the user to specify the number of  clusters or networks the 

cortex should be divided into a priori. This is an implicit problem because there is no agreement 

upon how many regions or networks exist in the human brain, and it is possible that the number 

of  networks may vary across individuals (Wang et al. 2015). One possible way to overcome this 

problem is to run the algorithm with a varying number of  clusters and subsequently choose the 

solution that best reflects some pre-existing ontology of  brain regions or anatomical atlas. 

Additionally, clustering techniques often treat neighboring vertices as entirely independent data 

points, which may not be appropriate when applied to brain organization, given that the voxel 

sampling resolution of  rs-fMRI data may exceed the appropriate scale for defining regions based 

on their connectivity (Thirion et al. 2014). 
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In spite of  the difficulties inherent in interpreting their results, data-driven parcellation methods 

are seen by many as favorable because they are, as the name suggests, driven by the data itself  

and therefore unbiased by the user. However, it is important to consider that by relying solely on 

the measured data, these methods fail to take advantage of  the large amount of  prior knowledge 

that exists about the morphology, variability, cytoarchitecture, and unique connectivity patterns 

of  particular regions of  the brain. 

1.2.6 Individual variability and the importance of  single-subject analysis 

The study of  individual differences in human brain anatomy has long been an established field 

of  research. However, it is only recently that is has become possible to investigate functional 

differences in vivo using advanced neuroimaging techniques and thus examine the stability of  

relationships between structure and function across individuals. It is well-known that certain 

regions of  the brain, especially those involved in higher-order cognitive functions, exhibit higher 

degrees of  inter-subject morphological variability than primary sensory regions (Mueller et al. 

2013; Gao et al. 2014), making it difficult to accurately distinguish areal boundaries within these 

regions based on macroanatomical landmarks alone. For this reason, it is necessary to develop 

tools for cortical parcellation at the individual level that allow us to procure subject-specific 

functional atlases. 

1.2.7 Overview 

The following chapters describe two main research projects, the overarching goal of  which is to 

make use of  prior knowledge of  the anatomical locations and connectivity differences within 

Broca’s region to delineate the extent and boundaries of  areas 44 and 45 in individual brains.  

The first project, described in Chapter 2, makes use of  a novel functional connectivity 

visualization technique to manually parcellate areas 44 and 45 in individual brains based on 

macroscopic landmarks and connectivity features. The resulting manual labels are compared at 

the group level and are shown to be highly consistent with previous findings relating to the 
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connectivity and morphology of  areas 44 and 45. These manually labeled datasets can therefore 

be considered the current gold standard for individual-level in vivo cortical parcellation of  areas 

44 and 45. The second project, described in Chapter 3, builds on the results of  the first project 

by developing an automated, observer-independent, and data-driven cortical parcellation 

technique that mimics the manual labeling approach. The main goal of  this project is to 

automatically produce area labels with comparable precision to manual labeling at the individual 

level. The automated parcellation technique is again applied to the sub-parcellation of  Broca’s 

region into its constituent areas 44 and 45 in a large number of  individual brains, and the results 

are compared to the gold standard manual labels at the individual level. The automated 

parcellation technique is applied to two independent datasets in order to demonstrate its ability 

to generalize to datasets with varying acquisition and preprocessing parameters. Finally, various 

applications and future directions relating to these two main projects are discussed in Chapter 4. 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Chapter 2 - Subdivision of  Broca's region based on 

individual-level functional connectivity 

___________________________________________________________________________ 

Abstract 

Broca's region is composed of  two adjacent cytoarchitectonic areas, 44 and 45, which have distinct connectivity to 

superior temporal and inferior parietal regions in both macaque monkeys and humans. The current study aimed to 

make use of  prior knowledge of  sulcal anatomy and resting-state functional connectivity, together with a novel 

visualization technique, to manually parcellate areas 44 and 45 in individual brains in vivo. One hundred and 

one resting-state functional magnetic resonance imaging datasets from the Human Connectome Project were used. 

Left-hemisphere surface-based correlation matrices were computed and visualized in brainGL. By observation of  

differences in the connectivity patterns of  neighbouring nodes, areas 44 and 45 were manually parcellated in 

individual brains, and then compared at the group-level. Additionally, the manual labelling approach was 

compared with parcellation results based on several data-driven clustering techniques. Areas 44 and 45 could be 

clearly distinguished from each other in all individuals, and the manual segmentation method showed high test-

retest reliability. Group-level probability maps of  areas 44 and 45 showed spatial consistency across individuals, 

and corresponded well to cytoarchitectonic probability maps. Group-level connectivity maps were consistent with 

previous studies showing distinct connectivity patterns of  areas 44 and 45. Data-driven parcellation techniques 

produced clusters with varying degrees of  spatial overlap with the manual labels, indicating the need for further 

investigation and validation of  machine learning cortical segmentation approaches. The current study provides a 

reliable method for individual-level cortical parcellation that could be applied to regions distinguishable by even the 

most subtle differences in patterns of  functional connectivity. 
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2.1 Introduction 

Broca's region is located on the inferior frontal gyrus in the language-dominant hemisphere, and 

forms a core part of  the perisylvian language network. Cytoarchitectonic studies have 

differentiated two distinct areas within this region, areas 44 and 45, which are generally related to 

the gross morphological landmarks of  the pars opercularis and triangularis, respectively (Figure 

2.1) (Amunts et al., 1999).  

  

Figure 2.1. Anatomical landmarks of  the inferior frontal gyrus in an individual subject. aalf, anterior ascending 
ramus of  the lateral fissure; cs, central sulcus; ds, diagonal sulcus; half, horizontal anterior ramus of  the lateral 
fissure; ifs, inferior frontal sulcus; iprs, inferior precentral sulcus; lf, lateral fissure; Op, pars opercularis; Tr, pars 
triangularis; ts, triangular sulcus. 

Despite debates regarding the convergence of  cytoarchitectonic borders with sulcal contours 

(Amunts et al., 1999), these anatomical criteria, derived from postmortem cytoarchitectonic data, 

are commonly used for the identification of  areas 44 and 45 in in vivo magnetic resonance 

imaging (MRI) data (Fischl et al., 2002). Nonetheless, morphological studies have demonstrated 

that this part of  the ventrolateral frontal cortex shows a high degree of  individual variability in 

sulcal and gyral morphology (Keller et al., 2007), with some individuals entirely lacking either the 

horizontal or the anterior ascending ramus of  the lateral fissure (Ono et al., 1990; Tomaiuolo et 
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al., 1999). For this reason, individual-level analysis and the integration of  multimodal data are 

crucial for accurate delineation of  these subdivisions within Broca's region. 

 

Figure 2.2. Schematic representation of  the distinct connectivity profiles of  areas 45 and 44, and the neighboring 
area 6VR (Petrides & Pandya, 2009; Kelly et al., 2010; Margulies & Petrides, 2013). aalf, anterior 
ascending ramus of  the lateral fissure; AnG, angular gyrus; aSmG, anterior supramarginal gyrus; cgs, cingulate 
sulcus; cs, central sulcus; half, horizontal anterior ramus of  the lateral fissure; ifs, inferior frontal sulcus; iprs, 
inferior precentral sulcus; PF, area PF; PG, area PG; PFG, area PFG; PMCm, middle posteromedial cortex; 
Pre-SMA, pre-supplementary motor area; pSmG, posterior supramarginal gyrus; SMA, supplementary motor 
area; STSa, anterior superior temporal sulcus; STSm, middle superior temporal sulcus; STSp, posterior superior 
temporal sulcus. 

Known differences in long-range connectivity patterns of  neighboring regions, such as areas 44 

and 45, provide a foundation on which to build methods for cortical delineation based on in vivo 

connectivity data. Figure 2.2 summarizes the distinct connectivity patterns of  areas 44 and 45, as 

well as the neighboring area 6VR. Macaque monkey tract-tracing and neuroimaging studies have 

demonstrated that homologues of  these two areas have distinct profiles of  connectivity with the 
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inferior parietal and lateral temporal cortex (Petrides & Pandya, 2002, 2009; Frey et al., 2014; 

Neubert et al., 2014). These findings are supported by non-invasive tractography studies in the 

human brain using diffusion MRI (Catani & Jones, 2005; Anwander et al., 2007; Klein et al., 

2007; Frey et al., 2008), and functional connectivity based on resting-state fMRI data (Kelly et al., 

2010; Margulies & Petrides, 2013). 

The dimensionality of  high-resolution connectivity data presents many challenges for data 

exploration and visualization, and current techniques rely on dramatically reducing the 

dimensionality of  the data in order to make sense of  them (Margulies et al. 2013). Here, we 

present the first application of  a novel functional connectivity glyph visualization technique 

(Böttger et al., 2014) that simultaneously displays the connectivity patterns of  all possible seed 

regions in a cortical area, thus allowing for the manual labelling of  the extent of  areas with 

homogeneous connectivity patterns and the boundaries between them. 

The present study used connectivity priors in conjunction with morphological information to 

manually delineate the extent and boundaries of  areas 44 and 45 at the individual-level. By 

applying this approach to a large number of  subjects, we provide the first probabilistic maps of  

areas 44 and 45 based on in vivo connectivity data. 

2.2 Materials and methods 

2.2.1 Data 

The data used in this study were provided by the Human Connectome Project (HCP). As part of  

the standard HCP data acquisition protocol, informed written consent was obtained from all 

participants, and the present study conformed with the World Medical Association Declaration 

of  Helsinki. One hundred and one individuals (59 females; 13 left-handed; mean age 29 years) 

were selected from the Q3 data release. Additional information regarding selection criteria is 
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provided in Data S1 and Figure S2.1. These data comprised resting-state fMRI datasets and 

corresponding T1-weighted structural data for each individual. As part of  the default 

preprocessing pipelines for HCP data, the resting-state fMRI data were denoised by the use of  

independent component analysis-based artifact removal (Salimi-Khorshidi et al., 2014), and both 

structural and functional data were registered to HCP 2-mm standard surface space (fs_LR 32k 

node surfaces). Further details of  the standard HCP data acquisition and preprocessing methods 

can be found in Smith et al. (2013). 

2.2.2 Additional data processing 

For the current study, it was necessary to conduct additional processing steps to visualize 

functional connectivity within the left hemisphere of  each individual. Approximately 96–98% of  

individuals are left hemisphere-dominant, and ~70% of  left-handed and ambidextrous 

individuals are left hemisphere-dominant (Rasmussen & Milner, 1975). Of  the 101 individuals 

included in the current study, 13 were left-handed. (i) The functional time-series data of  the left 

cerebral cortex were extracted for each of  four 15-min resting-state MRI scans (repetition time 

0.7 s) per subject. (ii) Surface-based smoothing with a 2-mm full-width half-maximum kernel was 

applied. (iii) A correlation matrix was computed and Fisher's r-to-z transformed. (iv) The 

resulting matrices were averaged across the four resting-state fMRI runs for each participant. (v) 

The average matrices were z-to-r transformed. (vi) Data were visualized in brainGL  by the use 1

of  functional connectivity glyphs (Böttger et al., 2014). 

2.2.3 Functional connectivity glyphs 

Here, we present the first application of  functional connectivity glyph visualization as 

implemented in the open source software brainGL. The connectivity of  every point on the 

cortical surface is presented at each node of  the surface-based rendering in a small visual 

summary called a functional connectivity glyph (Figure 2.3). Each glyph represents the distribution of  

 code.google.com/p/braingl1
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connections from the node to the rest of  the cortical surface, with colors indicating the strength 

of  connectivity. By interactive manipulation of  various visualization parameters of  the glyphs 

(e.g. size, rotation, color, threshold, and surface inflation), transitions between cortical areas can 

be made visually explicit. 

  

Figure 2.3. Manually labelled areas 45 and 44 for one individual subject on the pial and inflated surfaces with 
functional connectivity glyphs in the ventrolateral frontal cortex. Each glyph represents the full functional 
connectivity profile from that node to the rest of  the cortical surface. The glyph color indicates the correlation value. 
As indicated by arrows, connectivity of  areas 44 and 45 can be distinguished by differences in the anterior 
temporal and inferior parietal regions. 

2.2.4 Manual delineation procedure 

The first step taken in the manual delineation process was to identify the approximate locations 

of  areas 44 and 45 by the use of  sulcal landmarks (Figure 2.1). Area 45 is located on the pars 

triangularis, which is the portion of  the inferior frontal gyrus between the horizontal and 

anterior ascending rami of  the lateral fissure, and is dorsally bounded by the inferior frontal 

sulcus. Area 44 is located on the pars opercularis, which is defined as the portion of  the inferior 
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frontal gyrus that lies ventral to the inferior frontal sulcus and anterior to the inferior precentral 

sulcus. Rostrally, area 44 is separated from the pars triangularis by the anterior ascending ramus 

of  the lateral fissure. On the basis of  these criteria, a large ROI was defined around the inferior 

frontal gyrus and surrounding areas, and functional connectivity glyphs were rendered for this 

ROI on the inflated cortical surface representation (Figure 2.3). In order to compensate for 

variability in the overall connectivity strength between subjects and across cortical areas, the 

color scale was adjusted to visually normalize the glyph representations. By the use of  interactive 

zooming and manipulation of  the glyph parameters, the areas containing glyphs displaying the 

characteristic connectivity profiles of  areas 45 and 44, as described by Margulies & Petrides 

(2013), were identified and manually labelled. On the lateral surface, area 45 shows strong 

connectivity with the angular gyrus and the entire extent of  the superior temporal sulcus. On the 

medial wall, there is strong connectivity to the central precuneus region (PGm) and to the cortex 

anterior to the supplementary motor area. Area 44 shows strong connectivity to the 

supramarginal gyrus, the anterior part of  medial area 6, and the cortex adjacent to the cingulate 

sulcus, where cingulate motor areas can be identified. Figure 2.2 summarizes the distinct 

connectivity patterns of  areas 44 and 45, and of  the neighboring ventrorostral area 6 (6VR). 

The two most prominent features used to identify the boundary between the two areas in a 

posterior direction along the inferior frontal gyrus were: (i) an anterior shift in inferior parietal 

connectivity from the angular gyrus to the supramarginal gyrus; and (ii) the disappearance of  

connectivity to anterior and middle temporal regions (Figure 2.3). 

The two areas were always labelled as immediately adjacent to each other, so that the posterior 

boundary of  area 45 neighbored the anterior boundary of  area 44. If  the change in connectivity 

pattern between the two areas appeared as a gradual transition rather than an abrupt change, the 

boundary was drawn in the middle of  the transition zone. 
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In some cases, the anterior boundary of  area 45 proved difficult to identify, owing to the 

similarity in the connectivity profiles of  area 45 and the neighboring area 47/12. In these 

subjects, the anterior boundary of  area 45 was drawn at the horizontal ascending ramus of  the 

lateral fissure, and not extended anteriorly onto the pars orbitalis. 

The posterior boundary of  area 44 was primarily defined by identification of  a further anterior 

shift in parietal connectivity to only the most anterior portion of  the supramarginal gyrus, and 

the gradual appearance of  connectivity related to the extent of  the precentral gyrus. This is 

consistent with what is known about the functional connectivity of  the neighboring area 6VR 

(Margulies & Petrides, 2013). 

The dorsal boundary of  area 45 was defined by a shift in connectivity to the anterior temporal 

and inferior parietal regions very similar to the shift in connectivity found at the boundary 

between areas 45 and 44. The cortical region immediately dorsal to area 45 is likely to be putative 

area 9/46v, which has been shown to have similar functional connectivity to areas 44 and 6VR 

(Margulies & Petrides, 2013). 

The dorsal boundary of  area 44 was defined by an upward shift in connectivity to parietal 

regions, covering only the most superior part of  the inferior parietal lobule and the extent of  the 

intraparietal sulcus. This cortical region corresponds to cytoarchitectonic area 8AV, and the 

observed functional connectivity pattern in this area is consistent with results from macaque 

monkey tract-tracing studies (Petrides & Pandya, 1999). 

The ventral boundary of  area 45 was primarily defined by a significant drop in overall 

connectivity values around the anterior portion of  the lateral fissure, making precise definition 

of  connectivity differences difficult. This area often suffers from blood oxygen level-dependent 

signal loss, owing to its proximity to air-filled sinuses (Ojemann et al., 1997). 
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Figure 2.4. Individual manual labels of  areas 44 (green) and 45 (red) for 10 randomly selected subjects. 

2.2.5 Comparison of  functional and cytoarchitectonic probability maps 

The individual manual labels (Figure 2.4) were averaged across individuals to create group-level 

probability maps of  the two areas (Figure 2.5). These probability maps were then compared with 

cytoarchitectonic-based probability maps from the Juelich brain model (Amunts et al., 1999) 

registered to the same space (fs_LR 32k 440-subject average surface). The probability maps were 

binarized at various thresholds, and the degree of  spatial overlap between them was then 

computed by use of  the Dice coefficient (DC; Dice 1945; Figure 2.6). The DC evaluates the 

spatial overlap of  two samples, A and B, and is defined as:  
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Figure 2.5. Group-average masks of  each area across 101 subjects. The color indicates the probability of  mask 
overlap, calculated by averaging across the 101 individual binary area labels. (A and B) Cytoarchitectonic 
probability maps from the Juelich brain model on the fs_LR 32k 440-subject average surface. In these 
cytoarchitectonic maps, the colour indicates the probability of  overlap of  labelled regions across 10 postmortem 
brains. aalf, anterior ascending ramus of  the lateral fissure; cs, central sulcus; half, horizontal anterior ramus of  
the lateral fissure; iprs, inferior precentral sulcus; Op, pars opercularis; Tr, pars triangularis. 

  

Figure 2.6. Dice similarity of  cytoarchitectonic and manual functional connectivity-based probability maps across 
thresholds. At thresholds of  0.7 and 0.8, the Dice coefficients rapidly decrease, indicating that the peaks of  the 
probability maps do not overlap. 
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2.2.6 Quantification of  sulcal variance 

To quantify the individual variability in the morphology of  the inferior frontal gyrus, inter-

individual sulcal variance was computed by the use of  freesurfer sulc values, which indicate the 

depth/height of  each node as calculated using the mid-thickness surface (Fischl et al., 1999; 

Figure 2.7). 

  

Figure 2.7. Sulcal variance in the ventrolateral frontal cortex across all 101 subjects. The color indicates across-
subject variance in the freesurfer ‘sulc' variable. 

2.2.7 Group-level functional connectivity of  manual labels 

Group-average functional connectivity maps for each area were created by first computing the 

average functional connectivity across each individual manual label, and then performing a 

group-level t-test across the resulting individual maps (voxelwise threshold of  P < 0.001 with 

cluster correction of  P < 0.05) (Figure 2.8). 
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Figure 2.8. Uncontrasted (A) and contrasted (B) group-level functional connectivity maps of  areas 44 and 45, 
with a voxel-wise threshold of  P < 0.001 and a cluster threshold of  P < 0.05. 

2.2.8 Inter-rater and intra-rater reliability of  the manual labelling approach 

To assess the inter-rater and intra-rater reliability of  the manual labelling technique, a subset of  

the included datasets were re-labelled by the same rater and by a second rater. Ten datasets were 

randomly selected and labelled by rater 2 according to the same criteria used by rater 1 (described 

previously). The degree of  spatial overlap of  the manual labels from rater 1 and rater 2 was then 

assessed by use of  the Dice coefficient (Figure 2.9A). The same 10 datasets were then re-labelled 

by rater 1 after a period of  ~7 months since the first labelling, and the results of  the first and 

second sets of  labels were also compared by use of  the Dice coefficient (Figure 2.9B). 
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Figure 2.9. (A) Overlap of  the area 44 and 45 labels produced by two independent raters for 10 randomly 
selected datasets. (B) Overlap of  the area 44 and 45 labels produced by the same rater at two different time 
points for the same 10 datasets. 

2.2.9 Comparison of  manual labelling with automatic clustering 

To compare the manual delineation approach with existing automatic parcellation methods, K-

means++ and hierarchical Ward clustering were applied to the functional data of  an ROI 

defined by each individual's combined manual area 45 and 44 label. K-means++ is a variant of  

the standard k-means procedure, with an optimized stochastic seeding technique for selecting the 

initial cluster centers (Arthur & Vassilvitskii, 2007). Hierarchical clustering with Ward's criterion 

is a well-established technique for generating functional brain parcels (Murtagh & Legendre, 

2011; Thirion et al., 2014). 
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The clustering procedure was implemented with K = 2 clusters within the manually defined 

individual areas 44 and 45, by use of  the NeuroImaging Analysis Kit for matlab (Bellec et al., 

2012). The clustering procedures were based on the Euclidean distance between the connectivity 

maps associated with two surface nodes. To make the manual and automated labelling 

approaches directly comparable, each connectivity map was restricted to a manually drawn 

temporo-parietal mask covering the regions containing features that were used to distinguish the 

two areas during manual delineation, instead of  the full brain an image of  the mask is provided 

in Figure S2.2. The degree of  spatial overlap between the manual and automated parcellations 

was quantified by use of  the Dice coefficient, and averaged across the two areas for each subject 

(Figure 2.10). 

  

Figure 2.10. Distribution of  Dice similarity between manual labels and K-means++ (mean = 0.972) and 
hierarchical Ward (mean = 0.960) clustering results. 
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2.3 Results 

The 101 individual manual area 44 and 45 labels and corresponding group-level probability maps 

are freely available for downloading . Examples of  individual manual labels for eight randomly 2

selected subjects are shown in Figure 2.4. 

2.3.1 Group-level analyses 

The group-level probability maps of  the manually labelled areas 44 and 45 (Figure 2.5) 

demonstrate high consistency across all 101 subjects. For area 45, the region of  highest overlap 

between subjects lies on the posterior half  of  the pars triangularis, directly anterior to the 

anterior ascending ramus of  the lateral fissure. For area 44, the region of  highest overlap lies on 

the anterior bank and fundus of  the inferior precentral sulcus, adjacent to and including the pars 

opercularis. These functional probability maps also show consistency with cytoarchitectonic 

probability maps derived from postmortem histology (Figure 2.5). The degree of  spatial overlap 

between the functional and cytoarchitectonic probability maps of  both areas shows a relatively 

steady decrease with increasing probability values, with only the highest probability values 

showing no overlap (Figure 2.6). Figure 2.7 shows a clear increase in across-subject sulcal 

variance on the pars opercularis, which coincides with the boundary between areas 44 and 45. 

As can be seen in Figure 2.8, the group-level connectivity maps clearly reflect the distinct 

connectivity patterns of  areas 44 and 45, with the main distinguishing features being visible in 

the anterior temporal and inferior parietal regions. Whereas area 45 shows strong connectivity to 

the anterior portion of  the middle temporal gyrus and the angular gyrus, area 44 shows no 

significant connectivity to these areas. Likewise, area 44 shows the strongest connectivity to the 

supramarginal gyrus, whereas area 45 shows only very weak connectivity to the most posterior 

part of  this region. Differences can also be seen on the medial wall of  the hemisphere, where 

 http://wwwuser.gwdg.de/~cbsarchi/archiv/public/hcp/2
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area 45 shows strong connectivity with the PGm of  the precuneus and a large stretch of  the 

dorsomedial frontal cortex anterior to the supplementary motor area, whereas area 44 shows no 

connectivity to the PGm, and some connectivity to the cortex adjacent to the cingulate sulcus. 

2.3.2 Inter-rater reliability 

The overlap between the manual labels of  the two raters for all 10 datasets is shown in Figure 

2.9A. The average Dice similarities between the labels from rater 1 and rater 2 were 0.53 for area 

44 and 0.70 for area 45. 

2.3.3 Intra-rater reliability 

The overlap between the two sets of  labels from rater 1 for all 10 datasets is shown in Figure 

2.9B. The average Dice similarities between the first and second sets of  labels from rater 1 were 

0.89 for area 44 and 0.91 for area 45. 

2.3.4 Comparison of  manual labelling with automatic clustering 

The distribution of  average Dice similarity between the manual labels and the clustering results is 

shown in Figure 2.10. K-means++ produced cluster solutions with higher spatial overlap than 

hierarchical Ward clustering. The high values for both clustering algorithms can be accounted for 

by the a priori matching of  the input ROI, which was defined by the manual labels. Figure 2.11 

shows the subject with the highest discrepancy between the results of  the manual labelling and 

K-means++ clustering (lowest DC). There are two mismatch areas, the first of  which coincides 

with the boundary between areas 45 and 44. The connectivity pattern in this area suggests a 

gradual transition rather than an abrupt boundary between the two areas. The second mismatch 

area lies towards the anterior end of  the manually labelled area 45. This area shows a slight 

change in parietal connectivity as compared with the rest of  the manually labelled area 45, which 

may have contributed to the difference in the clustering results. However, because of  the 

anatomical location of  the region and the presence of  other connectivity features (such as strong 

 32



connectivity along the superior temporal gyrus), the area was included in the manual area 45 

label. In cases such as these, automatic clustering algorithms may benefit from a region-growing 

approach or spatial constraints in order to avoid anatomically separate regions being assigned to 

the same cluster (Craddock et al., 2012; Blumensath et al., 2013; Wig et al., 2014a). 

  

Figure 2.11. Manual area 44 and 45 labels and K-means++ clustering results for the subject with the lowest 
spatial overlap (DC=0.8164). The red and green regions mark agreement between the manual and clustering 
results, and the blue regions show areas of  mismatch. Sample glyphs are shown for each region. 

2.4 Discussion 

In the present study, we manually parcellated Broca's region in individual brains in vivo. By using 

functional connectivity glyph visualization, we were able to delineate the boundaries of  areas 44 

and 45 in 101 individual brains from the HCP on the basis of  morphological and connectivity 

criteria. The manual labelling technique showed good test–retest reliability, as shown by the 

spatial overlap of  the manual labels produced by the same and independent raters. The group-

level comparisons are consistent with previous knowledge about the structure and connectivity 
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of  these areas. These findings validate the utility of  functional connectivity glyph visualization 

for individual-level cortical parcellation and, in addition, provide further evidence for the distinct 

connectivity profiles of  areas 44 and 45 in the human brain. 

Our manual labelling produces group-level probability maps that show a high degree of  

consistency with cytoarchitectonic probability maps of  the same areas (Figures 2.5 and 2.6). 

However, it is interesting to note the slight differences in the anatomical locations of  the areas 

of  maximum probability between modalities. The area of  maximum probability for the 

functional connectivity-based map of  area 44 lies within the fundus of  the inferior precentral 

sulcus, which is slightly posterior to its location on the anterior wall of  the inferior precentral 

sulcus, as described by the probabilistic cytoarchitectonic map. Similarly, the area of  maximum 

probability for the functional map of  area 45 lies on the posterior half  of  the pars triangularis, 

whereas the cytoarchitectonic map's maximum overlap region is shifted anteriorly towards the 

middle of  the pars triangularis. Although the present study included 101 high-resolution in vivo 

resting state fMRI datasets, the cytoarchitectonic maps are based on only 10 postmortem brains, 

which may not be a large enough sample to capture inter-individual variability in the locations of  

these areas. Additionally, both modalities rely heavily on a variety of  registration techniques, 

which could help to explain the observed differences. Another possible reason for the shift 

towards the fundus of  the inferior precentral sulcus in the functional connectivity-based map of  

area 44 is the contribution of  large draining veins, which tend to lie along sulci, to the blood 

oxygen level-dependent signal measured with fMRI techniques (Krings et al., 1999). Nonetheless, 

such discrepancies between probability maps from different modalities could have important 

implications for the way in which areas 44 and 45 are currently defined, both functionally and 

structurally. 

The group-average connectivity maps (Figure 2.8) reflect consistency in the unique connectivity 

patterns of  areas 44 and 45 across subjects, and highlight the main distinguishing features in the 
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anterior temporal and inferior parietal regions. These results are consistent with the findings of  

previous studies investigating the connectivity differences between areas 44 and 45 (Petrides & 

Pandya, 2009; Kelly et al., 2010; Margulies & Petrides, 2013). Although there is strong evidence 

for the correspondence between measures of  functional and structural brain connectivity 

(Damoiseaux & Greicius, 2009), it is important to keep in mind that the relationship between 

resting-state functional connectivity and anatomical connectivity is not one-to-one. Functional 

connectivity has been observed between regions where no direct anatomical connection exists 

(Vincent et al., 2007; Honey et al., 2009; Miranda-Dominguez et al., 2014), which may reflect 

indirect connectivity between regions. An example of  this in the current study is the presence of  

functional connectivity between the precuneus and area 45 (Figures 2.2 and 2.8), where no direct 

anatomical connectivity exists. However, the PGm is connected with area PG of  the inferior 

parietal lobule. This finding is consistent with previous studies using resting-state fMRI to 

investigate the functional connectivity of  area 45 (Margulies & Petrides, 2013). 

The group-level contrasted connectivity map of  area 44 (Figure 2.8B) shows strong functional 

connectivity to the anterior, but not to the posterior, part of  the supramarginal gyrus. This is 

most likely attributable to area 45 also showing some connectivity to the posterior supramarginal 

gyrus in addition to the expected connectivity to the angular gyrus, as can be seen in the 

uncontrasted map (Figure 2.8A). This overlap will have led to the posterior supramarginal 

connectivity not showing up in the contrasted group-level map for area 44. However, this result 

could also be indicative of  the inherent difficulty in distinguishing the very subtle differences in 

the connectivity patterns of  areas 44 and the neighboring premotor area 6VR, which shows 

strong connectivity to only the most anterior part of  the supramarginal gyrus, and may have led 

to parts of  area 6VR being included in the BA 44 labels for some subjects. Additionally, it has 

been suggested that the cytoarchitectonically defined area 44 is not functionally homogeneous, 

and can be further subdivided into five distinct clusters by the use of  meta-analytic connectivity-

based parcellation (Clos et al., 2013). Whereas the current study focused on inter-areal 
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differences in connectivity patterns, more subtle intra-areal differences may also exist and 

contribute to the results. 

2.4.1 Comparison with clustering results 

Although both hierarchical Ward and K-means++ clustering produced results with a high degree 

of  spatial overlap with the manual labels (as measured by use of  the Dice coefficient), K-

means++ resulted in a slightly higher average Dice similarity across subjects, and also fewer 

subjects with low spatial overlap between modalities (Figure 2.10). The areas of  discrepancy 

between the automatic and manual area labels in individual subjects (Figure 2.11) often coincide 

with regions within which the connectivity shifts gradually from one pattern to another over the 

width of  several cortical nodes. Further research is needed to investigate how this relates to the 

underlying cortical boundaries and transitions within these regions. Additionally, investigation of  

these discrepancies between automatic and manual parcellation results may prove useful in 

identifying additional features that could be utilized to more effectively distinguish the areas. The 

second area of  discrepancy highlighted in Figure 2.11 is one common to many of  the subjects 

with low Dice similarity between the automatic and manual labels, and demonstrates an 

advantage of  the manual labelling approach over the chosen automatic parcellation algorithms. 

Whereas the manual labelling approach imposes a spatial constraint on the results by always 

producing exactly two continuous regions corresponding to areas 44 and 45, the automatic 

parcellation techniques sometimes produce discontinuous clusters, owing to subtle 

inhomogeneities in the connectivity pattern within an otherwise homogeneous region. For this 

reason, automatic clustering algorithms may benefit from a region-growing approach or the 

implementation of  spatial constraints in order to avoid anatomically separate regions being 

assigned to the same cluster (Bellec et al., 2006; Craddock et al., 2012; Blumensath et al., 2013; 

Wig et al., 2014a). Although we chose to use versions of  K-means and hierarchical clustering, 

owing to their prevalence, more sophisticated algorithms, such as consensus clustering (Goder & 

Filkov, 2008), exist that may perform better within the given framework. 
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One of  the implicit challenges of  existing automatic clustering techniques when applied to fMRI 

data is determining the proper number of  clusters to output, with the aim of  producing 

functionally meaningful results. The K-means clustering algorithm requires a priori input of  k, 

the number of  clusters, to split n, the number of  voxels (in this case, surface nodes). Hierarchical 

clustering attempts to avoid this problem by outputting a hierarchical dendrogram that spans 

from all observations being in the same cluster, to all observations being separated across 

distinct clusters. However, a decision must still be made post hoc on which level of  the 

dendrogram to use to interpret the results. In contrast, our manual delineation method defines 

the number of  clusters on the basis of  prior knowledge of  the areas of  interest. Specific to the 

present study, a rough anatomical ROI corresponding to Broca's region is split into exactly two 

clusters, corresponding to areas 44 and 45. 

Most automatic clustering algorithms, such as K-means and hierarchical clustering, produce 

binary results, whereby each data element is assigned to only one cluster. When applied to 

cortical parcellation, this can lead to the interpretation of  sharp boundaries between cortical 

areas, which are not necessarily reflected in the data. As has recently been demonstrated with 

boundary detection techniques, some neighboring cortical areas show sharp boundaries with 

abrupt changes in functional connectivity, whereas others gradually transition from one 

connectivity pattern to the next over a larger cortical region (Wig et al., 2014b). Attempts have 

been made to address this issue by the development of  so-called fuzzy clustering techniques, in 

which data elements can belong to more than one cluster and are assigned multiple membership 

values (Yoon et al., 2003; Nock & Nielsen, 2006). Our manual labelling approach offers a novel 

method for addressing this issue. In the present study, areas 44 and 45 were labelled in a binary 

manner, with each node belonging to only one cluster, in order to facilitate comparison with 

clustering results. However, the manual labelling tools implemented in brainGL also allow for 

labelling of  areas with non-binary values. This tool could easily be used to indicate uncertainty 
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regarding the probability of  a particular data point belonging to a certain area, or to label 

transition zones on the basis of  visually observable changes in the glyphs. 

2.4.2 Individual-level parcellation 

Owing to the high degree of  individual variability in the cortical morphology of  brain regions 

such as Broca's region (Figure 2.7), individual-level analysis is necessary to produce accurate 

cortical parcellations. This is demonstrated by the difficulties encountered in previous studies 

aimed at determining connectivity differences between subregions of  the ventrolateral frontal 

cortex at the group level (Kelly et al., 2010). The current gold standard for individual-level 

cortical parcellation is considered by many to be the cytoarchitectonic definition of  regions in 

postmortem brain tissue, but no comparable method exists for in vivo data. By making use of  

high-quality resting-state fMRI data, our manual delineation method provides a much-needed 

improvement on existing methods for individual-level in vivo cortical labelling. Such an approach 

also facilitates the investigation of  the relationship between individual differences in cortical 

organization and behavioral phenotypes. 

2.4.3 Clinical applications 

The ability to accurately define the location and extent of  particular functional regions in the 

individual living human brain without the need for behavioral tasks would be beneficial for 

highly sensitive clinical applications such as neurosurgical planning. For example, such a 

technique could be used to ensure the preservation of  language functions known to be 

associated with areas 44 and 45 in patients requiring surgery in the ventrolateral frontal cortex. 

To our knowledge, no behavioral task exists that is able to reliably distinguish areas 44 and 45 

from each other, and, in a clinical context, such a task might in any case be too demanding for 

the patient. In contrast, the use of  resting-state fMRI is suitable and undemanding for patients 

of  all kinds. Additionally, existing visualization techniques for resting-state fMRI are not 

sufficient for precise individual-level delineation of  cortical areas. Although seed-based 

 38



connectivity visualization allows for the identification of  distinct connectivity patterns of  single 

ROIs, it does not provide a method with which to map the extent and boundaries of  the cortical 

areas to which the chosen seed regions belong. Functional connectivity glyph visualization 

addresses this issue by comparing the connectivity patterns of  multiple neighboring seed regions 

simultaneously, facilitating parcellation of  areal boundaries. This approach could, of  course, be 

extended beyond Broca's area to distinguish and parcellate any regions of  the brain with distinct 

functional connectivity profiles and various clinical implications. 

Although the current study made use of  a dataset with very unique scanning parameters (1 hour 

of  data per subject at high spatial resolution), such high-quality data are not required for our 

manual delineation approach. It has been shown that scan times as low as 5 min result in stable 

estimates of  correlation strengths (Van Dijk et al., 2010), and that improvements in inter-session 

and intra-session reliability plateau at 9–12 min and 12–16 min respectively (Birn et al., 2013). 

On the basis of  this knowledge, we believe that our manual delineation technique is applicable to 

resting-state data acquired under the constraints of  a clinical setting. 

2.4.4 Manual parcellation as a precursor to automated methods 

Existing automatic parcellation techniques are data-driven, and do not take into account the large 

amount of  prior knowledge that exists about the anatomy and connectivity of  particular brain 

regions, making it difficult to evaluate the validity and accuracy of  their results. For example, 

although boundary detection approaches (Cohen et al., 2008; Hirose et al., 2009, 2012) are 

powerful tools for identifying transitions between cortical regions, the resulting gradient maps do 

not contain any information about the nature or location of  the changes underlying the detected 

boundaries. Our manual labelling approach attempts to address this issue by incorporating prior 

knowledge of  the anatomical location and variability of  the ROIs, and basing each individual 

parcellation on known differences in the areas’ distinct connectivity profiles. The resulting area 

labels therefore provide a valuable basis for the subsequent development of  automated 
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parcellation approaches with comparable precision at the individual level. For example, the 

manually labelled datasets could be used as input for feature selection and pattern classification 

algorithms. A corresponding approach has been used previously for an automated cortical 

labelling method based on gyral patterns (Desikan et al., 2006). Similarly, the group-level 

probability maps could also be used to enforce a spatial constraint on the outputs of  existing 

clustering techniques. 

2.4.5 Conclusions 

The results of  the present study validate the use of  functional connectivity glyph visualization 

for manual cortical parcellation at the individual level. Although this approach does not replace 

the need for automated cortical parcellation techniques, it fills a much needed gap in the available 

tools for mapping cortical anatomy on the basis of  connectivity data. Future work will build on 

the present study by making use of  the manually labelled datasets for the development of  an 

automated cortical parcellation of  areas 45 and 44 based on morphological and connectivity 

information. Additionally, the individual-level parcellations provide an opportunity to categorize 

morphological variability in functionally defined regions between subjects, which was not 

addressed in the current study. The manual labels of  areas 44 and 45 from the current study have 

been made openly available  to facilitate further investigation, comparison with results from 3

other methods, and the more extensive development of  computationally driven parcellation 

techniques. 

 wwwuser.gwdg.de/~cbsarchi/archiv/public/hcp/3
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2.5 Supporting information 

2.5.1 Exclusion criteria 

The 101 subjects included in the current study were selected according to the following protocol. 

125 individuals were randomly selected from the HCP Q3 data release. Of  the 125 datasets, 9 

were subsequently excluded due to missing resting-state fMRI runs. The remaining datasets were 

then visually inspected and subjects with abnormally high or spatially variable average r-values 

were excluded (Figure S2.1). This resulted in 101 healthy individuals (59 females; 13 left-handed; 

mean age = 29;) being included in the current study. 

  

Figure S2.1: Top: Distribution of  correlation values in all subjects included (blue - Included) and excluded due to 
extremely variable (yellow - Excluded A) or high (red - Excluded B) values. Bottom: Average correlation values 
across the cortical surface of  one representative individual from each subject group. 
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2.5.2 Masking of  clustering results 

A temporo-parietal mask (Figure S2.2) was used to constrain the described clustering analyses. 

The ROI was manually drawn on a group-average surface representation and then used to 

constrain the connectivity maps of  the individual datasets prior to clustering. 

  

Figure S2.2: Temporo-parietal mask used to constrain clustering results. 

2.5.3 Comparison of  manual labeling to automatic clustering 

In addition to the automatic clustering results presented, several variations of  the standard K-

means and Hierarchical clustering algorithms were run in order to evaluate which version would 

produce results most similar to the manual labels. This included standard K-means, K-means++, 

which provides improved initial cluster center selection, and Hierarchical clustering with and 

without Ward’s criterion. Additionally, K-means++ and Hierarchical Ward clustering were run 

with and without application of  a temporo-parietal mask (constrained). 

As described, the clustering was run with K=2 on the individual-subject left-hemisphere 

correlation matrices using the NeuroImaging Analysis Kit (NIAK) for Matlab (Bellec et al. 

2012). For the constrained runs, each correlation matrix was constrained by a temporo-parietal 

mask covering the regions containing features that were used to distinguish the two areas during 

manual delineation prior to clustering. The degree of  spatial overlap between each of  the manual 
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labels and the clustering results was then calculated using the Dice coefficient and averaged 

across the two areas for each subject (Figure S2.3). 

  

Figure S2.3: Distribution of  Dice similarity between manual labels and K-means (mean = 0.967), K-means++ 
(mean = 0.969), K-means++ constrained (mean = 0.972), Hierarchical (mean = 0.955), Hierarchical Ward 
(mean = 0.953), and Hierarchical Ward constrained (mean = 0.960) clustering results. 
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Chapter 3 - Automated individual-level parcellation 

of  Broca’s region based on functional connectivity 

___________________________________________________________________________ 

Abstract 

Broca’s region can be subdivided into its constituent areas 44 and 45 based on established differences in 

connectivity to superior temporal and inferior parietal regions. The current study builds on our previous work 

manually parcellating Broca’s area on the individual-level by applying these anatomical criteria to functional 

connectivity data. Here we present an automated observer-independent and anatomy-informed parcellation pipeline 

with comparable precision to the manual labels at the individual-level. The method first extracts individualized 

connectivity templates of  areas 44 and 45 by assigning to each surface vertex within the ventrolateral frontal 

cortex the partial correlation value of  its functional connectivity to group-level templates of  areas 44 and 45, 

accounting for other template connectivity patterns. To account for cross-subject variability in connectivity, the 

partial correlation procedure is then repeated using individual-level network templates, including individual-level 

connectivity from areas 44 and 45. Each node is finally labeled as area 44, 45, or neither, using a winner-take-

all approach. The method also incorporates prior knowledge of  anatomical location by weighting the results using 

spatial probability maps. The resulting area labels show a high degree of  spatial overlap with the gold-standard 

manual labels, and group-average area maps are consistent with cytoarchitectonic probability maps of  areas 44 

and 45. To facilitate reproducibility and to demonstrate that the method can be applied to resting-state fMRI 

datasets with varying acquisition and preprocessing parameters, the labeling procedure is applied to two open-

source datasets from the Human Connectome Project and the Nathan Kline Institute Rockland Sample. While 

the current study focuses on Broca’s region, the method is adaptable to parcellate other cortical regions with distinct 

connectivity profiles. 
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3.1 Introduction 

Broca’s region is one of  the most widely studied brain areas because of  its historical significance 

and critical role in language processing (Sahin et al. 2009). Located on the inferior frontal gyrus 

in the language-dominant hemisphere, it can be subdivided into its constituent areas 44 and 45 

based on cytoarchitectonic boundaries that roughly correspond to the macroanatomical 

landmarks of  the pars opercularis and pars triangularis respectively (Amunts et al. 1999; Petrides 

and Pandya 2002). Based on this knowledge, it is common in neuropsychological research to 

make use of  morphologically defined ROIs as proxies for areas 44 and 45. However, there is a 

high degree of  inter-individual variability in cortical morphology in the ventrolateral frontal 

region (Tomaiuolo et al. 1999; Keller et al. 2007), making it difficult to distinguish accurately 

areas 44 and 45 based on macroanatomical features alone. In addition to anatomical variability, 

recent studies using resting-state fMRI have shown that higher-level cortical association areas, 

including Broca’s region, show particularly strong inter-individual variability in functional 

connectivity (Yeo and Krienen et al. 2011; Mueller et al. 2013; Wig et al. 2014a). For these 

reasons, tailoring cortical parcellation approaches to the individual brain (see for example Wang 

et al. 2015) is critical in order to capture the unique functional and morphological characteristics 

of  each subject with precision. Functional atlases based on individual-level parcellation provide a 

foundation for exploring the relationship between structural and functional boundaries in the 

brain and their correspondence across individuals. 

Existing automatic connectivity-based parcellation techniques aim to provide whole-brain 

functional atlases by parcellating the entire cerebral cortex using the same basic criteria, namely 

similarity or homogeneity of  connectivity patterns, and therefore do not take advantage of  the 

considerable amount of  prior knowledge that exists about the anatomy and unique connectivity 

patterns of  highly studied regions such as areas 44 and 45. Additionally, since no gold-standard 

connectivity-based cortical atlas currently exists, difficulty can arise when interpreting the 
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correspondence of  whole-brain parcellations to existing ontologies. For this reason, anatomical 

criteria are commonly used to define cortical regions in studies using functional data. The 

anatomy-informed manual labeling approach for areas 44 and 45 described in the previous 

chapter attempts to address this issue by incorporating prior knowledge of  the anatomical 

locations, distinct connectivity profiles, and variability of  the ROIs into each individual 

parcellation. It has previously been shown that areas 44 and 45 are clearly distinguishable by 

differences in connectivity to the inferior parietal and lateral temporal regions using resting-state 

functional connectivity (Kelly et al. 2010; Margulies and Petrides 2013). Based on these 

connectivity differences, Brodmann areas 44 and 45 were manually labeled in 101 individual 

datasets using functional connectivity glyphs (Boettger et al. 2014; Jakobsen et al. 2016). By 

simultaneously displaying the seed-based connectivity patterns of  multiple neighboring vertices 

of  the cortical surface reconstruction, this technique allows for meticulous manual segmentation 

based on differences in the connectivity patterns of  adjacent cortical regions. Resulting group-

level probability maps based on the individual manual parcellations of  areas 44 and 45 are 

consistent with cytoarchitectonic probability maps of  the same regions while still reflecting the 

high degree of  individual morphological variability, thereby validating the usefulness of  intrinsic 

functional connectivity as the basis for accurate in vivo cortical parcellation. The manually defined 

area labels therefore serve as gold-standard functional labels that can be used to validate the 

results of  an automated data-driven parcellation approach. 

The current study presents a new method for automated, observer-independent, and anatomy-

informed cortical parcellation based on functional connectivity. This method aims to simulate 

the manual parcellation procedure and takes advantage of  prior knowledge of  well-studied brain 

regions by basing parcellations on a combination of  area-specific functional connectivity features 

and meaningful anatomical criteria. Using the previously generated manual labels of  areas 44 and 

45 as gold-standard, the goal of  this approach is to generate observer-independent area labels 

with comparable precision to manual labeling at the individual-level. The approach consists of  
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three main steps: (1) defining a broad target ROI that includes nodes surrounding the areas of  

interest, (2) assessing the unique similarity of  each node’s connectivity to a set of  templates 

corresponding to the areas of  interest and other canonical networks, and (3) weighting the 

similarity values by spatial location and ensuring spatial continuity of  the final labels. In keeping 

with the manual parcellation procedure, the automated parcellation pipeline incorporates 

macroanatomical information through ROI definition and spatial weighting, but allows the 

resulting functional boundaries to deviate from anatomical constraints in order to better fit the 

individual anatomy and connectivity. 

The area 44 and 45 labels derived from the automated observer-independent parcellation 

method display a high degree of  overlap with the results of  the manual labeling procedure, 

validating the precision of  the method at the individual-level. Parcellation results are also 

presented for an independent resting-state fMRI dataset, demonstrating that the method is able 

to generalize to datasets with varying acquisition and preprocessing parameters. 

3.2 Materials and methods 

3.2.1 Data and preprocessing 

The data used in the development of  the parcellation pipeline were provided by the Human 

Connectome Project (HCP) and comprised 101 previously manually labeled  (based on 

connectivity and anatomical priors) resting-state fMRI datasets and corresponding T1-weighted 

structural data for each individual (mean age 29, 13 left-handed, 59 females). All data were 

preprocessed according to standard HCP preprocessing pipelines including ICA-based artefact 

removal (Salimi-Khorshidi et al. 2014) and registration to HCP 2mm standard surface space 

(fs_LR 32k node surfaces). Further details about the standard HCP data acquisition and 

preprocessing methods can be found in Smith et al. (2013). Since language processing is strongly 

left-lateralized (Rasmussen and Milner 1975), analyses included only the left cerebral hemisphere. 
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Several additional study-specific preprocessing steps were performed as follows: (1) The 

functional time-series data of  the left cerebral cortex was extracted for each of  four 15-minute 

rfMRI scans (TR = 0.7s) per subject, (2) surface-based smoothing with a 2mm FWHM kernel 

was applied, (3) a correlation matrix was computed and Fisher’s r-to-z transformed (Fisher 1915; 

1921), (4) the resulting 32k x 32k matrices were averaged across the four rfMRI runs for each 

participant, (5) the average matrices were z-to-r transformed. Note that these datasets are 

identical to those used in the previous chapter describing the manual labeling procedure. 

In order to show that the parcellation pipeline can be successfully applied to independent 

datasets, 100 additional resting-state and corresponding T1-weighted structural datasets from the 

Enhanced Nathan Kline Institute- Rockland Sample (NKI) (Nooner et al. 2012)  (mean age 43, 

10 left-handed, 65 females) were also used. These data comprised one 10-minute multiband 

rfMRI scan (TR = 645ms) per subject, for which the following preprocessing steps were 

performed: (1) removal of  the first 5 volumes, (2) head motion correction, (3) coregistration of  

functional data to anatomy, (4) denoising, and (5) band-pass filtering. The full preprocessing 

pipeline for this dataset can be found online . Several additional study-specific preprocessing 4

steps were then performed as follows: (6) The timeseries data of  the left cerebral cortex were 

extracted and projected to fsaverage5 (10k nodes per hemisphere) surface space, (7) surface-

based smoothing with a 6mm FWHM kernel was applied. The choice of  a more traditional 6mm 

smoothing kernel was due to the larger voxel size and shorter resting-state acquisition time of  

the NKI as compared to the HCP data. (8) Correlation matrices were then computed using 

Pearson’s correlation, and (9) the individual native FreeSurfer surfaces were downsampled to 

fsaverage5 template for visualization purposes. 

 github.com/NeuroanatomyAndConnectivity/nki_nilearn4
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3.2.2 Generation of  connectivity templates and ICA maps 

Prior to parcellation of  the individual datasets, group-level connectivity maps of  areas 44 and 45 

(Figure 3.1) were computed based on the 101 manually labeled HCP datasets. First, the average 

functional connectivity was averaged across all vertices included in each individual manual label, 

and the resulting connectivity vectors were then averaged across the 101 individuals. These 

connectivity maps were subsequently used as group-level seed-based functional connectivity 

templates for areas 44 and 45 in the individual-level parcellation pipeline. 

!  

Figure 3.1: Group-level connectivity maps of  areas 44 and 45 based on the average connectivity from 101 
manually labeled functional connectivity datasets. These maps were used as group-level seed-based connectivity 
templates in the automated parcellation pipeline. Note the connectivity differences in the anterior temporal and 
inferior parietal regions. 

In order to estimate the possible connectivity patterns of  vertices not belonging to areas 44 or 

45, group- and individual-level independent component analyses (ICA) were run on the 

timeseries of  the 101 HCP datasets, resulting in 20 group- and individual-level independent 

component maps (Figures 3.2 and 3.3 respectively). 

 49



Spatial correlations were then computed between each of  the group-level IC maps and the 

previously generated group-level connectivity templates of  areas 44 and 45 (Figure 3.1). The two 

IC maps with the highest spatial correlations (r>0.4) were then removed to ensure that only IC 

maps not representative of  areas 44 and 45 were included. The 18 remaining IC maps were 

subsequently used in the parcellation pipeline as group-level templates representing the 

connectivity patterns of  vertices located outside of  areas 44 and 45. A similar procedure applied 

to the individual-level IC maps is included in the parcellation pipeline, described below. 

 

Figure 3.2: Results from the 20-component group-level ICA of  the 101 HCP datasets. Component maps with 
the highest spatial correlation with the group-level seed-based connectivity templates of  areas 44 and 45 were 
removed (outlined in red), and the remaining component maps were used in the automated parcellation pipeline. 
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3.2.3 Parcellation pipeline 

The individual datasets were then processed using  an automated parcellation pipeline to produce 

binary labels of  areas 44 and 45 tailored to account for intersubject variability in functional 

connectivity patterns by first comparing the connectivity of  single vertices to group-level 

templates and then refining the results using individual-level connectivity patterns. The pipeline 

comprised 7 steps, as summarized in Figure 3.4: 

1. To reduce the size of  the input matrix and thereby increase the processing speed of  the 

parcellation pipeline, the whole-brain connectivity matrix of  each individual subject is 

masked along one dimension to an ROI covering the ventrolateral prefrontal cortex, 

resulting in an asymmetrical matrix representing the connectivity of  each vertex within 

the ROI to the whole cortical surface. As a result, only vertices within the ROI will be 

labeled. To allow for a higher degree of  morphological variability than would be 

provided by anatomical labels based on sulcal information alone, the ROI is created by 

combining the FreeSurfer labels corresponding to the pars opercularis and pars 

triangularis with binarized (probability>0) cross-subject probability maps of  areas 44 and 

45 based on the 101 manually labeled datasets. 

2. Vertex-wise partial correlations are then run for the two group-level seed-based 

connectivity templates for areas 44 and 45. In this step, the connectivity pattern of  each 

vertex is correlated with each of  the template connectivity maps, regressing out the 

effects of  the eighteen remaining group-level IC maps and the adjacent area 44 or 45. 

This results in two partial correlation maps representing the similarity of  the connectivity 

patterns of  each vertex within the ROI to the group-level seed-based connectivity 

templates for areas 44 and 45. 

3. The vertices with the maximum partial correlation to the group-level connectivity 

templates for areas 44 and 45 are then identified as the vertices with the connectivity 

patterns most representative of  areas 44 and 45. The seed-based connectivity vectors 

corresponding to these representative vertices are then extracted from the connectivity 
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matrix and subsequently used as individual-level seed-based connectivity templates for 

areas 44 and 45. 

4. Spatial correlations are then computed between each of  the individual-level IC maps and 

the individual-level seed-based connectivity templates for areas 44 and 45 generated in 

step 3. The IC maps with the highest spatial correlations (r>0.4) are then removed 

(Figure 3.3). To account for individual variability in connectivity patterns, vertex-wise 

partial correlations are then run for the two individual-level seed-based connectivity 

templates for areas 44 and 45 and all remaining individual-level IC component maps. 

This step results in a set of  partial correlation maps representing the similarity of  the 

connectivity patterns of  each vertex within the ROI to each of  the individual-level 

connectivity template maps (consisting of  areas 44 and 45, and approximately 18 IC 

maps for a typical subject). 

5. A spatial weighting is then applied in order to decrease the probability of  vertices falling 

outside a certain anatomical region being included in the final labels for areas 44 and 45. 

This step consists of  multiplying the new individual-level partial correlation maps for 

areas 44 and 45 by the common logarithm of  the cross-subject spatial probability maps 

of  areas 44 and 45 based on the 101 manually labeled datasets. The common logarithm is 

applied in order to decrease the slope of  the probability maps and thereby apply a less 

restrictive spatial constraint. 

6. A winner-take-all partition is then run across all partial correlation maps, resulting in each 

vertex within the ROI being assigned to one of  approximately 20 possible connectivity-

based classes. 

7. To ensure spatial continuity of  the final labels, the largest clusters assigned to the classes 

corresponding to areas 44 and 45 are then extracted, forming the final binary labels of  

areas 44 and 45. 
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Figure 3.3: Results from the 20-component individual-level ICA of  one HCP subject. Component maps with the 
highest spatial correlation with the individual-level seed-based connectivity templates of  areas 44 and 45 were 
removed (outlined in red), and the remaining component maps were used in subsequent steps of  the automated 
parcellation pipeline. 
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Figure 3.4: Pipeline for automated labeling of  areas 44 and 45 in an individual subject. The labeling procedure 
consists of  the following steps: (1) The whole-brain connectivity matrix of  each individual subject is masked to a 
predefined ROI covering the ventrolateral prefrontal cortex. The following steps are then conducted on the whole-
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brain connectivity map of  each vertex within the ROI. (2) Vertex-wise partial correlations are run for areas 44 
and 45 using group-level connectivity templates. (3) The vertices corresponding to the maximum partial correlation 
for areas 44 and 45 are identified, and used as seeds to extract individual-level connectivity templates. (4) Vertex-
wise partial correlations are run using the individual-level seed-based connectivity templates of  areas 44 and 45 
and individual-level IC components. (5) A spatial weighting is applied to the partial correlation results for areas 
44 and 45 using previously generated group-level spatial probability maps from manual labeling. (6) A winner-
take-all partition is run across all resulting partial correlation maps. (7) The largest clusters corresponding to 
areas 44 and 45 are extracted. 

3.2.4 Comparison of  manual and automated parcellation results 

To compare results from the manual and automated labeling procedures, the 101 previously 

manually labeled HCP datasets were run through the automated labeling pipeline. Spatial overlap 

of  the area 44 and 45 labels from the manual and automated parcellation procedures were then 

compared using the Dice coefficient (DC) (Figure 3.5). The Dice coefficient (Dice, 1945) ranges 

between 0 and 1 and is defined as: 

To evaluate the effect of  the spatial weighting applied in step 5 of  the parcellation pipeline 

(Figure 3.4), the entire pipeline was repeated skipping this step. 

3.2.5 Group-level comparisons 

Group-level probability maps of  areas 44 and 45 based on the results of  the manual and 

automated parcellation procedures were then computed (Figure 3.6). 

To obtain a label-specific measure of  sulcal morphometry, we used the FreeSurfer sulc measure. 

This measure represents the displacement of  a particular vertex on the cortical surface from a 

hypothetical surface in the midpoint between gyri and sulci, with a mean displacement of  zero. 

The mean sulc value across the individual area 44 and 45 labels produced by manual and 

automated labeling was computed, and their distributions across subjects were compared. 
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3.2.6 Testing on an independent dataset 

To confirm that the labeling pipeline can be applied to independent datasets with varying data 

acquisition and preprocessing parameters, the automated labeling procedure was applied to the 

100 NKI datasets. Prior to labeling, the group-level connectivity and probability maps of  areas 

44 and 45 created using the manually labeled HCP datasets were downsampled from fs_LR_32k 

to fsaverage5 surface space. 20-component group- and individual-level independent component 

analyses were then run on the time series of  the 100 NKI datasets. 

To account for the lower quality of  the NKI as compared to HCP data as well as the fact that 

the group-level connectivity templates of  areas 44 and 45 were not derived from the same 

dataset, the threshold for removal of  IC components was decreased to a correlation value of  

greater than 0.1. This resulted in more components being identified as related to BA 44 or 45 

prior to running the partial correlation steps and subsequently regressing out fewer components, 

allowing for a higher degree of  variability in the connectivity patterns within labels. All other 

aspects of  the parcellation pipeline remained the same as for the HCP data. Group-level 

probability maps were then computed across the 100 NKI datasets for comparison (Figure 3.8). 

Eight of  the 100 subjects were then manually labeled post hoc, blind to the results of  the 

automated labeling, and spatial overlap of  the automated and manual area 44 and 45 labels was 

compared using the Dice coefficient (Figure 3.9). 

3.3 Results 

3.3.1 Exclusion of  one subject from automated parcellation 

Of  the 101 manually labeled HCP datasets, one subject was excluded from automated 

parcellation due to missing files in more recent HCP data releases. Removal of  this subject has 

no effect on the results of  the remaining subjects. The results of  the automated parcellation are 

therefore presented for 100 of  the 101 HCP subjects. 

 56



3.3.2 Comparison of  manual and automated parcellation results 

The results from the automated parcellation pipeline displayed a high degree of  spatial overlap 

with the gold standard maps produced by manual labeling (Figure 3.5). The average Dice 

coefficient across the 100 subjects was 0.71 for area 45 and 0.63 for area 44. To demonstrate the 

improvement of  the parcellation results when anatomical information is incorporated via spatial 

weighting of  the partial correlation maps, results are additionally presented without the 

application of  spatial weighting. For these results, the average Dice coefficient across the 100 

subjects was 0.62 for area 45 and 0.39 for area 44 (note the markedly lower spatial overlap of  the 

area 44 labels without spatial weighting). 

!  

Figure 3.5: Spatial overlap of  the manual (black contours) and automated (red and green) labels of  areas 44 
(green) and 45 (red) for eight of  the 100 individual HCP subjects, with (left) and without (right) spatial 
weighting Dice coefficients have been averaged across areas 44 and 45 for each individual. 
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3.3.3 Group-level comparisons 

The group-level probability maps of  the labeled areas 44 and 45 demonstrate high consistency 

between the manual and automated labeling techniques. The region of  highest overlap between 

subjects for area 45 is on the posterior half  of  the pars triangularis, directly anterior to the 

anterior ascending ramus of  the lateral fissure. For area 44, the region of  highest overlap lies on 

the anterior bank and fundus of  the inferior precentral sulcus, adjacent to and including the pars 

opercularis. The functional connectivity-based group-level probability maps also show 

consistency with cytoarchitectonic probability maps derived from post-mortem histology 

(Amunts et al. 1999; Figure 3.6). 

!  

Figure 3.6: Group-average probability maps of  areas 44 and 45 on the HCP fs_LR 32k 440-subject average 
surface, using different parcellation methods. From left: Probability maps from the Juelich Brain Model, based on 
cytoarchitectonic parcellation of  10 postmortem brains; Group-average masks from the manual parcellation of  
100 functional connectivity datasets; Group-average masks from the automated parcellation of  the same 100 
functional connectivity datasets as used for manual parcellation. Abbreviations: aalf  anterior ascending ramus of  
the lateral fissure; cs, central sulcus; half, horizontal anterior ramus of  the lateral fissure; iprs, inferior precentral 
sulcus; Op, pars opercularis; Tr, pars triangularis. 
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Figure 3.7 shows the distribution of  mean sulc value across the individual area 44 and 45 labels 

produced by manual and automated labeling for the 100 subjects. In the HCP data, sulci are 

represented by negative sulc values, and gyri by positive sulc values (note that this deviates from 

standard FreeSurfer convention). For both the manual and automated labeling, the mean sulc 

value for area 45 is consistently positive, suggesting that the area 45 labels include mostly gyral 

vertices. The mean sulc value across individuals for area 44 shows a wider distribution centered 

around zero for both the manual and automated labeling. This result is consistent with a higher 

degree of  sulcal variability surrounding the pars opercularis as compared to the pars triangularis 

(Jakobsen et al. 2016), with the individual labels often extending into the inferior precentral 

sulcus. For both areas 44 and 45, the distributions of  mean sulc values are wider for labels 

resulting from manual as compared to automated labeling, suggesting that the spatial weighting 

applied in the automated labeling pipeline is slightly more restrictive than in the manual labeling. 

However, a paired sample t-test revealed that the mean sulc values from the manual and 

automated labels are not significantly different (p=0.78 for area 45 and p=0.38 for area 44). For 

both manual and automated labeling, the mean sulc values from areas 44 and 45 were significantly 

different  at p<0.001. 

 

Figure 3.7: Distribution of  mean FreeSurfer ‘sulc’ value across the individual area 44 and 45 labels produced by 
manual (left) and automated (right) labeling for the 100 original subjects. Sulci are represented by negative ‘sulc’ 
values, and gyri by positive ‘sulc’ values. Mean ‘sulc’ values from manual and automated labeling are not 
significantly different for area 45 (p=0.78) or area 44 (p=0.38). 
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3.3.4 Testing on an independent dataset 

Figure 3.8 shows the group-level probability maps from automated labeling of  the 100 NKI 

datasets. These maps are consistent with those from the HCP data as well as cytoarchitectonic 

probability maps derived from post-mortem histology (Figure 3.6). 

!  

Figure 3.8: Group-average probability maps of  areas 44 and 45 from automated labeling of  the 100 NKI 
datasets, shown on the fsaverage5 surface. 

The results of  post hoc manual labeling on eight NKI datasets showed a high degree of  spatial 

overlap with the area 44 and 45 labels produced by the automated labeling pipeline (Figure 3.9). 

The average Dice coefficient across the eight subjects was 0.71 for area 44 and 0.69 for area 45. 

These results demonstrate the ability of  the automated labeling pipeline to generalize to datasets 

with varying resolution and acquisition parameters. 
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!  

Figure 3.9: Spatial overlap of  the manual (black contours) and automated (red and green) parcellation techniques 
for the eight NKI datasets for which post hoc manual labeling was performed, shown on the individual surfaces in 
fsaverage5 space. Dice coefficients have been averaged across areas 44 and 45 for each individual. 

All results including individual subject labels and group-level probability maps are available for 

download online , as well as the automated labeling pipeline script . 5 6

3.4 Discussion 

The results of  the current study suggest that the automated parcellation pipeline is able to 

produce functional connectivity-based labels of  areas 44 and 45 with comparable precision to 

the manual labeling procedure described in the previous chapter. The accuracy of  parcellating 

and assigning labels in new datasets suggests that the method is not dependent on the specific 

cohort used to create the group-level connectivity templates and can be applied to independent 

functional connectivity datasets with varying scanning parameters. 

Due to the high dimensionality and inherent complexity of  functional connectivity data derived 

from resting-state fMRI, the development of  data-driven parcellation techniques for 

dimensionality reduction has become a priority in the field (Thirion et al. 2014). Such approaches 

 wwwuser.gwdg.de/~cbsarchi/archiv/public/hcp/5

 github.com/NeuroanatomyAndConnectivity/broca/tree/master/PartialCorrelation6
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often make use of  clustering algorithms, such as k-means, hierarchical, or spectral clustering, to 

group voxels or vertices into networks based on the similarity of  their connectivity patterns (Yeo  

and Krienen et al. 2011; Kahnt et al. 2012; Craddock et al. 2012; Blumensath et al. 2013). Other 

methods make use of  boundary detection techniques to map the transitions in connectivity 

patterns between cortical regions (Cohen et al., 2008; Hirose et al., 2012; Wig et al. 2014a). More 

recently, a method by Wang and colleagues (2015) made use of  an iterative approach to fit a 

population-based functional atlas to individual brains, which critically and effectively captures 

cross-subject variability. These approaches for cortical parcellation are powerful tools for 

dimensionality reduction of  complex functional connectivity data and can provide whole-brain 

functional atlases that are instrumental within particular research contexts. 

The parcellation approach presented here differs from existing data-driven parcellation 

techniques by aiming to simulate the process of  individual-level manual labeling driven by prior 

knowledge of  the anatomy and connectivity of  specific cortical areas. By targeting specific 

known differences in connectivity patterns and incorporating anatomical information via spatial 

weighting, the resulting area labels represent the best fit to the individual anatomy and 

connectivity. The two-step partial correlation approach using both group-level and individual 

template connectivity maps also ensures that cross-subject variance in connectivity patterns is 

accounted for. The availability of  the manually labeled dataset is uniquely valuable for validation 

of  the area labels derived from the automated parcellation pipeline, the accuracy of  which would 

otherwise be difficult to quantify due to the lack of  gold standard functional atlases. 

The current study applied the automated parcellation pipeline to Broca’s region where (i) the two 

cytoarchitectonic areas that comprise it are known to have distinct functional connectivity and 

(ii) the availability of  the manually labeled datasets could provide a basis for comparison. 

However, the described parcellation pipeline could be modified to delineate any cortical regions 

for which known differences in functional connectivity exist and group-level connectivity 
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templates are available. In this case, the spatial probability maps based on the manually labeled 

datasets used for spatial weighting could be replaced with a different form of  spatial information 

such as cytoarchitectonic probability maps or geodesic distance from an anatomically-defined 

ROI. 

Like most cortical parcellation techniques, the current method provides deterministic binary 

labels of  areas 44 and 45. However, it has recently been demonstrated that different cortical 

areas display varying degrees of  sharpness in their boundaries (Wig et al. 2014a). For certain 

research applications it may therefore be advantageous to output probabilistic area labels at the 

individual level, and the parcellation criteria upon which the current method is based could just 

as well be used for this purpose. More specifically, the parcellation pipeline is very easily 

modified to output the partial correlation maps themselves, which, with the application of  spatial 

weighting based on anatomical criteria, could serve as individual-level probabilistic area labels to 

be used for the investigation of  transition gradients and quantification of  the sharpness of  

boundaries across individuals. 

Until recently, non-invasive in vivo definition of  areas 44 and 45 has been a significant challenge 

and many functional neuroimaging studies have relied on anatomical definitions of  the regions 

based on data derived from cytoarchitectonic studies. To our knowledge, no behavioral task 

exists that is able to reliably distinguish areas 44 and 45 from each other, and resting-state 

functional connectivity-based parcellation provides a solution to this problem. Our observer-

independent parcellation method is able to produce probability maps based on both functional 

connectivity and anatomical location, which represent variability across a much larger number of  

individual brains than what is viable using invasive techniques. Additionally, we believe that the 

individual labels will prove useful for a variety of  applications ranging from serving as 

functionally defined ROIs for fMRI studies to clinical applications such as presurgical planning. 
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This method fills a gap in the tools currently available for mapping the functional boundaries of  

specific cortical areas on an individual-level. 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Chapter 4 - General discussion and outlook 

___________________________________________________________________________ 

4.1 Advantages and key contributions 

The work presented in the current thesis aimed to make use of  prior knowledge of  the 

anatomical locations and connectivity differences within Broca’s region to delineate the extent 

and boundaries of  areas 44 and 45 in individual brains. The main advantages to this approach to 

cortical parcellation are: 

1. It is non-invasive 

2. It produces reliable functional labels at the individual level 

3. It is multimodal, combining knowledge of  both anatomy and connectivity 

4. It can be applied to datasets with varying scanning and preprocessing parameters 

The key contributions of  this work are: 

1. Proof-of-concept for the use of  a novel functional connectivity visualization technique 

for individual-level manual delineation of  cortical regions based on functional 

connectivity and morphological information. 

2. Providing anatomy-informed group-level functional atlases as well as individual-level 

gold standard manual labels of  areas 44 and 45 for a large number of  individuals. 

3. A novel tool for automated and observer-independent individual-level cortical 

parcellation of  areas 44 and 45 informed by both functional connectivity and anatomy, 

and accounting for cross-subject variability. 
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4.2 Applications 

All results and methods used in the present thesis have been made openly available in order to 

facilitate reproducibility and encourage further investigation. The parcellation techniques 

presented as well as the resulting area labels themselves have a variety of  potential applications 

within both research and clinical contexts, which will be described briefly in the following 

sections. 

4.2.1  Research applications 

The individual-level labels as well as the group-level probability maps of  areas 44 and 45 may 

prove useful for a variety of  research applications. For example, the labels could be used as 

initialization for seed-based connectivity studies aiming to investigate sub-divisions of  broader 

language networks, or as regions-of-interest for task-based fMRI studies in which accurate 

functional localization of  areas 44 and 45 is essential to obtain reliable results due to their known 

functional specializations within language processing. 

In more general terms, prior-informed functional atlases such as those presented here for areas 

44 and 45 have a number of  important research applications. One such application is to provide 

a framework for validating the results of  other data-driven parcellation methods in the context 

of  existing ontologies of  brain function, which is an ongoing challenge in the field of  brain 

parcellation. The current thesis demonstrated an example of  such an application by making use 

of  the manual labels to validate the results of  the observer-independent automated parcellation 

technique by evaluating their spatial overlap in the same subjects. Without the availability of  the 

manual labels, it would be difficult to determine whether or not the results of  the automated 

labeling produced meaningful results. Similarly, the individual area labels or group-level atlases 

could be used to assign functional meaning to individual clusters identified using whole-brain 

 66



parcellation methods. This could subsequently aid in determining the appropriate number of  

clusters to assign, by choosing the results that best fit with existing functional atlases. 

Functional atlases are also likely to prove useful in the development of  new and improved 

strategies for the alignment of  brain images. fMRI preprocessing commonly involves the 

registration of  individual subjects’ brains to a common template based on anatomical landmarks 

or features identified by structural MRI images (Fischl et al. 1999). Attempts have been made to 

improve this process by incorporating functional characteristics into the registration algorithms, 

for example by aligning regions based on functional similarity or connectivity (e.g. Sabuncu et al. 

2010; Robinson et al. 2014). With this in mind, studies focused on investigating specific 

functions, such as language processing, may well benefit from registration algorithms tailored to 

align individual brains according to specific functional networks, such as those associated with 

Broca’s region. 

4.2.2 Clinical applications 

Besides the many research applications outlined in the previous section, the ability to produce 

individual-level functional labels of  areas involved in language processing has strong implications 

for clinical practice, especially in regards to presurgical planning. Neurosurgical procedures, such 

as operations to remove brain tumors, require accurate preoperative mapping in order to spare 

undamaged brain regions and thereby preserve cognitive function. Currently, non-invasive 

methods for presurgical mapping rely on task-based fMRI acquired under clinical conditions. 

Such data often suffers from poor signal-to-noise ratio (Parrish et al. 2000), and has been shown 

to have only limited correspondence with maps acquired through invasive techniques like direct 

cortical stimulation (Giussani et al. 2010). In contrast to task-based fMRI, resting-state fMRI 

acquisition is undemanding and therefore suitable for use with patients of  all kinds. Additionally, 

while activations in parts of  Broca’s region are known to occur in numerous different behavioral 

tasks, no specific task paradigm has been identified that is able to reliably distinguish areas 44 
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and 45 from each other. Accurate and non-invasive functional mapping of  areas 44 and 45 in 

individual patients based on resting-state data would therefore be particularly advantageous for 

patients requiring surgery within or near the ventrolateral frontal cortex.  

As an alternative to additionally acquiring resting-state data from patients, which is not part of  

standard clinical protocol, the manual and automated parcellation methods could potentially be 

applied to bandpass-filtered task-fMRI data such as that acquired by default in a clinical context. 

Although this has not been tested for the methods presented in the current thesis, other similar 

cortical parcellation techniques based on functional connectivity have shown consistency in their 

results using resting-state versus band-pass filtered task-based fMRI (e.g. Wang et al. 2015). 

Although validation would of  course be necessary, it is likely that the same would hold true for 

the parcellation methods presented here since the underlying data is essentially the same. 

While the methods presented in the current thesis are certainly of  interest within a clinical 

context, it remains to be determined whether they would perform reliably in clinical populations 

that may have undergone functional and structural reorganization due to brain injury or disease. 

For example, patients with localized lesions or tumors may present with distorted cortical 

anatomy and/or notable differences in functional connectivity patterns. This would present a 

challenge for the current implementation of  the automated parcellation pipeline, which relies on 

some degree of  cross-subject similarity as a starting point for individualized parcellations. 

Manual parcellation may therefore be more appropriate for clinical use since it is driven by the 

expertise of  the user and can therefore more easily account for specific differences in individual 

patients. Regardless, validation and adaptation of  the current version of  either the manual or 

automated parcellation methods would be necessary to realize any potential clinical applications. 
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4.3 Outlook and future directions 

4.3.1 Individual differences in cortical morphology 

Studies on cortical morphology have shown that the ventrolateral frontal cortex exhibits 

particularly high interindividual variability (Keller et al., 2007), the most extreme cases of  which 

result in some individual lacking certain sulci within this region entirely (Ono et al., 1990; 

Tomaiuolo et al., 1999). With this in mind, one intuitive application of  the provided area labels is 

to further study the relationship between the extent and location of  the individual functional 

labels to morphological features. Also relevant to this topic is the question of  how these 

individual differences in both the morphology of  these regions relate to behavioral traits and 

measures of  language function. With the availability of  a large amount of  behavioral data from  

the same subjects as used in the present thesis via the Human Connectome Project, pursuing this 

future research direction is entirely feasible. 

4.3.2 Lateralization of  language function 

The analyses presented in the current thesis only included the left cerebral hemisphere due to the 

strong left-lateralization of  language function in approximately 96–98% of  individuals 

(Rasmussen & Milner, 1975). However, most of  what is known about the lateralization of  

language function is derived from invasive cortical stimulation procedures, which can only be 

performed on patients undergoing surgery due to brain lesions. Such patients may have 

experienced some degree of  functional reorganization, which may in turn lead to a bias in the 

results towards a pathological state. A recent study using a non-invasive imaging technique 

measuring cerebral blood flow in healthy individuals found that 7.5% of  right-handed 

participants presented with right-hemisphere dominance of  language function, which is 

considerably higher than previously expected (Knecht et al. 2000). Additionally, the feasibility of  

using fluctuations in intrinsic brain activity to study lateralization of  functional networks has 

been demonstrated in a study that used resting-state fMRI to map the most strongly lateralized 
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brain regions associated with various functional domains, including language (Liu et al. 2009). 

Based on these findings, it would be interesting to investigate in detail to what degree this strong 

left-lateralization of  language networks is reflected in the functional connectivity associated with 

Broca’s region and its right-hemisphere homologue. Both the manual and automated 

connectivity-based parcellation procedures presented here are just as easily applicable to the left 

and right hemispheres. Producing labels of  areas 44 and 45 in both hemispheres in individual 

subjects would allow for the quantification of  cross-hemispheric symmetry in the the extent and 

locations of  these areas and thereby provide an alternative non-invasive measure of  

lateralization. 

4.3.3 Transitions in connectivity and sharpness of  boundaries 

It has been shown that different cortical regions vary in the sharpness of  their boundaries, with 

some areas displaying abrupt changes in connectivity and others transitioning gradually over a 

wider distance (Wig et al., 2014b). Additionally, there may be individual variability in the 

sharpness of  specific area boundaries, as can be observed in the boundary between areas 44 and 

45 using the manual labeling method. In order to study this variability, many new methods for 

detecting gradients or transitions in connectivity have recently been developed (Cohen et al., 

2008; Hirose et al., 2009, 2012). Since gradient maps themselves do not contain information 

about the nature or location of  the changes underlying the detected boundaries, combining these 

boundary detection approaches with parcellation methods informed by specific anatomical and 

connectivity features would provide a basis for characterizing the nature of  specific boundaries 

between cortical areas. 

4.3.4 Extension to other cortical regions 

The current thesis presents methods for manual and automated cortical parcellation and applies 

them to the subdivision of  Broca’s region into its constituent areas 44 and 45. Broca’s region is a 

natural candidate for prior-informed cortical parcellation due to its historical significance and the 
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large amount of  knowledge that exists about its anatomy and connectivity. Additionally, the well-

established role of  Broca’s region in language processing makes it and its subregions of  

particularly high relevance and interest to the fields of  neuropsychology and cognitive 

neuroscience.  That being said, the parcellation methods presented in the current thesis can be 

adapted to segment other cortical regions with the only criteria for successful application being 

the presence of  distinct connectivity profiles and approximate anatomical landmarks associated 

with the areas. Although the automated parcellation pipeline requires the unique connectivity 

profiles of  the areas to be known and used as templates for comparing the patterns of  individual 

vertices, the manual parcellation technique could be used as a tool for interactive exploratory 

analysis of  the connectivity patterns of  less well-studied cortical regions. Manual parcellation 

could then be performed based on the user’s observations of  homogeneity within and 

differences between the connectivity patterns of  anatomically-defined regions, and group-level 

connectivity templates could subsequently be created from the resulting manual labels and used 

as the basis for automated parcellation. Such work could help pave the way for the development 

of  a whole-brain anatomy-informed functional parcellation technique. 
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Summary 

________________________________________________________________________ 

Introduction 

The notion that the cerebral cortex can be subdivided into distinct subregions with specific 

structural and functional features is one of  the fundamental guiding principles of  human 

cognitive neuroscience. This idea can be partly attributed to the historically significant discovery 

of  Broca’s region, a part of  the inferior frontal cortex known to play a significant role in speech 

production and language processing. Broca’s region is comprised of  two adjacent 

cytoarchitectonic areas, 44 and 45, which are commonly defined based on specific 

macroanatomical landmarks of  the inferior frontal gyrus. 

Early invasive cortical stimulation studies in humans provided the first evidence of  functional 

differentiation between areas 44 and 45. While modern functional magnetic resonance imaging 

(fMRI) studies have also suggested a functional specialization of  areas 44 and 45, there is some 

discrepancy regarding the precise range of  functions that can be attributed to these two areas 

since no behavioral task exists that is able to reliably distinguish them. It is generally agreed that 

area 44 is mainly involved in speech production while area 45 is more involved in higher-level 

semantic aspects of  language processing such as verbal fluency. Nevertheless, the inherent 

difficulty in accurately defining even the most well-studied brain regions such as areas 44 and 45 

using task-based fMRI represents a clear need for the development of  new methods for in vivo 

cortical parcellation. 

Based on both invasive tract-tracing and non-invasive diffusion imaging tractography studies, it 

has been established that areas 44 and 45 and their homologues have distinct structural 

connectivity to superior temporal and inferior parietal regions in both macaque monkeys and 

 79



humans. Recent studies have shown that these structural connectivity differences are mirrored in 

functional connectivity estimated by resting-state fMRI, which measures intrinsic fluctuations in 

brain activity in the absence of  stimuli. In the context of  these findings, resting-state functional 

connectivity combined with knowledge of  the approximate anatomical locations of  areas 44 and 

45 provides a solid basis from which to develop prior-informed methods for reliable parcellation 

of  these two areas in individual brains in vivo. 

The work described in the the present thesis is comprised of  two main projects, the overarching 

goal of  which is to make use of  prior knowledge of  the anatomical locations and functional 

connectivity differences within Broca’s region to delineate the extent and boundaries of  areas 44 

and 45 in individual brains. The first project describes a novel technique for the manual 

parcellation of  the two areas based on differences in functional connectivity and anatomical 

priors. The second project builds on the results of  the first project by using the manual labels in 

the development an automated and observer-independent methods for cortical parcellation that 

aims to mimic and have comparable precision to the manual parcellation approach at the 

individual level. 

Project 1 

Project 1 presents the first application of  a novel functional connectivity visualization technique 

for the manual parcellation of  cortical areas in individual brains. This technique makes use of  

prior knowledge of  functional connectivity in conjunction with morphological information to 

manually delineate the extent and boundaries of  cortical areas in individual brains. Results are 

presented from the application of  the technique to the subdivision of  Broca’s region into its 

constituent areas 44 and 45 in a large number of  individual brains.   

For this project, 101 resting-state functional magnetic resonance imaging datasets from the 

Human Connectome Project were used. Left-hemisphere surface-based correlation matrices 
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were computed and visualized in an in-house software package called brainGL, developed 

especially for this purpose. By observation of  differences in the connectivity patterns of  

neighbouring points on the cortical surface, areas 44 and 45 were manually parcellated in 

individual brains, and then compared at the group-level. Additionally, the manual labelling 

approach was compared with parcellation results based on several pre-existing data-driven 

parcellation algorithms such as k-means and hierarchical clustering. Areas 44 and 45 could be 

clearly distinguished from each other in all individuals, and the manual segmentation method 

showed high test-retest reliability. Group-level probability maps of  areas 44 and 45 showed 

spatial consistency across individuals, and corresponded well to cytoarchitectonic probability 

maps based on post mortem data. Group-level connectivity maps were also consistent with 

previous studies showing distinct connectivity patterns of  areas 44 and 45. 

The key contributions of  Project 1 are: (1) providing a reliable method for individual-level 

cortical parcellation that could be applied to regions distinguishable by even the most subtle 

differences in patterns of  functional connectivity, and (2) providing anatomy-informed group-

level functional atlases as well as individual-level gold standard manual labels of  areas 44 and 45 

for a large number of  individuals. 

Project 2 

Project 2 builds on the results of  Project 1 by developing an automated and data-driven cortical 

parcellation technique that mimics the manual labeling approach to produce area labels with 

comparable precision at the individual level. While the manual parcellation method provides a 

reliable way to define cortical regions, it is also highly labor- and time-intensive and relies heavily 

on the expertise of  the user. For this reason, the development of  an observer-independent 

alternative technique is an important step in the overall research agenda. The automated 

parcellation technique is again applied to the sub-parcellation of  Broca’s region into its 
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constituent areas 44 and 45 in a large number of  individual brains, and the results of  the manual 

and automated labeling approaches are compared at the individual level. 

The method first extracts individualized connectivity templates of  areas 44 and 45 by assigning 

to each surface vertex within the ventrolateral frontal cortex the partial correlation value of  its 

functional connectivity to group-level templates of  areas 44 and 45, accounting for other 

template connectivity patterns. To account for cross-subject variability in connectivity, the partial 

correlation procedure is then repeated using individual-level network templates, including 

individual-level connectivity from areas 44 and 45. Each node is finally labeled as area 44, 45, or 

neither, using a winner-take-all approach. The method also incorporates prior knowledge of  

anatomical location by weighting the results using spatial probability maps obtained from manual 

labeling. The resulting area labels show a high degree of  spatial overlap with the gold-standard 

manual labels, and group-average area maps are consistent with cytoarchitectonic probability 

maps of  areas 44 and 45. To facilitate reproducibility and to demonstrate that the method can be 

applied to resting-state fMRI datasets with varying acquisition and preprocessing parameters, the 

labeling procedure is applied to two independent open-source datasets from the Human 

Connectome Project and the Nathan Kline Institute Rockland Sample. While this project focuses 

on sub-dividing Broca’s region, the method is adaptable to parcellate other cortical regions with 

distinct connectivity profiles. 

The key contribution of  project 2 is the presentation of  a novel tool for automated and 

observer-independent individual-level cortical parcellation of  areas 44 and 45 informed by both 

functional connectivity and anatomy, and accounting for cross-subject variability. 

Conclusions 

To date, cytoarchitectonic probability maps derived from invasive post mortem studies have been 

considered the gold standard for defining cortical areas. The methods presented in the current 
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thesis provide a non-invasive alternative method for parcellating cortical areas in vivo at both the 

individual and group levels. This approach differs from existing methods for parcellating cortical 

areas based on functional connectivity in that it integrates prior knowledge of  specific cortical 

regions by basing parcellations on a combination of  area-specific anatomical and connectivity 

features. The parcellation techniques presented as well as the resulting area labels themselves 

have a variety of  potential applications within both research and clinical contexts, which are 

discussed in detail in Chapter 4. Besides the current application to sub-dividing Broca’s region, 

the methods could be adapted to any regions of  the brain with distinct connectivity profiles, 

representing a valuable contribution to the current methods available for in vivo cortical 

parcellation. 
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Zusammenfassung 

________________________________________________________________________ 

Einleitung 

Es gehört zu den grundlegenden Prinzipien der kognitiven Neurowissenschaften, dass die 

menschliche Großhirnrinde (Kortex) in unterschiedliche Subregionen mit jeweils spezifischen 

strukturellen und funktionellen Eigenschaften unterteilt werden kann. Diese Erkenntnis kann 

zum Teil auf  die historisch bedeutsame Entdeckung des Broca-Areals zurückgeführt werden, das 

als Teil des inferioren frontalen Kortex wichtig für die Sprachproduktion und -verarbeitung ist.  

Das Broca-Areal besteht aus zwei benachbarten, zytoarchitektonischen Feldern, 44 und 45, die 

gemeinhin durch spezifische makroanatomische Landmarken des inferioren frontalen Gyrus 

lokalisiert werden.  

Frühe, invasive Stimulationstudien am Menschen erbrachten erste Belege für eine funktionelle 

Differenzierung der Felder 44 and 45.  Auch aktuelle funktionelle Magnetresonanztomografie 

(fMRT) Studien legen eine funktionelle Spezialisierung von Feld 44 und 45 nah. Dennoch is 

weiterhin unklar welche genauen Funktionen den jeweiligen Feldern zugeordnet werden können, 

da bisher keine Verhaltensaufgabe existiert, die zuverlässig zwischen den Feldern unterscheidet. 

Grundsätzlich besteht Einigkeit darüber, dass Feld 44 hauptsächlich in Sprachproduktion, Feld 

45 hingegen eher in übergeordnete, semantische Aspekten der Sprachverarbeitung, z.B. 

Sprachfluss, involviert ist. Nichtsdestotrotz weist die grundsätzliche Schwierigkeit sogar einige 

der meistuntersuchtesten Gehirnregionen wie Feld 44 and 45 mittels verhaltensbasiertem fMRT 

exakt zu definieren, auf  eine eindeutige Notwendigkeit zur Entwicklung neuer Methoden der 

kortikalen Parzellierung in vivo hin.  
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Mithilfe invasiver Traktographie und nicht-invasiver Diffusionstrakographie konnte gezeigt 

werden, dass die Felder 44 und 45 unterschiedliche strukurelle Konnektivität zu superior 

temporalen and inferior parietalen Regionen aufweisen, sowohl in Menschen also auch in 

homologen Regionen in Makaken. Neuere Studien haben darüber hinaus gezeigt, dass sich diese 

Unterschiede in der strukturellen Konnektivität auch in der funktionellen Konnektivität 

widerspiegeln. Funktionelle Konnektivität wird hierbei durch Kohärenz intrinsischer 

Fluktuationen der Gehirnaktivität in Abwesenheit äußerer Reize in fMRT-

Ruhezustandsmessungen gemessen. In Anbetracht dieser Befunde stellen fMRT-

Ruhezustandsmessungen in Kombination mit dem bisherigen Wissen über die ungefähre 

anatomische Lage der Felder 44 und 45 eine solide Basis dar, von der aus a priori informierte 

Methoden zur reliablen in vivo Parzellierung der beiden Felder entwickelt werden können.   

Die in der vorliegenden Arbeit beschriebene Studie besteht aus zwei Hauptprojekten, deren 

übergeordnetes Ziel die exakte Beschreibung der Ausmaße und Grenzen der Felder 44 und 45 in 

individuellen Gehirnen ist. Vorkenntnissen über die anatomische Lage sowie Unterschiede in der 

funktionellen Konnektivität innerhalb des Broca-Areals bilden hierfür die Grundlage. Das erste 

Projekt beschreibt eine neuartige Technik zur manuellen Parzellierung der beiden Felder, die auf  

funktionellen Konnektivitätsunterschieden und anatomischen Vorkenntnissen beruht. Das 

zweite Projekt baut auf  den Resultaten des ersten Projekts auf. Hier wird die manuelle 

Parzellierung genutzt um eine automatisierte und beobachterunabhängige Methode zur 

kortikalen Parzellierung zu entwickeln, die im Ergebnis und in der Präzision mit dem manuellen 

Ansatz vergleichbar ist.  

Projekt 1        

Projekt 1 beinhaltet die erste Anwendung einer neuen Visualisierungstechnik funktioneller 

Konnektivität zur manuellen Parzellierung kortikaler Regionen in individuellen Gehirnen. Die 

Technik nutzt Vorwissen über funktionelle Konnektivtät in Kombination mit morphologischer 
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Information, um das Ausmaß und die Grenzen kortikaler Regionen in individuellen Gehirnen 

manuell zu ermessen. Diese Technik wurde zur Einteilung des Broca Areals in die Felder 44 und 

45 in einer grossen Anzahl individueller Gehirne angewendet. 

Für dieses Projekt wurden 101 Ruhezustands-fMRT-Datensätze des Human Connectome 

Projects verwendet. Korrelationsmatrizen für die Oberflächen der linken Hirnhälften wurden 

errechnet und mit einer eigens hierfür entwickelten Software, brainGL, visualisiert. Die Felder 44 

und 45 wurden manuell aufgrund der Unterschiede in Konnektivitätsmustern benachbarter 

kortikaler Oberflächenpunkte auf  individueller Ebene parzelliert und dann auf  der 

Gruppenebene verglichen. Zudem wurden die Ergebnisse dieser manuellen Methode mit 

Parzellierungsresultaten verschiedener existierender datenbasierter Parzellationsalgorithmen wie 

“k-means” und “hierarchical clustering” verglichen. Die Felder 44 und 45 konnten in allen 

Indiv iduen deut l i ch vone inander untersch ieden werden und d ie manue l le 

Segmentierungsmethode zeigte die höchste test-retest Reliabilität. Gruppenbasierte 

Wahrscheinlichkeitskarten der Felder 44 und 45 wiesen gute interindividuelle räumliche 

Konsistenz  auf  und stimmten mit zytoarchitektonischen Warscheinlichkeitskarten von post 

mortem Daten überein. Gruppenbasierte Konnektivitätskarten waren ebenfalls konsistent mit 

vorherigen Studien, in denen verschiedene Konnektivitätsmuster für die Felder 44 und 45 gezeigt 

wurden. 

Die Hauptbeiträge des ersten Projekts sind: (1) eine zuverlässige Methode zur kortikalen 

Parzellierung auf  individueller Ebene, anwendbar auf  Regionen, die sich durch selbst kleinste 

Unterschiede in funktionellen Konnektivitätsmustern voneinander unterschieden lassen, und (2) 

ein gruppenbasierter, anatomisch informierter, funktioneller Atlas der Felder 44 und 45, sowie 

nach manuellem Goldstandard gekennzeichete Felder 44 und 45 auf  individueller Ebene in einer 

großen Anzahl von Individuen. 
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Projekt 2 

Projekt 2 basiert auf  den Ergebnissen von Projekt 1: Es wurde eine automatisierte und 

datengeleitete kortikale Parzellierungstechnik entwickelt, die den manuellen Ansatz der 

Kennzeichnung imitiert und eine vergleichbare Präzision auf  individueller Ebene erreicht. Die 

manuelle Parzellierung stellt eine zuverlässige Methode dar um kortikale Regionen zu definieren, 

die jedoch sehr zeit- und arbeitsintensiv ist und zudem stark von der Expertise des Anwenders 

abhängt. Aus diesem Grund ist die Entwicklung einer beobachterunabhängigen Methode eine 

wichtiger Schritt in der Forschungsagenda. Die automatisierte Parzellierungstechnik wurde 

erneut in einer großen Anzahl individueller Gehirne angewendet um das Broca-Areal in die 

Felder 44 und 45 zu unterteilen. Die Ergebnisse der manuellen und automatischen 

Markierungsansätze werden auf  individueller Ebene verglichen. 

Die vorgestellte Methode extrahiert in einem ersten Schritt individualisierte 

Konnektivitätsmuster für de Felder 44 und 45. Dafür wird jedem Oberflächenpunkt des 

ventrolateralen frontalen Kortex der partielle Korrelationswert seiner funktionellen Konnektivtät 

mit den Gruppenmustern der Felder 44 und 45 zugewiesen, wobei für andere 

Konnektivitätsmuster kontrolliert wird. Einem “winner-take-all” Ansatz folgend wird schließlich 

jeder Punkt dem Feld 44, 45, oder keinem der beiden zugeordnet. Diese Methode berücksichtigt 

ebenfalls anatomisches Vorwissen, indem sie die räumlichen Wahrscheinlichkeitskarten des 

manuellen Markierungsprozesses in die Gewichtung der Ergebinsse einbezieht. Die erlangten 

Feldmarkierungen zeigen ein hohes Mass an räumlicher Kohärenz mit dem Goldstandard der 

manuellen Markierung. Zudem stimmen die Gruppendurchschnittswerte der Regionenkarten mit 

den zytoarchitektonischen Wahrscheinlichkeitkarten der Felder 44 und 45 überein. Um die 

Reproduzierbarkeit zu vereinfachen und um zu zeigen, dass unsere Methode auf  Ruhezustands-

fMRT-Datensätze mit unterschiedlichen Erherbungs- und Vorverarbeitungsparametern 

angwendet werden kann, wird das Markierungsverfahren auf  zwei unabhängige, öffentlich 
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verfügbare Datensätze angewendet, die aus dem Human Connectome Project beziehungsweise 

dem Nathan Kline Institute Rockland Sample stammen. Der Fokus liegt auf  der Parzellierung 

des Broca-Areals, die Methode ist jedoch ebenfalls für die Parzellierungen anderer kortikaler 

Regionen mit charakteristischen Konnektivitätsprofilen anwendbar. 

Der Hauptbeitrag des zweiten Projekts ist die Einführung einer neuen Methode zur 

automatisierten und beobachterunabhängigen Parzellierung der Felder 44 und 45 auf  

individueller Ebene. Die Methode nutzt Vorwissen über die funktionelle Konnektivität und 

anatomische Lage und trägt der interindividuellen Variabilität Rechnung. 

Schlussfolgerungen 

Derzeit werden zytoarchitektonische Wahrscheinlichkeitskarten aus invasiven post mortem 

Studien als Goldstandard für die Definition kortikaler Areale betrachtet. Die in dieser Arbeit 

präsentierten Methoden stellen eine nicht-invasive Alternative zur Parzellierung kortikaler Areale 

in vivo dar, sowohl auf  individueller also auch auf  Gruppenebene. Dieser Ansatz unterscheidet 

sich von existierenden Methoden der Parzellierung kortikaler Areale indem Vorwissen über 

Anatomie und Konnektivitätsprofil einzelner Regionen kombiniert und der Parzellierung 

zugrunde gelegt wird. Die vorgestellten Parzellierungstechniken sowie die resultierenden 

Kennzeichnungen der Areale können sowohl im Forschungsbereich als auch im klinischen 

Kontext vielseitig angewendet werden, wie in Kapitel 4 ausgeführt. Neben der hier 

beschriebenen Anwendung für die Unterteilung des Broca-Areals, können die Methoden auf  

jegliche Hirnregionen mit abgrenzbaren Konnektivitätsprofilen angewendet werden. Dies stellt 

einen wertvollen Beitrag zu den derzeit verfügbaren Methoden der kortikalen in vivo 

Parzellierung dar. 
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