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Summary (English)

The human brain consists of a gigantic complex network of interconnected neu-
rons. Together all these connections determine who we are, how we react and
how we interpret the world. Knowledge about how the brain is connected can
further our understanding of the brain’s structural organization, help improve
diagnosis, and potentially allow better treatment of a wide range of neurological
disorders.

Tractography based on diffusion magnetic resonance imaging is a unique tool to
estimate this "structural connectivity" of the brain non-invasively and in vivo.
During the last decade, brain connectivity has increasingly been analyzed using
graph theoretic measures adopted from network science and this characteriza-
tion of the brain’s structural connectivity has been shown to be useful for the
classification of populations, such as healthy and diseased subjects. The struc-
tural connectivity of the brain estimated using tractography is, however, derived
by integrating noisy estimates of the local fiber orientation in each voxel, entail-
ing biases and limitations in the estimated connections and resulting in noisy
graphs.

In this thesis, the ability of stochastic block models to extract the latent orga-
nization of structural brain connectivity graphs is investigated. It is found that
both the stochastic block model and its non-parametric extension, the infinite
relational model, are able to reliably extract a clustering that better accounts
for structural connectivity than cortical atlases based solely upon surface mor-
phology. Furthermore, a statistical prediction framework to quantify the ability
of a cortical parcellation to account for structural connectivity is proposed. It
is tested on two commonly used cortical atlases that are both based on surface
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morphology, as well as on a recently proposed cortical parcellation by Glasser et
al. (2016) that is based on both task and resting-state functional magnetic res-
onance imaging, cortical thickness and myelin. It is found that all three atlases
capture the structural connectivity much better than random, but also that the
parcellation based on multiple modalities is superior to those solely based on
surface morphology.

The generation of structural brain connectivity graphs comprises a comprehen-
sive processing pipeline, with various experimenter-defined parameters. The
settings of these parameters are, however, unclear and this subjective aspect
complicates the cross-comparison of studies investigating structural brain con-
nectivity derived from tractography. Even though scan acquisition parameters,
i.e. spatial resolution, angular resolution and b-value, are often discussed as
possible factors influencing the final result, the impact of these factors on the
derived structural connectivity graph has not yet been investigated. Herein,
structural connectivity graphs, generated using different combinations of the
three aforementioned acquisition parameters, are validated by comparison to
a connectivity graph derived using invasive tracer injections in monkeys. It is
found that the choice of acquisition parameters influences the derived structural
connectivity graph and that higher angular resolution is always beneficial. Sur-
prisingly, it is also found that higher spatial resolution does not improve the
derived graph, but further investigation is needed to confirm this result.



Resumé (Danish)

Den humane hjerne består af et gigantisk netværk af forbundne nerveceller.
Alle disse nerveforbindelser afgør tilsammen hvem vi er, hvordan vi reagerer og
hvordan vi opfatter verden. Viden om hvordan hjernen er forbundet kan øge
vores forståelse af hjernens strukturelle organisering, hjælpe med at forbedre
diagnose og potentielt tillade bedre behandling af en lang række neorologiske
sygdomme.

Traktografi baseret på diffusions-vægtet magnetisk resonans billeddannelse er
et unikt redskab til at estimere hjernens strukturelle forbindelser non-invasivt
og in vivo. Gennem det sidste årti har der været et stigende antal studier der
analyserer hjernenetværk ved brug af graf teoretiske mål fra netværks teori. Ka-
rakterisering af hjernens strukturelle forbindelser har vist sig at være nyttig til
at klassificere grupper, som for eksempel raske og syge. De strukturelle hjerne
forbindelser, estimeret med traktografi, er imidlertid udledt fra støjfyldte esti-
mater af den lokale fiber orientering i hver voxel. Dette påvirker og begrænser
de estimerede forbindelser og resulterer i støjfyldte hjernenetværk.

I denne afhandling undersøges hvorvidt stokastiske blokmodeller er i stand til
at udtrække den skjulte organisering i strukturelle hjernenetværk. Resultaterne
viser at både den stokastiske blokmodel og dens ikke-parametriske forlængelse,
the infinite relational model, er i stand til pålideligt at udtrække grupper der
bedre beskriver hjernens strukturalle organisering end kortikale atlas udelukken-
de baseret på overflademorfologi. Endvidere præsenteres en statistisk prædiktiv
metode til at kvantificere kortikale parcelleringers evne til at beskrive struktu-
relle hjerneforbindelser. Metoden er testet på to bredt anvendte kortikale atlas
baseret på overflademorfologi, samt på en nylig foreslået parcellering af Glas-
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ser et al. (2016), baseret på både task og resting-state funktional magnetisk
resonans billeddannelse, cortex tykkelse og myelin. Resultaterne viser at alle tre
atlas beskriver de strukturelle hjerneforbindelser meget bedre end en tilfældig
parcellering, men også at parcelleringen baseret på flere modaliteter er bedre
end dem baseret udelukkende på overflademorfologi.

Genereringen af strukturelle hjernenetværk består af en omfattende databehand-
lingsprocedure med mange forskellige parametre, der skal defineres af personen
der genererer netværket. Dette subjektive aspekt komplicerer sammenligningen
af resultater fra forskellige studier, der analyserer hjernenetværk baseret på trak-
tografi. Selvom skanner specifikke parametre, såsom billedopløsning, antallet af
diffusionsretninger og b-værdi, ofte nævnes som mulige faktorer der påvirker
det endelige netværk, har effekten af dem endnu ikke været undersøgt. I denne
afhandling sammenlignes strukturelle hjernenetværk genereret med forskellige
kombinationer af de nævnte skannerparametre med et netværk genereret ved
brug af sporstofinjektioner i aber. Vi finder at skannerparametrenes værdi har
betydning for det genererede netværk og at flere diffusionsretninger altid er
bedre. Overraskende finder vi, at højere billedopløsning ikke forbedrer det ge-
nererede netværk, men der kræves yderligere analyser for at beskræfte dette
resultat.
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Part I

Introduction





Chapter 1

Motivation, aim and
overview

The brain is an exceptionally complex organ that controls many of the body’s
functions, processes and interprets information from the outside world, and
embodies the essence of the mind and soul. Understanding the brain is therefore
of the utmost importance for understanding human behaviour.

The brain is controlled by an enormous network of interconnected neurons,
which are able to adapt to new situations, such as ageing [48, 124, 166, 158] and
learning [128], or due to a wide variety of disorders, e.g. multiple sclerosis [131],
Alzheimer’s disease [91, 59] and neuropsychiatric disorders [133, 169]. Studying
the healthy brain’s structural organization helps us understand the network
alterations in the abnormal brain. This in turn can improve the understanding
of a wide range of diseases, and elucidate the nature of a disorder, its localization,
clinical effects and its prognosis. Moreover, this can help diagnosis and allow
better treatment, as well as understanding biological variations [164].

Diffusion magnetic resonance imaging (dMRI) is the only method allowing in
vivo imaging of white matter tracts and estimation of the brain’s structural
connectivity. The generated mapping of the complex wiring system of the brain
using tractography has been termed the connectome [51, 139]. However, the
term connectome is now used at various scales ranging from the microscopic
scale, mapping individual cells and synapses, to the macroscopic scale, mapping
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white matter tracts between gray matter regions [139].

During the last decade there has been an increasing interest in modeling brain
connectivity, both structural as well functional [134, 153]. The quantification
of differences and similarities in the brain’s structural organization between
subjects has, however, been a challenge due to the great complexity of the brain’s
structural organization. The first analyses of structural whole brain connectivity
applied graph theoretic measures adapted from network science, such as node
degree, clustering coefficient and shortest path [14, 54, 53], concluding that the
brain network is small world, though not scale free. The first attempt to classify
groups of structural connectivity networks was performed on the global level,
meaning that a single summary statistic, such as global efficiency, was extracted
for each network. A simple test, such as a t-test was then performed to asses
the between-group effects [15]. Though a single summary statistic can be useful
to classify groups, it does not provide information about where in the networks
the differences are located, and moreover, when aggregating the entire brain,
details may be lost.

When describing the brain’s organization using a graph, the nodes need to be
defined. Depending on the scale, the nodes can represent anything from a single
neuron to an entire brain region, such as those defined by a brain atlas [140].
When analysing structural brain connectivity derived from dMRI, the nodes are
often defined by a cortical parcellation, but the coarseness of such a parcellation
can range from <100 regions [57, 47, 58] to thousands of regions [54, 168]. A
recent trend is to define the nodes by the voxels or vertices on the WM-GM
boundary (Paper B) [10, 113]. Network measures from graph theory have been
widely used to analyse brain networks, but unfortunately these measures have
been shown to be sensitive to the employed brain parcellation, as well as a
wide range of other methodological choices [168, 120]. The way the nodes are
defined is therefore of crucial importance. Currently there is no commonly
accepted parcellation and the optimal parcellation is likely to be application
dependent. Thus, when performing network analyses, validation of the employed
parcellation is important, yet it is unclear how to compare the quality of brain
parcellations.

Due to the development of enhanced equipment, such as improved MRI scan-
ner hardware, sequences and high performance computing, it is now possible to
obtain structural brain connectivity networks in high resolution, i.e. employing
a finer cortical parcellation, or using the cortical surface vertices as nodes in
the network. A high resolution parcellation results in a huge, noisy and redun-
dant network, which is both very computationally demanding and challenging to
interpret [138]. In contrast, by using a too-coarse parcellation, individual differ-
ences disappear, complicating the classification and prediction of subjects and
diseases [142, 138]. As the resolution of the structural networks increases, the
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need arises for prominent statistical modeling tools that can extract the latent
structure of the networks. A way to reduce the noise in these huge networks,
without eliminating important information by applying a coarse parcellation,
is to extract the information about the salient structural organization of the
network. This organization can be derived by statistical modeling. Extract-
ing the latent structure from the brain connectivity network in high resolution,
i.e. voxel or vertex level, can contribute to the understanding of the underlying
connectivity patterns in the brain.

Further complicating the analysis of structural connectivity networks is the fact
that the comprehensive data processing pipeline for generating structural con-
nectivity networks from dMRI includes numerous experimenter choices, such as
dMRI sequence, correction of acquisition related artifacts, fiber reconstruction
and streamline tractography [99, 95, 71, 73, 62, 120]. The fact that all these
methodological choices impact the final network emphasizes the importance of
validation of the derived network. For this purpose invasive tracers have been
shown to be essential [36, 77, 143, 29, 151, 9, 32]. So far validation of tractogra-
phy and structural connectivity networks have been focused on the validation of
fiber model, tractography and their cross-comparison [16, 143, 154], as well as
the impact of tractography specific parameters [16, 9, 29]. Although the pres-
ence of anatomical information in the images is crucial to extract the "true"
structural connectivity network and the scan acquisition parameters have been
suggested as being important for the derived network [9, 32], the impact of scan
acquisition parameters has not yet been investigated. Indeed, Zhan et al. [170]
showed that the final structural connectivity network is affected by the acquired
spatial and angular resolutions.

1.1 The aim of this thesis

The aim of this thesis is to use statistical modeling to quantify and validate the
brain’s structural organization. First, the structural organization of the brain
is quantified using stochastic block modeling (Paper A-B). Second, a validation
scheme for quantifying a brain parcellations’ ability to account for structural
connectivity is developed (Paper C). Third, the influence of some of the impor-
tant methodological choices for constructing structural connectivity networks,
particularly the scan acquisition parameters, are quantified (Paper D).
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1.2 The structure of this thesis

The first part of this thesis (Chapters 1-5) gives an introduction to the topics
necessary to understand the manuscripts included in the second part. Chapter 2
gives an introduction to basic principles of the diffusion process, neuroanatomy,
diffusion magnetic resonance imaging and tractography, and an explanation of
how to combine these to derive a structural connectivity graph of the brain. Also
described are the choices and considerations important for generating structural
connectivity graphs, as well as a description of a connectivity graph derived from
retrograde invasive tracer injections in monkeys. Chapter 3 describes the statis-
tical models used to derive the salient organization of the structural connectivity
graphs, together with link prediction and similarity measures used to evaluate
model performances and quality of the derived structural connectivity graphs.
Chapter 4 gives a summary of the manuscripts included in the second part of
this thesis. Finally, Chapter 5 concludes the thesis with a general discussion
and future perspectives.



Chapter 2

Imaging structural brain
connectivity

This chapter describes how diffusion weighted magnetic resonance imaging (dMRI)
can be used to estimate the structural organization of the brain non-invasively
and in vivo on the macroscale [139]. To understand what is measured by dMRI
and how this can provide insight into the connectivity of the brain, this chapter
will go through the basic principles of diffusion, anatomy and how to link these
two to obtain an estimate of the brain’s structural connectivity.

2.1 Basic principles of diffusion

All particles that are suspended in a fluid are subject to Brownian motion.
Brownian motion was first observed by Robert Brown (1773-1858) in 1827, who
noticed how pollen grains moved through water, but without being able to
determine the mechanism that caused the motion [22]. It was not until later, in
1905, Albert Einstein (1879-1955) described this phenomena theoretically [39].

The diffusion process can quantitatively be described by Fick’s first law which
describes the net flux (J) of molecules proportional to the negative concentration
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gradient (∇C)

J = −D∇C. (2.1)

The proportional constant (D) is the diffusion coefficient which depends on the
viscosity and the temperature of the fluid, the size and weight of the molecules
and the micro-structural environment1. In steady-state there is no net flux, but
the molecules are still subject to Brownian motion.

In the case of free diffusion, i.e. diffusion in a homogeneous, barrier-free envi-
ronment, the diffusion can be described by a Gaussian distribution, where the
probability p depends on the diffusion time td and the displacement of water
molecules r [39].

p(r, td) =
exp(−r2/4Dtd)

(4πDtd)3/2
, (2.2)

where < r2 >= 2nDtd is the mean-square displacement of water molecules in
n-dimensions also known as "Einstein’s equation".

2.2 Anatomy of the brain

Brain tissue consists of neurons and glial cells. A neuron consists of a soma
(i.e. cell body), dendrites and an axon (i.e. nerve fiber) as illustrated in Fig-
ure 2.1. The soma contains the nucleus, which contains the genetic information
and controls the cell activity by regulating gene expression and protein syn-
thesis. The communication between cells is facilitated by the dendrites and
axons. The dendrites branch out from the soma, like branches on a tree and
receive excitatory and inhibitory signals from other neurons through their ax-
ons. The intra-cellular space is surrounded by the cell membrane and contains
the cytoskeleton, macromolecules, proteins and mitochondria, whereas the ex-
tracellular space is the space surrounding the cells, axons and dendrites. The
glial cells can be divided into astrocytes, oligodendrocytes and microglia. The
oligodendrocytes wrap around axons and form a myelin sheath that increases
the conduction speed of the signal propagating along the axons and enables fast
signal transmission to other neurons and dendrites [156].

1The diffusion coefficient of water at body temperature (37◦C) is 3× 10−3mm2s−1
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Figure 2.1: An illustration of a neuron, its axon and dendrites. The Oligo-
dendrocyte wraps around the axon, forming segments (i.e. intern-
odes) of insulating myelin. The internodes are separated by small
amyelinated regions called nodes of Ranvier. The white matter
also contains Astrocytes, that are star-shaped cells maintaining
the extracellular ion balance and supporting the blood-brain bar-
rier function, as well as Microglial cells, that are the immune cells
of the central nervous system. Inspired by [37].

Brain tissue can be divided into gray matter (GM) and white matter (WM).
The GM contains the somas, dendrites and short range intra-cortical axons.
The diameter of the dendrites in the GM range from 0.2-3 µm [41]. The GM
on the surface of the cerebrum is called the cerebral cortex while collections
of neurons within the cerebrum are called subcortical regions. The cerebral
cortex is highly folded and these folds are called gyri and the grooves between
folds are called sulci. The major cerebral foldings are the same across all sub-
jects, but the details differ from subject to subject. Based on these foldings,
the cerebrum can be divided into four lobes: frontal, occipital, temporal and
parietal. The WM contains the inter-cortical myelinated axons connecting dis-
tal GM regions. Glial cells are found in both GM and WM. The cerebrum
comprises approximately a hundred billion neurons connected by several thou-
sand trillion synapses [20, 105]. The WM can be further subdivided into deep
WM and superficial WM (WM just beneath the cortical GM). The superficial
WM is very dense due to the very high density of short association fibers (u-
fibers) [126, 122] connecting adjacent regions of the cortex. U-fibers run along
the WM/GM boundary (WGB), and are more tangential to it in sulcal regions
than in gyral regions.

A bundle of axons sharing the same major trajectory is called a brain connection
(i.e. fiber fascicle). All the brain connections form a brain network and the
mapping of these connections has been termed the human connectome [51, 139].



10 Imaging structural brain connectivity

Within a brain fiber fascicle, the axons are mainly running in parallel to one
another. This organization facilitates the estimation of brain connections by
measuring the anisotropic diffusion of water using dMRI.

2.3 Diffusion weighted magnetic resonance imag-
ing

DMRI utilizes the principle of Brownian motion. In the body water molecules
are not subject to free diffusion, but are restricted by cell membranes and hin-
dered by macromolecules and proteins. The diffusion coefficient can be esti-
mated by magnetic resonance imaging (MRI) by applying diffusion sensitive
gradients. Due to the hindered and restricted diffusion of water molecules in
biological tissue, the estimated diffusion coefficient D depends on the micro-
structural environment. The estimation of D can be used to infer the properties
of biological tissue, such as orientation of fiber bundles and axon diameters [3].
Hence, by measuring the movement of the water molecules in the brain the mi-
crostructure of the brain is revealed. DMRI is a key non-invasive method to
provide contrast to the micro-structure of the brain. For a general introduction
to MRI physics, see e.g. [159].

When acquiring dMRI, D is not measured directly, but is inferred from mea-
surements of the displacement of water molecules over a given time period, the
diffusion time, see Equation (2.2). When the water molecules are subject to hin-
drances, e.g. macromolecules, the average displacement will decrease compared
to free diffusion. The estimated value of D will be lower due to the hindrances in
the tissue and is therefore called the apparent diffusion coefficient (ADC) [82].

A widely used sequence in dMRI is the Stejskal-Tanner: Pulsed gradient spin-
echo (PGSE) [141]. The MRI sequence is outlined in Figure 2.2. When applying
a diffusion gradient, the spins of the water molecules are tagged according to
their spatial position, by inducing a spatial dependent phase shift along the
direction of the gradient, resulting in phase dispersion. After some time, i.e.
the diffusion time, a second gradient of the same amplitude and duration, that
will rephase the spins, is applied. If the water molecules have not moved, their
phase will be fully recovered when applying the second gradient. On the other
hand, if the water molecules have moved the phase of the spins will not be fully
recovered. The larger the mean displacement of the water molecules between the
gradients, the greater the phase dispersion of the spins of the water molecules
and hence a greater loss of signal coherence and reduction of signal amplitude.
For a given voxel of tissue, the size of the phase dispersion and hence the signal
loss, depends on the strength of the gradient G[mT/m], the duration of the
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Figure 2.2: The pulsed gradient spin-echo (PGSE) sequence used to measure
molecular diffusion. After the 90◦ RF excitation pulse is applied,
the first diffusion encoding gradient with strength G and duration
δ is applied. After some time ∆ a refocusing pulse inverting the
phase shifts is applied and a second diffusion encoding gradient
with same strength and duration is applied to rephase the spins.
The signal is read out after TE as a spin echo.

gradient δ[s], and the time interval between applying the gradients ∆[s]. These
three factors can be combined into a single parameter describing the degree of
diffusion weighting, the so-called b-value [81, 83]. For a PGSE experiment the
b-value is given by

b = γ2G2δ2

(
∆− δ

3

)
, (2.3)

where γ is the gyromagnetic ratio. For a PGSE sequence, the b-value can be
divided into the q-value q = δγG and the diffusion time td = ∆− δ

3 . The q-value
is also called the wave-vector and it determines the length scale of maximum
molecular displacement that can be measured. Increasing the q-value lowers
the maximum displacement that we are sensitive to resulting in insensitivity to
molecules in large geometries. When applying high q-values, only small geome-
tries contribute to the signal. The diffusion time determines the micro-structural
environments being probed and hence is the factor that controls which geome-
tries the sequence is sensitive to. For short diffusion times the sequence will
only be sensitive to small micro-structures because only diffusion within small
geometries is restricted, but as the diffusion time increases the sequence will be
sensitive to larger micro-structures as the water molecules have longer time to
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diffuse and hence also get restricted by larger geometries.

The attenuation of the diffusion signal in the case of free diffusion is given by
an exponential dependence on the b-value and the diffusion coefficient D

SD = S0 exp−bD ⇔ D = −
ln SD

S0

b
, (2.4)

where S0 is a reference image obtained without diffusion encoding (b = 0). By
acquiring such a reference image D can be estimated. This dependence is only
true for Gaussian diffusion in the low b-value regime, but is always assumed
to apply [70]. When acquiring dMRI the b-value has to be selected by the
experimenter.

2.3.1 B-value

As described in the previous section, the b-value is a measure of q2 and td. Mea-
surements with low b-values are dominated by Gaussian diffusion and hence
more sensitive to fast diffusion components (extracellular, interaxonal compart-
ments). In contrast, higher b-values reduce the signal from the extracellular
space, thus in theory provide higher contrast to fiber configurations. Higher
b-values are more sensitive to subtle changes in the underlying fiber orientations
and also more sensitive to small diffusion motions around small axons. In gen-
eral, to be sensitive to slow diffusion and smaller geometries, higher b-values are
needed. When acquiring dMRI data post mortem, the applied b-value should be
approximately four times larger compared to dMRI data acquired in vivo [28].
In Paper D, the effect of different scan acquisition parameters is investigated, in-
cluding the effect of varying b-values. Figure 2.3 shows three diffusion weighted
images acquired from the same monkey brain (data used in Paper D) with three
different b-values. Note how the SNR decreases when increasing the b-value,
but at the same time the sensitivity to intracellular diffusion increases, seen by
bright WM structures such as the corpus callosum.

2.3.2 Artifacts

When acquiring dMRI data, motion artifacts (e.g. head motion) are unavoidable
introduced when scanning subjects in vivo. Movement artifacts, such as subject
motion and pulsation artifacts can introduce ghosting along the phase-encoding
direction or result in severe signal drop-out if the movement appears in the
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Figure 2.3: Diffusion weighted images acquired from the same monkey brain,
using a b-value of 1610 s/mm2 (left), 4100 s/mm2 (middle) and
7700 s/mm2 (right). The image for each b-value correspond to a
single gradient direction and is averaged across three signal repe-
titions. Spatial resolution is 0.5 mm3.

diffusion encoding time period. A way to minimize, yet not eliminate, the effect
of movement artifacts is to apply a MRI sequence less prone to motion, such
as echo-planer imaging (EPI), which is the standard for clinical dMRI. EPI is a
fast imaging technique, where an image typically is acquired in the time frame
around 100 ms, hence making motion within a volume negligible [84]. The
motion between acquired volumes can be mollified by co-registering the images
in the post-processing step. Unfortunately, EPI also have some drawbacks,
for instance it is prone to eddy currents and susceptibility artifacts. Eddy
currents are electrical currents that are induced by a changing magnetic field
and arise when strong gradient pulses are switched rapidly. In general dMRI
is especially affected by eddy currents during the diffusion encoding gradient
duration δ. A way to minimize this effect previously was to use the twice-
refocused spin echo sequence by Reese et al. [121], but due to improvement in
scanner hardware, the effect of eddy currents is reduced. However, eddy currents
still introduce linear transformations like shear, but these can be corrected in
the post-processing step. Susceptibility artifacts are related to the differing
magnetic properties of the imaged tissue which introduce local inhomogeneity
in the static magnetic field at the borders between tissue types. By acquiring
images with reversed phase-encoding, susceptibility artifacts can be reduced in
the post-processing step by maximizing the similarity of the two images with
opposite phase-encoding. After correcting for artifacts in the post-processing of
the data, the diffusion encoding directions have to be updated accordingly [85,
4].
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In paper B, the in house (DRCMR) diffusion processing pipeline was used to
minimize motion artifacts, eddy current effects and susceptibility artifacts. The
pipeline is implemented in SPM v. 8.429 (http://www.fil.ion.ucl.ac.uk/spm/)
with Matlab 7.12 (The mathWorks, Inc., Natick, Massachusetts, USA), using
plug-ins from FSL v. 5.0 (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) [63, 161, 135]
and Camino (http://camino.cs.ucl.ac.uk/) [26]. To minimize susceptibility arti-
facts, we applied a voxel displacement map (VDM) based on the acquired field
map using the field map toolbox of SPM8 [66]. The voxel shifts for the VDM
were estimated using the two reversed phase-encoding images, as implemented
in FSL’s topup tool [6, 135]. Motion artifacts (translation and rotation) were
estimated using a rigid-body transformation. The transformation was expanded
to a full affine transformation by including the six parameters from shear and
zoom to minimize the eddy current effects. The images were aligned and resliced
by applying this transformation, using normalised mutual information as cost
function and 7th order B-spline interpolation [35]. To compensate for the ap-
plied transformation, the 61 non-collinear diffusion encoding gradient directions
were updated accordingly using the same rotations and transformations, as sug-
gested in [85, 4].

In Paper C, data provided by the Human Connectome Project (HCP) [153] was
analyzed, thus the "minimal preprocessing pipeline" provided by the HCP [46]
was used to minimize artifacts. First, the average b0 image was intensity nor-
malized and EPI distortion correction was done using FSL’s topup tool [135, 6].
Second, the eddy current distortions and movement artifacts were minimized us-
ing FSL’s eddy tool [7], the images were corrected for gradient-nonlinearities [74]
and an estimation of the effects of gradient-nonlinearities on the diffusion weight-
ing and direction in each voxel were calculated [11, 137]. Third, the average b0
image was registered to the native structural T1w image with FSL’s FLIRT
BBR cost function and FreeSurfer’s bbregister [50] and transformed to 1.25 mm
structural space. Finally, the diffusion encoding directions and the gradient field
tensor were updated using the b0 to T1w transformation [4].

In paper D the data was acquired from a post mortem monkey brain using the
setup described in [34]. The setup uses a spin echo sequence that introduces
minimal geometrical distortions. The dataset was visual inspected and revealed
no need for any post processing.

2.4 Estimation of the fiber orientations

The water molecules in the brain are subject to hindered (extracellular space)
and restricted diffusion (intracellular space). In the intracellular space the diffu-
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sion is restricted by the cell membranes, macromolecules and the myelin sheaths
surrounding the axons in the white matter. The molecules are restricted per-
pendicular to the axons, but to a much less extent along the axons. As the water
molecules diffuse further along the axons than across axons, the movement of
the water molecules can be used to describe the architecture of the brain. When
measuring diffusion in regions with ordered tissue, i.e. anisotropic diffusion, the
signal attenuation and hence the ADC is dependent on the direction of the ap-
plied gradients and can no longer be described by a single diffusion coefficient.
To extend the description of anisotropic diffusion to 3D, the diffusion tensor DT
can be used. When the diffusion of water molecules is restricted, the resulting
signal is high, whereas the signal attenuates when the water molecules can move
a longer distance, i.e. the amount of signal loss depends on the diffusion coeffi-
cient (D). To be able to estimate the connectivity of the brain the diffusion is
measured along multiple non-collinear gradient directions.

2.4.1 The diffusion tensor model

TheDT was originally proposed for use in MRI by Basser et al. [12, 13]. TheDT
is a 3×3 matrix as given by Equation 2.5, where the diagonal elements describe
the diffusion along the main directions (orthogonal axes) and the off-diagonal
elements describe the correlation between the mean displacements along the
orthogonal axes. Thus, the DT can be viewed as a covariance matrix

DT =



Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


 . (2.5)

As diffusion is non-directional, the DT is symmetric and hence has six un-
known elements. To estimate the anisotropic diffusion in 3D at least six non-
collinear and non-coplanar directions (plus one non-diffusion-weighted image)
are required to calculate the DT . In diffusion tensor imaging (DTI) [13, 118],
the diffusion signal in every voxel is estimated by a tensor. The most common
measures computed from the estimated tensor are mean diffusivity (MD) and
fractional anisotropy (FA) [117] given by
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Figure 2.4: Color-coded FA map. The data is an average of three repetitions
acquired using a b-value of 7700 s/mm2, 180 directions and a spa-
tial resolution of 0.5 mm2. The colors indicate the orientation of
the fiber bundles; red is left-right, green is anterior-posterior and
blue is superior-inferior.

MD = λ̂ =
λ1 + λ2 + λ3

3
(2.6)

FA =

√
3

2

√
(λ1 − λ̂)2 + (λ2 − λ̂)2 + (λ3 − λ̂)2

√
λ2

1 + λ2
2 + λ2

3

, (2.7)

where (λ1, λ2, λ3) are the eigenvalues of the DT . MD is a measure of how
unhindered the diffusion is with a MD of zero meaning no diffusion is present
(static water molecules). MD is fairly uniform throughout parenchyma in the
range of b-values typically applied in clinically studies (b ≤ 1500 s/mm2) [119].
For increasing b-values, WM has a lower MD compared to GM [165]. FA is
normalized to take values from zero (isotropic diffusion) to one (diffusion re-
stricted to be only along one axis). One major limitation of DTI is that it can
only recover a single fiber orientation in each voxel and fail to estimate crossing
fibers and is therefore not ideal to estimate the fiber orientations when perform-
ing tractography and connectivity mapping, because most voxels contain more
than one fiber population [65]. The work presented herein uses tractography
to estimate the structural brain connectivity and hence, DTI is only used to
assess to quality of the data, such as checking the orientation of the major fiber
bundles. Figure 2.4 shows a color-coded FA map of the dataset used in Paper D,
acquired using a b-value of 7700 s/mm2, 180 non-collinear uniformly distributed
directions, and a spatial resolution of 0.5 mm2. The dataset is an average of
three signal repetitions.
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2.4.2 Multi-fiber models

To be able to model multiple fibers in each voxel, multiple models that are
capable of estimating more complex fiber configurations have been developed.
These models include the multi-tensor model [148], that uses a mixture of Gaus-
sian densities to model multiple fibers instead of a single Gaussian as in DTI.
Another example of a model capable of modeling multiple fibers within a voxel
is the ball and sticks (B&S) model by Behrens et al. [18, 17]. Because the
choice of diffusion model has not been the primary focus in this study and in
interest of time, only a single model of the diffusion data is employed in the
work presented herein, namely the B&S model as implemented in FSL’s Bed-
postX2. The B&S model has been shown to solve the problem of crossing fibers
well [17], is widely used and is implemented in the open source FMRIB Soft-
ware Library (FSL) [161, 135, 64]. But in fact multiple other models could have
been applied to estimate the diffusion orientations, including persistent angular
structure MRI [2], spherical deconvolution (SD) [146, 144], q-space imaging or
diffusion spectrum imaging (DSI) [157], and Q-ball imaging [147]. An overview
of these methods can be found in the book by Johansen-Berg et al. [67].

2.4.3 The ball and stick model

The B&S model [18] models the underlying fiber structure in each voxel as a two-
compartment model, where the first compartment models the isotropic diffusion
of free water (the ball) and the second compartment models the anisotropic dif-
fusion within and around the axons along a single dominant direction (the stick).
An extension of this model [17] models more complex fiber configurations by in-
cluding multiple anisotropic compartments (multiple sticks). The parameters
of the model are fitted using Bayesian estimation. To prevent the model from
overfitting the data, i.e. allow multiple fibers in voxels that do not support
multiple fibers, automatic relevance determination (ARD) [94] is applied. As
opposed to other model selction techniques, such as cross-validation, ARD fits
the most complex model, but ensures that only parameters supported by the
data contribute to the likelihood. The marginal posterior distribution of the
parameters given the model and the dMRI data is sampled using Metropolis
Hastings Markov Chain Monte Carlo sampling as described in section 3.5.1.
The posterior probabilities on the parameter estimates characterize the uncer-
tainty in the parameters.

2BedpostX stands for: Bayesian Estimation of Diffusion Parameters Obtained using Sam-
pling Techniques. The X stands for modelling crossing fibers.
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2.4.4 Number of gradient directions

Theoretically, to be able to estimate the simple DT , six unique gradient di-
rections and a non-diffusion weighted reference image are enough. However,
to obtain a rotational invariant estimate of the tensor in the presence of noise
more directions are required. Studies have shown that both 24 [112] and 30 [132]
unique sampling directions outperform a scheme with only six directions. Fur-
thermore, it has been shown that at least 30 unique evenly distributed gra-
dient directions are needed to robustly determine mean diffusivity, fractional
anisotropy and tensor orientation [68]. Even though 30 directions are sufficient
in DTI it is recommended to use as many directions as time allows, especially
for tractography applications [68]. The more complex the organization is, the
more directions are needed to estimate the true underlying structure.

In Paper D three different gradient schemes are compared. The gradient schemes
contain 20, 60 and 180 uniformly distributed directions, respectively. The gra-
dient schemes were made specific for this study. To optimize the acquisition,
the 20 directions is a subset of the 60 directions which in turn is a subset of the
180 directions. The directions were uniformly distributed on a unit sphere using
the electrostatic repulsion algorithm as proposed in [72]. For the first gradient
scheme, 20 uniformly directions are estimated. For the second gradient scheme,
these 20 directions are kept fixed and 40 additional direction are estimated, such
that all the 60 directions are as uniformly distributed as possible. For the third
gradient scheme the same procedure is repeated: the initial 60 directions kept
fixed and 120 additional directions are estimated to obtain a gradient scheme
with 180 directions. Figure 2.5 shows the estimated points on a unit sphere for
the three different gradient schemes.

2.4.5 Fiber configurations

When measuring the diffusion of water using dMRI, it is the average displace-
ment of water molecules across a voxel that is measured. Usually dMRI is mea-
sured in a resolution in the order of cubic millimeters and state-of-the-art human
dMRI data acquired by the HCP [153] has a resolution of 1.25 mm3, whereas
the diameter of human myelinated axons is in the range 0.3− 10µm [49]. This
means that a single voxel contains thousands of axons [152], which can have dif-
ferent trivial or non-trivial configurations, such as parallel, fanning, bending and
crossing as shown in Figure 2.6 [86, 93, 109]. In such complex areas, it is difficult
to estimate the true connections and furthermore, dMRI is not able to distin-
guish the anatomical polarity of the WM tracts. Models used to estimate the
voxel-wise diffusion must be able to disentangle these configurations to obtain
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a b c

Figure 2.5: Three different gradient schemes with (a) 20, (b) 60, and (c) 180
uniformly distributed directions. The two rows show opposite
views of the sphere. The red points are the actual directions
measured, while the blue dots are the mirror images of the red
dots.
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Figure 2.6: Illustation of different fiber configurations that can be present
within a voxel. Inspired by [129].

the true information about the underlying microstructure. This limitation may
be improved by higher spatial resolution, as investigated in Paper D, together
with local multi-voxel spatial models as proposed by Savadjiev et al. [125, 152],
but a dMRI resolution close to that of the axon diameters is unlikely to be at-
tainable in the near future, if ever. The only way to infer connections between
dMRI voxels is therefore to impose a model of local connections, as described
in the following section.

2.5 Tractography

Tractography is a non-invasive technique to estimate and visually represent fiber
tracts using dMRI. Tractography can be used to map brain connections, but it
is important to keep in mind that it does not provide physiological information
about the connections, such as conduction velocity and delays. The ability of
tractography to estimate brain connections has been confirmed by tracer studies
in post mortem minipigs [36], mice [162] and macaques [116]. Tractography
algorithms are commonly divided into two types; deterministic [100, 149] and
probabilistic [114, 115, 17] approaches, both generating continuous curves (i.e.
streamlines) in space.

Deterministic tractography algorithms [25, 100, 102] generate a streamline by
following the main direction in each voxel, without allowing for possible un-
certainties in the fiber orientation. Hence, deterministic tractography always
result in the same result, meaning that in regions with large uncertainties (e.g.
crossing fibers), the most probable direction will always be selected.

Probabilistic tractography was developed to enable quantification of the uncer-
tainty within a voxel related with estimation of brain connections. To quantify
the uncertainty of a brain connection, a probabilistic tractography algorithm
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generates streamlines by sampling the direction from the probability density
function (pdf) of the estimated diffusion orientations, that models the uncer-
tainty in a voxel. To obtain a distribution of fibers, every streamline is repeated
a large number of times. When all streamlines have been estimated, a stream-
line count map is generated by counting the number of streamlines entering
each voxel, together with a connectivity matrix providing information about
how many streamlines connecting two regions of interest. Streamline counts
obtained with tractography are not a quantitative measure of the strength of
the estimated connections, nor a measure of the number of axons. The stream-
line counts depend on multiple factors, such as the amount of fibers aligned in a
given orientation, local heterogeneity in fiber orientation, fiber diameters, length
of the pathway (distance between regions), and uncertainties in each voxel. If
one voxel along the trajectory is noisy this can reduce the number of streamlines
between two regions significantly [73].

Probabilistic tractography has been shown to produce more false positives, but
also more true positives than deterministic tractography [143]. The false pos-
itives produced by tractography can be mollified by applying a threshold, but
unfortunately the choice of threshold is not a trivial task [61]. However, in
paper C and D, the choice of threshold is investigated. Based on previous
studies [16, 120], the tractography approach applied in the work herein is prob-
abilistic tractography, explicitly FSL’s probtrackX2 [18, 17].

2.5.1 Seeding strategy

To be able to construct a whole-brain connectivity map, seed and target masks,
as well as termination and exclusion masks have to be defined in the tractogra-
phy. In general consensus, the target mask is defined by the WM-GM boundary,
either as voxels on the boundary or as vertices in the WM surface. The termina-
tion mask is defined by the boundary between GM and the cerebrospinal fluid
(CSF) and exclusion masks often includes masks of the subcortical structures
and ventricles. However, the definition of the seed mask is more questionable.

The seed mask defines where the streamlines are initiated and commonly two
different strategies are applied. Either are streamlines initiated in all WM voxels
(WM seeding) or at the WM-GM boundary (GM seeding). When performing
WM seeding, any given tract is comprised of streamlines seeded from points
along its entire length, which increases the chances of detecting long range con-
nections. In WM seeding longer tracts will obtain higher streamline counts than
short tracts as more streamlines are initialized within the course of the tract.
In contrast, longer paths are more difficult to estimate when performing GM
seeding as many steps are needed to go from region A to region B and hence
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the possibility to end up in region B every time is smaller implying that longer
tracts get lower streamline counts [88]. Thus, GM seeding is more susceptible to
path length dependencies [90]. When thresholding the structural connectivity
graphs based on the streamline counts, in order to remove false positives, more
long tracts will be removed if GM seeding is performed.

In paper A, B and C, we used WM seeding, whereas in Paper D the effect of
seeding strategy was investigated.

2.5.2 Number of streamlines

The number of streamlines initialized in each seed region needs to be high enough
to fully sample the probability density function (pdf) of possible directions in
each voxel. When the pdfs are fully sampled the streamline counts will increase,
but the contrast in the probability map will be constant. However, when in-
creasing the number of streamlines the generated connectivity matrix becomes
more dense and a higher threshold is needed to attain the optimal trade-off be-
tween sensitivity and specificity. In general fewer streamlines are needed when
performing WM seeding compared to GM seeding, because tracts are sampled
along their entire length.

In Paper B, C and D, we showed that relatively few streamlines are needed
when performing WM seeding and Donahue et al. [32] initializes as few as 100
streamlines/voxel.

2.6 Tract Tracing

During the late 1960s and early 1970s the use of naturally occuring cellular
transport for fiber tracing gave rise to multiple tract tracing studies. These
studies have contributed tremendously to the understanding of the anatomy of
the brain [80].

Several tract tracing techniques exist, but most of them are based on active
transport mechanisms in the living cell, making them unsuitable for studying
the human brain [8]. However, some lipophilic substances such as carbocyanine
derivates, that are transported passively by diffusion, can be applied to formalin-
fixed tissue. However, as the diffusion in cold tissue is much slower than in fresh
postmortem (not formalin-fixed tissue), only small fibers in the adult human
brain have been studied using this technique [43].
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Tract tracing can be divided into anterograde transport, directed from the cell
body to the synapse, and retrograde transport, directed from the synapse back
to the cell body. In contrast to tractography, tract tracing substances are trans-
ported within axons on the microtubules and are therefore not affected by sharp
turning fibers, kissing and crossing fibers and other complex fiber configurations.
Injections of tract tracing substances provide high resolution visualisation of the
intracellular space only, whereas dMRI images both the intra- and the extra-
cellular space. Tracer injections are therefore an important tool for validating
tractography and often used as a gold standard. For ethical reasons it is not
allowed to inject tract tracing substances into the living human brain, and hence
studies comparing tract tracing and tractography are done in mice [23], minip-
igs [36] or monkeys [29, 97, 96, 143, 77, 151, 32, 9].

A state-of-the-art retrograde tracer study in monkeys was performed by Markov
et al. [97, 96]. In this study 28 monkeys were employed. Single injections of
fluorescent retrograde tracers, fast blue (FsB) and diamidino yellow (DY) were
injected into 29 cortical regions and the labeled neurons in 91 cortical regions,
covering the whole cortical surface, were counted. Thus, resulted in a 91 × 29
tracer connectivity graph. Two different tracers were injected to allow two
injections in each brain without mixing up their projections. In Paper D, we
acquired a high resolution dMRI dataset with multiple angular resolutions and
multiple b-values using the ex vivo imaging pipeline proposed in [34]. By using
the tracer connectivity graph by Markov et al. [97, 96] as a gold standard, the
influence of different scan acquisition parameters on the structural connectivity
graph generated using tractography was investigated.

2.7 Brain parcellations

For centuries people have tried to understand the brain. Maps are created of
both white matter tracts [101, 111, 126] and cortical regions [21] to get a deeper
insight into the brain; its function and organization. Parcellation of the brain
has been based on a wide range of features, from gross anatomical landmarks,
surface morphology [30, 42], structural connectivity (Paper B) [113, 10], func-
tional activation [150, 47] to cyto- and myeloarchitecure [21] and combinations
thereof [45, 40].

When analyzing whole-brain structural connectivity a cortical parcellation is
often employed to define the nodes in the network, thus the resolution of the
network depends on the employed parcellation. When analyzing structural brain
connectivity using graph theoretic measures, the choice of parcellation has been
shown to influence the results [168] and the optimal parcellation is likely to
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(a) (b) (c)

Figure 2.7: Cortical parcellations visualized on a inflatedWM surface. (a) The
Desikan-Killiany atlas with 68 regions [30]. (b) The Destrieux atlas
with 148 regions [31]. (c) The Human Connectome Multi-Modal
Parcellation with 360 regions [45].

be application specific. In paper C, we quantify two parcellations based on
surface morphology and a multi-model parcellation based on task and resting-
state functional MRI, myelin and cortical thickness by their ability to predict
structural connectivity based on tractography. The three employed atlases are
visualized in Figure 2.7.



Chapter 3

Statistical modeling of
structural brain connectivity

This chapter defines a brain network (section 3.1) and describes the statistical
models used for clustering brain networks to extract the latent information (sec-
tion 3.2), including ward clustering (section 3.3), the stochastic block model and
a non-parametric extension forming the infinite relational model (section 3.4).
In addition, methods to evaluate model performances are described, includ-
ing the area under the curve (AUC) of the receiver operator characteristics
(section 3.6.2), predictive log-likelihood (section 3.6.1) and normalised mutual
information (section 3.6.4). Finally, cross-entropy is presented as a similarity
measure between the connectivity profiles of two brain networks (section 3.7).

3.1 Brain networks

The complex organization of the brain can be described using graph theory
applicable to a broad range of applications from social science to neurobiology
(adopted from network science). A graph consists of nodes connected by links
and can be described by an adjacency matrix A. If a link exists between node
i and node j the adjacency matrix element Aij takes on a value different from
zero. If no links exist Aij = 0. A graph can either be directed or undirected and



26 Statistical modeling of structural brain connectivity

(a) (b)

Figure 3.1: A binary and undirected network (a) and its adjacency matrix A
(b). Black dots in the adjacency matrix represent links.

either binary or weighted. A binary graph only contains zeros and ones, whereas
the links in a weighted graph are given different weights. An undirected graph
is symmetric (Aij = Aji), while a directed graph is asymmetric (Aij 6= Aji).
Figure 3.1 shows an example of a binary undirected graph.

3.2 Clustering

Networks can be represented in a compressed form by clustering nodes according
to their connectivity to the rest of the network. This compressed representa-
tion of the network reduces noise and the network gets more interpretable. A
way to perform this is by clustering nodes, such that nodes are densely con-
nected with the other nodes in the same cluster and only sparsely connected
with nodes outside the cluster. Such dense connected clusters are known as
communities. The degree of community structure exhibited by a given cluster-
ing can be measured using the modularity index [107]. Modularity measures
the fraction of within-cluster links minus the expected fraction of within-cluster
links in a random network with the same node degree. Hence, one way to cluster
a network is by finding the partition with highest modularity [108, 87]. How-
ever, modularity is optimized by taking into account only the within cluster
link density, regardless of the between cluster link-densities. Models accounting
for both within cluster link-densities and between link-densities include Ward
clustering (Paper C) [155, 10, 38, 142] and stochastic block models (Paper A, B
and C) [160, 56, 110, 127, 5, 10]. These models are described in the following
sections.
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3.3 Ward clustering

Ward clustering was introduced in 1963 by Ward [155] and has previously been
proposed for clustering neuroimaging data in [10, 38, 142]. Ward clustering is
a hierarchical agglomerative approach, initiated by assigning all nodes to their
own cluster. In every step the two clusters that minimizes the change in the
value of the proximity measure are merged until all clusters have merged into
a single cluster. To find the two clusters to be merged, the proximity measure
must be evaluated for every possible combination of clusters. Different proximity
measures can be employed, but in Paper C we used W 2

ij as suggested in [10]

Wij =

√∑

a6=ij
(Aia −Aja)2 +

∑

a6=ij
(Aai −Aaj)2. (3.1)

This proximity measure uses the dissimilarity between the connectivity patterns
of any two elements of the connectivity matrix A. In each step of the algorithm,
the optimal pair of clusters to merge was found using the Lance-Williams dissim-
ilarity update formula [79, 106]. How the clusters are merged can have different
constraints, e.g. a constraint that only allows merging of adjacent clusters, as
used in Paper C, to ensure that only neighbouring vertices in the WM surface
are clustered together, as proposed in [10].

The result of a hierarchical clustering algorithm is often presented as a dendro-
gram. Figure 3.2 shows a binary undirected graph comprising 500 nodes, the
resulting dendrogram when using the proximity measure given in Equation (3.1)
and three sorted graphs obtained using different cut-off levels of the dendrogram.

3.4 Stochastic block-modeling

The general idea of block-modeling is to decompose a network into groups of
nodes with similar properties, such as similar connectivity pattern to the rest of
the network. In the following, two stochastic block models are described. The
stochastic block model (SBM) (section 3.4.1) and the non-parametric extension
of the SBM, the infinite relational model (IRM) (section 3.4.2). The models are
here specified for undirected networks, as diffusion is non-directional and hence
does not provide information about the direction of the connections.
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Figure 3.2: Ward clustering. (a) An unsorted binary undirected graph with
500 nodes. (b) The dendrogram showing the hierarchical tree. (c-
e) Graphs sorted according to the ward clustering at three different
cut-off levels, 3, 10 and 30 clusters, respectively.

3.4.1 The stochastic block model

The stochastic block model (SBM) (Paper C) [5, 110, 160, 56, 127] is a network
model that can be used to cluster nodes into homogeneous cluster according to
their connectivity to the rest of the network. The SBM models the existence of a
link between two nodes dependent on the link density between the two clusters
the nodes belong to. Let K be the number of clusters and z the clustering
assignment vector for all nodes. Let zj be the j-th element of z, such that zj = l
if the j-th node belongs to cluster l. The probability of a link between cluster
l and m, ηlm is drawn from the beta distribution and the existence of a link
between two nodes Aij is drawn from the Bernoulli distribution with probability
ηzizj . This corresponds to tossing a coin given the link density between cluster
l and m. To allow flexible cluster sizes the prior on the assignment matrix z
is distributed according to the Dirichlet distribution. The generative model is
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given by

Links between nodes Aij ∼ Bernoulli(ηzizj ) (3.2)

Link densities between clusters ηlm ∼ Beta(β+, β−) (3.3)
Clustering z ∼ Categorical(π) (3.4)

π ∼ Dirichlet(α̃). (3.5)

Let mk be the number of nodes in cluster k, such that
∑K
k=1mk = J , then the

joint prior is given by

p(z,π | α̃) =

[
J∏

i=1

p(zi | π)

]
p(π | α̃) (3.6)

=
1

B(α̃)

K∏

k=1

πmk+α̃k−1
k , (3.7)

where the normalizing constant B is the multivariate beta function

B(α̃) =

∏K
k=1 Γ(α̃k)

Γ(
∑K
k=1 α̃k)

, α̃ = (α̃1, ..., α̃K). (3.8)

By imposing an equal concentration parameter on all clusters α̃1 = ... = α̃k =
α/K, such that

∑K
k=1 α̃k = α, the marginalized joint prior is given by the

so-called Pólya distribution

p(z | α) =

∫
p(z,π | α)dπ =

Γ(α)

Γ(α+ J)

K∏

k=1

Γ
( α
K

+mk

)

Γ
( α
K

) . (3.9)

The probability of a link between cluster l and m is drawn from the beta dis-
tribution with the hyperparameters β+ and β−
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p(η | β+, β−) =
∏

l≥m

1

B(β+, β−)
ηβ

+−1
lm (1− ηlm)β

−−1. (3.10)

The probability of observing a link between node i and j follows the Bernoulli
distribution resulting in the likelihood

p(A | η, z) =
∏

i>j

ηAij
zizj (1− ηzizj )1−Aij =

∏

l≥m
η
N+

lm

lm (1− ηlm)N
−
lm , (3.11)

where N+
lm and N−lm respectively denotes the total number of links and non-links

between cluster l and m. When using the model on S subjects (Paper C), the
probability of observing a link is given by the product over subjects [5], resulting
in

p(A(1), ...,A(S) | η, z) =
S∏

s=1

∏

i>j

η
A

(s)
ij

zizj (1− ηzizj )1−A(s)
ij =

∏

l≥m
η
N+

lm

lm (1− ηlm)N
−
lm ,

(3.12)

where N+
lm and N−lm now respectively denotes the total number of links and non-

links between cluster l and m for all subjects. The joint likelihood is obtained
by combining Equation 3.9- 3.11

p(A, z,η | α, β+, β−) = p(A | η, z)p(η | β+, β−)p(z | α) (3.13)

=


∏

l≥m
η
N+

lm

lm (1− ηlm)N
−
lm


 (3.14)

×


∏

l≥m

1

B(β+, β−)
ηβ

+−1
lm (1− ηlm)β

−−1


 (3.15)

×


 Γ(α)

Γ(α+ J)

K∏

k=1

Γ
( α
K

+mk

)

Γ
( α
K

)


 . (3.16)
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Because the beta distribution is the conjugate prior to the Bernoulli distribution,
the likelihood can be marginalized by integrating out η

p(A, z | α, β+, β−) =

∫
p(A, z,η | α, β+, β−)dη (3.17)

= p(z | α)
∏

l≥m

B(N+
lm + β+, N−lm + β−)

B(β+, β−)
, (3.18)

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) is the beta function.

By applying Bayes’ theorem the conditional posterior distribution of the assign-
ment of a single node zi can be found as

p(zi = l | A, z\i, α, β+, β−) =
p(A, z\i, zi = l | α, β+, β−)

∑K
m P (A, z\i, zi = m|α, β+, β−)

, (3.19)

where z\i is the assignment of all nodes except node i. In the inference z is
sampled from the conditional posterior distribution using Markov Chain Monte
Carlo (MCMC) sampling as described in section 3.5.1.

3.4.2 The infinite relational model

A limitation of the SBM is that it has a fixed finite number of clusters that
has to be defined a priori by the experimenter or learned by model selection.
By considering partitions rather than labels and taking the limit K → ∞ of
Equation (3.9), thus allowing an infinite number of clusters, we get [127]

lim
K→∞

p(z | α) =
αKΓ(α)

∏
k Γ(mk)

Γ(J + α)
. (3.20)

This distribution is also known as the Chinese restaurant process (CRP) [1].
The CRP is a process that generates a partition of a set of N objects. The CRP
utilizes the principle of rich gets richer and can be described by how people is
seated in a Chinese restaurant. Imagine a Chinese restaurant with an infinite
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α=0.1 α=1 α=10

Figure 3.3: Effect of the hyperparameter α. Graphs with 500 nodes are gen-
erated with α = 0.1 (left), α = 1 (middle) and α = 10 (right) and
sorted according to the clustering. The other hyperparameters are
kept fixed at [β+, β−] = [1, 1].

number of tables with infinite capacity. When the first costumer arrives he is
seated at table 1. When the second costumer arrives he is seated at table 1
with probability

1

1 + α
or at an un-occupied table with probability

α

1 + α
. In

general, when the i-th costumer arrives he is seated at an un-occupied table
with probability

α

i− 1 + α
or at table k with probability

nk
i− 1 + α

, where nk is
the number of costumers already seated at table k. The CRP is exchangeable,
meaning that the partitioning of nodes does not depend on the order the nodes
are assigned to the clusters, but is only dependent on the size of the clusters,
allowing the model to partition the nodes into as many clusters as necessary to
explain the data. This non-parametric extension of the SBM is called the infinite
relational model (IRM) and was first introduced by Kemp et al. [76, 163].

The hyperparameter α for the CRP is a hyper-parameter that controls the
probability of generating a new cluster compared to the assignment of nodes
to existing clusters. If α takes on a large value, a new cluster is more likely
generated resulting in many small clusters. In contrast, if α takes on a small
value nodes are more likely assigned to existing clusters, resulting in few large
clusters. The effect of α when generating data using the IRM is illustrated in
Figure 3.3.

The hyperparameters β+ and β− control the within and between cluster link-
densities. β+ is the pseudo link count within and between clusters and β− is
the pseudo non-link count within and between clusters. Figure 3.4 illustrates
how the values of β+ and β− affect the structure of the generated graphs. The
hyperparameters can be set a priori (Paper A and B) or be estimated using
Metropolis-Hastings sampling (Paper C). The IRM can further be extended
to account for integer weighted graphs by substituting the beta and Bernoulli
distributions with gamma and Poisson distributions [127].
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Figure 3.4: Effect of the hyperparameters β+ and β−. Graphs with 500 nodes
are generated with β+ = β− = 0.1 (left), β+ = β− = 1 (middle)
and β+ = β− = 10 (right) and sorted according to the clustering,
which is kept fixed across graphs. Also, the hyperparameter α is
kept fixed at α = 1.

3.5 Model inference

The optimal partitioning of a graph is found by maximizing the likelihood func-
tion. The assignment vector z is inferred by Gibbs sampling as proposed in [75],
in combination with split-merge sampling [60, 75, 104], each column at a time
from the conditional posterior of the assignment of a single node as given by
Equation (3.19). This section describes how the clustering of the networks can
be inferred by sampling from the conditional posterior distribution.

3.5.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm [55] is a MCMC approach to obtain a se-
quence of random samples from a probability distribution, when direct sampling
is difficult. To obtain the sequence, samples are drawn from a proposal distri-
bution q(x), which is chosen to be sufficiently simple, such that samples can be
drawn from it directly. The resulting sequence is used to approximate the true
distribution p(x) [19].

The algorithm is initialized by selecting an initial value xi at random. A can-
didate value is drawn from the proposal distribution given the current state
q(x∗|xi) and accepted with probability

A(x∗|xi) = min

(
1,
p(x∗)q(xi|x∗)
p(xi)q(x∗|xi)

)
. (3.21)
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If the candidate sample is accepted, then xi+1 = x∗, otherwise the candidate
sample is discarded and xi+1 = xi. When a candidate sample is discarded the
previous value is copied with the result that the sequence has multiple copies
of some samples. This sequence of samples form a Markov chain. Even if the
candidate sample is discarded it is still used in the drawing of a new candidate
sample x∗ = q(x|xi+1), in contrast to rejection sampling [19].

If the proposal distribution q(xA|xB) is positive for any value of xA and xB ,
the distribution of samples tends to the true distribution as i → ∞. The sam-
ples in the sequence obtained using the Metropolis-Hastings algorithm are not
independent as consecutive samples are highly correlated, but independence is
approximated by only keeping every N th sample in the sequence [19].

3.5.2 Gibbs sampling

Gibbs sampling [44] is a special case of the Metropolis-Hastings algorithm.
Gibbs sampling is applicable when the conditional distribution of each vari-
able is easier to sample from than the joint distribution, such that a sample
from the conditional posterior distribution of each variable can be sampled in
turn [19]. When using Gibbs sampling to sample from the conditional posterior
distributions, as given by Equation (3.19), each node’s assignment is updated
sequentially according to the conditional posterior distribution given all other
nodes’ assignments.

3.5.3 Split-merge sampling

Because one node is updated at a time in Gibbs sampling, it may be difficult
to merge two clusters or split one cluster into two. To overcome this problem
a Metropolis-Hastings split-merge procedure is applied [60, 76]. In the split-
merge procedure two nodes are selected at random. If the nodes are in different
clusters, a new partition where the two clusters are merged is proposed. If
the nodes are in the same cluster, Gibbs sampling restricted to the nodes of
the considered group is used to split all the nodes in the cluster into two new
clusters. The two selected nodes are assigned to two empty clusters and the
rest of the nodes can be assigned either by random to these clusters or based
on their conditional probability [27]. This new partition is referred to as the
launch state. The launch state can be refined through restricted Gibbs sweeps,
such that the final sweep provides the split proposal that becomes the new state
in the Markov chain, if it is accepted with the Metropolis-Hastings acceptance
probability as given by Equation (3.21).
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3.6 Model evaluation

When analyzing structural brain connectivity, we may have multiple graphs from
rescans of the same subject or graphs from different subjects that can be useful
for model evaluation. To evaluate model performance the ability to predict
unseen data can be quantified by test log-likelihood and the area under curve
(AUC) of the receiver operator characteristics (ROC) curve. Furthermore, the
reproducibility of a clustering can be assessed by normalized mutual information
(NMI). In this section the model evaluation measures are described.

3.6.1 Predictive log-likelihood

If a partitioning of a graph A is inferred using the IRM, the ability to predict
an unseen graph A∗ can be measured by the predictive log-likelihood. The
expected predictive log-likelihood is given by

〈logL(A∗|z,η)〉 =
∑

i>j

[
A∗ij〈log(ηzizj )〉+ (1−A∗ij)〈log(1− ηzizj )〉

]
, (3.22)

In Paper A, ηlm is distributed according to the beta distribution with the pa-
rameters N+

lm + β+ and N−lm + β− specified from the training graph A. By
defining β = β+ + β− and Nlm = N+

lm + N−lm, the expected value of log(ηzizj )
is given by

〈log(ηzizj )〉 = ψ(N+
lm + β+)− ψ(Nlm + β), (3.23)

and the expected value of log(1− ηzizj ) is given by

〈log(1− ηzizj )〉 = ψ(N−lm + β−)− ψ(Nlm + β). (3.24)

3.6.2 Link prediction scoring

The area under curve (AUC) of the receiver operator characteristics (ROC)
curve [24] can be used to quantify a parcellation’s ability to predict unseen
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structural connectivity graphs. The AUC enables quantification of how well a
given parcellation accounts for the structure in unseen data and thereby also
enables the comparison of different parcellations and quantification of the utility
of the structural units, as well as comparison to alternative non-parametric link
prediction measures.

When doing link prediction scoring, using a parcellation, we used the expected
value of the link probability between clusters in Paper A and B, sParcellation

ij =

〈ηzizj 〉 =
N+

lm+β+

Nlm+β and simply the density of the training graph in Paper C,

sParcellation
ij =

N+
lm

Nlm
. By using these scores, as well as the scores for non-parametric

link prediction measures given in section 3.6.3, AUC can be used to quantify
how well the two classes of links and non-links are separated in an unseen graph
A∗. By thresholding these probabilities at different levels, the ROC of true
positives versus false positives can be made and the area under this curve is a
measure of how well a given parcellation predicts unseen data. AUC is bounded
by [0,1], where an AUC score of 1 indicates a perfect separation of links and
non-links and an AUC score of 0.5 indicates prediction no better than chance.
The AUC is invariant to class-imbalance issues and is therefore widely used as
a measure of performance in link-prediction tasks [92].

3.6.3 Non-parametric link prediction measures

Given the J × J adjacency matrix A, the following non-parametric measures
can be used to score for the existence of a link between node i and j [89, 24].
We define di =

∑
j Aij to be the degree of node i.

sCommon Neighbor
ij =

∑

t

AitAjt (3.25)

sJaccard
ij =

∑
tAitAjt

J −∑t(1−Ait)(1−Ajt)
(3.26)

s
Adamic/Adar
ij =

∑

t

AitAjt
log(dt)

(3.27)

sPreferential Attachment
ij = didj (3.28)

sShortestPath
ij =

1

ShortestPath(A, i, j)
, (3.29)

where ShortestPath(A, i, j) gives the shortest path between two nodes in the
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network. These scores are averaged across training subjects and can be evalu-
ated on test data by the use of AUC [24] as described in the previous section.

3.6.4 Normalised mutual information

Normalised mutual information (NMI) can be used to quantify the similarity
between two partitions z and z′. The partitions can be different cortical par-
cellations or inferred partitions obtained from different subjects or scanning
sessions or from different runs of the models. In Paper A and B, NMI is used
to measure the reproducibility of the IRM, whereas in Paper B and C, NMI is
used to quantify the similarity between different cortical parcellations. Mutual
information (MI) is defined as

MI(z, z′) =
∑

kk′

P (k, k′) log

(
P (k, k′)
P (k)P (k′)

)

)
, (3.30)

where P (k, k′) is the probability that a node in cluster k in the first partition is
in cluster k′ in the second partition. There is various ways to normalize MI [98],
but the approach used in this work is given by

NMI(z, z′) =
2 ·MI(z, z′)

MI(z, z) +MI(z′, z′)
. (3.31)

NMI takes values between zero and one where one indicates that a permutation
of the groups exists such that the partitions are identical, and zero indicates
that the partitions are perfectly independent.

3.7 Cross-entropy

Cross entropy [130, 78] is an information theoretic measure to measure the
proximity of two probability distributions, by measuring the average informa-
tion needed to encode data from a "true" distribution p(x) using a "surrogate"
distribution q(x). The cross entropy (H) is given by

H(p(x), q(x)) = H(p(x)) +DKL(p(x)‖q(x)) = −
∑

x

p(x) log(q(x)), (3.32)
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where H(p(x)) is the entropy of p(x) and DKL(p(x)‖q(x)) is the Kullback-
Leibler divergence from q(x) to p(x).

In Paper D, cross entropy is used to measure the similarity between a prob-
ability distribution of relative connections from region j to all other regions
derived from invasive tracer injections θtracerj and one derived from tractog-
raphy θdiffusionj , where θtracerj is assumed ground truth. The cross-entropy
between the distributions is given by

H(θtracerj ,θdiffusionj ) = −
∑

i

θtracerij log(θdiffusionij ), (3.33)

where the j index is the target region and the i index is the source region. The
relative tracer probabilities θtracerj is given directly by the extrinsic fraction
of labeled neurons (FLNe) provided in the tracer graph by Markov et al. [96].
The FLNe of a region is calculated as the total number of labeled neurons in
that region relative to the total number of labeled neurons minus the number
of labeled neurons intrinsic to the injected area. The distribution of relative
streamline probabilities θdiffusionj is derived from the structural connectivity
graph. However, in order to calculate the cross entropy, the distribution has
to be estimated robustly, as cross-entropy is not defined in regions with zero
streamline probability. To solve this problem, Bayesian inference is used to
infer θdiffusionj in Paper D.

The prior probability of a streamline reaching one of the K regions is modelled
by a Dirichlet distribution with the parameter τ j defined by the relative size
V of the K source regions. The number of connections between source region i
and target region j is modelled by a multinomial distribution, where each of the
connections has the probability distribution θdiffusionj . The generative model
is given by

θdiffusionj ∼ Dir(κjτ j), τij =
Vi∑
i′ 6=j V

′
i

(3.34)

aj ∼Mult(θdiffusionj , Nj), (3.35)

where κj is a scaling factor specifying the confidence of the prior and Nj is
the total number of connections between all source regions and target region j.
Since Dirichlet is the conjugate prior to the Multinomial distribution, θdiffusionj

can be integrated out analytically
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p(aj|κjτ j) =

∫
p(aj | θdiffusionj )p(θdiffusionj | κjτ j)dθdiffusionj (3.36)

=
Nj !∏

i′ 6=j ai′j !
B(aj + κjτ j)

B(κjτ j)
. (3.37)

The value of κj is found by optimizing log(p(aj|κjτ j)) using the minimum bound
optimization fminbnd in Matlab v. 8.5.1 (The MathWorks Inc., Natick, MA,
2000). To ensure that κj always is positive and never has more influence than
the diffusion data, κj is constrained to the interval [0,

∑
i′ 6=j ai′j ].

The posterior distribution of θdiffusionj is found using Bayes’ theorem

p(θdiffusionj |aj , κj , τ j) =
p(aj | θdiffusionj )p(θdiffusionj | κjτ j)∫

p(aj | θdiffusionj )p(θdiffusionj | κjτ j)dθdiffusionj

(3.38)

= Dir(aj + κjτ j). (3.39)

As an estimate of the of the relative streamline probabilities we used the ex-
pected value of θdiffusionj

〈θdiffusionj 〉 = wjrj + (1− wj)τ j , (3.40)

where

τij =
Vi∑
i′ 6=j Vi′

(3.41)

rij =
aij∑
i′ 6=j ai′j

(3.42)

wj =

∑
i′ 6=j ai′j∑

i′ 6=j(ai′j) + κj
(3.43)

(1− wj) =
κj∑

i′ 6=j(ai′j) + κj
. (3.44)
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Chapter 4

Summary of main results

This chapter describes the main findings of the four manuscripts included in
this thesis.

4.1 Paper 1: Comparing Structural Brain Con-
nectivity by the Infinite Relational Model

4.1.1 Motivation

During the last decades there has been a growing interest in modeling brain
connectivity [134, 153], but until now the structural organization of the brain,
derived using tractography, has primarily been characterized using graph theo-
retic measures [14, 54, 53] or using modularity [108, 87], that only consider the
within-cluster link-densities instead of the full connectivity profile. With the
growing focus on modeling whole-brain connectivity, there is a need for power-
ful and reliable statistical modeling tools that can extract the latent structure
in the graphs, as well as compare connectivity graphs across subjects, scannings
and modalities. In this paper we examine the Infinite Relational Model (IRM)
as a tool to extract the latent structure in structural brain connectivity graphs
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by comparing the structure derived from graphs from different subjects and the
structure derived from the same subject, but from different scanning sessions.

4.1.2 Main findings

We proposed and demonstrated a framework for comparing brain connectivity
graphs based on the structure inferred by the IRM. We used the IRM to extract
the latent structure of six structural connectivity graphs from five different sub-
jects. The similarity between the inferred structure both within and between
subjects, as well as the predictive performance between subjects, are well above
random, suggesting a common structural organization amongst subjects. The
results indicate that the inferred structure is more consistent within subjects,
i.e. between graphs from the same subject, than between subjects. However,
the predictive performance of the model, assessed by predictive log-likelihood
and AUC, is similar within and between subjects.

4.1.3 Considerations

The results presented herein are only based on six structural connectivity graphs
from five different subjects, i.e. one re-scan. To confirm the result, that the
structure within subjects is more similar than between subjects, more subjects
and re-scans must be included. Furthermore, when using predictive performance
to assess graph similarity, one should be aware that it is influenced by other
factors, such as graph density.

The graphs used in this analysis were defined by a subdivision of a cortical
atlas with 66 regions, resulting in 998 regions of interest [52]. Even if the initial
number of nodes, i.e. 998, is above the number of cortical regions suggested
by recent results [45], the employed parcellation may not be optimal to account
for the brain’s structural organization and hence may introduce a bias in the
IRM-derived structure.
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4.2 Paper 2: Nonparametric Bayesian Cluster-
ing of Structural Whole Brain Connectivity
in Full Image Resolution

4.2.1 Motivation

Tractography based on dMRI enables estimation and mapping of the structural
connectivity of the brain, the so-called connectome [51, 139]. To generate a
structural connectivity graph, the nodes (i.e. regions of interest) have to be de-
fined. Until now, the nodes have been defined by cortical atlases or subdivisions
thereof. However, this may bias any structure derived using data-driven meth-
ods, as the employed parcellations may not optimally account for the structural
connectivity of the brain. With the recent development in computational power,
it is now possible to generate structural connectivity graphs at high resolution,
i.e. defining the nodes by individual voxels on the GM-WM boundary, as op-
posed to grouping the voxels into larger parcels which are defined a priori. This
approach, however, results in noisy and redundant graphs [138] and requires
statistical models to extract this latent information. In this paper, we use the
IRM to extract the latent structure of a high resolution graph, and investigate:
1) What is the statistically salient resolution of structural connectivity graphs?
2) How reliable can these salient structures be detected? 3) Are the derived
structural units better at predicting connectivity than existing atlases?

4.2.2 Main findings

By using the IRM to extract the latent structure of high resolution brain con-
nectivity graphs, we find that the statistically salient resolution is in the order of
one thousand clusters. We also find that inferred structures are similar across
repeated runs of the IRM, both within and between graphs, and also some-
what similar to two commonly used anatomical atlases, namely the Desikan-
Kiliany [30] and the Destrieux atlas [31]. In addition, we find that the derived
structure better predicts an independent structural connectivity graph derived
from a re-scan of the same subject, than either the raw graph itself or the two
anatomical atlases.
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4.2.3 Considerations

We herein used the IRM to extract the latent structure of a structural connec-
tivity graph at full image resolution. What full image resolution is can, however,
be discussed as the structural T1-weighted image has higher spatial resolution
than the diffusion weighted images. In the analysis only a single subject is in-
cluded, as a one-to-one correspondence between subjects is needed to be able
to compare subjects. When employing a cortical parcellation based on gross
anatomical structures, the correspondance is a straight-forward problem, but
as the resolution of the parcellation increases, a direct correspondence between
subjects becomes challenging.

The estimated number of clusters is relatively high compared to recent sugges-
tions [45]. This may indicate that the IRM overfits the data to some extent.
Even though the IRM-extracted-structures predict a second connectivity graph
from a re-scan of the same subject significantly better than both the raw (i.e.
unclustered) graph and two anatomical atlases, the predictive performance when
predicting an unseen subject was not investigated.

Furthermore, the MCMC sampler used in the inference procedure did not con-
verge and the choice of the IRM hyperparameters was not investigated. Nonethe-
less the identified clusters were fairly robust to initialization, indicating that a
better sampling strategy would not cause substantial changes in the results pre-
sented herein. Other factors that may influence the results are the quality of
the data, i.e. spatial image resolution, angular resolution and b-value, as well
as choice of diffusion model, tractography algorithm and parameters specific to
those models.

4.3 Paper 3: Predictive Validation of Human Brain
Parcellations

4.3.1 Motivation

Structural connectivity graphs derived using tractography are highly dependent
on the cortical parcellation used to define the nodes [168]. It is very important to
employ such a parcellation, either anatomically defined or data-driven, to elimi-
nate noise and redundancy in brain connectivity graphs [138]. Multiple cortical
parcellations exist, but the validation of these parcellations is difficult due to
the absence of a true gold standard. In this paper we propose a framework
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for quantitative validation of brain parcellations via statistical prediction on in-
dependent brain connectivity data. The framework is demonstrated on three
cortical parcellations, namely two commonly used atlases based on surface mor-
phology, the Desikan-Killiany [30] and the Destrieux atlas[31], and the recently
proposed Human Connectome Project Multi-modality Parcellation [45], based
on resting-state and task fMRI, cortical thickness and myelin. The parcella-
tions are quantified by their ability to account for structural brain connectivity
data and are compared to random parcellations and data-driven parcellations
optimized to account for structural connectivity.

4.3.2 Main findings

In this paper we presented a statistical prediction framework to validate cortical
brain parcellations and demonstrated its utility by testing it on three existing
brain parcellations. We find that all three tested parcellations perform much
better than random, but also that the multi-modal parcellation better accounts
for the structural organization than the atlases based solely upon surface mor-
phology, almost on par with the data-driven approaches optimized to account for
structural connectivity. The performance of the data-driven approaches are on
par with non-parametric link-predictors, indicating that no important informa-
tion is lost when employing data-driven parcellations. Furthermore, the results
show that structural connectivity inferred from a single subject has poor predic-
tive performance compared to the structure inferred from a population. Finally,
the results indicate that the structural connectivity is better characterized using
more parcels than contained in the three tested atlases. The optimal resolution
of a parcellation is, however, non-trivial as a broad range of resolutions provide
similar predictive performance.

4.3.3 Considerations

The results presented herein may be biased by the data processing, such as the
surface registration between subjects, and tractography biases. The structural
connectivity graphs are derived from dMRI-based tractography which, just like
any other connectivity estimation approach, has its challenges and limitations,
which may influence the sensitivity and specificity of the estimated graph [69,
103, 84]. The impact of these biases is, however, hard to quantify, due to the lack
of a gold-standard reference, and is undetectable by the presented framework,
as they will be present in both training and test graphs. Despite all these
challenges, we find that the three tested parcellations in general comply with
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the structural connectivity data, suggesting a compliance between structural
connectivity and other modalities.

As is common practice, the sensitivity/specificity balance is adjusted by thresh-
olding the structural connectivity graphs [53, 54, 33]. However, as the ground
truth is unknown, the optimal trade-off between the two cannot be assessed
and unfortunately no threshold will result in both 100% sensitivity and 100%
specificity [77, 167, 120, 36]. Nonetheless, the ranking of the three atlases is
maintained across the three different threshold levels tested, suggesting that the
proposed validation procedure is robust to the chosen threshold level.

4.4 Paper 4: Validation of Structural Brain Con-
nectivity Networks

4.4.1 Motivation

The structural connectivity graphs generated with dMRI-based tractography
are dependent on a comprehensive data processing pipeline [99, 71, 73, 62, 120].
In each step of the pipeline choices have to be made, from scanner acquisition-
specific parameters through to fiber model, tractography algorithm and their
respective parameters, to choices of thresholding and normalization of the struc-
tural connectivity graphs. Until now, the primary focus has been on the model-
related parameter choices, i.e. fiber model, tractography algorithm, etc., though
the possible influence of scanner acquisition parameters is also occasionally dis-
cussed [32, 9]. In this paper, we investigate how different scanner acquisition
parameters, i.e. spatial resolution, angular resolution and b-value, influence the
agreement between structural connectivity graphs derived from tractography
and derived from retrograde invasive tracer injections in monkeys [96].

4.4.2 Main findings

We have quantified how structural connectivity graphs derived from tractog-
raphy are dependent on chosen acquisition parameters, i.e. spatial resolution,
angular resolution and b-value. We find that spatial resolution, angular reso-
lution, as well as the interaction between the two and the interaction between
spatial resolution and b-value, have a significant effect on the agreement with
the tracer graph. Surprisingly, we find that structural connectivity graphs de-
rived from low spatial resolution data is in better agreement with the tracer
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graph, than those derived from high spatial resolution data. This suggests that
the anatomical details available in the low spatial resolution data are sufficient
to describe the tracer graph and the extra information available in the high
spatial resolution data does not improve the agreement further. The result may
be due to difference in the SNR, but further investigation is needed to confirm
this claim. The similarity measure, cross entropy, used to compare the graphs
from different modalities, show robustness to the level of threshold, whereas
the optimal sensitivity/specificity trade-off is highly dependent on the applied
threshold. Furthermore, we find that the agreement with the tracer graph is
independent of the seeding strategy used.

4.4.3 Considerations

The results show that graphs derived from low spatial image resolution are in
better agreement with the tracer graph, than those derived from high spatial
resolution. The two resolutions are, however, difficult to compare directly as
the SNR is different in the different datasets. Further investigation of how SNR
influences the results are therefore needed to confirm or refute this result. In
addition, the results may be improved by combining multiple spatial resolutions
as suggested by [136], thereby utilizing the information available on all scales.
Also, the integration step length in the tractography is different between spatial
resolutions, though it did not seem to have a major influence on the results, in
agreement with [29, 145].

Another consideration that may bias the result is the resolution of the employed
parcellation, as it may be too coarse to differentiate appropriately between differ-
ent combinations of the considered parameters. To rule out this effect, a tracer
graph in higher resolution must be employed. The tracer graph by Markov et
al. [96] used in this study is, however, the most detailed tracer connectivity
study in monkeys currently available.
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Chapter 5

General discussion and
future perspectives

The work presented in this thesis shows the utility of statistical models to ex-
tract the latent structure from structural brain connectivity graphs derived from
dMRI-based tractography. The parcellations derived using the SBM and the
IRM are fairly robust, i.e. exhibit quite similar structure between restarts of
the model, and account well for the structural connectivity, assessed by their
ability to predict links in unseen structural connectivity graphs. The models are
able to de-noise the structural connectivity graphs by aggregating nodes with
similar connectivity patterns into homogeneous clusters. The de-noising is ex-
pressed by the superior predictive performance of the data-driven parcellations
compared to the raw (unclustered) graph and two anatomical atlases based on
surface-morphology (Paper B). It should, however, be noted that the sampler
does not mix fully, which means that the optimal parcellation may not be found.
This may be improved by better sampling strategies. Furthermore, the derived
parcellations may be biased by a potential cortical parcellation employed to de-
fine the nodes in the graph (Paper A), as well as biases in the tractography. To
overcome the biases introduced by an employed cortical parcellation, the struc-
tural connectivity graph can be generated in full image resolution, i.e. a node
is defined as a voxel on the GM-WM boundary (Paper B) or as a vertex on the
WM surface (Paper C). Such a high resolution structural connectivity graph
is, however, noisy and possesses high redundancy [138]. The results presented
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herein show that the infinite relational model is capable of extracting a structure
that better complies with structural connectivity than two anatomical atlases
based solely upon surface morphology (Paper B). Additionally, we proposed a
predictive validation framework for quantifying cortical parcellations, by their
ability to account for structural connectivity, and tested it on three cortical
parcellations (Paper C). It was found that all three atlases better account for
structural connectivity than random parcellations, but also that the recently
proposed multi-modal parcellation, based on task and resting-state fMRI, cor-
tical thickness and myelin [45] has superior predictive performance over those
based solely upon surface morphology. This suggests that the organization of
structural connectivity is in compliance with other modalities. A limitation is
that the tractography biases cannot be estimated by the predictive framework
proposed herein, as they are present in both training and test graphs.

One way to quantify the tractography biases, as well as the impact of other
methodological choices in the generation of structural brain connectivity graphs,
is to validate the tractography results against results from invasive tracers.
Tracer studies are, for ethical reasons, limited to animals studies, but can pro-
vide insight into the accuracy of the tractography derived graphs [36, 77, 143,
29, 151, 9, 32]. Multiple parameters of the processing pipeline used to gener-
ate structural brain connectivity graphs have already been investigated. These
include, amongst others, choice of fiber model [143, 154], tractography algo-
rithm [16] and FA threshold [16, 9, 29], and it was found that most of the
parameters impact the derived network. Herein we have validated how differ-
ent scan acquisition parameters, i.e. spatial resolution, angular resolution and
b-value, influence the generated structural connectivity graph (Paper D). The
results presented herein show, as expected, that the derived structural connectiv-
ity graph depends on the chosen scan acquisition parameters. Surprisingly, the
results indicate that higher spatial resolution not improves the final structural
connectivity graph. This indicate that the anatomical information available in
low image resolution sufficiently describe the connections in the tracer graph.
This may be because large WM tracts are identified in both spatial resolutions,
because the low resolution data has higher SNR or because the analysis was
performed using a coarse cortical parcellation. A possible way to improve the
structural connectivity graphs derived from tractography is to combine to two
spatial resolutions, thereby utilizing all the information available on both scales,
as suggested in [136]. In addition, the combination of the three b-values may
also very well improve the derived graph.

Because no commonly accepted pipeline for generating structural connectiv-
ity graphs exists, the results between studies are difficult to compare. Such
a common pipeline may, however, not be reasonable to adapt as most of the
methodological choices depend on the specific data. The choice of fiber model
and tractography algorithm is likely to be dependent on the specific data. This
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makes cross-comparison of studies difficult as one model may perform better in
one dataset than in another. Also, one can speculate that the same fiber model
or tractography algorithm is not appropriate for all values of the tested scan ac-
quisition parameters. To validate the derived structural connectivity graph, the
result of every step in the pipeline should be validated, such that data obtained
with each combination of the scan acquisition parameters are modelled using the
most appropriate model, and thus for each step the parameter choices for the
specific data in hand should be optimized. In addition, it has been shown that
the optimal settings depend on the specific WM tract under investigation [143].

5.1 Tractography biases

Structural connectivity graphs are derived from dMRI data by integrating the
local estimates of fiber orientations obtained with tractography. Due to noise in
the data and the aggregation of anatomical information into voxels, the derived
structural connectivity graphs contain numerous false positives and false nega-
tives, which are difficult to quantify in the absence of a gold-standard reference.

To minimize the number of false positive connections, we applied a uniform
streamline count threshold, as common practice [53, 54, 33]. However, it is
known that varying the threshold value changes the balance between the sen-
sitivity and the specificity of the graph [77, 167, 120, 36]. Another recently
suggested approach is to threshold the graphs based on the appearance of a
streamline across a population, instead of thresholding based on the streamline
counts [123]. The results presented herein (Paper C and D) show, however, the
same general results, independent of a wide range of applied thresholds.

Another known tractography bias is the tendency of streamlines to terminate
in gyral crowns instead of sulcal walls, the so-called gyral bias [152, 122], which
is not seen when mapping connectivity using invasive tracers [152]. To further
complicate matters, the structural connectivity graphs estimated using trac-
tography are in general more sparse than those derived using invasive tracers,
because of the very dense superficial WM that prevents the detection of long
range connections [122]. Although it has been shown that the gyral bias exists,
correcting for this bias, as done in [32], only results in a minor increase in the
sensitivity/specificity trade-off. Specifically a trade-off occurring at 65% for GM
seeding and 67% for WM seeding. In comparison, the results in Paper D, with-
out correction for gyral bias, were between 59-63% for both seeding strategies,
depending on the specific combination of scan acquisition parameters. Thus,
correction of this bias may improve accuracy, but it does not seem to be a bias
with great influence on the derived structural connectivity graph. One expla-
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nation why correction of the gyral bias does not seem to have a great impact
may be due to the fact that the employed cortical parcellation is very coarse
and hence the bias is averaged out across a region.

5.2 Future perspectives

Even though dMRI-based tractography is limited and quantification of the in-
evitable biases is difficult, it forms an important window into the structural
connectivity of the brain and I believe that knowledge obtained from tractog-
raphy studies can help improve diagnosis and treatment of diseases owing to
white matter changes. In this work I investigated how different scan acquisi-
tion parameters influenced the derived structural connectivity graph. However,
further investigation of how different parameters influence the derived graph
and validation hereof is still needed, as well as further development of MRI
hardware, sequences, models and more extensive tracer studies to validate the
derived structural connectivity graphs.

I believe that the statistical models and the proposed prediction framework pre-
sented herein are promising tools for de-noising brain connectivity graphs, iden-
tifying the brain’s structural organization and for comparing brain connectivity
data in general. In future work, the data-driven parcellations should be derived
on a larger cohort of subjects using multi-modalities, as the inclusion of other
modalities may reduce some of the tractography biases. Furthermore, I envision
to evaluate future prospective atlases using the prediction framework potentially
including other modalities. In addition, future development of the prediction
framework may be useful in the comparison and classification of populations,
as well as assessing longitudinal effects of, for example, ageing, maturation and
medical treatment.
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Abstract—The growing focus in neuroimaging on analyzing
brain connectivity calls for powerful and reliable statistical
modeling tools. We examine the Infinite Relational Model
(IRM) as a tool to identify and compare structure in brain
connectivity graphs by contrasting its performance on graphs
from the same subject versus graphs from different subjects.
The inferred structure is most consistent between graphs
from the same subject; however, the model is able to predict
links in graphs from different subjects on par with results
within a subject. The framework proposed can be used as a
statistical modeling tool for the identification of structure and
quantification of similarity in graphs of brain connectivity in
general.

Keywords-Neuroimaging, Bayesian Methods, Structural Con-
nectivity, Relational Modelling

I. INTRODUCTION

The human connectome [1], [2] constitutes a formidable
network formed by trillions of connections between billions
of neurons [1]. While current technologies cannot measure
the full human connectome, functional and diffusion mag-
netic resonance imaging are key non-invasive techniques for
measuring brain connectivity at a spatial resolution in the
order of cubic-millimeters. Functional connectivity can be
estimated by quantifying similarity between blood oxygen
level dependent (BOLD) responses between brain regions
[3], [4], whereas structural connectivity between gray-matter
regions can be derived from tractography approaches, see
also [5].

Using tools from network science, researchers have ana-
lyzed graphs of brain connectivity in terms of their func-
tional segregation and integration as quantified by graph
measures such as the clustering coefficient and shortest path
properties, see also [4], [6]. In [7] structural connectivity
graphs were derived between 998 regions of interests (ROI)
spanning the whole brain for five subjects (one subject
was scanned twice) using tractography based on diffusion
spectrum imaging. These graphs were found to include a
structural core as well as distinct structural modules [7].

With the growing focus in neuroimaging on modeling
graphs of brain connectivity, there is a need for powerful
and reliable statistical modeling tools that can identify latent
structure. A further challenge is to compare different con-
nectivity graphs, e.g. to assess similarities across different
subjects, measuring modalities, etc. The Infinite Relational

Model (IRM) [8]–[10] is a probabilistic generative model of
structure in relational data (graphs), in which the nodes of
the graph are partitioned into groups with statistically similar
connectivity patterns. The number of groups is automatically
inferred from data. The IRM can be used to quantify
how similar two brain connectivity graphs are either by
comparing the group structure estimated for two graphs or by
fitting the model on one graph and using the result to predict
the other graph, where a low prediction error indicates that
the graphs are similar.

In this paper we discuss the following question: Can
the infinite relational model reliably be used to estimate
latent group structure and quantify the similarity between
brain connectivity graphs? We address this by contrasting
the performance of the IRM on graphs from the same
subject versus graphs from different subjects, expecting that
similarity should be greater on graphs from the same subject
than on graphs from different subjects. As the inference in
the IRM is based on Markov chain Monte Carlo (MCMC)
we use multiple restarts to assess potential mixing issues
of the sampler. To compare graphs we examine normalized
mutual information as a measure of consistency of the in-
ferred group structure and predictive log-likelihood and area
under curve (AUC) of the receiver operator characteristic
to estimate how well a model fitted on one graph can
predict another graph. The proposed framework extends to
the modeling of other types of brain networks and forms a
principled statistical modeling tool for quantifying both the
number of functional and structural units in brain networks
as well as comparing brain connectivity in general.

II. METHODS

The infinite relational model is a non-parametric Bayesian
generative model for complex networks independently pro-
posed in [8], [9]. The model is an extension of the stochastic
block model [11] to include an unbounded number of
clusters based on the Chinese Restaurant Process (CRP)
(see also [12] for an introduction to the IRM.) The generative
model for the IRM is given by

z ∼ CRP(α), Groups

ηlm ∼ Beta(β+, β−), Interactions

Aij ∼ Bernoulli(ηzi,zj ), Links.
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Figure 1: Left: Graphs before and after ordering into the maximum likelihood grouping. Right: NMI between grouping
and itself after a fraction of vertices has been permuted. NMI roughly correspond to the fraction of permuted vertices.

The model partitions the nodes into groups z (zi = m means
node i is assigned to group m). Links are formed between
nodes in groups l and m independently with probability ηlm,
and α, β+, and β− are hyperparameters of the model. As
the beta prior on η is conjugate to the Bernoulli likelihood
this parameter can be collapsed such that

p(A, z|β+, β−, α) =

∫
dη p(A|z,η)p(z,η|β+, β−, α)

=

[ ∏

l≥m

B(n+
lm + β+, n−lm + β−)

B(β+, β−)

][
Γ(α)αK

Γ(α+ I)

K∏

k=1

Γ(nk)

]
,

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) is the normalization constant of

the beta distribution, nm is the number of nodes in group
m, and n+

lm =
∑
ij Aijδl,ziδm,zj/2

δlm (and similar for n−lm
with Aij replaced by (1−Aij)) denotes the number of links
and non-links between group l and m. We use the notation
β = β++β− and nlm = n+

lm+n−lm. Based on this, z can be
inferred by MCMC. We use Gibbs sampling in combination
with split-merge moves similar to [8].

A. Quantifying graph similarity by the IRM

To compare the similarity of graphs based on the IRM, the
estimated group structure can be compared directly, or by
exploiting that the IRM model is a generative model, a model
fitted on one graph can be used to predict other graphs.
We compare the following three measures to assess similar-
ity between graphs: normalized mutual information (NMI)
between the inferred clustering structure of the graphs, the
predictive log-likelihood, and the area under curve (AUC) of
the receiver operator characteristic. These three approaches
are described below.

1) Normalized Mutual Information (NMI): The NMI be-
tween two group structures z and z∗ is given by

NMI(z, z∗) =
2I(z, z∗)

I(z, z) + I(z∗, z∗)
,

where I(·, ·) is the mutual information defined by I(z, z∗) =∏
l,m p(l,m) log

(
p(l,m)
p(l)p(m)

)
and p(l,m) is the probability

that a node in cluster l in z is in cluster m in z∗. For I(z, z)

this reduces to the entropy H(z) = −∑m p(m) log p(m).
An important property of mutual information is that it is
invariant to permutation of the extracted groups. NMI is
bounded by [0,1] where 0 indicates that the two group
assignments are independent whereas 1 indicates the two
groupings are identical up to permutation [13].

2) Predictive log-likelihood: To quantify how similar the
structure of links are in two graphs we can evaluate how well
the IRM inferred on graph A predicts the graph A∗. The
expected predictive log-likelihood for a given group structure
z is given by

〈log p(A∗|z,A, β+, β−, α)〉p(η|A,z) =∑

i>j

A∗ij〈log ηzi,zj 〉p(η|A,z) + (1−A∗ij)〈log(1− ηzi,zj )〉p(η|A,z)

where the expectations are 〈log(ηzi,zj )〉 = ψ(n+
lm + β+)−

ψ(nlm + β) and 〈log(1 − ηzi,zj )〉 = ψ(n−lm + β−) −
ψ(nlm+β) and ψ is the digamma function ψ(x) = d log Γ(x)

dx .
Averaged over the posterior samples from the MCMC run,
this can be used as a predictive similarity measure.

3) Area Under Curve (AUC): An alternative measure for
prediction is based on the extend to which the probabilities
of generating links inferred by the IRM in graph A can be
used to separate the class of links and non-links in graph
A∗. The expected probability of generating a link between
node i and j is given by

〈p(A∗ij = 1|z,A, β+, β−, α)〉p(η|A,z) =
n+
lm + β+

nlm + β
.

This probability can be used as a scoring function (s(i, j))
for computing the AUC which is bounded by [0,1] where 1
corresponds to a perfect separation of the link and non-links
by the scoring function s(i, j) whereas 0.5 means that the
scoring function is no better than chance. A benefit of the
AUC is that it is invariant to class-imbalance issues. The
AUC is therefore widely used as measure of performance in
link-prediction tasks, see also [14].

B. Data and experimental setup
The human cortex connectivity dataset [7] available from

http://cmtk.org/viewer/datasets is used. The dataset consists
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Figure 2: Each column indicates similarity between scan A1 (or A2) and the other scans according to NMI, predictive
likelihood and AUC. The green boxes indicate variability across the 10 MCMC restarts, the blue boxes how well subject
A1 (or A2) generalize across the other scans and the red is a baseline given by random permutations. The red crosses are
outliers. The dots in the lower row correspond to naively predicting A∗ = A.

of six structural connectivity graphs obtained from trac-
tography based on diffusion spectrum imaging (DSI) from
five subjects [7]. Graph A1 and A2 are obtained from
two different scans of the same subject. The graphs have
J = 998 nodes and were symmetrized and binarized before
our analysis. The number of links and the graph densities
are listed in Table I. The MCMC inference is initialized
at random and is run for 50 000 iterations. Every 25th
sample is saved, resulting in 2 000 samples. 10 MCMC
restarts are made for each graph. The priors are selected
as β+ = β− = 1 and α = log(J). The number of clusters
is initialized uniformly at random between 1 and 200.

III. RESULTS

The similarity of the groupings of nodes is found by
calculating the NMI between the assignment matrices from
MCMC restart 1 and 2, 2 and 3, . . . , 10 and 1. The NMI
for each subject versus itself is shown in Figure 2 as green
boxes indicating an upper bound on the similarity. Instead
of averaging NMI over the posterior distribution, we use
the single posterior sample with the highest likelihood, thus
the NMI for a graph versus itself should in theory be
equal to one. The blue boxes are the NMI for MCMC
restart 1 between subject A1 (A2 in second column) and
all the other subjects—this indicates the estimated similarity

Subject No. of links Graph density [%]

A1 27 040 2.71
A2 29 730 2.98
B 28 444 2.86
C 29 866 3.00
D 29 702 2.98
E 28 744 2.89

Table I: The number of links and density of the 6 graphs.

between subjects. The red boxes show NMI between A1
(A2) and a random permutation of each subject indicating a
lower bound on the similarity. The NMI within a subject is
around 0.85 corresponding to a fraction of 10% of the nodes
are permuted, as shown in Figure 1b. The reason why the
NMI within a subject is less than 1 can be attributed to
lack of mixing of the MCMC sampler making it unable to
identify the same highest likelihood solution. This indicates
that the MCMC sampler should either be run for a much
larger number of iterations, which may be impractical, or
that more efficient inference procedures should be devised.
Nonetheless, the results gives an indication of the magnitude
of error due to lack of mixing. The NMI between subject
A1 and A2 is slightly higher than NMI between any other
combinations. This indicates that the graph structure is more
similar within a subject across scans than between subjects,
but further investigations are needed to confirm the result.
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Figure 3: Boxplot of the number of groups in each of the
10 MCMC restarts per subject.

The NMI between subjects is well above random, suggesting
a common latent structure between subjects.

The predictive log-likelihood and the AUC between sub-
ject A1 (A2 in second column) and the other subjects are
found using every 25th sample of the last 25 000 samples
using subject A1 (A2) as training data. The predictive log-
likelihood and AUC is shown as blue boxes, the green
boxes indicate how a subject predicts its own graph, and
the red boxes show how A1 (A2) predicts the other graphs
randomly permuted. For reference, the dots in the AUC plot
indicate baseline results when naively predicting that graphs
are equal. The predicted log-likelihood and AUC between
subjects is well above random, again supporting a common
latent structure; however, when training the model on subject
A1 (left column), subject B has the highest predictive log-
likelihood and AUC. This might be due to differences
in graph density since A1 has the lowest graph density
and graph B the second lowest density, but it also shows
that predictive performance should be used with caution to
assess graph similarity. When training the model on subject
A2 (right column), subject A1 has the highest predictive
log-likelihood and AUC: Here, as expected, the predictive
performance is best within a subject.

Figure 3 shows a boxplot of the number of clusters in
each MCMC restart where the color indicates the different
subjects. Each box shows the distribution of the number
of clusters from every 25th sample of the last 25 000
samples; however, most are centered on a single number
again indicating that the MCMC sampler does not mix
properly. Nevertheless, both within each subject and across
subjects the number of components is fairly consistent.

IV. CONCLUSION

We proposed a framework for comparing graphs of brain
connectivity based on the structure inferred by the infinite
relational model. We tested the framework on six benchmark
structural connectivity graphs derived from diffusion spec-
trum imaging and found that all the networks were consistent
both within and between subjects. The inferred structure
appeared to be slightly more consistent as quantified by NMI
within a subject than from this subject to the other four
subjects. However, it was observed that the inferred models
predict structural connectivity equally well within a subject

as across subjects. In particular, the structure inferred were
significantly more consistent than would be expected by
random and also more consistent than predicting on the raw
graphs. We believe the proposed framework has promising
applications for identifying structure and comparing brain
connectivity data in general.
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Abstract—Diffusion magnetic resonance imaging enables mea-
suring the structural connectivity of the human brain at a
high spatial resolution. Local noisy connectivity estimates can
be derived using tractography approaches and statistical models
are necessary to quantify the brain’s salient structural organi-
zation. However, statistically modeling these massive structural
connectivity datasets is a computational challenging task. We
develop a high-performance inference procedure for the infinite
relational model (a prominent non-parametric Bayesian model
for clustering networks into structurally similar groups) that
defines structural units at the resolution of statistical support.
We apply the model to a network of structural brain connectivity
in full image resolution with more than one hundred thousand
regions (voxels in the gray-white matter boundary) and around
one hundred million connections. The derived clustering identifies
in the order of one thousand salient structural units and we find
that the identified units provide better predictive performance
than predicting using the full graph or two commonly used
atlases. Extracting structural units of brain connectivity at the
full image resolution can aid in understanding the underlying
connectivity patterns, and the proposed method for large scale
data driven generation of structural units provides a promising
framework that can exploit the increasing spatial resolution of
neuro-imaging technologies.

I. INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) is an im-
portant non-invasive technique for studying the brain’s struc-
tural organization. By tracking the diffusion of mainly water
molecules that align with the orientation of the fibers in the
brain, local estimates of fiber orientation can be obtained.
These estimates are aggregated by tractography to derive
maps of structural connectivity between cortical gray matter
regions [5]. For the current dMRI technology these maps in
full image resolution constitute complex networks of structural
connectivity in the order of one hundred thousand regions and
one hundred million links (see Fig. 1).

While the quantified fiber orientation within small regions
of the brain as well as the subsequently derived local connec-
tivity estimates are very noisy, these estimates can be aggre-
gated to derive networks of whole brain connectivity within
larger regions of structural units. These structural units have
traditionally been based on automatic subdivision of the human
brain into a fixed number of pre-specified neuroanatomical re-
gions of interests (ROIs) [13], [7]. The Destrieux atlas [13], [8]
currently has around 150 ROIs whereas the Desikan-Killiany
atlas [7] has 68 ROIs. While these ROIs can be arbitrarily
subdivided to provide additional regions [14] they are not
explicitly based on the evidence obtained by the structural
connectivity data and may therefore not optimally reflect the
latent connectivity patterns of structural connectivity. Rather
than fixing the structural units to a predefined atlas, we set
out to learn the number of structural units and their spatial
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Fig. 1. Complex network of structural brain connectivity with 167 635 nodes
and around one hundred million links obtained using 5000 streamlines per
seed voxel. Left: Link density in each pair of the 68 regions of interest in the
Desikan-Killiany atlas. Right: Links between the first 200 regions.

representations from the raw high resolution networks obtained
using tractography. To accomplish this we develop a large
scale implementation of a prominent statistical network model,
the infinite relational model (IRM) [17], [24]. The IRM is
able to infer structurally consistent units at a resolution which
is determined based on statistical evidence. While structural
connectivity graphs have previously been clustered based on
IRM [3] as well as other tools such as modularity [14], this
is to the best of our knowledge the first attempt at modelling
structural connectivity at the full image resolution of current
dMRI technology.

This paper examines the capabilities of a large scale imple-
mentation of the IRM to identify structure in high-resolution
structural brain connectivity graphs. We study to what extend
we can perform inference on such large scale networks and
whether it is feasible to reliably detect the structural units in
a data driven manner using our implementation. In particular,
we investigate: i) What is the statistically salient resolution of
structural connectivity graphs, i.e., how many clusters are used
to represent high resolution structural connectivity data? ii)
How reliable can these salient structures be detected, i.e. how
consistent are the structural units with respect to initialization
and convergence of the sampler as well as the number of
streamlines? iii) Are the derived structural units better at
predicting connectivity than existing atlases, i.e. how well does
the connectivity patterns derived from the structural units of
one graph predict the connectivity of another graph obtained
from another set of whole brain diffusion weighted images
from the same subject?978-1-4799-4149-0/14/$31.00 c©2014 IEEE



II. STATISTICAL MODEL AND INFERENCE

A. Infinite Relational Modelling
The Infinite Relational Model (IRM) [17], [24] is a non-

parametric extension of the stochastic block model [19] in
which vertices in a graph are grouped into homogenous
blocks according to their structural similarity. The IRM uses
the Chinese Restaurant Process (CRP) [2], [20] as prior for
the partitioning of vertices to groups thereby allowing for
an arbitrary number of groups. The IRM is defined by the
following generative process:

z ∼ CRP(α), groups, (1)
ηlm ∼ Beta(β+, β−), interactions, (2)

Aij ∼ Bernoulli(ηzizj ), links, (3)

where z is the group assignment, η is the probability of links
between each pair of groups, and A is the adjacency matrix of
the graph. As the beta prior on the elements of η is conjugate
to the Bernoulli likelihood these parameters can be analytically
integrated to form the joint distribution:

P (A, z|α, β+, β−) =

∫
P (A, z,η|α, β+, β−)dη (4)

=
αKΓ(α)

∏
k Γ(nk)

Γ(J + α)

∏

l≤m

B(N+
lm + β+, N−lm + β−)

B(β+, β−)
,

where K is the number of groups, J is the number of vertices,
nk is the number of vertices assigned to the k’th group, N+

lm
and N−lm are the number of links and non-links between group
l and m, and B(a, b) = Γ(a)Γ(b)

Γ(a+b) is the beta function.

B. Inference by Markov Chain Monte Carlo (MCMC)
To infer the posterior distribution, P (z|A, α, β+, β−), we

use an MCMC procedure combining Gibbs and split-merge
sampling [17]. In Gibbs sampling the posterior conditional
distribution of placing one vertex at a time in any of the
existing groups or in a new empty group is evaluated and
the vertex is assigned according to this distribution. The
probability of assigning a vertex i to group ` is given by:

P (zi = `|A,z\i, h) =
P (A, z\i, zi = `|h)

K+1∑

`′=1

P (A, z\i, zi = `′|h)

, (5)

where h = {β+, β−, α} denotes the hyperparameters.
Rather than considering the assignment of a single vertex

at a time split-merge sampling as presented in [15] attempts
to merge or split existing clusters. Here, two vertices i and
j are selected at random. If they are currently assigned to
two different groups zi 6= zj , it is proposed to merge the
two groups. Else it is proposed to split the single group in
two. The procedure makes use of Gibbs sampling restricted
to the nodes of the considered group(s) in order to define
an intermediate launch state as well as to define the final
split configuration and its transition probability q(z|z∗). For
a split configuration q(z|z∗) is derived as the product of
the individual transition probabilities of the vertices to move
from the launch state to the final split configuration. As a
merge transition is deterministic the transition from a split to
a merge configuration has probability 1. Proposals are rejected

or accepted according to the Metropolis-Hastings acceptance
probability:

α(z∗|z) = min

[
1,
P (A, z∗|β+, β−, α)q(z|z∗)
P (A, z|β+, β−, α)q(z∗|z)

]
. (6)

C. Large scale computation
To get the computational performance necessary for the

IRM to model structural connectivity in full image resolution
we used a dedicated implementation optimized towards fully
utilizing the memory structure and processor architecture of
modern computers (see [1] for details). As the restricted Gibbs
sweeps turns out to be the most computational demanding
part of the split-merge sampling procedure, the performance
of both sampling strategies benefits from most of the same
optimizations. We store data in appropriate structures such that
the sampling algorithms access data elements from sequential
memory. In this way the access pattern takes advantage of
the memory cache structure allowing for significantly faster
memory accesses. To further speed up the Gibbs sampler we
store and update the sufficient statistics, N+ and N−, instead
of recalculating them in every Gibbs sweep. To ensure numeric
stability within machine precision, the posterior in Eq. 5 is
calculated in the log domain. The key operation then becomes
calculating the logarithm of the beta function which relies on
the gamma-function, Γ(a), as:

logB(a, b) = log Γ(a) + log Γ(b)− log Γ(a+ b) (7)

As we only allow integer values for the hyperparameters, we
use a lookup table of precalculated values for log Γ(a) which
speeds up the evaluation of the posterior.

III. DATA

To validate our proposed method, we used a dMRI data
set previously described in [23], [22]. The data was collected
at Danish Research Center for Magnetic Resonance and the
study was approved by the local ethics committee. One healthy
subject was scanned. The images were acquired on a Siemens
VERIO 3T scanner using a 32-channel head coil. Two high
resolution T1-weighted MRI images were acquired using a TR
of 1,900 ms, TE of 2.32 ms, a FA of 9◦, and 0.9mm3 isotropic
resolution. Two sets of whole brain diffusion weighted images
(DWI) were acquired in 61 non-collinear directions with a
b-value of b = 1500 s/mm2, and ten non-diffusion weighted
images (b = 0 s/mm2). For this the twice refocused spin echo
sequence with a TR of 11,440 ms and a TE of 89 ms. 61
axial slices with a resolution of 2.3 mm3 isotropic voxels and
Grappa = 2 were acquired [21]. A field map was acquired
using a double gradient echo sequence with a TR of 479
ms, TE1 of 4.92 ms, TE2 of 7.38 ms, and a resolution of
3mm3 isotropic voxels. The diffusion weighted images (DWI)
were pre-processed using SPM8 (www.fil.ion.ucl.ac.uk/spm).
To reduce motion artifacts and eddy current induced dis-
tortions an affine transformation between the DWIs based
on normalized mutual information was applied. The voxel
displacement map (VDM) was calculated based on the field
map resliced to DWI resolution using the field map toolbox of
SPM8 [16]. The VDM was applied to minimize geometric
distortions due to susceptibility artifacts. Finally the DWIs
were aligned and resliced with affine matrix to a T1 weighted
MRI using 7th degree B-spline interpolation [10]. The 61 non-
collinear diffusion weighting gradient directions were updated
using the same rotations and transformations as the resliced
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Fig. 2. Average voxel-wise coefficient of variation (CV) as function of
number of streamlines in the tractography. The CV and the SNR are based
on tractography results repeated five times for each number of streamlines.

images [18]. Segmentation of the white and gray matter was
performed based on the high resolution structural T1w images
using Freesurfer (surfer.nmr.mgh.harvard.edu) [6], [12], [11].
The Freesurfer reconstruction outputs, among others, the white
matter segmentation and the gray-white matter boundary. The
gray-white matter boundary for both hemispheres was con-
verted to volumes and transformed from Freesurfer conformed
space to native space. Likewise, the white matter segmentation
from the Freesurfer reconstruction was transformed to native
space. The diffusion parameters were estimated using FSL’s
BedpostX and probabilistic tractography was performed using
FSL’s Probtrackx2 with the omatrix3 option [4]. The trans-
formed white matter volume was used as seed in the trac-
tography and the transformed cortex labels as both target and
stop mask in the tractography. For all other options the default
settings were used. The cortex to cortex connectivity graph
were output from FSL’s probtrackx2 using the omatrix3 option.
We obtained four 167,635×167,635 connectivity graphs (i.e.,
scan and rescan for 1000 and 5000 streamlines per seed voxel).
Each link in the graphs took on the value of the number
of streamlines connecting the two voxels in the target mask
(gray/white matter boundary). The graphs were symmetrized
and binarized (i.e., for each graph the graph and its transpose
were added together and entries that were subsequently above
zero set to one).

IV. EXPERIMENTS AND RESULTS

A. Number of streamlines
To ensure that the network obtained by tractography is

robust, probabilistic tractography was performed with different
number of streamlines: Between 50 and 10,000 streamlines
per seed voxel were used. Each number of streamlines was
run five times. The voxel-wise coefficient of variation (CV)
between voxels within the seed mask in the images with equal
number of streamlines was calculated as CV = σ

µ , where σ
is the standard deviation and µ is the mean. The average CV
across all voxels was calculated [9] and is shown as function
of number of streamlines in Fig. 2. The number of streamlines
used in the subsequent experiments was selected on the basis
of the average CV: As the average CV seems to have reached a
stable level when using 1000 streamlines, and definitely when
using 5000 streamlines (Fig. 2) we compare these two values.

B. Model parameters, inference, and convergence
For each network we performed 10 separate runs, all with

the hyper parameters β+ = β− = 1 and α = blog(J)c, where
J is the total number of nodes. For each run, we performed 100
iterations of the following sampling procedure: Each iteration
began with a complete Gibbs sweep over all nodes. It was then
followed by the same number of split-merge operations as the
current number of clusters. In each split-merge operation we
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Fig. 3. Logarithm of the joint distribution for the MCMC inference procedure
for the network based on 5000 streamlines. A zoom of the last 50 iterations
is shown to the right.
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Fig. 4. Normalized Mutual Information (NMI) between 10 independent runs
of the IRM and two atlases for network based on 1000 and 5000 streamlines.

performed 10 restricted Gibbs sweeps. Each of these iterations
took several hours to compute. Fig. 3 shows the logarithm
of the joint distribution for the different runs. It is clear
that the MCMC sampler does not converge (which was also
not to be expected [1]), but even when the sampler does
not converge, the inferred grouping captures suboptimal but
relevant structures in the network. In the following we used
the inferred group structure after the last MCMC iteration.

C. Comparison and stability of estimated group structure
To compare the unsupervised groupings found by IRM

with the groupings provided by the two atlases, we use
the normalized mutual information (NMI) as a measure of
similarity between 0 and 1. For two groupings z and z′, we
use: NMI(z, z′) = 2·I(z,z′)

H(z)+H(z′) where I(z, z′) is the mutual
information between the groupings and H(z) is the entropy
of z. Fig. 4 shows NMI between all runs as well as between
the runs and the two atlases. It is evident that the inferred
groupings are very similar in the 10 runs as evidenced by the
relatively high NMI, both within and between the networks
based on 1000 and 5000 streamlines, respectively. Also, the
inferred grouping is somewhat similar to the two atlases with
an NMI score around 0.5-0.6.

D. Predictive performance
To assess how well the inferred structure fits the data,

we use a second structural connectivity network based on a
rescan of the same subject. Since any differences between the
two scans are due to noise in the processes of generating the
network, measuring how well we can predict the links in the
second graph can be used to quantify the utility of the inferred
structural units. To measure the predictive performance we
use the area under the receiver operating characteristic curve
(AUC) which allows us to compare predictions from the IRM
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model with predictions made using other existing atlases or
predicting directly from the raw network data. The results
in Fig. 5 show that the IRM model outperforms predictions
from the raw graph as well as both the Desikan-Killiany and
Destrieux atlases both for networks based on 1000 and 5000
streamlines. However, when inspecting the extracted structural
units (not shown) they were more diffuse compared to the
atlases which may hamper their interpretation. This may be
attributed both to the lack of convergence as well as lack of
spatial constraints in the modeling.

V. CONCLUSION

When analyzing whole brain structural connectivity in full
image resolution in the order of one thousand salient structural
units were identified by our large scale implementation of
the infinite relational model. The network based on 5000
streamlines had more structural units compared to the network
based on 1000 streamlines. However, the estimated group
structures were quite similar as quantified by NMI. Although
the MCMC sampler did not reach convergence the identified
groups were fairly robust to initialization while having some
similarity to the Destrieux and Desikan-Killiany atlases. No-
tably, the extracted structural units provided significantly better
predictive performances than predicting using the structural
connectivity graph itself or the two considered atlases.

The present paper is to the best of our knowledge the first
attempt at clustering structural connectivity in full resolution
and provides a promising tool for a more detailed account of
structural connectivity in general. In future work the influence
of image resolution and choice of hyper-parameters should be
investigated as should better sampling strategies.
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The organization of the human brain remains elusive, yet is known to
be of great importance to the mechanisms of integrative brain func-
tion. At the macroscale, its structural and functional interpretation is
conventionally assessed at the level of cortical units, permitting in-
ference across a population. However, the definition and validation
of such a cortical parcellation is problematic due to the absence of a
true gold standard. We propose a framework for quantitative valida-
tion of brain parcellations via statistical prediction on independent
brain connectivity data. Using this framework we assess the perti-
nence of three existing parcellations to account for structural con-
nectivity (SC) data, and compare them to random parcellations and
data-driven parcellations optimized for SC. We find that all three at-
lases perform better than random, and the multi-modal atlas recently
proposed by Glasser et al. provides superior characterisation of SC
compared with those based solely upon surface morphology. Our
analysis further suggests that the SC data is better characterized us-
ing more parcels than contained in the considered atlases.

Brain parcellation | Diffusion magnetic resonance imaging (dMRI) |
whole brain structural connectivity | human connectome | link prediction

The vast complexity of the human brain [1, 2] and the
incomplete and noisy measurements available through

neuroimaging modalities require a pragmatic approach to the
analysis of the human connectome [3, 4]. Segregation into
anatomical or functional units provides interpretable and noise
reduced network nodes whose inter-connections approximate
the brain’s organizational structure [5, 6]. Much research is
underway to delineate the structural and functional organiza-
tion of the human brain [7, 8] but it remains unclear which
parcellation best accounts for such organization and how this
is quantified.

To provide a sound basis for analysis, the nodes provided
by a given parcellation method must be robust across a pop-
ulation, and fully represent their local infrastructure, micro-
scopical properties and connectional “fingerprint” — their
unique pattern of inputs and outputs [9]. For example, when
defining cortical regions at the macroscale it has been sug-
gested that specific functions of the areas, such as connectiv-
ity, reproducibility, convergence, multimodality, evolutionary
coherence, and inter-subject variability, should all be taken
into account [10]. However, there still remains a lack of gold
standard evaluation strategies against which any particular
parcellation can be tested.

The exact method of parcellation employed depends upon
the application. Hence a wide variety of parcellation schemes
are currently available, including cortical surface morphology
(Desikan-Killiany [11], Destrieux [12]), functional activation
(AAL [13, 14]), structural connectivity (SC) [15–17], and com-
binations thereof (Brainnetome [18], HCP_MMP1.0 [19]).

The various parcellation schemes exhibit considerable differ-
ences, e.g. number of parcels and parcel border locations, and
no single parcellation appears to be universally accepted. The
situation is exacerbated by studies showing that subsequent
graph measures are sensitive to the chosen parcellation scheme,
both for structural [20] and functional [21, 22] analyses.

The differences in both the size, extent and downstream ef-
fects of a parcellation illustrate that it is important to validate
its relevance to the application in question. Whilst reliability
is often purported as a proxy for validation, it is not suffi-
cient because a method can be arbitrarily reliable yet poorly
account for brain organization. In contrast, the use of data
on brain organization that is independent of how a parcella-
tion is derived can permit a true validation of a parcellation.
To achieve this, we herein describe how parcellations can be
validated using statistical prediction based upon independent
brain connectivity data.

Our statistical prediction framework poses quantification
of parcellation quality as a link-prediction problem [15, 23–25].
A parcellation is thereby assessed by its ability to characterize
brain connectivity data from an independent modality. In
particular, the approach quantifies how well network struc-
ture is preserved in the independent modality by the network
organization induced by the parcellation. Herein, we have
used independent high-resolution SC data from the Human
Connectome Project (HCP) [26–30] to validate three atlases:
Desikan-Killiany (68 parcels) [11], Destrieux (148 parcels) [12]
and Human Connectome Project multi-modality parcellation

Significance Statement

Analysis of brain connectivity is commonly based on a par-
cellation defined from an anatomical atlas; however, there is
no consensus as to what constitutes a good parcellation for
characterising brain connectivity, and a well-founded strategy
that can quantify the quality of such parcellations is lacking.
Here we demonstrate how parcellations can be validated using
statistical prediction on independent connectivity data. Our
predictive validation framework confirms that three prominent
atlases capture the complexity of structural connectivity (SC)
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(HCP_MMP1.0, 360 parcels) [19]. Whereas the first two are
based upon surface morphology, the latter is a multi-modality
atlas which includes fMRI (both resting-state and task-based),
cortical thickness and myelin mapping. We contrast the predic-
tive performance of these atlases to SC-informed parcellations
as well as to spatial homogeneous random parcellations.

Using this validation framework we find that all three
atlases perform far better than random parcellations. We
further find that the HCP_MMP1.0 atlas better accounts for
SC data than the atlases derived from surface morphology.
Furthermore, the framework permits estimation of the number
of parcels supported by the data and we find that the SC data
supports more parcels than employed in existing atlases.

1. Results

Figure 1 outlines the proposed predictive procedure. Input to
the procedure is a parcellation z (zi = m indicates that node
i belongs to parcel number m) and the SC networks of the
training and test population considered. The average density
ρlm of links for the training graphs is computed between each
pair of parcels (l 6= m) and within each parcel (l = m), thereby
representing the SC data in terms of the aggregated average
connectivities between parcels. These average connectivites are
then used to predict the SC of the test graphs, by predicting
a link between node i and j by the score sij = ρzizj for all
i > j. As measure of performance, the area under curve
(AUC) of the receiver operator characteristic (range [0, 1]) is
used. The AUC is 1 if links and non-links in the test graph
are perfectly separated according to the scores sij , whereas
a random prediction would give an AUC of 0.5 (for further
details see supporting information (SI)).

We validate the three non-SC based parcellation schemes of
Desikan-Killiany [11], Destrieux [32], and HCP_MMP1.0 [19].

To provide values of reference for the scale of the AUC
scores, we estimate upper and lower bounds on the predic-
tive performance: Upper bounds were estimated using data-
driven SC parcellations, based on the stochastic block model
(SBM) [15, 25, 33–36] and Ward clustering [37] as proposed
in [17, 38, 39]. These methods cluster nodes into homogeneous
parcels according to their structural similarity and are derived
to optimally account for the SC profile of the whole brain.
They thereby provide an estimate of the upper bound for the
predictive performance that can be obtained on SC data using
a parcellation. To provide an estimate of the lower bound of
predictive performance, we generated a parcellation based on
k-means clustering [40] that grouped nodes based solely upon
their Cartesian coordinates thereby forming spatially homoge-
neous random parcels uninformed by anatomy and SC. Finally,
to ascertain that no substantial information about SC is lost
by representing SC data in terms of parcels, we contrast the
performance of parcellations to conventional non-parametric
link-prediction methods [23]. Background information on all
the above methods is provided in SI.

SC graphs (n = 59, 412 vertices) covering the cerebral cor-
tex of both hemispheres were generated for 26 subjects using
data from the Human Connectome Project (HCP) [26–30].
The graphs were constructed using ProbtrackX2 based proba-
bilistic tractography from FSL [41–43] with 1000 streamlines
seeded from each white-matter voxel [15]. Each subject’s SC
graph was binarised by thresholding at a connectivity strength
of 200 streamlines (see SI regarding the choice of threshold

level).
The predictive framework was applied independently on:

three single subjects, three populations of five subjects, two
populations of ten subjects, and one population of 20 sub-
jects. For all analyses the same six subjects were held-out for
prediction.

Validation of three existing atlases. Figure 2, left panel, shows
the impact of the amount of training data on the attainable
upper and lower bounds. The figure shows the AUC curves
for all the parcellations as more training subjects are included
(different line styles). The results for single subjects show
large uncertainty and predictive performance substantially be-
low population based prediction (SBM: AUC=0.9486 (22),
Ward: AUC=0.9615 (19)), and hence training with a sin-
gle subject is insufficient to characterize SC. However, al-
ready with five training subjects there is a large reduction
in variability and increase in AUC (SBM: AUC=0.9790 (1),
Ward: AUC=0.9799 (1)), and the inclusion of 10 (SBM:
AUC=0.9831 (2), Ward: AUC=0.9833 (2)) and 20 subjects
(SBM: AUC=0.9857, Ward: AUC=0.9857) only adds minor
improvements. Furthermore, for five or more training subjects,
the ranking of the atlases predictive performance remains
constant, see Figure S7 in SI. Consequently, even a limited
sample of 20 training subjects provides sufficient robustness
for predictive accuracy.

Using 20 subjects as our training population, the predictive
assessment of the different parcellation schemes is investi-
gated in Figure 2, right panel. The predictive performance of
the three tested atlases are represented by the red symbols
and the corresponding performance of the random (k-means)
parcellation and data driven parcellations given by the blue,
yellow and green curves respectively. For the performance
at the same number of parcels as the three tested atlases we
find for 68 parcels (Desikan-Killiany: AUC=0.9535, k-means:
AUC=0.8886, Ward: AUC=0.9654, SBM: AUC=0.9701), for
148 parcels (Destrieux: AUC=0.9687, k-means: AUC=0.9153,
Ward: AUC=0.9777, SBM: AUC=0.9787), and for 360 parcels
(HCP_MMP1.0: AUC=0.9807, k-means: AUC=0.9339, Ward:
AUC=0.9836, SBM: AUC=0.9841). The vertical gap between
the atlases and the random parcellations demonstrates that
all three atlases perform far better than what would be ex-
pected by random if their parcels did not comply with the SC
data. When considering the differences in predictive perfor-
mance to the data-driven SC parcellations we find that both
Desikan-Killiany (downward-pointing triangle) and Destrieux
(upward-pointing triangle) have suboptimal performance. How-
ever, the HCP_MMP1.0 atlas (diamond) is not only superior
to the surface morphology-based atlases but also almost on par
with the best of the data-driven parcellations optimized to ac-
count for SC. We find these results to be robust to the applied
threshold level and size of training population (considering at
least five subjects for training), see SI (Figure S7).

To estimate the parcellation resolution supported by the
SC data, we determined the beginning of the plateau regions
(green and yellow stars), above which the predictive perfor-
mance does not improve significantly (assessed using a paired
t-test). These points can be interpreted as the minimum
number of clusters required to sufficiently describe the SC
data. The two data-driven models, SBM [15, 25, 33–36] (green
curves) and Ward clustering [37] (yellow curves), show the
same optimal predictive performance (AUC=0.9857). As they
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Fig. 1. The predictive validation framework using SC data. A) The native surfaces of all subjects are co-registered to a standard vertex mesh to obtain one-to-one
correspondance between the surface vertices of every subject [31]. Tractography is performed between all vertices of the surface by initialising 1000 streamlines in all
white-matter voxels resulting in a weighted symmetric SC network for each subject. B) The networks are thresholded to obtain binary links of SC (connections in left panel, dots
in right panel). C) The considered parcellation. D) The training networks are permuted according to the parcellation z in question and the link densities ρlm between and within
parcels calculated by aggregating all the training networks. E) The predictive performance is assessed by calculating the area under the curve (AUC) of the receiver operator
characteristics using the scores obtained from the training link-densities (grey background) to predict the links of the test network (overlaid dots).

are based on different modeling approaches (SBM: Bayesian
model with MCMC inference, Ward: deterministic agglomer-
ative hierarchical clustering) this implies that the estimated
upper bound is robust. In addition, both models approach
the AUC of the best non-parametric link-predictor (shortest
path, AUC=0.9875), shown as a black horizontal line, suggest-
ing that no important information regarding the structural
organization is lost when employing data-driven parcellations.

To investigate the effect of increasing the number of parcels
to the maximum possible, we considered the limit where each
node is given its own (singleton) cluster. This gave a much
lower predictive performance (AUC=0.9336) than all consid-
ered atlases and SC parcellations.

Additional scores for single subjects and populations of
5 and 10 as well as scores obtained using standard non-
parametric link-prediction methods [23] are given in Table 1
and in SI (Table S1).

Visualization of the parcellation structure. Figure 3 compares
the parcellations from the three tested atlases together with
the best performing SC parcellations using a population of
20 training subjects, both at the matching number of parcels
and the SBM parcellation with 700 parcels, beyond which
no significant improvement is found. Note how the parcella-
tions found by SBM are spatially homogeneous even though
the considered SBM does not incorporate any knowledge of
spatial location. Additional parcellations are visualised in SI,
Figures S2-S4. The data-driven parcellations comply better
with the existing atlases than the random parcellations (SI,
Figure S8).
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Fig. 2. Predictive performance measured by average AUC. Left panel: Predictive
performance of the two data-driven SC parcellations as well as the random k-means
parcellation (different colors), when using 1, 5, 10, and 20 subjects in the training set
(different line styles). The error bars show the standard deviation of the mean across
the training graphs. Right panel: Predictive performance using 20 training subjects of
the three considered atlases: Desikan-Killiany (downward-pointing triangle), Destrieux
(upward-pointing triangle), and HCP_MMP1.0 (diamond), as well as k-means random
parcellations (blue) and data-driven SC parcellations Ward (yellow) and SBM (green).
The stars indicate the optimal number of clusters, above which no significant increase
in performance is observed for the two data-driven SC parcellations, based on a paired
t-test. The predictive performance of shortest path is shown as a black horizontal line.
The error bars show the standard deviation of the mean across the six test subjects.

2. Discussion

We here present a validation framework that permits quantita-
tive assessment of any given parcellation scheme in the absence
of a gold standard reference (ground truth parcellation). The
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Desikan-Killiany
68 parcels

SBM Destrieux HCP_MMP1.0 SBMSBM SBM
148 parcels 360 parcels 700 parcels

AUC = 0.9535 AUC = 0.9688 AUC = 0.9687 AUC = 0.9788 AUC = 0.9807 AUC = 0.9841 AUC = 0.9857

Fig. 3. Parcellations from the (left to right) Desikan-Killiany atlas and SBM with 68 parcels, the Destrieux atlas and SBM with 148 parcels, HCP_MMP1.0 and SBM with 360
parcels, and SBM with 800 parcels (green star in Figure 2 (right panel)), all visualised on the inflated surface. SBM was trained on 20 subjects. The AUC score is the average
score across the six test subjects for the specific parcellation shown. The standard deviation of the mean is below 0.002 for all shown parcellations.

Table 1. Average AUC across six test subjects and five restarts
when predicting unseen connectivity graphs using data-driven par-
cellations including the singleton parcellation in which each node is
given its own cluster, as well as the best performing non-parametric
link predictor (shortest path) and the three considered atlases. The
scores are given for the optimal number of parcels (SI, Figure S7).
For k-means clustering, the single subject score is given for 360
parcels, while remaining scores are given for 1000 parcels. In paren-
theses is given the standard deviation of the mean on last digit
across different training networks.

Population size

Single (n=3) 5 (n=3) 10 (n=2) 20 (n=1)

UPPER BOUND ESTIMATES

Shortest path 0.9453 (25) 0.9830 (3) 0.9862 (2) 0.9875
SBM 0.9486 (22) 0.9790 (1) 0.9831 (2) 0.9857
Ward clustering 0.9615 (19) 0.9799 (1) 0.9833 (2) 0.9857

BRAIN ATLASES

HCP_MMP1.0 0.9595 (9) 0.9777 (1) 0.9796 (5) 0.9807
Destrieux 0.9599 (9) 0.9670 (2) 0.9681 (9) 0.9687
Desikan-Killiany 0.9479 (7) 0.9524 (6) 0.9530 (14) 0.9535

LOWER BOUND ESTIMATES

k-means 0.9143 (9) 0.9381 (5) 0.9427 (4) 0.9451
Singleton 0.7027 (120) 0.8541 (27) 0.9016 (1) 0.9336

framework uses statistical prediction to validate a parcellation
by its ability to characterize the structure of independent brain
connectivity data. Using this framework we validated three
existing parcellations (not based on SC data) in their ability
to characterize the organization of SC data.

Our framework, in being able to rank the performance of
the prospective parcellations, shows that all three evaluated
atlases are able to capture many of the features of SC and much
better than would be expected by random. The framework
further permits quantification of the improvement in predictive
performance achieved by a recent multi-modality approach
by Glasser et al. [19] over those based solely upon surface
morphology. In particular, we find that the multi-modality

approach has performance almost on par with data-driven SC
parcellations that are tailored to account for the organization
of SC. These results are robust to the level of threshold of
streamlines applied to generate the SC networks and consistent
for the population based analyses, i.e. when at least five
subjects are used in the training population.

As the three tested atlases perform far better than the
lower-bound provided by the k-means random parcellations
this implies that the organization of SC is in compliance with
the atlases. The difference in predictive performance between
the atlases and the estimated upper-bound for prediction
given by the data-driven parcellations can be interpreted as
the predictive loss due to the mismatch between SC and
atlas parcel boundaries. As the two surface morphology-based
atlases are unable to match the performance of the data-driven
methods this implies reduced co-dependence between SC and
surface morphology. However, the HCP_MMP1.0 atlas, being
almost on par with the data-driven parcellations, emphasizes
the utility of having multiple modalities.

Number of subjects. An important question answered by our
framework is determining the number of subjects necessary
to characterize SC data. Although it is recommended to use
as many training subjects as possible, our validation frame-
work demonstrates that even with limited data (20 training
subjects) the predictive performance is sufficient to evaluate
parcellations and the ranking of the atlases remains constant
for five or more subjects. Furthermore, the poor performance
of data-driven SC parcellations when trained on a single sub-
ject emphasizes the importance of inference at the population
level in order to well account for the organization of SC.

Parcellations preserve SC information. The best performing
standard link prediction measure, shortest path, provides an
estimate of the predictive performance that can be obtained
taking all the SC information into account rather than resort-
ing to aggregated information at the level of parcels when
predicting. The minor difference between the performance of
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shortest path and the data-driven parcellations implies that
the latter are able to maintain the prominent information
regarding the connectivity structure present in the data. We
thereby find that the SC data is well represented using struc-
tural units defined by parcels supporting analysis of SC at the
level of much coarser structural units.

Number of parcels supported by SC data. In this work, we
determined the optimum number of parcels supported by SC
by locating the point beyond which no significant increase
occurred in the data-driven SC parcellations. We here found
that the data-driven parcellations in general supports more
parcels than provided by the recently proposed HCP_MMP1.0
atlas. Glasser et al. accordingly state that their parcellation
may still underestimate the true number of parcels at the
macroscale, as their sub-divisioning of areas such as the pri-
mary visual cortex are coarser than reported previously [19].
However, care must be taken when interpreting the estimated
numbers of clusters supported by the SC data as we find that
it is dependent upon the number of subjects included in the
training data as well as the graph threshold level. Further-
more, an exact estimate of the optimal number of clusters
is non-trivial due to the broad range of resolutions that pro-
duce similar predictive performance. The optimum may also
be influenced by biases in the SC data as discussed below
that can potentially lead to overestimating of the number
of structural units. However, as the results for the k-means
parcellations show, simply using a high number of clusters
is not sufficient to capture the complexity of the SC data.
Furthermore, we observed that the AUC did not continue to
increase with more clusters: In particular, the extreme case
where all the clustering models coincide (singleton clustering)
exhibited poor predictive performance (AUC=0.9336 for 20
subjects). Even so, we observed that the performance of the
singleton parcellations substantially improved when including
more subjects in the training set, and we anticipate that with
unlimited training data the averaging across training subjects
may reduce the noise of the data to such an extent that the
observed performance drop of singleton clusters may disappear.
Thus, although our results point to the need for substantially
more parcels than available in the considered atlases, these
results may be heavily influenced by the level of noise and the
biases, as discussed below.

Biases in the surface registration between subjects. A possi-
ble limitation to the results reported herein is the accuracy
of the initial vertex-to-vertex registration framework, as pro-
vided by the HCP pipeline [31]. As this is driven by surface
topology [44], there exists the possibility that the subsequent
vertex alignment is biased towards anatomical landmarks (and
therefore provide atlases based upon surface morphology with
an inherent prediction boost). As anatomy may not be an
optimal predictor of SC, this means that the assumed vertex-
to-vertex correspondence may not fully reflect the nature of
the SC data. Hence, such a bias would exhibit itself as noise
in the vertex labeling, which would in turn propagate to the
adjacency matrix (graph). As a consequence, it would be more
difficult for a data-driven model to produce large homogeneous
clusters of vertices which all possess similar patterns of SC.
This would make larger clusters less likely, and so our predic-
tive framework could therefore support an over-parcellation.
Advanced vertex registration procedures, such as that em-

ployed in [19], may improve matters as the imposed predictive
bias will be balanced between multiple modalities.

Tractography biases. SC is established from dMRI data by
integrating the derived local estimates of fibre bundle orien-
tations obtained with standard tractography methods [45].
However, just as for all other methods that estimate connec-
tivity, tractography has its own challenges and limitations,
e.g. gyral crown bias [46–48], which could affect the precise
location of parcel borders, path length dependencies [49] and
other factors which together are known to impose unknown
levels of Type I and Type II errors on the estimated connec-
tions [50–53]. These confounds, biases and shortcomings of
tractography are as yet not fully quantifiable due to the lack of
a gold-standard reference [54], and indeed are not detectable
as they will be present in both training and test datasets.
Yet, despite all the challenges in tractography, we find that
the existing atlases in general comply well with the SC data
and that the best performing atlas is almost on par with the
data-driven parcellations tailored for SC. This indeed points
to compliance of the organization of SC with other modalities.

Other biases. No matter which connectivity modality is em-
ployed within our prediction framework, the inclusion of more
training subjects, whilst increasing the signal-to-noise ratio,
will not be able to compensate for modality-specific biases
present in both training and test populations. However, the
framework introduced herein can easily be extended to include
multi-modality data such as fMRI, tracer studies, or histologi-
cal reconstruction of axonal trajectories [10]. As demonstrated
by Glasser et al. [19], the incorporation of many indepen-
dent data-sources can mollify the effects of their individual
biases. Indeed, sufficiently many sources may even render the
manually-intensive verification of individual parcels unneces-
sary.

Thresholding of SC networks. As with any graph model of
connectivity, false positives and false negatives will occur
as the incorrect presence or absence of links. Herein, as is
common practice [20, 55, 56], we attempt to remove many of
the false positive connections by thresholding the SC graphs
prior to modeling. However, this uniformly-applied strategy
also increases the false negative rate. Unfortunately, whilst
the false positive rate can be reduced to zero by increasing the
threshold, the minimum false negative rate, achieved at null
thresholding, will be non-zero and can only be improved by
better data acquisition and processing strategies. As such, it
must be noted that the chosen threshold level determines the
balance between a model’s specificity and sensitivity, and no
optimal threshold exists [54, 57–59]. Even though the applied
threshold of 200 streamline counts seems reasonable for this
data set, as different initialisations of the tractography are able
to predict each other very well (see Figure S1), the threshold
is still arbitrarily chosen. However, as discussed earlier, the
ranking of the considered atlases is maintained across all
tested thresholds, demonstrating robustness of the proposed
predictive validation procedure to the chosen threshold level.

Outlook. Our predictive validation procedure shows that the
recently proposed HCP_MMP1.0 atlas provides a reasonable
model of SC parcellation, and should be preferred to those
based solely upon surface morphology. We validated parcella-
tions using independent SC data, but the proposed validation
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framework is generic and therefore applicable to any other
brain connectivity mapping approach. As the number of
data-sources and data-derived approaches to structural and
functional connectivity, and thereby also parcellation schemes,
will only increase in the future, we foresee that the prediction
framework presented herein will prove to be an important tool
in assessing their quality.

Materials and Methods

The data used in the preparation of this work were obtained
from the MGH-USC Human Connectome Project (HCP) database
(https://ida.loni.usc.edu/login.jsp). For additional descriptions of
the materials and methods used in this study, see SI.
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Supporting Information (SI).

Diffusion imaging, tractography and construction of connectivity
graphs.

MRI acquisition The MRI data used in the preparation of this
work were obtained from the MGH-USC Human Connectome
Project (HCP) database (https://ida.loni.usc.edu/login.jsp) in the
"500 subjects" release. The HCP project (Principal Investigators:
Bruce Rosen, M.D., Ph.D., Martinos Center at Massachusetts Gen-
eral Hospital; Arthur W. Toga, Ph.D., University of California, Los
Angeles, Van J. Weeden, MD, Martinos Center at Massachusetts
General Hospital) is supported by the National Institute of Den-
tal and Craniofacial Research (NIDCR), the National Institute of
Mental Health (NIMH) and the National Institute of Neurological
Disorders and Stroke (NINDS). Collectively, the HCP is the result
of efforts of co-investigators from the University of California, Los
Angeles, Martinos Center for Biomedical Imaging at Massachusetts
General Hospital (MGH), Washington University, and the University
of Minnesota.

Acquisition parameters are described in full for dMRI in [27–
30, 60], and for the structural scans in [61], and are listed in brief
here. The dMRI was acquired with a mulitband factor of 3, covering
270 directions distributed over 3 diffusion shells of b-values 1000,
2000 and 3000 s/mm2, plus 18 b = 0 (non-diffusion weighted) scans.
The nominal voxel size was 1.25mm isotropic. Both T1-weighted
and T2-weighted structural scans at 0.7mm isotropic resolution were
also acquired.

Segmentation, surface reconstruction and one-to-one correspon-
dance All pre-processing of the data, including correction for
sequence-dependent artefacts such as eddy-current distortion, was
performed by the "minimal preprocessing pipeline" provided by
the HCP project [31]. This included the generation of native pial
and white-matter surfaces, and their coregistration to a standard
vertex mesh. This provides a one-to-one correspondance between
the surface vertices of every subject, and hence permits vertex-wise
analysis of tractography results across the HCP population.

White matter tractography and network construction Tractogra-
phy was performed using FSL’s BedpostX [62] and ProbtrackX2 [41–
43]. BedpostX parameters included a specification of up to 3 fi-
bres per voxel, and a deconvolution model using zeppelins [42, 43].
Probtrackx2 was run in "matrix3" mode, with all voxels in the
white matter (as specified by a structural imaging mask) as
seed points. The GM-WM surface boundary and all subcor-
tical grey-matter voxels were specified as tractography target
masks. Streamlines were kept and entered into the resultant con-
nectivity matrix if they succeeded in traversing opposite direc-
tions from a seed voxel and reaching two different vertices on
the target surface. One thousand streamlines were generated
from every seed voxel. The result of tractography is therefore
a connectivity matrix of size [(number of target surface vertices) +
(number of target subcortical voxels)]2. In this study, only the sur-
face vertices are analysed.

Threshold The structural connectivity graphs are binarised by
zeroing everything below a chosen threshold. If the threshold chosen
is too low the connectivity graphs are dominated by false positives.
On the other hand, if a too high threshold is chosen then true
connections are removed, leading to many false negatives. As
probabilistic tractography is a probabilistic process, re-running
the tractography on the same dataset gives a slightly different
result. To investigate the effect of the chosen threshold and to find
the optimum, tractography was re-run on two subjects and the
connectivity graphs were created. The AUC between re-runs of
the tractography were calculated for a range of thresholds between
zero and 5300 counts. Figure S1 shows how well the runs pairwise
predict each other for different thresholds. For low thresholds the
performance is low due to all the false positives in the graphs.
Around a threshold of 200 the predictive performance stabilises
with only a small increase in the performance for higher thresholds.
Based on this result we chose a threshold of 200. To investigate
the effect of our choice we also ran all analyses with a threshold of
50 and 1000. This method to find the threshold of the graphs can
be applied in other studies, but the specific threshold will depend

upon the number of streamlines seeded per voxel, the resolution of
the data and parameters of the tractography method.

Construction of population networks Population graphs are con-
structed by aggregating the binary graphs for the subjects included
in the population. In this way population graphs become weighted
graphs with weights representing the number of subjects in which a
link is present.

The stochastic block model. The stochastic block model (SBM) clus-
ters vertices together into homogeneous clusters according to their
structural similarity. The generative model is:

Links between nodes Aij ∼ Bernoulli(ηzizj )

Link densities between clusters ηlm ∼ Beta(β+, β−)
Clustering z ∼ Categorical(π)

π ∼ Dirichlet(α)

The nodes are partitioned into a given finite number of clusters
K based on the Dirichlet distribution, allowing for flexible cluster
sizes. The probability of links in the graph are generated according
to a Bernoulli distribution, depending only upon the probability
of observing links between clusters, which in turn follows a Beta
distribution.

A structural connectivity graph can be represented by a binary
J × J adjacency matrix A. For all pairs of nodes i, j of the graph,
Aij = 1 and Aij = 0 respectively denotes the existence or absence
of a path in either direction from the tractography between i and j.
Limited to undirected networks, A obeys that Aij = Aji.

When clustering for a population of S subjects, we consider
A = {A1, ..., AS} the joint set of the individual graphs for the
subjects that makes up the population.

To solve the clustering problem we seek a partition z of A into
K clusters of nodes with similar structural connectivity pattern.
Let π denote the probability distribution of any node belonging
to the individual clusters, such that p(zi = k|π) = πk, where
π = {π1, ..., πK} and

∑K

k=1 πk = 1.
To allow flexible cluster sizes, π is considered generated from a

Dirichlet distribution:

p(π|α) = 1
B(α)

K∏

k=1

π
αk−1
k

, [1]

where B is the multivariate beta function:

B(α) =
∏K

k=1 Γ(αk)

Γ(
∑K

k=1 αk)
. [2]

This reveals the following joint prior over z and π:

p(π, z|α) = p(π|α)
J∏

i=1

p(zi|π) = 1
B(α)

K∏

k=1

π
mk+αk−1
k

, [3]

where mk denotes the number of nodes belonging to cluster k, such
that

∑K

k=1 mk = J .
Imposing equal concentration parameter on all clusters C

K
=

α1 = ... = αK and marginalizing over π we obtain the effective
prior over z, resulting in a so-called multivariate Pólya distribution:

p(z|C) =
∫

p(π, z|C)dπ = Γ(C)
Γ(C + J)

K∏

k=1

Γ( C
K

+mk)
Γ( C
K

)
[4]

For a given partition z the prior distribution on the probability
ηlm of observing a link between nodes of cluster l and cluster m is
imposed using the Beta distribution:

p(ηlm|β+, β−) = Γ(β+ + β−)
Γ(β+)Γ(β−)

ηβ
+−1
lm

(1− ηlm)β
−−1.

The probability of observing a link between node i and j for subject
s follows the Bernoulli distribution such that the likelihood of A is
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given by (see also [25]):

p(A|η, z) =
S∏

s=1

∏

i>j

η
As

ij
zizj

(1−ηzizj )1−As
ij =

∏

l≥m

η
N+

lm
lm

(1−ηlm)N
−
lm ,

[5]
where N+

lm
and N−

lm
respectively denotes the sum of all links and

nonlinks between cluster l and m for all graphs in the population.
The conjugacy of the Beta prior and Bernoulli likelihood allows

η to be analytically marginalized, revealing the following joint
distribution:

p(A, z|C, β+, β−) =
∫

p(z|C) · p(A|η, z) ·
∏

l≥m

p(ηlm|β+, β−) dη

= p(z|C) ·
∏

l≥m

B(N+
lm

+ β+, N−
lm

+ β−)
B(β+, β−)

, [6]

where B denotes the beta function:

B(a, b) =
∫

θa−1(1− θ)b−1dθ = Γ(a)Γ(b)
Γ(a+ b)

MCMC inference in the stochastic block model For a particular
data set the model parameters are inferred using a sequence of
independent Markov Chain Monte Carlo methods to sample from
the posterior distribution.

The clustering is inferred using a combination of full and re-
stricted Gibbs sampling procedures. In the full Gibbs sampling
procedure, each node i is in turn proposed to be re-assigned, based
on the posterior distribution of the single node assignment, obtained
using Bayes’ theorem for equation 6:

p(zi = l|A, z\i, β+, β−, C) = p(A, z\i, zi = l|β+, β−, C)∑K

m
p(A, z\i, zi = m|β+, β−, C)

[7]
where z\i denotes the cluster assignments for all nodes ignoring
node i

In the restricted Gibbs sampling procedure, two clusters are
randomly selected and three Gibbs sweeps are conducted, restricted
to re-partitioning the nodes within the two selected clusters.

The three hyperparameters β+, β−, C are sampled individually
using a Metropolis-Hastings procedure, where proposals are drawn
from a Gaussian distribution with variance 1, centered at the current
value of the parameter.

For all results in the paper, the following sampling procedure
was utilized: one complete Gibbs sweep over all nodes followed by
K restricted Gibbs proposals, followed by 10 Metropolis-Hastings
proposals for each of the hyperparameters. A total of 100 sweeps
of the above sampling procedure was performed. Following the
last sweep of the MCMC sampling, the clustering was optimized
towards a local posterior maximum using a hill-climbing procedure
to repeatedly reassign the nodes one at a time to the cluster resulting
in the highest posterior gain.

Ward clustering. Ward clustering [37] is initialised by assigning all
nodes to their own cluster. In each step the two clusters are merged
that produces the least reduction of the optimal value of the objec-
tive function, constrained to only merging adjacent clusters. The
procedure can be continued until all nodes are in the same clus-
ter. We use the dissimilarity measure W between the connectivity
patterns of elements i and j of the connectivity matrix A as the
objective function, as suggested by [17].

Wij =
√ ∑

a6=i,j

(Aia −Aja)2 +
∑

a6=i,j

(Aai −Aaj)2 [8]

K-means clustering. K-means clustering gives spatial homogeneous
clusters solely based on the location of the vertices. Hence, the k-
means clustering is not based on structural connectivity. Given the
vertices of the average surface (v1, v2, ..., vn), where each observation
is a 3-dimensional real vector containing the (x, y, z)-coordinates

of a vertex, k-means clustering [40] partitions the n observations
into k spatial homogeneous clusters C = C1, C2, ..., Ck in which
each observation belongs to the cluster with the nearest mean. The
k-means clustering assigns an observation to a cluster by minimizing
the within-cluster sum of squares.

arg min
C

k∑

i=1

∑

x∈Ci

‖x− µi‖2 [9]

where µi is the mean of Ci.

Link prediction by area under receiver operator characteristics
curve (AUC). We use the ability to predict links in holdout data to
quantify how well structure is accounted for. A common procedure
to quantify this performance is the area under curve (AUC) of
the receiver operator characteristics (ROC) curve [24, 63]. AUC
is used to measure the predictive performance, i.e., how well a
given parcellation predicts a second structural connectivity graph.
By using the AUC score it is possible to compare predictions
made using different parcellations as well as non-parametric link
prediction measures. Links and non-links are scored using a given
modeling approach, and the AUC then quantifies how well the two
classes of non-links and links are separated according to this score,
where an AUC score of 0.5 indicates that the scoring procedure is
no better than chance, and where an AUC score of 1 indicates that
a threshold value of the scoring procedure exists which provides a
perfect separation of links from non-links.

Parcellation based prediction. The score when predicting holdout
data using a parcellation is given by

sParcellation
ij =

N+
zizj

Nzizj

, [10]

where N+
zizj

is the number of links between nodes in cluster
zi and nodes in cluster zj and Nzizj = N+

zizj
+N−zizj

is the total
number of possible links between nodes in cluster zi and nodes in
cluster zj . The score sParcellation

ij corresponds to the maximum
likelihood estimate of ηzizj in equation 5.

Non-parametric link prediction measures. Let di =
∑

j
Aij be

the degree of node i and A define the J × J adjacency matrix
of the training data. We use the following well-established mea-
sures to score for the existence of a link between node i and j [23, 24]:

sCommon Neighbor
ij =

∑

t

AitAjt [11]

sJaccard
ij =

∑
t
AitAjt

J −
∑

t
(1−Ait)(1−Ajt)

[12]

s
Adamic/Adar
ij =

∑

t

AitAjt

log(dt)
[13]

sPreferential Attachment
ij = didj [14]

sShortestPath
ij = 1

ShortestPath(A, i, j)
, [15]

where ShortestPath(A, i, j) gives the shortest path in the struc-
tural connectivity graph A. The above scores are averaged over the
S training subjects and evaluated on holdout test data from six test
subjects.

Reliability estimation by Mutual Information. In order to quantify sim-
ilarity between two partitions z and z′ we use normalized mutual
information (NMI), defined as:

NMI(z, z′) = 2 ·MI(z, z′)
MI(z, z) +MI(z′, z′)

,
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where the mutual information (MI) is given as:

MI(z, z′) =
∑

kk′

P (k, k′) log( P (k, k′)
P (k)P (k′)

),

with P (k, k′) being the probability that a node in cluster k in the
first partition is in cluster k′ in the second partition. NMI takes
values between zero and one where one indicates that a permutation
of the groups exists such that the partitions are identical, and zero
indicates that the partitions are perfectly independent.

The Atlases. The Desikan-Killiany atlas [11] and the Destrieux
atlas [32] are both generated using manually labeled data as the
basis for a subsequent automated parcellation procedure [12]. The
procedure incorporates both geometric information derived from
the cortical model, and neuroanatomical convention, as found in
the training set. This improves the parcellation in regions in which
geometry alone is not predictive of a parcellation label.

The two atlases differ in the definition of the gyri. The
Desikan-Killiany atlas is a gyral based atlas, i.e., a gyrus is defined
as running between the bottoms of two adjacent sulci. That is, a
gyrus includes the part visible on the pial view and the adjacent
banks of the sulci limiting this gyrus. The Destrieux atlas is a
mixed, sulco-gyral-based parcellation: the gyral cortex is defined as
the part visible on the pial view, the remaining hidden part being
conversely labeled sulcal.

The Desikan-Killiany atlas The Desikan-Killiany atlas [11] is
based on a dataset of 40 MRI scans from a variety of subjects
including young, middle-aged and elderly controls, as well as
patients with Alzheimer’s disease. Full details are available
elsewhere ([11]), but are repeated here in brief for completeness.
A total of 34 cortical regions were manually identified in each
hemisphere on volumetric T1-weighted MRI images using a ’sulcal’
approach (manually tracing from the depth of one sulcus to another,
thus incorporating the gyrus within) to define most structures,
guided by standard neuroanatomical conventions based on brain
atlases, modifications to previous published definitions and expert
knowledge.

The volumetric ROIs were transposed onto the inflated cortical
surface of each reconstructed brain and the final anatomic
labels were generated using anatomic information regarding local
curvature (e.g. the presence of sulci).

A cortical atlas was generated using a registration procedure
that aligns the cortical folding patterns and probabilistically
assigns a neuroanatomical region to every point in the cortical
surface. This was done by generating a spherical representation
of each brain by minimizing the metric distortion between the
cortical and the spherical representations. Second, the spherical
surfaces were registered together. This established a spherical
surface-based coordinate system that was adapted to the folding
pattern of each individual subject, thus allowing for increased
precision in registering anatomic features of the human brain
across subjects. Third, a spherical statistical atlas was used
to label the cortical surfaces into neuroanatomical regions of interest.

The Destrieux atlas The Destrieux atlas [32] is based on a
parcellation scheme that first divided the cortex into gyral and
sulcal regions, the limit between both being given by the values
of local mean curvature or average convexity of the surfaces. Full
details are available elsewhere ([32]), but are repeated here in brief
for completeness. A gyrus was defined to be only the portion of the
cortex that was visible on the pial view, whereas the remaining,
hidden cortex (banks of sulci) were defined as belonging to a sulcus.
For a few large structures, an additional sub-parcellation was
used based on estimated cytoarchitectonic and functional criteria
and some parcellations that were very small or very variable were
grouped with a larger neighboring parcellation unit. Finally, each
hemisphere was segmented into 74 different sulco-gyral cortical units.

Threshold [counts]
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0.97
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0.99

Fig. S1. AUC vs. threshold. For two subjects the tractography procudure was
performed twice with different initialisation. The figure shows how well the two runs
predict each other for a range of thresholds between zero and 5300 measured by
AUC. The red stars indicate the tested thresholds.

Table S1. Average AUC across six test subjects and five restarts
when predicting unseen connectivity graphs using data-driven par-
cellations including the singleton parcellation in which each node is
given its own cluster, as well as the considered non-parametric link
predictors and the three considered atlases. The scores are given for
the optimal number of parcels (SI, Figure S7). For k-means cluster-
ing, the single subject score is given for 360 parcels, while remain-
ing scores are given for 1000 parcels. In parentheses is given the
standard deviation of the mean on last digit across different training
networks.

Population size

Single (n=3) 5 (n=3) 10 (n=2) 20 (n=1)

SBM 0.9486 (22) 0.9790 (1) 0.9831 (2) 0.9857
Ward clustering 0.9615 (19) 0.9799 (1) 0.9833 (2) 0.9857
k-means 0.9143 (9) 0.9381 (5) 0.9427 (4) 0.9451
Singleton 0.7027 (120) 0.8541 (27) 0.9016 (1) 0.9336

Shortest path 0.9453 (25) 0.9830 (3) 0.9862 (2) 0.9875
Common neighbor 0.9339 (63) 0.9792 (9) 0.9843 (4) 0.9865
Jaccard 0.9368 (64) 0.9816 (2) 0.9855 (2) 0.9874
Adamic/Adar 0.9346 (63) 0.9798 (8) 0.9848 (3) 0.9869
Preferential attach. 0.5756 (25) 0.6100 (6) 0.6188 (2) 0.6247

HCP_MMP1.0 0.9595 (9) 0.9777 (1) 0.9796 (5) 0.9807
Destrieux 0.9599 (9) 0.9670 (2) 0.9681 (9) 0.9687
Desikan-Killiany 0.9479 (7) 0.9524 (6) 0.9530 (14) 0.9535

A set of 12 subjects was used to develop and test the anatomical
rules which labeled every point of the cerebral cortex, while another
dataset of 12 subjects was used to train the automated labeling
software.

The probability of a label at a certain vertex is based on a
number of pieces of information, including the curvature and average
convexity of the cortical surface, prior labeling probability for that
vertex, as well as the labels of vertices in a local neighborhood.

The Human Connectome Project Multi-model Parcellation
(HCP_MMP1.0) atlas This recently released atlas [19] com-
prises 180 parcels per hemisphere, and was generated using a
novel combination of machine-learning and interactive editing by
neuroanatomists. Using a combination of modalities, including
fMRI, myelin maps and structural imaging, 210 subjects were
aligned using an areal-matching algorithm, and subsequently the
surface gradients of the different modalities were used to propose
parcel borders. These were then edited and documented by
neuroanatomists, and the subsequent parcellations used, together
with the multimodality data, to train a classifier for automatic
delineation of similar borders on a validation set. The final group
maximum probability map (MPM) parcellation was then formed
from the individual probabilistic areal maps.

Supporting Figures.
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Desikan-Killiany
68 parcels

SBM Ward K-means

Fig. S2. Parcellations with 68 clusters for a population of 20 subjects and a threshold of 200, shown on the inflated surface. From left: The Desikan-Killiany atlas, SBM
parcellation, Ward clustering, and K-means clustering.
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Destrieux
148 parcels

SBM Ward K-means

Fig. S3. Parcellations with 148 clusters for a population of 20 subjects and a threshold of 200, shown on the inflated surface. From left: The Destrieux atlas, SBM parcellation,
Ward clustering, and K-means clustering.
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360 parcels
SBM Ward K-meansHCP_MMP1.0

Fig. S4. Parcellations with 360 clusters for a population of 20 subjects and a threshold of 200, shown on the inflated surface. From left: The Human Connectome Project
multi-modal parcellation (HCP_MMP1.0), SBM parcellation, Ward clustering, and K-means clustering.
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Fig. S5. Flatmaps of the SBM parcellations with (a) 148 clusters and (b) 700 clusters overlaid with the borders of the Destrieux atlas.
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Fig. S6. Flatmaps of the SBM parcellations with (a) 360 clusters and (b) 700 clusters overlaid with the borders of the HCP_MMP1.0 atlas.
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Fig. S7. Average AUC across the six test subjects vs the number of clusters for thresholds of 50, 200 and 1000, and population sizes of 1, 5, 10 and 20. The error bars indicate
the standard deviation of the mean across the six test subjects. The stars mark the optimal number of clusters for the stochastic block model (green) and ward clustering
(yellow), as no significant increase in performance is observed by using more clusters. The optimal number of clusters are found using a paired t-test.
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Fig. S8. Normalised mutual information (NMI) vs the number of clusters for thresholds of 50, 200 and 1000, and populations of of 1, 5, 10 and 20 subjects. Dashed lines
show the reliability of the methods, NMI between Desikan-Killiany and Destrieux (black), between Desikan-Killiany and HCP_MMP1.0 (gray), and between Destrieux and
HCP_MMP1.0 (light gray). Solid lines show NMI between the three parcellation approaches, the stochastic block model (green), ward clustering (yellow) and k-means clustering
(blue), and Desikan-Killiany (downward-pointing triangles), Destrieux (upward-pointing triangles) and HCP_MMP1.0 (diamonds).
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Abstract 
Diffusion magnetic resonance imaging based tractography is a unique non-invasive tool for 
studying the brain’s structural connectivity (SC) in vivo. However, the derivation of SC 
networks is dependent on multiple parameters, from scan acquisition parameters to 
tractography algorithm specific parameters. So far, the focus has mainly been on the choice 
of diffusion model, tractography algorithm and parameters specific to those. Herein we 
validate SC networks derived from data acquired from a post mortem monkey brain that 
span a wide range of acquisition parameters, i.e. spatial resolution, angular resolution and 
b-value. As gold standard for SC the invasive tracer network obtained in monkeys by Markov 
et al. (2014) was used. Interestingly, we find that SC networks derived from data with low 
spatial resolution (1 mm³) are in better agreement with the tracer network, than those 
derived from high resolution data (0.5 mm³). High angular resolution and SNR are key, 
especially when the spatial resolution is low, to extract the rich but compressed anatomical 
details provided in the data. How to define the sufficient image resolution, to ensure that the 
generated SC network agrees with ground truth, might be closely related to the coarseness 
of the employed cortical parcellation.  

Introduction 
Tractography based on diffusion magnetic resonance imaging (dMRI) is an unique tool for 
studying both specific brain connections (i.e. tracts) as well as the structural brain network 
(i.e. structural connectivity (SC)) and its organization non-invasively (Le Bihan & 
Johansen-Berg 2012; Van Essen et al. 2014). Tractography can be used to estimate the 
fiber bundles in the brain and hence estimate the brain’s structural organization, i.e. the 
connectome (Sporns et al. 2005; Hagmann 2005). Analyzing whole brain SC using graph 
theoretic measures have been shown useful for classification of healthy and diseased 
subjects (Iturria-Medina 2013). When using tractography to study specific tracts, diffusion 
tensor imaging (DTI) (Pierpaoli et al. 1996; Basser et al. 1994) or other local microstructural 
estimates can be related to clinical scores, brain maturation (Lebel et al. 2008) or ageing 
(Bennett et al. 2010). Furthermore, tractography enables parcellation of the cortex 
(Baldassano et al. 2015; Parisot et al. 2016; Ambrosen et al. 2014; Fan et al. 2016) or 



subcortical structures based on SC (Behrens, Johansen-Berg, et al. 2003; Wiegell et al. 
2003). 
 
The estimation of the brain’s structural organization consists of a comprehensive data 
processing pipeline, including correction of acquisition related artifacts, fiber reconstruction 
and streamline tractography (Meskaldji et al. 2013; Jones & Cercignani 2010; Jones et al. 
2013; Jbabdi et al. 2015; Qi et al. 2015). The fiber orientation distributions are modelled from 
the diffusion weighted images and the connectivity between gray matter (GM) regions are 
estimated using a tractography algorithm. Although tractography is a unique tool for mapping 
the connections between cortical regions, it does not relate to the features of the 
connections, such as conduction velocity and delays. All these methodological choices and 
parameter settings, both in the acquisition (i.e. scanner parameter settings), in the estimation 
of the diffusion orientation distributions (model selection), and in the tractography (algorithm 
selection, number of streamlines, curvature threshold, step length, and definition of seeding 
strategy and target regions, etc.), as well as in the post-tractography stage (threshold, 
normalization), introduce different uncertainties in the estimation of the connections and 
impacts the final SC network. Indeed tractography uniquely allows non-invasive mapping of 
the brain network but is challenged by the generation of multiple false-positive connections 
(Maier-Hein et al. 2016; de Reus & van den Heuvel 2013; Thomas et al. 2014). It has been 
shown that only 60-65% of the connections estimated using tractography are correct 
(Calabrese et al. 2015; Donahue et al. 2016). Recently the ISMRM diffusion challenge on 
diffusion tractography, based on a human brain phantom with ground truth-connections, 
showed how dependent the tractography results are on the individual processing steps 
(Maier-Hein et al. 2016). Despite these limitations, there exist a vast literature of 
tractography studies demonstrating its potential for studying the brain’s structural 
organization in both health (Gong et al. 2009; Robinson et al. 2010; Wen et al. 2011; Scholz 
et al. 2009) and disease (Shu et al. 2011; Lo et al. 2010; Jahanshad et al. 2015; Skudlarski 
et al. 2010; Zalesky et al. 2011). Although all these methodological choices and parameter 
settings affect the tractography, hence the final SC network, the key is the anatomical 
information present in the data determined by the chosen scan parameters. 
 
Validation of the derived SC networks is therefore of great importance. Invasive tracers can 
be used to verify both the connectivity (i.e. whether or not two regions are connected) and 
the projection (i.e. the route and shape of the tract). Tractography and structural 
connectomes have previously been validated using invasive tracer (Dyrby et al. 2007; 
Knösche et al. 2015; Thomas et al. 2014; Dauguet et al. 2007; van den Heuvel et al. 2015; 
Azadbakht et al. 2015; Donahue et al. 2016), but the impact of the data acquisition 
parameters on the derived connectome have not been investigated. Previous studies have 
tested how different parameters affect the estimated connectome, either by investigating 
how different graph measures, such as graph density, shortest paths, etc., are affected 
(Bastiani et al. 2012), by investigating variations in the derived connectivity networks (Jones 
2004; Zhan et al. 2012; Gigandet et al. 2013) or in the estimated WM tracts (Vos et al. 2016; 
Gigandet et al. 2013) or by validating tractography by comparison to tracer studies, either by 
comparing specific tracts (Thomas et al. 2014; Knösche et al. 2015; Dyrby et al. 2007; 
Dauguet et al. 2007) or by comparing the SC network with a network obtained using invasive 
tracers (van den Heuvel et al. 2015; Azadbakht et al. 2015; Donahue et al. 2016). Until now 



the validation of tractography/SC have been focused on the validation of the tractography 
method and their cross-comparison, both for extracting specific tracts and for networks 
(Bastiani et al. 2012; Thomas et al. 2014; Villalon-Reina et al. 2016), as well as the influence 
of tractography specific parameters, such as the FA threshold (Bastiani et al. 2012; 
Azadbakht et al. 2015; Dauguet et al. 2007), the curvature threshold (Bastiani et al. 2012; 
Dauguet et al. 2007; Azadbakht et al. 2015), the integration step length (Dauguet et al. 
2007), and the probabilistic thresholding (Bastiani et al. 2012). Although, image quality of the 
diffusion MRI data used often is concluded of possible importance for the results no studies 
have yet validated the impact of key acquisition parameters i.e. angular resolution, b-value 
and image resolution. Zhan et al. (Zhan et al. 2012) shows that the final connectome is 
affected by spatial and angular resolutions, but does not validate the estimated 
connectomes. 
 
Here we provide an extensive validation of the impact of such key data acquisition 
parameters using an extensive ex vivo acquisition setup by comparison to a SC network 
based on invasive tracers (Markov et al. 2014). We quantify how key acquisition parameters: 
image resolution, angular resolution, i.e. number of directions, and b-value impact the final 
connectome. Furthermore, the effect of streamline count threshold, seeding strategy, 
number of acquisitions versus SNR and the integration step-length in the tractography 
algorithm are quantified. The generated connectomes across the different combinations of 
parameters are validated by comparison to the state-of-the-art 91x29 tract tracing graph of 
the macaque brain generated using invasive retrograde tracers (Markov et al. 2014). In the 
comparison, cross entropy is used as a similarity measure, together with sensitivity and 
specificity, where the tracer graph is assumed ground truth.  

Materials and Methods 

Retrograde tract tracing data   
As a ground truth SC network, we used a unique tracer connectivity dataset collected on 
macaque monkeys by Markov et al. (Markov et al. 2014), quantifying the intrahemispheric 
interareal connectivity of the macaque cerebral cortex using retrograde tracer injections. 
Retrograde tracer was injected into 29 regions and labeled neurons were counted in 91 
regions, generating a 91 x 29 weighted and directed connectivity graph. The volume of the 
injections varied across injection areas. The regions were defined by a reference atlas 
containing 91 cortical regions mapped to the left hemisphere of an individual macaque 
(M132). The M132 parcellation was based on a combination of histological criteria and 
atlas-based landmarks. The M132 macaque was registered to the F99 reference space 
using landmark-based surface registration (Markov et al. 2014). Although tracer was injected 
in both hemispheres, all injection and target sites were mapped to the left hemisphere. The 
weights in the graph are the extrinsic fraction of labeled neurons (FLNe). The FLNe value of 
an area was estimated by the number of labeled neurons in that area relative to the total 
number of labeled neuron excluding the labeled neurons intrinsic to the injected area 
(Markov et al. 2014; Markov et al. 2011). 



 
where |i|  is the number of labeled neurons in the source area, |k|  is the total number of 
labeled neurons in the brain, and |j|  is the number of labeled neurons in the target area 
(injection area). As the FLNe values were normalized per injection site the number of labeled 
neurons from each injection area sum to one and can thus be treated as a probability 
distribution. The FLNe values in the tracer graph are assumed ground truth in our validation 
of SC graphs. The tracer data has been downloaded from http://core-nets.org.  

Animal 
One postmortem monkey brain from a male Rhesus macaque (M105) was scanned using 
dMRI. The animal was 4 years and 10 months old and weighted 10.1 kg at the time of 
perfusion. M105 was perfused at Oxford University. When the brain was removed from the 
skull (post mortem), a small incision was made in the brain tissue of the occipital lobe in the 
left hemisphere, causing that the white matter tract to the occipital region was cut. Since the 
tract was cut post mortem, the integrity of the axons in vivo is normal hence so ex vivo. The 
incision can be seen on high resolution MRI. Although the left hemisphere was damaged, it 
was included in the analyses as an additional validation of our setup, expecting it to be in 
less agreement with the tracer graph, than the intact hemisphere. All animal procedures 
were carried out in accordance with Home Office (UK) Regulations and European Union 
guidelines (EU directive 86/609/EEC; EU Directive 2010/63/EU). 
 

MRI acquisition 
Imaging of the ex vivo monkey brain was performed on an experimental 4.7 T Agilent 
scanner with a quadrature volume RF coil and a maximum gradient strength of 400 mT/m. 
Free fixative was washed out to increase T2-relaxation using phosphate buffered saline 
(PBS) following the preparation stages in the setup in (Dyrby et al. 2011). The brain was 
placed in a sealed plastic bag with minimal PBS surrounding the brain tissue and stabilised 
to room temperature before scanning. Using a mechanically stable setup, the brain was 
placed in the middle of the volume coil. To ensure constant temperature while scanning, a 
conditioned flow of air around the brain was used and the temperature was measured at the 
end of the magnet (19±1 oC). To ensure removal of any short-term mechanic and thermal 
instabilities, a diffusion weighted pre-scan with a duration of 18 hours was acquired (Dyrby et 
al. 2011). 
The scanning protocol used a spin-echo sequence with single-line readout. Whole-brain 
coverage with high-resolution isotropic 0.5³ mm³ voxels was obtained with a matrix size of 
128x256, field-of-view: 64 x 128 mm², 91 slices and slice thickness of 0.5 mm. Three shells 
with different b-values were acquired: b = [1610, 4100, 7700 ] s/mm² by varying the gradient 
strength, G = [150, 250, 350 ] mT/m and keeping constant delta = 8.4 ms, DELTA = 15 ms 
as well as the echo time TE = 30 ms. The repetition time; TR = [8000, 7900, 8600] ms. Each 
b-value was acquired using a shell that included in total 180 directions, generated using 
electrostatic repulsion (Jones 2004). The 180 shell was designed to include a subset of 20 
and 60 uniformly distributed non-collinear directions; First, 20 uniformly distributed 
non-collinear directions were generated. These were held fixed and 40 additional directions 



were generated such that in total 60 directions were uniformly distributed. The same 
procedure was applied for generating in total 180 directions by keeping the optimal 
distributed 60 directions fixed. 

Data processing 
Visual quality inspection of the ex vivo dMRI dataset revealed no need for any post 
processing. Low resolution datasets with 1.0 mm³ isotropic spatial resolution was generated 
by linearly downsampling of the acquired high-resolution dataset with a sampling factor of 2 
using the FSL tool (Woolrich et al. 2009; Smith et al. 2004; Jenkinson et al. 2012). The 
sampling factor ensured that new voxels were centered on old voxels emulating the 
acquisition of that image resolution. Finally, a brain mask was made by averaging, 
thresholding and binarizing the diffusion weighted images (i.e. excluding the non-diffusion 
weighted images (b=0 s/mm²)) and subsequently manually edited.  

Template creation  
Standard space was defined using the Paxinos Rhesus monkey atlas. We created an 
average template of 15 vervet MPRAGE scans in standard space using a series of linear 
and non-linear registrations as described in (Fonov et al. 2011).   

Surface extraction   
We extracted cortical surfaces by applying Fast Accurate Cortex Extraction (FACE) on the 
average b0 image (Eskildsen et al. 2005; Eskildsen & Ostergaard 2006; Eskildsen & 
Ostergaard 2007). First, a brain mask was generated using a simple threshold followed by 
morphological operations to remove noise and fill holes. Then, the b0 image was denoised 
(Coupe et al. 2008), bias field corrected (Sled et al. 1998), and spatially normalized to the 
template in standard space by applying linear (Collins et al. 1994) and non-linear (Collins et 
al. 1994; Collins & Evans 1997) registrations. Probability maps for white matter (WM), gray 
matter (GM), and cerebro-spinal fluid (CSF) were calculated using a fuzzy clustering 
algorithm. The WM probability map was thresholded, amended with a mask of deep GM 
structures obtained from the template, and topology corrected (Chen & Wagenknecht 2006). 
An initial surface was generated by applying marching cubes on the resulting WM 
component. This initial WM surface was iteratively fitted to the cortical WM-GM interface. 
The resulting surface was subsequently fitted to the GM-CSF interface by inflating the 
surface as described in (Eskildsen & Ostergaard 2006). A surface estimating the middle 
cortical layer was subsequently generated from the WM-GM surface and GM-CSF surface. 

   
In the tractography, the WM surface containing 118,671 vertices in the left hemisphere and 
121,818 vertices in the right hemisphere, was used as seed mask (GM seeding) and target 
mask (both seeding strategies), while the pial surface is used as the  termination mask (both 
seeding strategies). The thresholded WM probability map was used as seed mask in the 
tractography when WM seeding was used. A mask of the subcortical structures and the 
ventricles was made by segmenting the average b0 image using FSL’s FAST algorithm 
(Zhang et al. 2001) and manually edited. This mask was used as exclusion mask in the 
tractography. 



Surface parcellation   
We used the macaque M132 atlas to define the cortical parcellation. The F99 mid-cortical 
surface was non-linearly warped to standard space using a deformation field calculated by 
applying Advanced Normalization Tools (ANTs) (Avants et al. 2008) on the F99 image (Van 
Essen 2002) and the b0 image in standard space. The F99 T1-weighted image was skull 
stripped using FSL’s brain extraction tool and the eyes were manually removed. The b0 
mid-cortical surface was then matched to the F99 surface using a feature driven surface 
registration algorithm (Eskildsen & Østergaard 2008). The M132 parcellation was mapped to 
the B0 WM-GM surface via the B0 mid-cortical surface and the inherent correspondence 
obtained from the FACE process. Coherent labels were ensured by morphologically 
removing any label-wise “salt-and-pepper noise” in the mapped parcellation. Due to the fact 
that no vertices on the native WM surface were assigned to the piriform region, this region 
was excluded and only the 90x29 tracer graph was used in the analysis. 
 

Tractography and connectivity matrices 
The fiber orientations were estimated using FSL’s bedpostX algorithm allowing up to three 
crossing fibers per voxel (Jbabdi et al. 2013; Behrens, Woolrich, et al. 2003; Behrens et al. 
2007). Probabilistic tractography was performed in native space using  the ball and stick 
probabilistic tractography algorithm implemented in FSL’s probtrackx2 (Behrens et al. 2007; 
Behrens, Woolrich, et al. 2003). In the tractography a step length of ¼ voxel size (Jbabdi et 
al. 2013; Thomas et al. 2014) with a curvature constraint of 80 degrees was used. Two 
different seeding strategies were applied, white matter (WM) seeding and gray matter (GM) 
seeding. In WM seeding, all voxels within WM were seeded with 2000 streamlines and only 
those streamlines that intersected the WM surface at two locations were kept. In GM 
seeding, 5000 streamlines are initiated in each vertex of the WM surface and streamlines 
that reached another vertex of the WM surface was kept. For both seeding strategies, the 
streamlines were terminated if they crossed the pial surface and excluded if it traversed 
subcortical structures or ventricles. The retrograde tracer data is only available for 
intrahemispheric connections and hence the tractography is performed for the two 
hemispheres separately.  
 
Both seeding strategies result in two SC matrices, A, one for each hemisphere. The size of 
the SC matrices is determined by the number of vertices on the WM surface, yielding a 
118,671 x 118,671 matrix for the left hemisphere and a 121,818 x 121,818 matrix for the 
right hemisphere. The SC matrices obtained using WM seeding is symmetric due to the 
bidirectional approach, whereas the SC matrices obtained from GM seeding is made 

symmetric by taking the arithmetic mean of the streamline counts, i.e. . 
 
When running tractography for all combinations of the parameters under investigation: 3 
b-values (1600, 4100 and 7700 s/mm²), 3 shells (20, 60 and 180 directions), 2 spatial 
resolutions (0.5 mm³, 1.0 mm³), 2 seeding strategies (WM and GM seeding) and 2 
hemispheres, it resulted in 72 different SC graphs to be validated against the tracer graph. 



Cross entropy 
The goal is to validate different dMRI protocols against ground truth, where ground truth is 

assumed to be the FLNe values in the tracer graph, denoted as for a given target 
region j. To evaluate the quality of the extracted SC graphs, we calculated the cross entropy 
(Shannon 1948; Kullback & Leibler 1951) between the tract tracing graph (Markov et al. 
2014) and the SC graphs. Cross entropy is an information theoretic measure that measures 
the average information needed to encode data from a “true” probability distribution (FLNe 
tracer data) using a “surrogate” distribution (SC graph data). In other words, cross entropy 
measures how close the estimated distribution is to the true distribution. The cross entropy 
(H) is calculated column-wise of the connectivity matrices and given by 
 

(1) 
 

where  is the distribution of relative tracer connectivity probabilities and  
is a distribution of relative SC probabilities derived from the structural connectivity graph. 
The j index is the target region (columns in the tracer graph) and the i index is the source 
region (rows in the tracer graph). 
 

In order to quantify the cross-entropy,  which is unknown needs to be estimated 

from the SC graph data. As cross-entropy is not defined in regions where  is zero 

(i.e., ) this distribution has to be robustly estimated. We therefore infer 

 using Bayesian inference. The (prior) probability of a streamline reaching one of 
the  cortical regions in the M132 parcellation is modelled by a Dirichlet distribution0K = 9  
with the parameter   defined by the relative size of the cortical regions V. The SC 
between a target region and all source regions  (where  is the number of of 
connections between target j and source i) is modelled by a multinomial distribution, where 
each of the total of connections between the sources and target j has the probabilityN j  

distribution . The generative model is thus defined by 
 

(2) 
 

where is a scaling factor specifying the confidence of the prior.κj   
 
We learn by exploiting that the Dirichlet distribution is conjugate to the Multinomialκj  

distribution such that  can be analytically marginalized: 



(5) 
 
The value of  is then found empirically by optimizing the log of this marginalizedκj  

distribution, i.e. . In the optimization  is constrained to the intervalκj  1

such that always is positive and the prior never can have more influence thanκj  
the diffusion data.  
 

Using Bayes' theorem the posterior distribution of  is then given by the Dirichlet 
distribution 
 

(3) 
 

From this distribution we will use the expected value of  given by  

(4) 
as estimate of the relative SC probabilities, where  
 

 
 

A three-factor repeated measures ANOVA with Bonferroni correction and         
Greenhouse-Geisser correction for sphericity was performed in SPSS 19, to investigate the            
effect of varying the b-value, spatial resolution and angular resolution as well as their              
interactions. 

Sensitivity and specificity 
Sensitivity, measures the fraction of true positives, i.e. the number of (binary) connections 
co-occurring in the tracer and tractography graphs divided by the total number of 
connections in the SC graph. Specificity, measures the fraction of true negatives, i.e. the 

1 Optimization was performed using the minimum bound optimization fminbnd  in Matlab v. 8.5.1 (The 
MathWorks Inc., Natick, MA, 2000). 
 



number of absent connections co-occurring in the tracer and tractography graphs divided by 
the total number of absent connections in the SC graph. 

Results 
Figure 1 shows a color-coded fractional anisotropy (FA)-map for different combinations of            
b-value, angular resolution and spatial resolution. Independent of b-value and directions, the            
overall anatomical structures that appears in high image resolution are also visible in the              
eight times lower image resolution. However, clearly even the larger tracts like corpus             
callosum does not appear to have the same spatial continuous outlined shape as in high               
resolution. In general, larger tracts appear discontinuous and is often only one voxel thick as               
seen for the corpus callosum. Therefore, anatomical features in the low resolution image             
suffers from severe partial volume effects (PVE) and the fine anatomical details visible at the               
eight times higher resolution are missing in the FA map. The effect of combining low angular                
resolution and high b-value makes the FA map appear very noisy compared to a FA map                
with lower b-value even when SNR is similar. The reason for the noise is that higher b-value                 
makes the fiber profile sharper and the lack of angular resolution results in noisy fitting.  

Network similarity measured with cross entropy 
The cross entropy between the SC and tracer graphs, when using the WM seeding strategy,               
is reported in Figure 2. Generally, more directions consistently improve cross entropy (cross             
entropy decreases) between the graphs (p=0.002), suggesting that angular resolution is very            
important for the agreement between the SC graph and the tracer graph. Also, the              
interaction between the spatial and angular resolution is significant (p=0.000). The main            
effect of the b-value is not significant (p=0.143), but the interaction between the b-value and               
spatial resolution is (p=0.001). Increasing the streamline threshold increases the cross           
entropy systematically (hence lower network agreement) but it has minimal effect on the             
ranking of the graphs for any scan parameters (difference between the rows in Figure 2).               
Using the GM seeding strategy show similar overall performance and results, see Figure S1. 
 
Interestingly, lower image resolution improves the cross entropy for any parameter           
configuration (p=0.003). Even for the combination of highest angular resolution (180           
directions) and highest b-value (b=7700 s/mm²), the low image resolution based networks            
outperforms those generated from the high image resolution. As expected due to the small              
incision in the left hemisphere, the right hemisphere generally shows higher agreement with             
the tracer graph than the left hemisphere. The different nuances of the same color indicate               
left (dark) and right (bright) hemisphere, respectively. Note however, that the defect            
hemisphere show very good performance although connections in the occipital region have            
been compromised. The reason could be that the low image resolution results in such              
severe partial volume effects (PVE) that the tractography algorithm is able to track the              
reconstructed fiber orientations across the small incision in the brain. An explanation to the              
low resolution data performing better could be that fewer steps in the tractography is needed               
to connect two cortical regions, as the integration step length in the tractography is ¼ voxel                
size for both image resolutions. To rule out this explanation, graphs derived from both low               
and high resolution data with both small (0.125 mm) and large (0.25 mm) integration step               
length are compared for both WM and GM seeding (Figure S4). The result shows that the                



cross entropy is almost unaffected by the integration step length for both image resolutions              
and both seeding strategies. Another possible explanation could be that the low resolution             
images is better because SNR is eight times higher. This is supported by the fact that more                 
repetitions improve the cross entropy for high resolution data when only few directions are              
acquired. When performing GM seeding the same dependency on acquisition parameters           
like image resolution, angular resolution and b-value is observed (Figure S1). In summary,             
neither integration step length in the tractography (Figure S4) nor averaging acquisition            
repetitions (i.e. number of acquisitions) (Figure S2 and S3) changes the result that networks              
based on low image resolution are more in agreement with the tracer graph than the high                
resolution data sets. 

Sensitivity and specificity 
The intersection between the sensitivity and specificity indicates the optimal trade-off           
between the two. Figure 3 shows that for all combinations, except the combination of high               
b-value (b=7700 s/mm²) and low angular resolution (20 directions), the sensitivity/specificity           
trade-off is around 0.6. Minor increases are observed with increasing angular resolution. In             
contrast, the threshold has a great impact on the performance of sensitivity and sensitivity. A               
high threshold results in high specificity and low sensitivity, whereas a low threshold results              
in low specificity and high sensitivity, except for the combination of b=7700 s/mm² and low               
angular resolution (20 directions) that exhibit low sensitivity (<0.47) for any threshold. When             
increasing the angular resolution, a higher threshold is needed to obtain the optimal trade-off              
between sensitivity and specificity, but compared to WM seeding, a lower threshold is             
needed to obtain the optimal trade-off between sensitivity and specificity when using GM             
seeding (Figure S6). 
 
We investigated how the number of initiated streamlines in the tractography affects the             
agreement with the tracer graph as this potentially impacts our results. To investigate the              
effect of the number of initiated streamlines, graphs generated using a fixed b-value of 4100               
s/mm², 180 directions and a image resolution of 1.0 mm³ using different streamlines/voxel             
are compared using the sensitivity and specificity measures. Figure S5 shows the sensitivity             
and specificity as a function of threshold. The optimal trade-off between sensitivity and             
specificity (i.e. the intersection of the sensitivity and specificity curves) increases when going             
from 1 streamline/voxel to 10 streamlines/voxel, but is otherwise more or less constant. To              
obtain 100% sensitivity (for a threshold of 0%) at least 1000 streamlines/voxel are required. 
 



 
Figure 1: Color-coded fractional anisotropy (FA) map. The top row shows a b-value of 1610               
s/mm² and the bottom row shows a b-value of 7700 s/mm². The left column shows low                
spatial resolution (1.0 mm³) and 180 directions, middle row shows high spatial resolution (0.5              
mm³) and 180 directions and the right row shows high spatial resolution (0.5 mm³) and 20                
directions. 
 



 
Figure 2: Cross entropy between tracer graph and diffusion graphs generated using            
different acquisition parameters and WM seeding. The different colors indicate the three            
different b-values with darker nuances indicating performance of the left hemisphere,           
whereas bright colors indicate the performance of the right (intact) hemisphere. The            
background indicates the image resolution, where high resolution is 0.5 mm³ and low             
resolution is 1.0 mm³. The different rows show different threshold levels. The top row shows               
the result of using the raw streamline counts as weights instead of binarizing the graphs               
using a threshold. The threshold is based on the maximum streamline count values in the               
graphs. The minimum value on the y-axis (2.1656) indicates the entropy of the tracer graph.  
 



 
Figure 3: Sensitivity and specificity vs streamline count threshold in % of maximum count              
value for different combinations of b-value and angular resolution. Results are obtained            
using WM seeding on the high resolution (0.5 mm³) data. The rows show the three different                
angular resolutions and the different colors indicate different b-values. The point where two             
similar lines intersect indicates the optimal trade-off between sensitivity and specificity. 

Discussion 

Main findings 
We have quantified how network graphs from tractography is highly dependent on chosen 
acquisition parameters, i.e. b-value, image- and angular resolution. Interestingly, previous 
studies focusing on the effect of model related parameter choices (i.e. fiber model, 
tractography algorithm, etc.) discuss that improved image- and angular resolution may 
improve the final connectome (Azadbakht et al. 2015; Donahue et al. 2016). In contradiction, 
we here find that networks generated from lower image resolution datasets better agree with 
ground truth than a data set with eight times higher image resolution. This is found for any 
combination of b-values, angular resolution and seeding strategy. 
 
This suggests that the anatomical details available in the low resolution data is sufficiently to 
describe the connections in the tracer graph and the performance does not improve by 
adding information about finer anatomical details as available in higher spatial resolution 
(Figure 1). An improvement of the generated SC graphs may be obtained by combining 
multiple spatial resolutions, thereby utilize the information available on all scales as 
suggested in (Sotiropoulos et al. 2013).  
 
A reason why angular resolution is important is that the SNR is very high in the low image 
resolution. The anatomical information in the low resolution images is the same as in high 
resolution, but the information in eight high resolution voxels is integrated into a single voxel 
in the low resolution data (Dyrby et al. 2014). Therefore in low spatial resolution SNR is the 



key to disentangle the angular distribution from noise (Froeling et al. 2016). This means that 
when one wants to map a structural connectome, then one should use low spatial resolution 
to get a high SNR and acquire the data using a high angular resolution.  

The impact of angular resolution and b-value 
The general trend is that more directions are better if the optimal threshold is chosen, in                
agreement with (Jones 2004), that recommend to use as high angular resolution as time              
allows. The higher performance with high angular resolution can be due to higher SNR in               
data with more directions (Zhan et al. 2010). To eliminate this option, graphs generated              
using the average images of three repetitions of the 20 directions, two repetitions of 60               
directions and 2 repetitions of 180 directions are compared to graphs generated using 20, 60               
and 180 unique directions, see Figure S2 (WM seeding) and S3 (GM seeding). For high               
resolution data, the averaging of more repetitions, and hence improving SNR, increases the             
performance, but does not outperform the performance of graphs generated using unique            
gradient directions with similar SNR. For low resolution data the averaging of more             
repetitions has minimal influence on the result, whereas the acquisition of more unique             
directions significantly improves the result. This suggests that the low resolution data set is              
more or less saturated in good SNR and contains the necessary anatomical information             
which can be extracted with higher angular resolution. This further suggests that high image              
resolution is not needed to generate SC graphs that well corresponds to tracer data in the                
coarse resolution of the M132 parcellation. 
 
From Figure 1, the data quality seems to improve only if both angular resolution and the                
b-value increase, suggesting that the data only benefit from higher angular resolution if             
detailed anatomical information exists, which is the case when using higher b-values. A             
possible explanation why higher b-values benefit more from increased angular resolution           
than low b-values, is that when increasing the b-value the estimated orientation distributions             
get more peaked and therefore more directions are needed to describe the distributions             
(Frank 2002; Frank 2001; Xie et al. 2015). When increasing the b-value, the number of               
measured compartments increases. To model the variety of compartments measured with           
high b-values more directions are needed. At lower b-values the uncertainties are larger and              
the estimated orientation distributions get broader, allowing the streamlines to take multiple            
different paths ending in different target locations. However, it should be noted that the              
interaction effect between b-value and angular resolution was not found to be significant             
(p=0.097).  

The impact of step length and seeding strategy 
We find that the integration step length in the tractography also have minimal influence on 
the result, in agreement with (Dauguet et al. 2007; Tournier et al. 2012) and Tournier et al. 
(Tournier et al. 2012) who recommends to use the largest step length that provides sufficient 
accuracy. Also, we find that seeding strategy has minimal impact on the network 
performance, in agreement with previous finding (Donahue et al. 2016), but in contradiction 
to  (Buchanan et al. 2014). It is discussed if large tracts dominate the statistics when using 
WM seeding as they include more seed voxels compared to smaller tracts, whereas GM 
tractography only is initiated in the specific tracts of interest and independent of major tract 



sizes (Jones 2010). Usually the connectivity graph is more sparse when using GM seeding 
compared to WM seeding. This means that lower thresholds are needed to ensure an 
optimal sensitivity/specificity trade-off (Figure S6). One might speculate that major tracts 
(due to volume) contribute more to the counts in the connectivity matrix than smaller tracts. 
In this study we did not investigate the specific tracts, but focused on the connectivity 
between cortical regions. 

The impact of threshold 
The sensitivity/specificity trade-off (where they intersect) is around 60-64%, independent of 
threshold, in agreement with other studies (Donahue et al. 2016). An exception is the 
combination of the lowest angular resolution and the highest b-value, where an optimal 
sensitivity/specificity trade-off cannot be reached. The reason is that the high b-value 
provides more angular information than can be captured with low angular resolution. In 
contrast, the optimal threshold to ensure optimal trade-off between sensitivity and specificity 
is very dependent on the data in question and depends on the number of streamlines, 
seeding strategy, b-value, image resolution and number of directions. 
 
Other studies validating brain networks by comparing tracer and tractography graphs use 
accuracy (percentage of correctly determined binary connections) (Azadbakht et al. 2015), 
correlation between FLNe (fraction of labeled neurons extrinsic to the target region) and FSe 
(fraction of streamlines connecting two areas relative to the number of streamlines extrinsic 
to those areas) (Donahue et al. 2016) or between number of streamlines (NOS) and FLNe 
(van den Heuvel et al. 2015). Herein we use cross entropy in combination with sensitivity 
and specificity between FLNe counts and streamline counts normalized with the total 
number of streamlines reaching any source region from a given target, similar to the 
normalization of the FLNe counts. Cross entropy as a measure of similarity between the two 
graphs is very robust to the choice of threshold, as the ranking of the graphs is minimally 
influenced by the threshold. The cross entropy results in Figure 2 and Figure S1 suggest that 
a threshold of 0% is optimal for most combinations of parameters in contradiction to the 
results in Figure 3 which show that a relatively high threshold is needed to obtain optimal 
sensitivity/specificity trade-off, especially for high angular resolutions. Cross entropy uses all 
the information available in the graphs in contrast to sensitivity and specificity that only use 
the binary information whether a connection is present or not. Cross entropy is to some 
degree dependent on the number of initiated streamlines. If a large number of streamlines 
are initiated (e.g. 160,000/voxel) the cross entropy decreases with increasing threshold level 
until a point where too much information is removed by thresholding (results not shown). 
 
Considerations/limitations 
The analyses performed herein is limited by the coarse resolution of the M132 parcellation. 
The substantial subsampling of the tractography graph may limit the amount of information 
we can extract from the diffusion data, complicating appropriate comparison of different 
settings. This can also be an explanation of why graphs derived from low resolution images 
is in better agreement with the tracer graph than graphs derived from high resolution images, 
as the precise target location of a streamline may not be important as long as it is within the 
correct region of the atlas. Due to this large subsampling of the diffusion graphs to the size 
of the tracer graph, the information gained in the high resolution dataset compared to the low 



resolution data set disappears. This limitation may be overcome by an even more 
comprehensive tracer graph, than the one provided by Markov et al. (Markov et al. 2014). It 
should however be noted that the tracer graph by Markov et al. is the most detailed tracer 
connectivity study in monkeys currently available. Due to differences in SNR, the initiated 
number of streamlines and the integration step lengths between the two spatial resolutions 
and between the two seeding strategies, complicate the direct comparison of the cross 
entropy scores. However, all settings benefit from higher angular resolution. In the cortical 
termination of a streamline, partial volume effects influence the point of termination and it 
may improve matter to correct the SC graphs for gyral crown biases (Van Essen et al. 2014) 
as done in (Donahue et al. 2016). Herein we have validated the impact of varying the 
acquisition parameters and we find a sensitivity/specificity trade-off approximately 5% lower 
than reported in (Donahue et al. 2016), suggesting that correcting for tractography biases 
improves the SC graph, but the acquisition parameters are likely to have even greater 
impact on the derived SC graph. Another consideration is whether to use the whole tracer 
target region as seed/target region in the tractography or only a sphere or gaussian around 
the injection site. In this study we use the whole area, as some target areas were not 
connected to anything, when using a sphere or gaussian around the injection site, when 
increasing the threshold. 
 
Conclusion 
The results presented herein show that the increased SNR obtained by repeated 
measurements of the diffusion encoding directions improve the performance of the 
tractography graphs derived from high resolution data, though not outperforming graphs 
from data with similar SNR and unique diffusion encoding directions. In contrast, the graphs 
derived from low resolution data does not show a performance increase by repeated 
measurements, but does benefit from acquiring more unique diffusion encoding directions. In 
conclusion, we find that low spatial resolution is sufficient to derive a SC network that is in 
agreement with the tracer graph with the coarse resolution of the M132 parcellation. We also 
find that angular resolution is important to disentangle the anatomical details, especially in 
low spatial resolution. 
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Figure S1: Cross entropy between tracer graph and diffusion graphs generated using            
different acquisition parameters and GM seeding. The different colors indicate the three            
different b-values. Darker nuances indicate performance of the left hemisphere, whereas           
bright colors indicate the right (intact) hemisphere. The background indicates the image            
resolution, where high resolution is 0.5 mm³ and low resolution is 1.0 mm³. The different               
rows show different threshold levels. The top row shows the result of using the raw               
streamline counts as weights instead of binarizing the graphs using a threshold. The             



threshold is based on the maximum streamline count values in the graphs. The minimum              
value on the y-axis (2.1656) indicates the entropy of the tracer graph. 
 

 
Figure S2: Cross entropy between tracer graph and diffusion graphs with same and different              
SNR. WM seeding. B-values are shown in different colors and spatial resolutions have             
different background colors. The labels on the x-axis show the angular resolution, where 3 x               
20 means that the network is derived from the average of three acquisition repetitions with               
20 directions. 
 

 
 
Figure S3: Cross entropy between tracer graph and diffusion graphs with same and different              
SNR. GM seeding. B-values are shown in different colors and spatial resolutions have             
different background colors. The labels on the x-axis show the angular resolution, where 3 x               



20 means that the network is derived from the average of three acquisition repetitions with               
20 directions. 
 
 

 
Figure S4: Cross entropy between tracer graph and diffusion graphs generated using            
different step lengths in the tractography. All the diffusion graphs are generated using a              
b-value of 4100s/mm³ and 180 directions. Note that the y-axis has changed compared to              
Figure 1. 
 

 
Figure S5: Sensitivity and specificity vs streamline count threshold in % of maximum count              
value for different number of streamlines. The data used in the analysis is acquired with a                
b-value of 4100 s/mm², 180 directions and a spatial resolution of 1.0 mm³. 



 
Figure S6: Sensitivity and specificity vs streamline count threshold in % of maximum count              
value for different combinations of b-value and number of directions. The graphs are derived              
from the data with high image resolution using GM seeding. 
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