23 research outputs found

    Periodogram Connectivity of EEG Signals for the Detection of Dyslexia

    Get PDF
    Electroencephalography (EEG) signals provide an important source of information of brain activity at different areas. This information can be used to diagnose brain disorders according to different activation patterns found in controls and patients. This acquisition technology can be also used to explore the neural basis of less evident learning disabilities such as Developmental Dyslexia (DD). DD is a specific difficulty in the acquisition of reading skills not related to mental age or inadequate schooling, whose prevalent is estimated between 5% and 12% of the population. In this paper we propose a method to extract discriminative features from EEG signals based on the relationship among the spectral density at each channel. This relationship is computed by means of different correlation measures, inferring connectivity-like markers that are eventually selected and classified by a linear support vector machine. The experiments performed shown AUC values up to 0.7, demonstrating the applicability of the proposed approach for objective DD diagnosis

    EEG Connectivity Analysis Using Denoising Autoencoders for the Detection of Dyslexia

    Get PDF
    The Temporal Sampling Framework (TSF) theorizes that the characteristic phonological difficulties of dyslexia are caused by an atypical oscillatory sampling at one or more temporal rates. The LEEDUCA study conducted a series of Electroencephalography (EEG) experiments on children listening to amplitude modulated (AM) noise with slow-rythmic prosodic (0.5–1Hz), syllabic (4–8Hz) or the phoneme (12–40Hz) rates, aimed at detecting differences in perception of oscillatory sampling that could be associated with dyslexia. The purpose of this work is to check whether these differences exist and how they are related to children’s performance in different language and cognitive tasks commonly used to detect dyslexia. To this purpose, temporal and spectral inter-channel EEG connectivity was estimated, and a denoising autoencoder (DAE) was trained to learn a low-dimensional representation of the connectivity matrices. This representation was studied via correlation and classification analysis, which revealed ability in detecting dyslexic subjects with an accuracy higher than 0.8, and balanced accuracy around 0.7. Some features of the DAE representation were significantly correlated (�<0.005 ) with children’s performance in language and cognitive tasks of the phonological hypothesis category such as phonological awareness and rapid symbolic naming, as well as reading efficiency and reading comprehension. Finally, a deeper analysis of the adjacency matrix revealed a reduced bilateral connection between electrodes of the temporal lobe (roughly the primary auditory cortex) in DD subjects, as well as an increased connectivity of the F7 electrode, placed roughly on Broca’s area. These results pave the way for a complementary assessment of dyslexia using more objective methodologies such as EEG

    Dyslexia Diagnosis by EEG Temporal and Spectral Descriptors: An Anomaly Detection Approach.

    Get PDF
    Diagnosis of learning difficulties is a challenging goal. There are huge number of factors involved in the evaluation procedure that present high variance among the population with the same difficulty. Diagnosis is usually performed by scoring subjects according to results obtained in different neuropsychological (performance-based) tests specifically designed to this end. One of the most frequent disorders is developmental dyslexia (DD), a specific difficulty in the acquisition of reading skills not related to mental age or inadequate schooling. Its prevalence is estimated between 5% and 12% of the population. Traditional tests for DD diagnosis aim to measure different behavioral variables involved in the reading process. In this paper, we propose a diagnostic method not based on behavioral variables but on involuntary neurophysiological responses to different auditory stimuli. The experiments performed use electroencephalography (EEG) signals to analyze the temporal behavior and the spectral content of the signal acquired from each electrode to extract relevant (temporal and spectral) features. Moreover, the relationship of the features extracted among electrodes allows to infer a connectivity-like model showing brain areas that process auditory stimuli in a synchronized way. Then an anomaly detection system based on the reconstruction residuals of an autoencoder using these features has been proposed. Hence, classification is performed by the proposed system based on the differences in the resulting connectivity models that have demonstrated to be a useful tool for differential diagnosis of DD as well as a method to step towards gaining a better knowledge of the brain processes involved in DD.This work was partly supported by the MINECO/FEDER under PGC2018-098813-B-C31, PGC2018-098813-B-C32 and PSI2015-65848-R projects. We gratefully acknowledge the support of NVIDIA Corporation with the donation of one of the GPUs used for this research. Work by F.J.M.M. was supported by the MICINN “Juan de la Cierva - Formaci´on” Fellowship. We also thank the Leeduca research group and Junta de Andaluc´ıa for the data supplied and the support

    Complex network modeling of EEG band coupling in dyslexia: An exploratory analysis of auditory processing and diagnosis

    Get PDF
    Complex network analysis has an increasing relevance in the study of neurological disorders, enhancing the knowledge of brain’s structural and functional organization. Network structure and efficiency reveal different brain states along with different ways of processing the information. This work is structured around the exploratory analysis of the brain processes involved in low-level auditory processing. A complex network analysis was performed on the basis of brain coupling obtained from electroencephalography (EEG) data, while different auditory stimuli were presented to the subjects. This coupling is inferred from the Phase-Amplitude coupling (PAC) from different EEG electrodes to explore differences between control and dyslexic subjects. Coupling data allows the construction of a graph, and then, graph theory is used to study the characteristics of the complex networks throughout time for control and dyslexic subjects. This results in a set of metrics including clustering coefficient, path length and small-worldness. From this, different characteristics linked to the temporal evolution of networks and coupling are pointed out for dyslexics. Our study revealed patterns related to Dyslexia as losing the small-world topology. Finally, these graph-based features are used to classify between control and dyslexic subjects by means of a Support Vector Machine (SVM).Spanish Government PGC2018-098813-B-C32Junta de Andalucia UMA20-FEDERJA-086European CommissionNVIDIA CorporationMinistry of Science and Innovation, Spain (MICINN) Spanish GovernmentEuropean CommissionUniversidad de Malaga/CBU

    Complex network modelling of EEG band coupling in dyslexia: An exploratory analysis of auditory processing and diagnosis

    Get PDF
    Complex network analysis has an increasing relevance in the study of neurological disorders, enhancing the knowledge of brain’s structural and functional organization. Network structure and efficiency reveal different brain states along with different ways of processing the informa- tion. This work is structured around the exploratory analysis of the brain processes involved in low-level auditory processing. A complex network analysis was performed on the basis of brain coupling obtained from electroencephalography (EEG) data, while different auditory stim- uli were presented to the subjects. This coupling is inferred from the Phase-Amplitude coupling (PAC) from different EEG electrodes to explore differences between control and dyslexic sub- jects. Coupling data allows the construction of a graph, and then, graph theory is used to study the characteristics of the complex networks throughout time for control and dyslexic subjects. This results in a set of metrics including clustering coefficient, path length and small-worldness. From this, different characteristics linked to the temporal evolution of networks and coupling are pointed out for dyslexics. Our study revealed patterns related to Dyslexia as losing the small- world topology. Finally, these graph-based features are used to classify between control and dyslexic subjects by means of a Support Vector Machine (SVM).This work was supported by projects PGC2018-098813-B-C32 (Spanish “Ministerio de Cien- cia, Innovación y Universidades”), UMA20-FEDERJA-086 (Consejería de econnomía y conocimiento, Junta de Andalucía) and by European Regional Development Funds (ERDF). We gratefully ac- knowledge the support of NVIDIA Corporation with the donation of one of the GPUs used for this research. Work by F.J.M.M. was supported by the MICINN “Juan de la Cierva - Incorpo- ración” Fellowship. We also thank the Leeduca research group and Junta de Andalucía for the data supplied and the support. Funding for open access charge: Universidad de Málaga / CBU

    Sleep-related declarative memory consolidation in children and adolescents with developmental dyslexia

    Get PDF
    Sleep has a crucial role in memory processes, and maturational changes in sleep electrophysiology are involved in cognitive development. Albeit both sleep and memory alterations have been observed in Developmental Dyslexia (DD), their relation in this population has been scarcely investigated, particularly concerning topographical aspects. The study aimed to compare sleep topography and associated sleep-related declarative memory consolidation in participants with DD and normal readers (NR). Eleven participants with DD and 18 NR (9–14 years old) underwent a whole-night polysomnography. They were administered a word pair task before and after sleep to assess for declarative memory consolidation. Memory performance and sleep features (macro and microstructural) were compared between the groups, and the intercorrelations between consolidation rate and sleep measures were assessed. DD showed a deeper worsening in memory after sleep compared to NR and reduced slow spindles in occipito-parietal and left fronto-central areas. Our results suggest specific alterations in local sleep EEG (i.e., sleep spindles) and in sleep-dependent memory consolidation processes in DD.We highlight the importance of a topographical approach, which might shed light on potential alteration in regional cortical oscillation dynamics in DD. The latter might represent a target for therapeutic interventions aimed at enhancing cognitive functioning in DD

    Artificial intelligence within the interplay between natural and artificial computation:Advances in data science, trends and applications

    Get PDF
    Artificial intelligence and all its supporting tools, e.g. machine and deep learning in computational intelligence-based systems, are rebuilding our society (economy, education, life-style, etc.) and promising a new era for the social welfare state. In this paper we summarize recent advances in data science and artificial intelligence within the interplay between natural and artificial computation. A review of recent works published in the latter field and the state the art are summarized in a comprehensive and self-contained way to provide a baseline framework for the international community in artificial intelligence. Moreover, this paper aims to provide a complete analysis and some relevant discussions of the current trends and insights within several theoretical and application fields covered in the essay, from theoretical models in artificial intelligence and machine learning to the most prospective applications in robotics, neuroscience, brain computer interfaces, medicine and society, in general.BMS - Pfizer(U01 AG024904). Spanish Ministry of Science, projects: TIN2017-85827-P, RTI2018-098913-B-I00, PSI2015-65848-R, PGC2018-098813-B-C31, PGC2018-098813-B-C32, RTI2018-101114-B-I, TIN2017-90135-R, RTI2018-098743-B-I00 and RTI2018-094645-B-I00; the FPU program (FPU15/06512, FPU17/04154) and Juan de la Cierva (FJCI-2017–33022). Autonomous Government of Andalusia (Spain) projects: UMA18-FEDERJA-084. Consellería de Cultura, Educación e Ordenación Universitaria of Galicia: ED431C2017/12, accreditation 2016–2019, ED431G/08, ED431C2018/29, Comunidad de Madrid, Y2018/EMT-5062 and grant ED431F2018/02. PPMI – a public – private partnership – is funded by The Michael J. Fox Foundation for Parkinson’s Research and funding partners, including Abbott, Biogen Idec, F. Hoffman-La Roche Ltd., GE Healthcare, Genentech and Pfizer Inc

    Tremotopic mapping of the human thalamic reticular nucleus

    Get PDF
    The thalamic reticular nucleus is an important structure in the mammalian brain, participating in the coordination of large-scale processes such as sleep and attention. To date, this structure has not been investigated in the human brain. I developed a series of methods for anatomically and functionally localizing the visual regions of the thalamic reticular nucleus in the human brain using magnetic resonance imaging and the presentation of various flicker frequencies. First, I describe the results obtained from a modified retinotopy analysis. I next apply network theory to the data in an attempt to localize the TRN is a data-driven way. Third, I describe a lateral-inhibitory network the TRN participates in. I conclude the TRN plays a role in regulating interhemispheric activity in the brain, and that flicker can be used to probe the resonance properties of neural populations with magnetic resonance imaging

    Advances in Quantitative Characterizations of Electrophysiological Neural Activity

    Get PDF
    Disorders of the brain and nervous system result in more hospitalizations and lost productivity than any other disease group. Electroencephalography (EEG), which measures brain electrical signals from the scalp, is a common neuro-monitoring technique used for diagnostic, rehabilitative, and therapeutic purposes. Understanding EEG quantitatively and its neural correlates with patient characteristics could inform the safety and efficacy of technologies that rely on EEG. In this dissertation, a large clinical data set comprised of over 35,000 recordings as well as data from previous research experiments are utilized to better quantify characteristics of neurological activity. We first propose non-parametric methods of evaluating consistency of quantitative EEG features (qEEG) by applying novel statistical approaches. These results provide data-driven methods of identifying qEEG and their spatial characteristics ideal for various applications, and determining consistencies of novel features using existing data. These qEEG are commonly used in feature-based machine learning applications. Further, EEG-driven deep learning has shown promising results in distinguishing recordings of subjects. To better understand the performance of these two machine learning approaches, we assess their ability to distinguish between subjects taking different anticonvulsants. Our methods could successfully discriminate between patients taking either anticonvulsant and those taking no medications solely from neural activity with similar performance from both feature-based and deep learning approaches. With feature-based methods, it is easier to interpret which qEEG have the most impact on algorithm performance. However, deep learning applications in EEG can present difficulty in understanding and investigating underlying neurophysiological implications. We propose and validate a method to investigate frequency band importance in EEG-driven deep learning models. The easy perturbation EEG algorithm for spectral importance (easyPEASI) is simpler than previous methods and is applied to classifications investigated in this work. Until this point, our work used well segmented EEG from clinical settings. However, EEG is usually corrupted by noise which can degrade its utility. We formulate and validate novel approaches to score electrophysiological signal quality based on the presence of noise from various sources. Further, we apply our method to compare and evaluate the performance of existing artifact removal algorithms
    corecore