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The Temporal Sampling Framework (TSF) theorizes that the characteristic phonological difficulties of
dyslexia are caused by an atypical oscillatory sampling at one or more temporal rates. The LEEDUCA
study conducted a series of Electroencephalography (EEG) experiments on children listening to ampli-
tude modulated (AM) noise with slow-rythmic prosodic (0.5-1 Hz), syllabic (4-8 Hz) or the phoneme
(12-40 Hz) rates, aimed at detecting differences in perception of oscillatory sampling that could be asso-
ciated with dyslexia. The purpose of this work is to check whether these differences exist and how they
are related to children’s performance in different language and cognitive tasks commonly used to detect
dyslexia. To this purpose, temporal and spectral inter-channel EEG connectivity was estimated, and a
denoising autoencoder (DAE) was trained to learn a low-dimensional representation of the connectiv-
ity matrices. This representation was studied via correlation and classification analysis, which revealed
ability in detecting dyslexic subjects with an accuracy higher than 0.8, and balanced accuracy around
0.7. Some features of the DAE representation were significantly correlated (p < 0.005) with children’s
performance in language and cognitive tasks of the phonological hypothesis category such as phonological
awareness and rapid symbolic naming, as well as reading efficiency and reading comprehension. Finally, a
deeper analysis of the adjacency matrix revealed a reduced bilateral connection between electrodes of the
temporal lobe (roughly the primary auditory cortex) in DD subjects, as well as an increased connectivity
of the F7 electrode, placed roughly on Broca’s area. These results pave the way for a complementary
assessment of dyslexia using more objective methodologies such as EEG.
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1. Introduction depending on the test battery usedT It is charac-
The Developmental Dyslexia (DD) is a learning dis- terized by from mild to severe difficulties in read-
ability that hinders the acquisition of reading skills. ing, unreadable handwriting, letter migration and
Unrelated to mental age or inadequate schooling, it common misspellings There is huge consensus? in
can affect between 5% and 12% of the population, that it can be a significant factor in school failure,
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in addition to having a harmful impact on children’s
self-esteem.

The diagnosis of DD is mostly based on behav-
ioral tests that measure reading and writing effi-
ciency. However, the tests are often affected by exoge-
nous variants such as children’s motivation or mood,
accounting for fundamental errors in the diagnosis.
To overcome this problem, the standardized crite-
ria of the 5th edition of the Diagnostic and Sta-
tistical Manual of Mental Disorders (DSM-V)3 are
grounded in psychometrics, but also specify the col-
laboration between educators, clinicians and par-
ents, providing other types of historical information
that complement this characterization. Even in this
case, the different assessments are especially designed
for readers, limiting the minimum age for an early
diagnosis, which may be of fundamental impact to
leverage the intellectual and personal development
of affected children® Therefore, new objective mark-
ers to inform a more precise and early diagnosis are
a paramount need.

In this regard, many functional brain data tech-
niques have been key in neuroscience, among others
functional Magnetic Resonance Imaging (fMRI) 5%
Magnetoencephalography (MEG) or, more recently,
functional Near-Infrared Spectroscopy (fNIRS).
They provide useful insight into the brain function,
allowing to explore the neural basis of many disorders
and diseases. Among them, Electroencephalography
(EEG) is perhaps the most widespread, cost-efficient
cortical brain activity detector, with the higher tem-
poral resolution. It has countless applications rang-
ing from human-computer interaction™ to diagno-
sis, and has been extensively tested over the years?
in diseases and disorders such as Alzheimer’s Dis-
ease (AD)T2H Parkinson’s Disease 18 Epilepsy 817
Stress™® or Schizophrenia ™

Recently, many works point to possible biologi-
cal underpinnings of DD. New models suggest that
dyslexia is originated in the atypical dominant neu-
ral entrainment in the right hemisphere, strongly
relying on three major rhythm categories: slow-
rhythmic prosodic (0.5-1Hz), syllabic (4-8Hz) or
the phoneme (12-40 Hz) %2021 Ayyong them, a Tem-
poral Sampling Framework (TSF) for causes of DD
was recently proposed 2224 This hypothesis states
that atypical oscillatory sampling at one or more
temporal rates in children with dyslexia could cause
phonological difficulties in specifying linguistic units

such as syllables or phonemes. The TSF claims that
atypical oscillatory entrainment at relevant rates of
amplitude modulation could be one neural cause
of the “phonological deficit” found in children and
adults with dyslexia across languages and orthogra-
phies 23

During many years, it was believed that there
was no relationship between EEG and DD, and
just a few studies tried to shed light on the sub-
ject with mixed results228 However, research in
recent years using novel spectral analysis tech-
niques?®20 has shown that there may actually be
information in the EEG signals that could be used
for a biologically-based diagnosis of DD. However,
extracting meaningful data from EEG is not trivial.
EEG’s low signal-to-noise ratio (SNR) causes pre-
processing to play an important role in the subse-
quent analysis. Usually, preprocessing pipelines com-
prise procedures that start with noise and artifact
reduction, including signal averaging or Indepen-
dent Component Analysis (ICA)27 The next step
is often the extraction of descriptors from the data.

Spectral analysis — e.g. computing the total or
average Power Spectral Density (PSD) per EEG
band — is one of the most popular?® followed

by computing temporal or spectral inter-channel
measures 29

In this context, connectivity analysis has been
a major breakthrough in neuroscience 2234 In the
field, connectivity stands for any kind of measures
that link two signals acquired at different channels,
e.g. covariance or correlation. It has been demon-
strated that the co-variances between signals at dif-
ferent regions of the brain are indicative of the
underlying neural circuitry, which supports the mod-
eling of the brain as a hyper-connected network.
fMRI brain connectivity is a very common tech-
nique with outstanding performance in many diag-
nosis applications @287 EEG’s, however, is much
less known 28887 Nevertheless, EEG connectiv-
ity revealed itself as a very promising technique
in Delignani et al®® where the authors already
used spectral information to compute the adjacency
matrices, and could even predict fMRI connectivity.
Spectral connectivity was also successfully used in
Martinez-Murcia et al? for the diagnosis of DD.
However, spectral processing is mainly used to fil-
ter out frequency bands (alpha, beta, delta, theta)
and, with the exception of spectral coherence? the
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Fig. 1. Schema of the proposed methodology, including how the connectivity features are obtained from time and
periodogram of the EEG signals, and how this connectivity is used to train the autoencoder. The resulting features at
the three-dimensional Z-layer (last layer of the encoder, first of the decoder) may be used for classification, regression or

visualization.

periodogram has hardly been used for direct connec-
tivity estimation.

These matrices can be directly used as markers
for diagnosis. However, the variability inherited from
low SNR signals, and the small sample size prob-
lem 57 very frequent in these experimental setups,
can affect the results. Therefore, new methodolo-
gies to reduce the dimensionality of the data can
be of great help, both to avoid the small sample
size problem and to reveal their underlying struc-
ture in the data via manifold learning L In the first
case, some works explore algorithms such as Prin-
cipal Component Analysis (PCAY* to reduce the
feature space. On the other hand, manifold learning
has also been used for feature extraction while at the
same time, characterizing the underlying structure of
biomedical signals in many studies 52 Manifold learn-
ing stands for a geometric interpretation of nonlin-
ear decomposition methods, following the manifold
assumption®: that natural high-dimensional data
concentrates close to a nonlinear low-dimensional
manifold. Its advantages are a more powerful nonlin-
ear modeling while providing better features for clas-
sification and visualization. Many manifold learning
approaches can be found in the literature, among
them those based on minimum distancé® or locally
linear embedding®® However, most of them have
been outperformed in latter years by neural network
architectures. In this context autoencoders, a self-
supervised encoder—decoder architecture, have been

d52 In particular, denoising autoen-

widely applie
coders (DAEs)® improve the representation of the
information by adding noise to the input and train-
ing on the loss between the noisy and the real
input, learning how to separate useful information
from noise. Once trained, the model can map a cor-
rupted example back to an uncorrupted one, and the
encoder part can be used to project from the high-
dimensional space of the adjacency matrices to just
a few coordinates over a collinear manifold that may
be representative of each data point5

Here, we test the TSF’s atypical oscillatory sam-
pling hypothesis by studying EEG signals collected
by the LEEDUCA Project5® in southern Spain
to analyze whether and how EEG connectivity is
affected by DD. To do so, autoencoders will be used
to inform a self-supervised decomposition of EEG’s
inter-channel temporal and spectral connectivity, as
shown in Fig. [l The resulting manifold will be stud-
ied for validity by checking its correlation to read-
ing and writing skill performance evaluations done
by researchers®Z and by obtaining the classifica-
tion performance in a binary (DD versus control)
approach. The whole LEEDUCA dataset as well as
the EEG cohort are presented at Sec. 211 followed
by a description of how the spectrum is computed
(Sec. 222)) the connectivity measures (Sec. 23) and
the DAE (Sec. 24). Finally, at Secs. Bl and Ml the
results of applying this methodology will be pre-
sented and discussed.
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2. Materials and Methods
2.1. FEG dataset
2.1.1. LEEDUCA cohort

The LEEDUCA study is a longitudinal study aimed
at assessing specific learning difficulties and their
evolution during infancy®¥ It follows a large cohort
(N = 700) of students at 30 schools in southern
Spain from five to eight years. Students undergo a
complete battery of cognitive and linguistic tasks
applied by expert psychologists whose content is
based on recent studies5? including several tasks.
Among them, Phonological Memory (PM) and
Phonological Awareness (PA) count the number of
suppressed syllables or phonemes in a variety of lis-
tening tests; Reading Efficiency (RE), which mea-
sures the efficiency (words per minute) in identifying
two, three and four syllable words and pseudowords.
Reading Speed (RS) measures the number of words
per minute (efficiency) on reading a real text, Read-
ing Comprehension (RC) presents a text and a ques-
tionnaire, and counts the number of correct answers
and Rapid Symbolic Naming (RSN) measures the
time on a rapid automatized naming of some object
presented. This study was approved by the Medi-
cal Ethical Committee of the University of Malaga
(05/02/2020 PND016/2020), according to the dispo-
sitions of the World Medical Association Declaration
of Helsinki. It was also supported by the University of
Malaga (infrastructure project UNMA15-CE-3657)
and the Education Office of the regional government
of Andalusia (Spain), which granted our researchers
permission to carry out the study in different pub-
lic schools, and it was approved, funded and super-
vised by the Spanish Ministry of Science within the
framework of the national project PSI2015-65848-R.
Labeling for this paper was derived from a complete
report at age seven, received by the Special Edu-
cation School Services (SESS) that coordinate the
project. Individuals meeting specific criteria of the
DSM-V (a reading performance 1.5 standard devia-
tions below the mean for age 7) were labeled as DD
and the rest were considered as subjects of the con-
trol group (CN).

A subset of the LEEDUCA study was selected by
the Special Educational Need Services of the regional
school system to test the TSF for dyslexia??24 using
EEG. This cohort (N = 48) included 32 skilled read-
ers (17 males) and 16 dyslexic readers (7 males)

Table 1. Demographics and test results of the EEG
cohort. Units for each category are provided in paren-
theses (n: number of correct answers, t: time in s, efi:
efficiency, measured in items per min), and the standard
deviation per group is provided in brackets.

Group Control DD

N 32 16
Age (months) 94.1 [3.3] 95.6 [2.9]
PM (n) 16.382 [5.551]  13.219 [3.843]
PA (n) 11.206 [3.210]  9.094 [3.489]
RE-words (efi) 17.152 [2.984]  10.730 [3.780]
RE-pseudo2! (efi 35.633 [8.187]  21.419 [5.806]
RE-pseudo3? (efi 24.342 [6.127] 16.394 [6.242]
Reading speed (efi) 15.710 [3.08] 9.206 [3.550]
RSN (1) 18.969 [5.999]  21.335 [6.767)]
RC (1) 8.106 [1.339]  7.625 [1.443)]

Note: 'Two-syllable pseudo-words, 2rl‘hree—syllable
pseudo-words.

0.180). Details of
demographics as well as some test outcomes for the
EEG cohort can be found at Table [l Specific writ-
ten permission was asked for this experiment and
subjects came accompanied by their parents. They
underwent 5-min sessions while presenting a rhythm-
modulated auditory stimulus, in order to identify if
there exists an abnormal neural processing of speech
envelope modulation rates in subjects with DD. This
stimulus consisted of Amplitude-Modulated (AM)
white-noise at a fixed rate of 2, 8 and 20 Hz, which
correspond to stress word patterns, syllable Spanish
rate and phoneme segmentation, as in the work of
De Vos et al50

matched in age (t = —1.4,p =

2.1.2.  Signal acquisition and preprocessing

EEG was recorded using the BrainVision actiCHamp
Plus amplifier with actiCAP snap high impedance
active electrodes in a 32-channel 10-20 standard lay-
out (see Fig. ) plus one reference (REF) at FCz
and one ground (GND) electrode attached to the
mastoid bones (behind the ears). The equipment was
powered by Li-ion batteries to ensure isolation from
power line and reducing the noise, and signals were
recorded at a sampling rate fs = 500Hz and band-
pass filtered from the DC component to 140 Hz. EEG
data were preprocessed using the BrainVision ana-
lyzer software. Electro-Ocular (EOG) artifacts were
removed using the ocular correction implemented in
the software, that detects and marks artifacts with
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Fig. 2. EEG electrode placement according to the 10—
20 coordinate system, including the ground and reference
electrodes.

a Mean Slope algorithm 58 and then eliminates the
contribution of the components to the Global Field
Power during blink intervals. Afterwards, data was
filtered out for power line interference (notch fil-
ter at 50Hz), and the signals were cropped into
five-second segments. EEGLABs27 has been used
under expert supervision for the detection of poten-
tial abnormal values, abnormal trends, improbable
data, abnormal distribution and abnormal spectra
with default parameters. Segments without poten-
tial artifacts were kept, and those with potential
artifacts were examined by an expert neurophysiol-
ogist to either keep or reject the segment in further
analyses.

2.2. Spectral estimation

In order to estimate the spectral connectivity, we
cannot rely on average estimates of the PSD of dif-
ferent bands and channels; the whole spectrum is
needed. And for this purpose, each subject’s 32-
channel five-second segments is used to estimate the
periodogram. For the first approach (noted ‘pgram’),
the raw periodogram is obtained from the discrete
Fourier’s transform (DFT) of each channel and seg-
ment. On the other hand, the second approach
(noted ‘welch’) uses the Welch’s periodogram esti-
mation method 5 In this approach, the signal is first

EEG Connectivity Analysis Using Denoising Autoencoders

divided on several subsegments of length 500 with
an overlapping of 250 samples. Then, the segments
are windowed (using the ‘hanning’ window) and the
periodogram is estimated from the windowed seg-
ments using the DFT. Finally, the periodograms of
the subsegments are averaged to produce an estimate
of the spectrum less affected by the noise, at the
cost of reducing the spectral resolution. Both peri-
odogram estimation methods are implemented using
the scipy package.

Finally, we can use directly the pgram or welch
periodograms for each segment (the per-segment
approach), or apply the same modified Welch’s peri-
odogram used by Martinez-Murcia et al.,laEI in which
the periodograms — regardless of the method used—
of all segments for one subject are again averaged.
This is noted as the ‘per-subject’ approach, obtaining
just one spectral estimate per subject and channel.
This later approach has the advantage of reducing
the overall noise of the spectral estimate at both the
segment and subject level, although it also reduces
the spectral resolution.

2.3. Connectivity features

The characterization of the brain as a network
using functional information is commonplace in cur-
rent brain studiesSHS0RSIN0I02 Thig Jeads to the

so-called connectome: a complete mapping of all

connections between regions, in the form of an
adjacency matrix, usually containing the covariance
(and other derived measures) between fMRI sig-
nals at different regions. Similarly, the temporal
covariance between EEG electrodes has also been
assessed in several works 28 However, the covariance
is a statistic not restricted to the temporal domain,
and in consequence, it could be used to quantify
co-varying changes in any kind of signal, e.g. the
spectrum.

Many algorithms exist to estimate the real
covariance Y of a set of measurements, such as
the Ledoit-Wolf estimator 83 However, when deal-
ing with connectivity, the precision matrix (or
inverse covariance) O is usually of greater inter-
est, since it accounts just for direct connections
between nodes. In these cases, a robust covariance
estimator is preferred. The problem here becomes to
minimize

log det © — tr(SO) — p||O||1, (1)
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where S is the sample covariance, tr() denotes the
trace and ||©]; is the L1 norm of ¥ (the sum of all
the absolute values). Note that the L1 norm is used
to enforce sparsity: the higher the parameter p is, the
sparser the final estimate will be.

To solve this problem, Friedman et al®¥ show
that the minimization of Eq. () is a convex prob-
lem, and by estimating an estimate W of X, instead
of ©71, it was shown that the optimization problem
could be applied to each row and corresponding col-
umn of W as in a block coordinate descent

Wi wie S11 - s12
W = . , S= T’ (2)
Wy W22 521 522
to propose a solution of the problem based on

. 1
mﬁln{§Wlll/zﬁ—b +P5||1}, (3)

where b = Wfll/ 2812, which resembles a lasso regres-
sion. Then, a coordinate descent algorithm is used to
iterate over W and obtain the final covariance esti-
mate. Since the model is sensitive to p variations, an
inner cross-validation was used to automatically set
it.

Once the covariance model estimate W has been
obtained, the precision is obtained as the pseudo-
inverse of . Finally, the correlation R and partial
correlation (PC) T matrices are obtained from the
covariance matrix as

R=Wdd" and T =-Ogg7, (4)

where

1 1
I \/diag(S) and g /diag(©)’ (5)
Since these four matrices are symmetrical, the
values at the lower triangular part of the matrix will
be selected as features. The values for connectivity
have been estimated using the scikit-learn python
package 63

2.4. Denoising autoencoder

Autoencoders (AEs) are a self-supervised neural net-
work that is frequently used for feature extrac-
tion B8 Tt consists of a connection of an encoder
and a decoder network, the former reducing the
dimensionality of the input features x down to a bot-
tleneck vector z of length len(z) < len(x). Then,
the output of the encoder is connected to a decoder

network whose only purpose is to reconstruct the
original signal & using solely the information at z.
The intermediate layer, or bottleneck, is commonly
known as z-layer.

The complete encoder-decoder network is trained
by minimizing the reconstruction error (in our case,
the Mean-Squared Error, or MSE) between the input
and the output vector, in a self-supervised scheme:

1 .
L= NZ(I'z *xi)z- (6)

A particular type of AE is the DAESS in which
the forward pass of the network uses a corrupted
input by adding white noise £ = x + n. By adding
noise to the input and backpropagating the loss
between the corrupted and the clean input, the
model learns how to retain useful information and
discard noise, which was given the geometric inter-
pretation under the manifold assumption: that nat-
ural high-dimensional data concentrates close to a
nonlinear low-dimensional manifold 5 Under this
interpretation, the outputs of the latent neurons
(neurons at the intermediate layer of an autoen-
coder) can be considered a set of coordinates in the
latent space, to which the higher-dimensional input
is projected. In this paper, the noise is re-sampled
from a white noise of standard distribution N (0, 1)
in every epoch, which also acts as a data augmen-
tation approach at the same time that avoids local
minima, providing robustness to overfitting.

Our architecture is composed of a three-layer per-
ceptron as the encoder (see Fig. [Il), with layer sizes
of 512, npiq and 3, and the corresponding decoder
of layer sizes 3, npiq and 512. np;q — the number
of neurons at the hidden layer of the encoder and
decoder — was chosen by grid search in powers of
two, by reporting the reconstruction loss for each
npiq and connectivity feature. A nypiq = 64 was cho-
sen, corresponding to the value for which the valida-
tion loss stopped decreasing. The number of neurons
at the Z-layer was set to 3, to be able to visualize
the distribution of subjects in a three-dimensional
space. Visualizing the Z-layer space improves the
interpretability of our methodology, one of the main
objectives of this work. The layers had activations
(ELU, linear) for both the encoder and the decoder,
respectively. ELU stands for the Exponential Lin-
ear Unit function, a widely used activation function
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defined as
ELU(z) = max(0, z) + min(0, a(exp(z) — 1)).  (7)

Batch normalization was used after each ELU acti-
vation. The whole system was trained first with
Adami®? and later finetuned with Stochastic Gradi-
ent Descent (Ir = 0.001). Early stopping was used
in both cases, controlled by an independent valida-
tion subset (15% of the data), and batch size was
16 (in per-subject connectivity) and 64 (for per-
segment connectivity). The autoencoder was imple-

mented and trained using the pytorch python frame-
work 68

3. Results
3.1. Experimental setup and evaluation

In accordance to the TSF for dyslexia 2224 it would
be likely that atypical oscillatory sampling patterns
are found in EEG signals. The main aim of this work
is therefore to test whether and how EEG connec-
tivity is affected by DD in school-aged children. To
do so, the self-supervised decomposition of tempo-
ral and spectral connectivity between EEG channels
and their relationship with DD is studied within two
main categories:

e A correlation analysis. The Pearson’s Corre-
lation (‘r’) and statistical significance (p-value)
between each Z-layer feature and the language and
cognitive task performance of children of the EEG
cohort (see Sec. ) are estimated. Its objective
is twofold: to validate the autoencoder decomposi-
tion and evaluate which tasks are more related to
EEG connectivity, allowing for a comparison with
other works in the literature 2!

e A classification analysis, in which the Z-layer fea-
tures (Sec.[24)) are used to train and test a Support
Vector Machine classifier (SVC)f® with Radial
Basis Function (RBF) kernel (v = 0.1,C=1),
using balanced class weight. The performance
is estimated within a five fold stratified cross-
validation (CV) loop™ using a series of perfor-
mance metrics that are described in the following.

The performance of the classification is estimated
using a number of metrics derived from the confusion
matrix, formulated in relation to the number of True
Positives (TP), True Negatives (TN), False Positives
(FP) and False Negatives (FN):

EEG Connectivity Analysis Using Denoising Autoencoders

e Accuracy (acc.) and its standard deviation (STD)
over all CV folds

acc. = TP+ 1IN . (8)
TP + TN + FP + FN
e Sensitivity (sens.) and its STD
sens. = TP/(TP + FN). 9)
e Specificity (specs) and its STD over CV folds
spec. = TN/(TN + FP). (10)
e Fl-score
F1=2TP/(2TP + FP + FN). (11)

e Balanced Accuracy (BA), especially designed for
unbalanced datasets

BA = (sens. + spec.)/2. (12)

Note that, given the unbalanced nature of our
data, balanced accuracy is always preferred to reg-
ular accuracy.

The STD is provided because the sample size is small
in the per-subject approach, and as a consequence,
the variance of the performance across loop might
be high. Additionally, the Receiver-Operating Char-
acteristic (ROC) curve and the area under the curve
(AUC) are provided as an additional performance
measure.

The classification and correlation analyses are
performed on two main models:

e A temporal connectivity model, in which the
adjacency matrix is estimated from the EEG
multi-channel segments, in a per-segment or per-
subject — average of all matrices belonging to a
subject — approach. This is presented at Sec.

e A spectral connectivity, in which the adjacency
matrices are estimated using the periodograms of
different segments (see Sec. B3]). Here, they are
used to assess which spectral estimation methods
and adjacency matrices generate a better modeling
of the manifold for our purposes. This is done again
in a per-segment and per-subject (connectivity of
the average spectrum) approaches.

3.2. Temporal connectivity model

In this section, the results for the temporal con-
nectivity are provided. Temporal connectivity is
the standard measure in most connectivity stud-
ies BI6I62 and  describes how the Blood Oxygen
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(Color online) Performance of the different temporal connectivity measures under the per-segment (left) and

per-subject (right) approaches. BA and its STD are provided for each measure (in color) and frequency modulation of
the stimuli (z-axis). Note that the points are not exactly located at their z-position in order to ease visual inspection of

the performance and its trend.

Level-Dependent (BOLD) or EEG signals in differ-
ent regions co-vary over time. In Fig. [3 the classi-
fication performance (estimated by a SVC) of the
AE features at the Z-layer is depicted for both the
per-segment and per-subject scenarios.

The most obvious difference is that the perfor-
mance dramatically decreases from the per-segment
to the per-subject scenario. This is expected, given
that it involves a significant reduction of the sample
size — from 1462 adjacency matrices to 48—, increas-
ing the variance and decreasing the performance of
any classification system. Therefore, we will focus on
the general trends.

In the per-segment scenario, the performance
behaves similarly across all measures, with a subtle
trend to diminish at higher modulation frequencies.

In the per-subject approach, however, the only mea-
sure that maintains this trend is the covariance,
whereas the rest have a noticeable decrease at the
8 Hz band. It is interesting to note that, whereas
covariance reaches its peak at f,, = 2Hz, pre-
cision — the inverse covariance (see Sec. 23) —
does so at the highest f,,. We provide a deeper
look at the performance of these measures at
Table

Here, the differences between the per-subject and
per-segment approaches vary significantly. While the
per-segment approach achieves a balanced accuracy
above 0.7 in both covariance and precision, the per-
subject hardly gets a 0.6 for the later and less than
0.5 for the former. There is even a notorious exam-
ple with 0 sensitivity for the covariance matrix at

Table 2. Performance values for the temporal connectivity measures in DD diagnosis.

fm acc. [STD] sens. [STD] spec. [STD] F1 BA AUC

Covariance 2 0.783 [0.122] 0.471 [0.312] 0.896 [0.236] 0.598  0.684 0.663
(per-segment) 8 0.827 [0.047] 0.325 [0.000] 1.000 [0.098]  0.491 0.663 0.762
P & 20 0.733 [0.149] 0.441 [0.339] 0.836 [0.264]  0.549 0.638  0.689
Covariance 2 0.612 [0.119] 0.643 [0.208] 0.600 [0.307] 0.629  0.621  0.465
(ver—sub'ect) 8 0.574 [0.128] 0.231 [0.363] 0.706 [0.324]  0.303 0.468 0.480

P ! 20 0.531[0.142]  0.000 [0.000] 0.743 [0.251] — 0371 0.363
Precision 2 0.708 [0.170] 0.562 [0.183] 0.761 [0.206] 0.624 0.661 0.740
(per-segment) 8 0.672 [0.179] 0.466 [0.324] 0.743 [0.303]  0.540 0.604  0.598

P & 20 0.667 [0.160] 0.567 [0.231] 0.702 [0.275]  0.608 0.635  0.590
Precision 2 0.612 [0.155] 0.429 [0.339] 0.686 [0.313]  0.492 0.557  0.535
(per-subject) 8 0.617 [0.164] 0.231 [0.363] 0.765 [0.303]  0.315 0.498  0.419
P J 20 0.592 [0.111] 0.786 [0.116] 0.514 [0.264] 0.692  0.650 0.618
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Fig. 4.

a modulation f,, = 20Hz. In Fig. B it is shown
that the covariance connectivity yielded larger per-
formance for the 2 Hz stimuli whereas the precision
did at 20 Hz. This is especially evident when assess-
ing the sensitivity and the Fl-score, that are higher
at fn,, = 2 for the covariance (both in per-segment
and per-subject) and at f,,, = 20 for the precision. In
these cases, the resulting manifold achieves a good
trade-off between sensitivity and accuracy (a BA
above 0.6), which may hint a link between reading
difficulties and the self-supervised decomposition of
the connectivity. This link is easily spotted at Fig. B
left, where most DD-affected subjects appear at the
right lower area of the subject distribution in the AE
representation.

In addition to the classification analysis, we study
how the AE representation manifold correlate with
the different task presented to the students. From
Fig. Blright, it can be seen that the AE trained
with precision matrices and 20 Hz stimuli (those with
larger BA and sensitivity in classification) models a

2 8 20
Modulation freq. (Hz)

(d) Welch’s estimation, per-subject

Performance (BA and STD) of the different periodogram connectivity measures for each modulation frequency.
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Fig. 5.  Manifold representation of the AE trained with

temporal precision matrices obtained with 20 Hz stimuli
and the per-subject approach, and its relation with the
labels (left, DD and controls) and one of the tasks (right,
3-syllable words RE).

space whose first two coordinates (the output of the
first two neurons of the Z-layer) are visibly linked
to the RE for three-syllable words (RE-words3,
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Table 3. Highest Pearson’s correlations (r and p-value)
between temporal connectivity matrices and assessment
categories.

Assessment fm  Connectivity r P

RE—pseudo31 2 precision 0.569 < 0.001
RSN-objects 2 PC 0.412 0.004
RSN-rep-obj? 2 PC 0.382 0.008
RSN-objects 2 precision 0.380 0.008
RC 2 correlation 0.379 0.009
RC 8  covariance 0.435 0.003
RE—pseudo31 20  precision 0.433 0.002

RC 20  covariance 0.394 0.006

Note: 1Z’)—syllable words, 2Repeated objects.

color-coded). Note that the smaller values of RE-
words3 (associated with dyslexics) are found in the
lower right corner, while the larger values are found
in the upper left corner, indicating the links between
an AE representation of EEG connectivity and stu-
dents’ reading ability.

In Table [Bl we present a list of the tasks whose
scores are significantly correlated (p < 0.1) with the
AE representation, including the Pearson’s r and cor-
responding p-value. Highest correlations are achieved
with RE, RC and verbal memory, specifically with
RSN. The highest correlations are achieved for the
precision matrix under 2 Hz stimuli.

3.3. Spectral connectivity model

In the following section, we analyze the results of the
spectral connectivity model. Spectral connectivity
measures how the power at different regions co-varies
over frequency. Two different spectrum estimation
methods have been used here: the direct periodogram
(‘pgram’) and the Welch’s periodogram estimation
(‘welch’; see Sec. 22)).

Figure[ displays the balanced accuracy and stan-
dard deviation of the different connectivity mea-
sures, grouped by modulation frequency. Note that,
as in the previous case, the values for each mea-
sure are displaced on the z-axis for a better visual-
ization. The first comparison is between the direct
periodogram and Welch’s periodogram estimation
methods (left and right column, respectively). Here,
we observe that the trends are similar, except for the
per-segment covariance and the per-subject partial

correlation. The remaining measures behave simi-
larly across estimation methods and approach.

Second, we observe an important decrease in
performance when changing to the per-subject
approach. There is an evident direct cause: sample
size. We move from 1462 segments to 49 subjects, so
both the autoencoder and the SVC will be affected
by less available samples during training. The least-
affected measure is precision, according to Fig. [,
being the only one that maintains a balanced accu-
racy around 0.7 when switching to per-subject con-
nectivity under the Welch’s periodogram estimation.

In general, the trends of correlation and covari-
ance are opposed to precision and partial correlation.
In the per-segment approach, the former achieved
better results with 2 Hz modulated stimuli, whereas
the latter did at 20 Hz. In the per-subject approach,
however, the behavior was the opposite, but in
almost every case, the EEG signals acquired at 8 Hz
(syllabic rhythm for Spanish) modulation were the
worst predictor of DD. We will discuss this and its
implications later in Sec. [l To take a deeper look at
the performance, we focus on precision and PC, the
second best connectivity measure, shown at Table [l

Table (] first confirms that the per-segment con-
nectivity always achieves larger accuracy and sen-
sitivity than the per-subject approach. Second, we
observe that the measures related to classifier posi-
tives (sensitivity, F1 and AUC) consistently point to
precision as the best-scoring adjacency measure. In
the per-subject approach, sensitivity and F'1 are con-
sistently higher with the precision matrices derived
from EEG segments of subjects listening to 2Hz
modulated stimuli, and so are the computed AUCs,
which is consistent with previous works

Figure [0 shows the different subjects as they
are modeled by the AE trained with precision
connectivity matrices (welch-estimation per-subject)
at 8 Hz stimuli. We observe that the distribution of
subjects is more disperse than in the temporal con-
nectivity, although there are still regions where each
diagnostic category predominates. As for the corre-
lation analysis, note that the low-dimensional man-
ifold is more clearly linked to some reading assess-
ments, such as RE for 4-syllable words, with » > 0.47
(Fig. Blright).

More details of the correlation analysis, under
the per-subject approach, can be found at Table
We first observe that the correlations are generally
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Table 4. Performance values for the spectral connectivity in DD diagnosis.
Measure fm acc. [STD] sens [STD] spec. [STD] F1 BA. AUC
Precision 2 0.762 [0.090] 0.559 [0.253] 0.835 [0.245] 0.649  0.697 0.736
(per-segment) 8 0.708 [0.154] 0.543 [0.284] 0.765 [0.251] 0.611 0.654 0.696
P & 20 0.740 [0.114]  0.596 [0.254] 0.790 [0.221] 0.660 0.693  0.762
Precision 2 0.673 [0.068] 0.714 [0.049] 0.657 [0.209] 0.694 0.686  0.692
(per-subject) 8 0.660 [0.072] 0.615 [0.097] 0.676 [0.237] 0.635 0.646 0.690
P ! 20 0.633 [0.161] 0.500 [0.200] 0.686 [0.247] 0.551 0.593 0.616
Partial 2 0.618 [0.135] 0.491 [0.269] 0.663 [0.257] 0.537 0.577 0.560
correlation 8 0.694 [0.099] 0.267 [0.362] 0.840 [0.275] 0.375 0.554 0.605
(per-segment) 20 0.750 [0.083]  0.493 [0.278] 0.839 [0.214] 0.597 0.666 0.732
Partial 2 0.571 [0.109]  0.714 [0.104] 0.514 [0.281] 0.649 0.614 0.592
correlation 8 0.596 [0.163] 0.308 [0.363] 0.706 [0.324] 0.384 0.507 0.517
(per-subject) 20 0.592 [0.121] 0.429 [0.163] 0.657 [0.228] 0.484 0.543 0.590
DX (precision|8) RE-word4 (precision|8) Table 5.  Highest Pearson’s correlations (r and p-value)

251 « CN . between spectral connectivity matrices (welch) and
,0l PP i i '3 s 70 assessment categories for the per-subject scenario.
’ L] ° L] 8 . .
1 et o ® Soss :
15 e o Cc: ° ..’... - 60 Assessment fm kind r P
1.0 o ° ~ .
% o R ¢ ® 50 EF'-SA? 2 Covariance  0.479  <0.001
Soos1. . voc, S| e ®° EFl-Inhibition ~ 2  Covariance  0.423  0.003
2 o0 °° ., = ° 40 RS-prosody 2  PC 0.422 0.002
s
—0>7 . 3]e 30 RE-CS3 8  Precision 0.489  <0.001
~1.0 1 = d RE-words4 8  Precision 0.473 0.001
I «° |, 20 RE-words3 8  Correlation  0.470 0.001
' o : T T : T RE-pseudo4d 8  Correlation  0.468 0.001
Neuron 1 Neuron 1 (r: 0.474, p: 0.001) RE-pseudo2 8  Correlation  0.446 0.002
RS 8  Correlation  0.424 0.003
Fig. 6. Manifold representation of the AE coordinate RE-words3 8  Precision 0.422 0.004
output, trained with spectral precision matrices (welch) RS 20  Precision 0.379 0.007
obtained with 8 Hz stimuli and the per-subject approach, Orthography 20 PC 0.373 0.008
and its relation with the labels (left, DD and controls)
and one of the tasks (right, four-syllable words RE). Note: 'Executive Function, 2Sustained attention,

higher than those achieved with the temporal con-
nectivity. The highest correlation is obtained one
more time with the precision adjacency matrix,
although this time with the 8 Hz stimuli. Again, some
assessments are highlighted: the RE (for words and
pseudo-words) and RS. Note that a high correlation
with executive functions appear with stimuli 2 Hz
and the PC and covariance matrices. We will dis-
cuss this later. In any case, RS and RE are repeated
in both temporal and spectral connectivity analyses,
hinting at possible links between EEG connectivity

3Complex syllables.

when listening to AM modulated noise and the abil-
ity to read in 7-y.o. students.

4. Discussion

The main purpose of this work is to study whether
and how temporal and spectral connectivity between
EEG channels are linked to DD. For this purpose, we
model the distribution of the connectivity matrices in
high dimension using a DAE; the encoder part of the
DAE can then be used to project the adjacency —
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connectivity — matrices to just a few coordinates
over a collinear manifold that may be representative
of each data point® This three-dimensional space
allows for an easier study of the distribution of sub-
jects via correlation and classification analysis.

The choice of a DAE is not trivial. In contrast to
regular AEs, the addition of noise at the input makes
the model learn how to separate useful information
from noise. It is roughly comparable to regulariza-
tion, allowing the system not to fall to local min-
ima, at the same time that re-generating the noise
in each iteration performs a moderate data augmen-
tation. This has been consistently reported in many
works BO52I55 1,4t in order to assess whether informa-
tion is lost in the procedure, we train the DAE using
the adjacency matrices from all subjects. The result-
ing manifold is displayed at Fig. [l Specifically, we
use the temporal covariance matrices acquired with
the 2 Hz modulated stimuli.

In Fig. [0 the adjacency matrices belonging to
the same subject are presented in the same color and
marker. It can be easily noted that segments from the
same subject tend to cluster together in the dataset
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Fig. 7. (Color online) DAE decomposition of the tempo-
ral (temp) covariance (cov) connectivity for 2 Hz stimuli
under the per-segment (seg) approach. Only the first two
coordinates (the output of the first two neurons of the
Z-layer) are shown. Points with the same color belong to
the same subject.

manifold. This has two major implications. First, this
indicates that the adjacency matrices obtained under
the same conditions (stimuli, connectivity measure,
etc.) are very similar within a subject, and relatively
different between subjects. Second, that the inter-
and intra-subject similarities are kept when using the
DAE model, and therefore it is robust to noise in
adjacency matrices.

Once the DAE has been trained, it is impor-
tant to address the main questions of this work. Is
the DAE representation of EEG adjacency matrices
related to DD? The existence of links between EEG
data and dyslexia has even been doubted for some
time in the literature 2%28 and it is just very recently
that EEG is starting to gain ground in the field 2221
Conversely, the TSF for dyslexia?224 states that
atypical oscillatory sampling at one or more frequen-
cies related to speech (prosody, syllable and phoneme
level) could cause phonological difficulties for identi-
fying language units, and they were shown to leave
traces?? in EEG signals.

Our results follow that line under the assump-
tion that an atypical oscillatory sampling may be
reflected by differences in spectral connectivity when
listening to AM modulated noise. Both the cor-
relation and classification analyses showed impor-
tant links between the connectivity measures and
dyslexia. The per-subject DAE representation of
adjacency matrices achieved correlations around 0.5
(p < 0.001) for many dyslexia-related measures such
as RE, RS and in the case of spectral connectivity,
executive functions. A visual inspection of the matrix
representation in the DAE-space (Figs. B and [6])
revealed consistent similarity patterns in DD and
CN subjects, especially with the temporal connec-
tivity model. For its part, the representation (color
encoded) of RE measures in two of the three neu-
rons in the Z-layer of the DAE was both visual and
statistically significant (p = 0.004).

The prevalence of high correlations between
EEG-derived features and the assessment of phono-
logical deficit — RE or RSN — is coherent with
the phonological theory of dyslexia. This theory pos-
tulates that dyslexics have a specific impairment
in the representation, storage and/or retrieval of
speech sounds, and the TSF found an impaired
oscillatory sampling in fMRI in children and adults
with dyslexia across languages and orthographies™
Di Liberto et alZU conducted a similar study to
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Table 6. Correlation metrics of the DAE representa-
tion of EEG connectivity and the method at Di Liberto
et al2U See abbreviations at Sec. 21

Di Libertd2! DAE + conn.

Psychometric test r p T p

PA 0.31 0.006 0.426 0.002
PM 0.30 0.011 0.376 0.007
RSN 0.15 0.200 0.412 0.003
Digit span 0.41 <0.001 0.413 0.003
RE-words 0.16 0.179 0.387 0.007
RE-pseudo 0.19 0.099 0.406 0.004

LEEDUCA, reporting significant correlations with
similar categories, as well as other that have not been
studied in this work (e.g. a test in which children had
to remember whole sentences). Table[f compares our
results to those at Ref. 21l

Table [0l presents the highest r between the DAE
representation and the different categories, selected
among all temporal and spectral connectivity mea-
sures. Observe that a similar performance is achieved
for the best-performing test (digit span), whereas
larger correlation values are obtained for the remain-
ing categories, including all tests related to the
phonological hypothesis (PA, RSN, PM) and RE.
Correlations between the DAE representation of
EEG connectivity were significant for all categories
(p < 0.01), and highly significant for PA, RSN,
RE-pseudowords and digit span (p < 0.005). This
proves that there are differences in EEG connectiv-
ity between control subjects and subjects affected by
DD when listening to AM-modulated white noise,

DD average (precision|welch|2Hz)

|
] [ ] 0
z -1

EEG Connectivity Analysis Using Denoising Autoencoders

and that the DAE representation of the EEG adja-
cency matrices is representative of the variability of
DD.

On the other hand, the classification analysis
reported moderate classification performance when
applying a SVC with RBF kernel on the DAE decom-
position. We obtained general accuracy over 0.8 and
similar BA for both spectral (0.762 and 0.740) and
temporal (0.762 and 0.740) adjacency measures. It
may seem moderate, but it is similar to results of
recent studies using EEG to detect dyslexia 7472
Sensitivity was also above 0.7 in many cases and
the AUC endorsed precision as the best connectiv-
ity value.

In order to visualize the connectivity patterns
that lead to a better decomposition, we show the
average spectral precision matrices for groups DD
and CN obtained with the 2 Hz stimuli (Fig. ). Note
that EEG captures electric fields and not individ-
ual neural activity, and therefore electrodes placed
together can capture portions of each other’s sig-
nal. Here, we can see obvious differences between the
groups. There is strong adjacency between signals in
the frontal lobe (FP1, FP2, F7 and F8), with a signif-
icantly stronger bilateral link (FP1-FP2, F7-F8) in
the DD group. Note that Broca’s area — a region fre-
quently associated with languagd?® — is located near
F7. A relevant link between temporal regions is the
T7-T8, present in CN and absent in DD. The recep-
tion field of these electrodes overlaps mainly with
the primary auditory cortex. An interaction between
hemispheres at multiple levels associated to phono-
logical and prosodic processing has been reported in
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Fig. 8. Average inter-channel adjacency matrices and its spatial representation over a brain template for controls (left)
and dyslexic readers (right), measured by precision — inverse covariance — over Welch’s periodogram. The strength of
the connection is encoded in intensity in both matrices and figures, and that the electrode placing is approximate.
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some fMRI studies® It would not be far-fetched to
consider a reduced synchrony between left- and right-
auditory regions as a trace of phonological deficit
in subjects affected by DD, but it falls beyond the
scope of this paper. There are also strong connec-
tions between electrodes at the front and at the back
of the head, although they are unilateral in the DD
group (F7-P3, FP1-P3 and, to a lesser extent, F7-
01 and F7-OZ) and bilateral in the CN group (FP2-
P3). The connection strength at the occipital region
(between O1, O2 and OZ) is also higher in CN than
in DD.

In summary, this work revealed significant corre-
lations (p < 0.005) between a subject’s performance
in language tasks and composite features (DAE rep-
resentation) of EEG connectivity acquired when lis-
tening to an AM modulated stimuli. Highest correla-
tions were found with the inverse covariance matrix
which yielded differences in connectivity patterns
between the CN and the DD group, hinting at differ-
ences in auditory processing of speech rhythm, possi-
bly related to the proposed atypical oscillatory sam-
pling of the TSF. The geometric interpretation of
the DAE latent space (the output of the Z-layer)
allows for a visual inspection of the underlying, low-
dimensional manifold, at the same time that yields a
representation of the connectivity that can be used
to diagnose DD with more than 80% accuracy. The
study has two major limitations: the EEG cohort is
small (n = 48, with just 16 dyslexic readers) and it is
geographically limited to southern Spain. The perfor-
mance difference between the per-subject (n = 48)
and the per-segment (n = 1462) scenarios shows that
the analyses could largely benefit from more data
available from this and other studies. Although the
results are promising and show great potential for
EEG application in DD, we must be cautious in our
conclusions. However, if the presence of similar EEG
connectivity patterns is confirmed in earlier years
(e.g. at age 4, 5 or even 6) in similar experiments,
the DAE representation could be potentially used to
perform an early screening of DD before the sub-
jects have the ability to read, allowing specialized
interventions for teaching reading.

5. Conclusions

The main purpose of this work is to check if there are
differences in EEG connectivity between individuals

affected with DD and controls, and how they are
related to children’s performance in different lan-
guage and cognitive tasks commonly used to detect
dyslexia. To do so, the manifold decomposition of
a DAE is studied when trained with temporal and
spectral EEG adjacency matrices. The resulting fea-
tures inform a new low-dimensional space in which
correlation and classification analysis was applied.
Our results show that the DAE representation was
relevant for detecting dyslexic subjects with an accu-
racy higher than 0.8, and a balanced accuracy around
0.7. Furthermore, the correlation r between the DAE
features and the language and cognitive tasks was
higher than 0.5, with p < 0.005 in many cases.
We obtained higher r with tasks of the phonolog-
ical hypothesis category such as PA and RSN, as
well as RE and comprehension. It is interesting to
note that spectral connectivity also showed signif-
icant correlation (p < 0.001) with measures of an
executive function like sustained attention and inhi-
bition. The precision — inverse covariance — adja-
cency matrix revealed a reduced bilateral connec-
tion between electrodes of the temporal lobe (prob-
ably the primary auditory cortex) in DD subjects,
as well as an increased connectivity of the F7 elec-
trode, placed roughly on Broca’s area, involved in
language processing. Despite the study geographi-
cally limited to southern Spain and the sample size
being small (n = 48), the results revealed significant
links between language task performance and EEG
connectivity, as well as potential to detect DD sub-
jects using EEG signal.
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