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The thalamic reticular nucleus is an important structure in the mammalian 

brain, participating in the coordination of large-scale processes such as sleep and 

attention. To date, this structure has not been investigated in the human brain. I 

developed a series of methods for anatomically and functionally localizing the visual 

regions of the thalamic reticular nucleus in the human brain using magnetic resonance 

imaging and the presentation of various flicker frequencies. First, I describe the results 

obtained from a modified retinotopy analysis. I next apply network theory to the data in 

an attempt to localize the TRN is a data-driven way. Third, I describe a lateral-inhibitory 

network the TRN participates in. I conclude the TRN plays a role in regulating 

interhemispheric activity in the brain, and that flicker can be used to probe the 

resonance properties of neural populations with magnetic resonance imaging. 
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Chapter 1 

"The most merciful thing in the world, 
I think, is the inability of the human 

mind to correlate all its contents." 

An Introduction to the Problem 

-H.P. Lovecraft 

The thalamic reticular nucleus (TRN) is an integral structure in the brain that 

has not, to the best of the author's knowledge, yet been functionally examined in the 

human. This is unfortunate, as the TRN is believed to play an important role in the 

sleep-wake cycle, the allocation of attention, and the coordination of large-scale 

processes in the brain Gones, 2009; McAlonan et al., 2006; Steriade and Timofeev, 2003; 

Steriade et al., 1993). A reliable procedure for identifying the TRN in the human would 

therefore be beneficial to basic and clinical researchers alike. 

1 

In Section 1.1, I give a brief overview of the current theories surrounding the 

role of oscillations in brain function and the functional properties of the TRN. In Section 

1.2, I outline the rationale behind the proposed procedure for identifying the TRN using 

magnetic resonance imaging. 

1.1 Structure and Proposed Function of the Thalamic Reticular Nucleus 

A well-functioning brain's primary task is to efficiently comprehend the external 

world and generate appropriate responses. One of the greatest technical challenges the 

brain faces is reducing the dimensionality of incoming sensory information to a 

relatively small number of informative features. The labelled lines of sensation theory, 

supported by a large volume of current evidence, suggests that the brain partially 

accomplishes this goal by maintaining many parallel streams of information across the 

bodily senses, each sensitive to particular aspects of the environment (see Norrsell et al., 

1999 for a review). These streams are composed of neurons with similar receptive fields 



(Hubel and Wiesel, 1959; Sherrington, 1906). For example, points on the retina are 

organized as a map of visual space that is preserved through the early sensory thalamic 

and cortical regions. This organization allows the brain to internally represent a large 

percentage of the sensory world in cases where the most important aspects are not 

known, and to efficiently discard unimportant processes in a single pass as soon as the 

system has converged on a probable point of interest. The complexity of receptive field 

representations increase dramatically when one begins to observe small networks of 

neural activity. Sensory neurons with well-defined receptive fields in the presence of 

simple stimuli display higher-order responses to complex stimuli with statistical 

regularities, which requires information from complementary neurons (Chacron et al., 

2003; Estebanez et al., 2012). Therefore, the mechanisms whereby the brain is able to 

generate functional cell assemblies of tuned neurons is integral to understanding how 

the brain able to effectively understand and react to the environment (Hebb, 1949). 

2 

A generic mammalian neural sensory system can be crudely defined as the 

following: a sense organ is composed of neurons tasked with the decomposition of a 

particular physical feature into an array of channels that comprise a topographic map. 

These channels carry sensory information via precisely-timed action potentials along 

axons to a topographically-organized first order sensory thalamic nucleus. This nucleus 

then sends orderly inputs to various cortical regions, including a primary sensory cortex 

that follows a relatively regular topographic organization (Sherman and Guillery, 1996). 

Cortical regions communicate with one another via second order relays in the thalamus, 

thereby making the thalamo-cortical loop ideally suited for multisensory 

communication, integration, and modulation (Guillery and Sherman, 2002). 

These thalamo-cortical and cortico-thalamic interfaces all pass through and are 

regulated by the thalamic reticular nucleus (TRN), a thin layer of y-Aminobutyric acid 

(GABA) releasing cells wrapping the dorsolateral and anterior segments of the thalamus 

Oones, 1975). The TRN receives topographic glutamatergic inputs from fibres traveling 

in both the thalamo-cortical and cortico-thalamic directions via metabolic glutamate 

receptors Oones, 2007; Paz et al., 2011) and drives inhibitory feedback to thalamic relay 
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cells via GABAA and GABAB receptor activation (Kim et al., 1997), generating 

synchronous activity in the thalamo-cortical system (Halassa et al., 2011; Huntsman et 

al., 1999). Increased TRN activity produces topographically-matched inhibitory post

synaptic potentials (IPSPs) in the thalamus, transiently reducing tonic and bursting 

activity (Funke and Eysel, 1998). The TRN itself is divided into modality-specific sectors 

roughly preserving the topography seen in each sectors associated first order thalamic 

relay and sensory cortex, and receives inputs from every sensory system, the brainstem, 

the motor system, and limbic system in multiple mammalian species (Conley et al., 

1991; Crabtree, 1992a, 1992b, 1996; Guillery and Harting, 2003; Ki.inzle, 197 6; Lozsadi, 

1994; Montero et al., 1977; Pinault et al., 1995a, 1995b; Wang et al., 2001; Zikopoulos and 

Barbas, 2006, 2012). 

These properties leave the TRN well-equipped for the task of synchronizing the 

activities of multiple disjoint thalamic nuclei, serving as a key node in the sensory

motor network (Crabtree and Isaac, 2002). A long line of research has established the 

role of neural oscillations in the coordination of neural activity at long distances 

through low frequency coherence, and local computations at higher frequencies (for a 

review, see Buzsaki and Draguhn, 2004). Neural oscillations are typically defined as 

comprising multiple frequency bands, and can be categorized into the following 

(sometimes overlapping) frequency bins: slow-wave [0.025-1.4 Hz], delta [8; 1.5-4 Hz], 

theta [9; 4-10 Hz], alpha [a; 8-13 Hz], beta [p; 10-30 Hz], gamma [y; 30-80 Hz], and 

fast/ripple [yH; 80-600 Hz]. The communication-through-coherence hypothesis 

proposes that interactions between groups of neurons are facilitated by coherent 

oscillations in the LFP in distant cortical regions, creating a flexible and transient neural 

assembly of highly correlated action-potentials quantized by the a·ssembly oscillation

phase (Canolty et al., 2010; Fries, 2005; Womelsdorf et al., 2007), allowing for reliable 

signal transmission in a noisy and unpredictable environment (Montemurro et al., 2008; 

Wang et al., 2010) and facilitation of effective spike-timing-dependent plasticity 

(Markram et al., 1997; Song et al., 2000; Thivierge and Cisek, 2011; Wespatat et al., 2004). 
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There is evidence that low-frequency thalamo-cortical oscillations coordinate 

local cortical processes. Thalamic stimulation at a-band frequencies trigger cortical 

activity that is tightly coupled to the phase of the thalamic driver (MacLean et al., 2005). 

Magnetoencephalography (MEG) shows that y-band oscillations are phase-locked to 

· ongoing a-band oscillations in the human primary visual cortex (Vl; Osipova et al., 

2008). Furthermore, electrode recordings in primates show cross frequency coupling 

between y-band local field potentials (LFPs) in the superficial layers (associated with 

local intra-cortical connectivity), and a-band LFPs in the deeper layers of Vl (associated 

with long-range cortico-thalamic and cortico-cortical connectivity), suggesting that a

band oscillations control the precise timing of local y-band dependent cortical 

processing (Spaak et al., 2012). This implies that thalamic drivers might modulate the 

coherence of disparate regions of sensory cortex, facilitating communication between 

them (Fries, 2005; Womelsdorf et al., 2007). At the cellular level, a Ca 2+ -dependent 

dendro-somatic transfer of local, presynaptic, voltage fluctuations propagate along the 

axon, with strong transfer of frequencies below 20 Hz, producing mild hyper and de

polarizations of the axon (Shu et al., 2006). Thus, neurons themselves act as low-pass 

filters, and promote graded (analog) potentials that favour triggered (digital) action

potentials at a particular phase. 

The organization of electrical and chemical communication within the TRN 

suggests that the structure acts to mediate low-frequency oscillations within the 

thalamo-cortical loop. Connexin36 (Cx36) dependent electrical gap junctions are found 

between neighbouring TRN neurons (Landisman et al., 2002). Bath-application of 

metabolic glutamate receptor agonists in TRN slices produces locally-synchronized 5-15 

Hz rhythms (less than 25-40 µm from the soma) via Cx36 gap junctions (Long et al., 

2004). The TRN is also known to produce 7-12 Hz spindle-type oscillations during alert 

behaviour and non-rapid eye movement slow-wave sleep, similar in many ways to the 

a-band oscillation observed throughout the thalamo-cortical system (Bazhenov et al., 

2000; Contreras et al., 1997; Steriade, 1997). The similar response properties of Cx36 

connections suggest that they drive local synchronization of spindle-frequency 



oscillations within the TRN in response to glutamate (Bal and McCormick, 1993; 

Halassa et al., 2011). 

5 

Approximately 7-253 of TRN synapses are GABAergic (Liu and Jones, 1999; 

Williamson et al., 1994), which receive afferents from the substantia nigra (Pare et al., 

1990), basal forebrain Oourdain et al., 1989), and other TRN neurons (Asanuma, 1994); 

these synapses drive intra-TRN IPSPs. Fast-acting reversal potentials are mediated by 

ionotropic GABAA receptors, producing spindle oscillations (Bazhenov et al., 1999). In 

contrast, metabotropic GABAB receptor activation results in slow IPSPs (- 300 ms); 

pharmacological blockade of GABAA receptors results in the normal a-frequency 

spindle wave being replaced by a paroxysmal slow oscillation in which many thalamic 

and TRN neurons discharge synchronously within the 8-band frequencies also seen 

during non-rapid eye movement slow-wave sleep (Sanchez-Vives and McCormick, 1997; 

Sanchez-Vives et al., 1997; Shu and McCormick, 2002). GABAA receptors in the TRN 

have also been found to initiate postsynaptic depolarizations of other GABA neurons in 

the mature brain due to the low concentration of the er transporter KCC2, leading to 

the activation of postsynaptic T-type Ca2+ channels, subsequent action potentials in 

TRN neurons, and finally powerful inhibitory inputs to thalamic relay neurons (Sun et 

al., 2012). The GABAB-mediated slow wave can be conceived of as a modulator of the 

GABAKmediated spindle-frequency carrier wave. The slow wave is regulated and 

amplified through competition between T-channel mediated Caz+ intake and the 

subsequent activation of small-conductance-type outward K+ currents, which produce a 

post-burst hyperpolarization in TRN dendrites at 8-band frequencies (Cueni et al., 2008). 

Brain-wide oscillations are apparent at these frequencies during sleep, as 

populations of neurons vacillate between a-frequency "up" states resembling attentive 

dynamics, and a 8-frequency "down" states, generating a superimposed slow-wave 

oscillation less than 1 Hz in frequency (Steriade et al., 1993, 2001). Indeed, dendritic 

GABAB receptor-mediated reciprocal connectivity within the TRN is believed to 

underlie large-scale thalamic synchronization across the topographic map by inhibiting 

action-potentials over the majority of a slow oscillation (Breton and Stuart, 2012; Juhasz 
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et al., 1994) via presynaptic autoinhibition of IPSCs in both TRN and relay cells (Ulrich 

and Huguenard, 1996). In contrast, intra-TRN GABAA-mediated transmission acts to 

decrease the number of times a TRN neuron will spike per oscillation, regulating 

general excitability by reducing the number of times a TRN cell will burst in response to 

excitatory inputs from the thalamus and cortex (Sohal and Huguenard, 2003; Warren et 

al., 1994). 

Knockout of the a 3 or p3 subunits of the GABAA receptor in the rat results in a 

decrease of GABAA-mediated intra-TRN inhibition, as well as a dramatic increase in o
frequency oscillatory synchrony (Huntsman et al., 1999; Schofield et al., 2009). These 

subunits are known to uniquely coexist on receptors that mediate phasic inhibition on 

TRN neurons in the rat, and in the monkey to a lesser extent (Browne et al., 2001; 

Huntsman et al., 1996). Furthermore, presynaptic GABAA receptor activation has an 

inhibitory influence among synchronously firing TRN neurons, which could act to 

maintain distinct synchrony within a restricted region of the topographic map 

(Bazhenov et al., 1999; Lam et al., 2006). 

The electrical and chemical connections in the TRN are distinctly organized. 

Photolysis of caged glutamate in coronal and horizontal slices of the rat thalamus reveal 

a higher incidence of chemical connectivity in the anteroposterior plane ( 60 3 of 

neurons), and a higher incidence of Cx36 gap junction connectivity in the dorsoventral 

plane (47 3; Deleuze and Huguenard, 2006). Considering that the topographic maps of 

the TRN are organized across the anteroposterior plane (Lam and Sherman, 2010) and 

the laminar structure arises from communication with first and second order sensory

motor structures (Lam and Sherman, 2007), it appears that electrical communication in 

the TRN is biased to synchronize topographically-specific information between lower 

and higher-order intra-modal structures, while chemical communication in the TRN is 

biased toward regulating the spatial extent of synchronization across multiple 

topographic maps at once (Lam et al., 2006). This organization accounts for the TRN's 

apparent ability to dynamically influence receptive field properties of thalamic neurons 

(Cotillon-Williams et al., 2008). 



To summarize, evidence suggests that GABAKmediated connections act as 

intra-TRN desynchronizers, while GABAB-mediated connections act as intra-TRN 

recruiters, creating emergent patterns of phase-synchrony within the thalamo-cortical 

loop over time. As the TRN switches from low-frequency tonic to burst firing mode, 

thalamic neurons change from GABAA mediated low-amplitude to high-amplitude 

IPSP-dependent activity, synchronizing disparate regions of the thalamo-cortical loop 

via coherent a-band oscillations. Cortico-thalamic volleys drive sustained 

hyperpolarizing potentials in the TRN, producing a-frequency spindles; prolonged 

spindle activity leads to the recruitment of metabotropic GABAB receptors, resulting in 

a-frequency GABAB mediated IPSPs that act to modulate the a-band carrier wave 

(Fuentealba et al., 2004; Kim et al., 1997; Zhang and Jones, 2004). GABAB-mediated 

recruitment of a oscillations across the topographic map is therefore resilient to noisy 

inputs to the TRN, and might therefore function as a robust coincidence detector across 

multiple oscillatory processes. 

7 

Some of the few in vivo visual experiments on TRN suggest it has change 

detection properties: neurons transiently respond as a moving object enters a given 

receptive field, and give strong transient on-off responses to flashing stimuli (Dubin and 

Cleland, 1977; Funke and Eysel, 1998; Yu et al., 2009). These sharp responses would 

allow for the detection of phase alignment of multiple stimuli as they would produce 

the maximum response in the TRN, driving optimal suppression of the primary sensory 

relay at the appropriate topographic coordinates (Sillito and Jones, 2008). The 

subsequent synchronized disinhibition across the topographic map would produce a 

phase-aligned oscillation in the thalamo-cortical loop, facilitating object segmentation 

using temporal evidence (Castro-Alamancos, 2000). The same mechanism might be used 

to facilitate selective attention by down-regulating the transmission of unimportant 

sensory events to the cortex. There is single unit evidence in the monkey of a modality

specific spike-rate increase within the visual sector of the TRN during an audio-visual 

attention task when attention was directed within the receptive field of the recorded 

neuron, and evidence that this increase modulates the visual primary sensory relay, the 



lateral geniculate nucleus (LGN) during a unimodal selective-attention task (McAlonan 

et al., 2006, 2008). Due to the restricted spatial resolution of this recording technique, 

however, it is unclear how attention modulates the activity of ~he TRN across the 

topographic map. 

1.2 Approach for Mapping the Thalamic Reticular Nucleus in the Human 

8 

Of the methods available to study the brain non-invasively, only magnetic 

resonance imaging (MRI) allows us to directly sample signals from the thalamus. MRI 

techniques can be roughly classified as either structural approaches, allowing for high

resolution static imaging of the bodily tissue, and functional imaging, allowing for 

lower-resolution imaging of the body's metabolic demands over time. Pioneering work 

has shown that specially-tuned MRI sequences are sensitive to the relative proportion of 

deoxyhemoglobin and oxyhemoglobin within a three-dimensional region of the body, 

or voxel, allowing one to track the metabolic demands of the body with relatively high 

precision over time using the so-call blood oxygen level dependent (BOLD) signal 

(Ogawa et al., 1990). The fine microvasculature of the brain allows us to track neural 

activity indirectly via the BOLD signal, but the direct relationship between the 

metabolic demands of ongoing neural processes and the recorded BOLD signal remain 

unclear. There is a good deal of evidence that the BOLD contrast is representative of 

LFP power in the a,~, and y-frequency range, and therefore is representative of inputs 

and local processes rather than spiking outputs from a region ( Goense and Logothetis, 

2008; Logothetis, 2008; Logothetis et al., 2001; Magri et al., 2012). Therefore, the 

oscillatory function of the nervous system is observable with functional MRI, although 

it is very challenging, if not impossible, to determine the frequency of the underlying 

process using BOLD contrasts alone. 

Functional MRI experiments have historically relied on a model of the expected 

BOLD response, or canonical hemodynamic response function (HRF; Friston et al., 1998; 

Glover, 1999). The expected BOLD response is traditionally computed as a linear 

convolution of this canonical HRF with a time series representing the onset and offset 
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of particular stimuli and/ or behavioural events, and then the error of a fit between this 

theoretical time series and the actual BOLD response is used to determine the likelihood 

that a particular region of the brain was responsive to the experimental paradigm. The 

HRF is known to be highly variable across subjects, and across brain regions within a 

subject, as well as across time points within a subject, leading to a problem of canonical 

subjects and a bias towards detecting effects in particular brain regions (Handwerker et 

al., 2004, 2012). With respect to the present problem of developing a localizer for the 

human TRN, these biases are highly undesirable. In particular, the metabolic demands 

of the TRN, composed solely of interneurons, are very different and generally less than 

those seen in the typically-imaged cortex, where multiple cell types contribute to the 

neuroimaging signal (Buzsaki et al., 2007). It is for this reason that I propose one should 

use a model-free analysis, which is unbiased towards detecting any particular neural 

population, and has previously shown to detect brain-wide responses to sensory 

stimulation when used in conjunction with time-locked signal averaging (Gonzalez

Castillo et al., 2012). 

The pioneering work in high-resolution thalamic imaging made use of such an 

analysis. Multiple studies with increasing spatial precision have made use of a phase

encoded stimulus design to detect voxels that respond at the fundamental frequency of 

the stimulus over the course of the experimental run (Engel et al., 1997; Schneider and 

Kastner, 2005; Schneider et al., 2004). These studies made use of a simple visual stimulus 

that would travel through space repeatedly at a constant speed, producing traveling 

waves of BOLD activity across the retinotopic map in various visual structures. 

Determining the retinotopic representation of a given voxel therefore only requires the 

detection of BOLD modulation at the fundamental harmonic of the stimulus repetition 

period, where the phase of this modulation denotes the approximate retinotopic 

population receptive field of a given brain region. Typical stimuli make use of a rotating 

wedge and expanding ring to map polar angle and eccentricity, respectively, and have 

been successfully used to map large swaths of the human cortex (see Wandell et al., 

2007 for a review). 
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This method produces maps of voxels representing various visually responsive 

structures. Analysis of signals in the thalamus have traditionally made use of a 

functionally-defined region-of-interest (ROI) approach for the mapping of the LGN, 

superior colliculus (SC), and pulvinar (Kastner et al., 2004; Schneider and Kastner, 2005; 

Schneider et al., 2004). This requires the collection of a high-resolution anatomical 

reference image and the manual definition of the locations of the structures of interest. 

With respect to the LGN, SC, and pulvinar, this approach was tenable using a Tl -

weighted sequence, however the exact boundaries between the structures remained 

ambiguous from the contrast contained within the anatomical images alone. Tl -

weighted images are optimal for differentiating between fat and water in the body, 

providing excellent contrast between the grey and white matter of the cortex. In the 

thalamus, however, there less spatial segregation of myelinated axons and the thalamic 

nuclei of interest at the resolution attainable using MRI, rendering very low-contrast 

definition of the thalamus with reasonable scan lengths. The human TRN is never more 

than 3mm in diameter, and often close to lmm in diameter, rendering it undetectable 

with a Tl -weighted anatomical image (Mai et al., 2007). Since these previous 

experiments discarded functional activity outside of their roughly-defined ROis, it 

remains possible that they missed TRN responses to their stimulus, or included TRN 

responses within their ROis. For these reasons, this project made use of proton density 

(PD) weighted anatomical images, as described in Devlin et al., 2006. The density of 

protons is approximately 203 greater in grey matter than in white matter, allowing one 

to distinguish between adjacent thalamic nuclei (Fujita et al., 2001; Wood et al., 1993). 

Historically, the stimuli used to map the visual regions of the brain were high

contrast patterns which would contrast-reverse at a steady flicker frequency. Due to the 

poor signal-to-noise ratio of functional MRI, most retinotopy studies were tuned to use 

an ....,g Hz flicker frequency, which was found to produce the most robust BOLD 

response in the LGN and Vl (Chen et al., 1999; Engel et al., 1997; Schneider et al., 2004; 

Singh et al., 2000; Thomas and Menon, 1998, although see Ozus et al., 2001). The fact 

that these flicker frequencies, which fall in the a range, preferentially drive early visual 
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areas known to preferentially oscillate at a-band frequencies (Hughes et al., 2004), 

suggest that visual flicker may be a way of probing the resonance properties of various 

neural populations non-invasively (Hutcheon and Yarom, 2000). There is 

electroencephalography (EEG) evidence that the human visual cortex resonates at a

band frequencies when presented with an a-band visual flicker during variable flicker 

frequency presentation (Herrmann, 2001 ), and complimentary LFP evidence from the 

cat Vl during variable flicker presentation (Rager and Singer, 1998), but to date, no 

study has systematically investigated whether the use of variable flicker frequency can 

be used to entrain distinct neural populations in the human brain. Baring in mind that 

the BOLD contrast reflects the presence of oscillatory activity, but not its frequency, it 

seemed probable that the visual areas of the TRN associated with cortico-thalamo

cortical communication might appear silent with the presentation of only a-band flicker 

frequencies, but will be driven at higher frequencies, as pulvinar-mediated inter-cortical 

communication is associated with ~-band oscillations (Wang et al., 2012; Wrobel et al., 

2007), and the TRN is proposed to mix signals arising from first order and second order 

thalamic nuclei (Lam and Sherman, 2007). 

To address this, I propose a novel dual-frequency phase-encoded stimulus, 

henceforth ref erred to as the tremotopic stimulus. A tremotopic stimulus consists of a 

phase-encoded retinotopic stimulus with a superimposed variable flicker frequency 

presentation. These two features must complete an integral number of periods per 

experiment at different frequencies. If a neural population is resonant when presented 

with a particular flicker frequency, the retinotopic carrier wave should be amplitude

modulated according to a voxels population-level flicker frequency preference. I 

hypothesize that this approach will allow me to identify visually-responsive areas of the 

human thalamus with greater precision than standard retinotopy, including the TRN, 

which should express unique temporal properties when analyzed in conjunction with 

the nuclei it acts to modulate. 

Furthermore, in order to avoid experimenter bias in selecting inappropriate ROis 

that are merely noise that happen to fall on top of the anatomically defined TRN, this 
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work attempts to use the manually-defined ROis to verify the data-driven analysis. 

Since the TRN maintains representations of every sensory modality, and it is unclear 

where the visual sector of the TRN would be in the human, and ROI-based approach 

seems likely to miss interesting areas of activation in the thalamus. Instead, I propose a 

principled data-driven approach for the identification of the visually-responsive 

thalamic nuclei, including the TRN. This analysis is then followed by an ROI based 

time-series analysis of the identified TRN regions. 

Specifically, I hypothesize that one should be able to identify the TRN as a 

visually driven cluster of voxels falling in an anatomically defined region that expresses 

a flicker frequency tuning in correspondence with the adjacent thalamic nuclei it acts 

upon. This cluster of voxels should also show functional relationships with multiple 

first and second order thalamic structures, as found by (Lam and Sherman, 2007). If 

multiple neural populations express different flicker frequency preferences, the 

expected connectivity of the TRN should be evident from a graph-theoretic analysis of 

the visually driven thalamic voxels. Specifically, I expect the TRN to act as a hub in the 

thalamic network, connecting these first and second order nuclei. 
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Chapter 2 

An Overview of the Experiment Design 

Here I present the details of the experiment design used to test my hypothesis 

using high-resolution structural and functional MRI. Analysis and results are detailed in 

Chapter 3. All data was collected on a 3 T Trio Tim Siemens scanner using a 32 channel 

head coil at the York University Neuroimaging Center. Six people (one female, one left

handed) participated in the full experiment, all with normal or corrected to normal 

vision. Informed consent was collected from all participants in line with the York 

University Ethics Board. The data was collected over three separate one-hour sessions. 

In Section 2.1, I give a detailed account of the generation of detailed proton 

density weighted images of the thalamus. In Section 2.2, I give an overview of the 

stimulus design and presentation. In Section 2.3, I present the high-resolution 

functional MRI imaging protocols designed for this experiment. 

2.1 Anatomical Imaging of the Human Thalamus 

High quality PD scans were collected from all participants during the first 

session to anatomically define thalamic structures. Multiple runs were collected (94 runs 

for Sl, 40 runs for S2-6). Each run consisted of 30 coronal slices covering the entire 

thalamus at high resolution (512x512 matrix for Sl, 256x256 matrix for S2-6 with a 192 

mm field of view), 1 mm thickness, and no gap between slices leading to an in-plane 

resolution of 0.375 mm and 0.75 mm for Sl and S2-6, respectively [repetition time (TR) 

= 3000 ms; echo time (TE)= 22 ms; flip angle,= 120°]. These images were co-registered 

and interpolated to 2x resolution in one step using align_epi_anat.py program and the 

local Pearson correlation cost function from the AFNI software package (built Aug. 9th, 

2012; http://afni.nimh.nih.gov/afni; Cox, 1996; Saad et al., 2009). Spatial interpolation 

was accomplished using the minimum side lobe three-term cosine sine function tapered 

across 7 voxels (Nuttall, 1981). Finally, a mean PD image was produced for each subject. 
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As both the high-resolution PD and functional scans imaged only a small portion 

of the brain, Tl -weighted MPRAGE images were collected from each subject to facilitate 

co-registration [TR = 1900 ms; TE = 2.52 ms; flip angle = 9°; 256 x 256 resolution matrix 

with a 256 mm field of view, slice thickness of 1 mm and slices gap of 503 between 

slices leading to a voxel resolution of 1 mm]. Volumetric segmentation was performed 

on these images using Freesurfer, which is documented and freely available for 

download online (version 5.1.0; http://surfer.nmr.mgh.harvard.edu/). Briefly, this 

processing includes the removal of non-brain tissue using a hybrid watershed/surface 

deformation procedure (Segonne et al., 2004), automated Talairach transformation, 

segmentation of the subcortical white matter and deep gray matter volumetric 

structures (Fischl et al., 2002, 2004), intensity normalization (Sled et al., 1998), and 

surface deformation following intensity gradients to optimally place the gray/white and 

gray/cerebrospinal fluid borders at the location where the greatest shift in intensity 

defines the transition to the other tissue class (Dale and Sereno, 1993; Dale et al., 1999; 

Fischl and Dale, 2000). Freesurfer morphometric procedures have been demonstrated to 

show good test-retest reliability across scanner manufacturers and across field strengths 

(Han et al., 2006). 

These averaged PD images provide objectively greater contrast in the thalamus, 

as shown in Figure 1. Here, we provide the reader with a detailed hand-labelled 

thalamic atlas and comparison images from a Tl -weighted scan. As can be seen, PD 

imaging allows for the clear differentiation of the LGN, medial geniculate nucleus 

(MGN), SC, TRN, pulvinar nuclei, and putamen. Of note, the boundaries between the 

TRN and surrounding structures are apparent. While the 512 matrix scan collected from 

S 1 offers superior definition of the smallest structures, the 256 matrix scans collected for 

S2-6 provide sufficient visualization of the thalamus for approximating the location of 

the TRN. I therefore chose to rely mostly on these lower resolution scans, as they can be 

collected in one eighth the scan time. 
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c d 

Pu TRN LGN MGN VPL APul Pul CM MD SC DiPul SFPul MPul LPul IGPul TRN 

e f 

Figurel. Proton density weighted imaging of the human thalamus. All images-in column 1 and 2 
represent the same structures in the brain, respectively. a & b) Tl-weighted images. c & d) Proton 
density (PD) imaging of the thalamus with a 512 matrix in Sl. d & e) PD imaging of the thalamus 
with a 256 matrix in S6. Pu = Putamen, TRN = thalamic reticular nucleus, LGN = lateral geniculate 
nucleus, MGN = medial geniculate nucleus, VPL = ventral posteriolateral thalamic nucleus, APul = 
anterior pulvinar, Pul = pulvinar, CM= centromedian nucleus, MD= medial dorsal nucleus, SC= 
superior colliculus, DiPul = diffuse pulvinar nucleus, SFPul = superficial pulvinar nucleus, MPul = 
medial pulvinar nucleus, LPul =lateral pulvinar nucleus, IGPul = intergeniculate pulvinar. 
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I defined ROis for the LGN, TRN, and pulvinar in both hemispheres using these 

anatomical images as reference; examples of both the 512 and 256 matrix acquisitions 

are shown in Figure 2. While the 512 matrix scans afford greater resolution the 256 

matrix scans show the boundaries of the TRN well enough to reliably identify the 

boundary between the LGN and TRN. It is also apparent from these images that the 

exact boundaries of the structures are not always obvious, for example, where the TRN 

meets the lateral pulvinar in these images, or the boundary between the LGN and MGN. 

Furthermore, the utility of these ROis is directly dependent on the accuracy of 

functional and anatomical image co-registration. Therefore these ROis serve as a useful 

guide, and way to independently verify the performance of data driven methods, but 

should not be considered to be voxel-accurate representations of the anatomy. 

a c e 

b d f 

Figure 2. Anatomical masks of the LGN, TRN, and Pulvinar ROis. a & b) Proton density (PD) 

weighted image showing the lateral geniculate nucleus (LGN), thalamic reticular nucleus (TRN), 

just dorsal-lateral to the LGN in Sl (512 matrix, top) and S4 (256 matrix, bottom). The pulvinar is 
shown dorsal to the LGN. c & d) Estimates of the structure's outlines in Sl and S4. Yellow= 

right LGN; Green = left LGN; Red = right TRN; Orange = left TRN; Purple = right pulvinar; Blue 

=left pulvinar. e & f) example masks derived from the estimated anatomy in Sl and S4. 

2.2 Principals of Tremotopic Mapping and Stimulus Design 

Electrophysiologists have long been interested in the resonance properties of 

isolated neurons, one of the reasons being they lend insight into the oscillatory 
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properties of neural networks (for a review, see Hutcheon and Y arom, 2000). The 

intrinsic resonance of a neuron at rest predicts its oscillation properties near threshold 

when driven, suggesting that the resonance properties of a neuron can bias it towards 

communicating with other neurons with similar oscillatory properties (Erchova et al., 

2004). These experiments defined the impedance of a neuron using the so-called "ZAP" 

input - a current with a defined oscillatory waveform that would sweep through 

multiple frequencies (Puil et al., 1986). The output voltage recorded from the neuron 

driven at multiple frequencies over time will often show a resonant peak: a particular 

input frequency that produces the largest output voltage for a given neuron. In this 

way, neurons can be conceived of as band-pass filters that are most likely to respond to 

a driver with given oscillatory properties, as predicted by the communication through 

coherence hypothesis (Fries, 2005). I should clarify here that I am addressing a distinct 

issue from that regarding the neural code, which is believed to depend on more 

information than the phase-of-firing (Shadlen and Newsome, 1994). 

EEG of the human suggests a similar phenomenon in the visual cortex in 

response to flicker (Herrmann, 2001). Specifically, they found resonance phenomena 

around 10, 20, 40, and 80 Hz. While the relationship between population-level 

oscillations as recorded by EEG and the resonance phenomena recorded at the single

neuron level is not direct, the choice of flicker frequency is known to modulate the 

BOLD response on a region-by-region basis. In the visual system, the LGN and Vl were 

found to respond preferentially to 7.5 and 20 Hz flicker, while the higher-order visual 

cortex (V2, V3, V3a, V 4, and MT) responded preferentially to 20 Hz flicker alone 

(Kastner et al., 2004). One major limitation of this study was that only three flicker 

frequencies were investigated (0.5, 7.5, and 20 Hz), which did not allow for the. 

experimenters to determine the fine flicker frequency tuning of these brain regions. 

Other studies have looked at the effect of flicker frequency more closely (e.g., D'Souza 

et al., 2011), but to the best of the author's knowledge, no study has investigated a wide 

range of flicker frequencies above 20 Hz. Most visual studies, especially in the thalamus, 

have made use of a single flicker frequency that best drives the primary visual regions 



(e.g., Engel et al., 1997; Schneider and Kastner, 2005; Schneider et al., 2004). If there is 

indeed a relationship between visual flicker presentation and the resonance properties 

of neurons, one should be able to record this at the population-level non-invasively 

using MRI. This should allow us to better define structures based on their known 

resonance properties as established through invasive methods, and potentially 

functionally drive structures not previously studied in the human, such as the TRN. 
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To address this, I developed a stimulus that shares some properties with the 

aforementioned ZAP function, which I call a tremotopic stimulus. Conceptually, a 

tremotopic stimulus should periodically travel through retinotopic space while 

periodically sampling multiple flicker frequencies. These two periods should be 

different, and both should complete an integral number of cycles per scan. For technical 

reasons explained later, these periods should be relatively far apart, and should be 

numbers approximately larger than 6 to prevent the signal of interest from being 

a 
Flicker (Hz) 

1 2.5 5 7.5 10 12.5 15 20 30 60 

13' 
~ 

! _J\/V\N\/\/\JV\/\] 
~ 0 21 42 63 84 105 126 147 168 189 210 

Figure 3. The tremotopic 
stimulus. a) Stimulus 
properties, demonstrating the 
superposition of flicker 
modulation and stimulus 
rotation throughout each run. 
b) A rendering of the stimulus 
as presented. 

Time (s) 

corrupted unduly by low-frequency drifts caused by MR scanner instabilities (Smith et 

al., 1999). Visually driven voxels should show sinusoidal BOLD modulation at the 

retinotopic frequency, and if they also express a flicker frequency preference, this 
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sinusoidal modulation should express an envelope reflecting the magnitude of a voxel' s 

response to a given flicker frequency. Therefore, this should produce amplitude 

modulated BOLD signals in visually-driven voxels that also possess a flicker frequency 

tuning. 

Specifically, the stimulus (Figure 3) consisted of a rotating hemifield containing 

a radial checkerboard spanning 15° of visual angle and an effective resolution of 

100 x 100 pixels. This checkerboard consisted of pure white and black checkers presented 

on top of a mid-grey background, with a stationary fixation point presented in the 

center of the display for the duration of each run. The checkerboard rotated 360° every 

21 s, a total of 10 times per scan. The checkerboard also stair-cased through 10 flicker 

frequencies (defined as a full contrast-reversal cycle) every 30 s, 7 times a scan [Hz= 1, 

2.5, 5, 7.5, 10, 12, 15, 20, 30, 60]. The stimulus included a 10 s rewind to allow for Tl 

stabilization, and the first 10 s were therefore identical to the last 10 s of each run, to 

allow us to safely discard the first 10 s of data. 

2.3 Collection and Pre Processing of Functional Data 

For all functional scans, participants were instructed to maintain fixation and 

not move throughout each run, which lasted 220 s. The stimulus was presented on an 

InFocus IN112 3D DLP projector allowing for rapid pixel offset times and finer control 

of flicker frequencies due to the 120 Hz refresh rate. The stimulus was projected onto a 

plastic screen hung from inside the head of the magnet bore, which participants viewed 

through a head-mounted mirror. 

Functional imaging in the thalamus was accomplished using echo-planar 

imaging (EPI) sequence consisting of 12 coronal slices at a 128x 128 resolution matrix 

with 2 mm thickness and no gap between slices leading to an in-plane resolution of 1.5 

mm [TR= 1250 ms, TE= 41 ms, flip angle= 90°; partial Fourier factor= 7/8]. These 

slabs were placed such that they covered the posterior thalamus including the LGN, 

TRN, posterior pulvinar, MGN, and SC. A whole-head EPI image with the exact same 

imaging parameters save an extended TR was also acquired for registration purposes. 



The utility of this image was that is preserved the exact EPI distortions present on the 

particular scanning day, facilitating co-registration with the high-resolution Tl

weighted anatomical image. Each run consisted of 17 6 TRs spanning the full 220 s of 

stimulus presentation. 
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I chose this relatively low TR length in order to balance the conflicting demands 

of appropriate brain coverage and reasonable sampling of cardiac and respiratory

induced signals in the BOLD signal, which start around 0.15 Hz and extend well beyond 

the Nyquist frequency of these scans (Ash et al., 2011; Liu et al., 2006; Triantafyllou et 

al., 2005). Since both stimulus frequencies fell well below 0.15 Hz (-0.048 and -0.33 Hz, 

for retinotopy and flicker modulation, respectively), this allows for the data to be low

passed without interfering with our signals of interest, with the intention of removing 

the major contributions of both physiological and high-frequency MR sequence noise. 

Functional data was pre-processed in AFNI. The first 10 s of data (8 TRs) were 

then deleted from each run (3dCalc), leaving 168 time points for each run. Next, I slice 

time corrected each run to align the data in time, as slices in EPI data are collected 

sequentially throughout each TR (3dTshift). These slabs were then co-registered with 

the Tl anatomical and resliced to 0.75 mm3 in one step (3dWarp, 3dVolreg, and 

align_epi_anat.py). I recorded the following six rigid-body realignment parameters from 

3dVolreg to later analyze head motion on a run-by-run basis: shifts in the x, y, z planes, 

and rotations roll (A), pitch (B), and yaw (r). Large, non-physiologically relevant spikes 

in the functional data were removed by fitting a curve to each time series using Ll 

regression, defined by 

{
k=L ( 2;rkf J ( 2;rkf J} f(t)=a+bt+ct

2
+ t;dksin T +ekcos T 

where Tis the duration of the time series, a, b, c, d, and e are parameters chosen to 

minimize sum of the error over t, and L is the number of time points divided by 30, 

which is 168 in this case. Next, the mean absolute deviation (MAD) was calculated of 

the difference between this curve and the data, and I estimate the standard deviation 

[1] 



(SD) of the residuals as u =~;MAD, and replace values in the time series that are 

greater than 2.5 SDs from the fitted curve with values from the time series 

s(t) = 4tanh SD- 2·5 

1.5 
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[2] 

individually for each voxel (3dDespike). I next removed the linear and quadratic trend 

from each time series and recorded the resulting time series mean (3dDetrend) before 

subtracting the mean from each time series and dividing by it, converting each time 

series to units of percent signal change (3dCalc). Next, I fit each time series with the six 

head motion parameters estimated by 3dVolreg using linear least squares and retain the 

residuals to account for BOLD signals arising from head motion (3dDetrend; Van Dijk et 

al., 2010). Finally, I spatially smoothed each run with a Gaussian kernel with a 2 mm 

full-width half-max (FWHM). 

I further pre-processed each dataset using custom software written in the 

MATLAB programming language (version 7.12). First, I band-passed each time series 

before producing two sets of means: one high-passed run retaining frequencies 0.009 < f 
< 0.4 Hz, to remove only the lowest frequencies attributable to MR scanner drift, and 

the other band-passed run retaining 0.009 < f < 0.08 Hz, as is done in resting-state 

analysis (Van Dijk et al., 2010). Both were accomplished with a dual-pass bi-directional 

digital FIR Kaiser filter with an order of 55 and beta value of 2.5. The use of this bi

directional filter ensures that no phase lag is introduced into the signal by running the 

filter once in the ascending direction (from t = 1 to t = n), and again in the negative 

direction (from t = n tot= 1). In both the high-passed and band-passed case, I also 

folded the time series over on itself to produce a mean flicker cycle (168 TRs I 7 cycles= 

24 TR/cycle). More details on their utility will be described later. 

As local time series correlations can be generated by small head motions even 

after the regression of the estimated head motion parameters, I next censored TRs in 



each run in the following way: I estimated frame-wise displacement (FD) from the six 

motion parameters as 
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[3] 

where 8dix.=d(i-1)x-dix, and identically for [diy diz Ai Bi ri] (Power et al., 2012). I converted 

from degrees rotation to millimetres displacement assuming the radius of each 

participant's head was 50 mm. I then masked every TR associated with an FD over 0.25 

mm, as well as one frame back and two frames forward from these TRs to allow for the 

re-establishment of steady state spins. This procedure is normally used in resting-state 

experiments, which allow for the complete deletion of individual TRs. In the present 

stimulus-driven paradigm, however, I have the option to average time-locked signals. I 

therefore chose to take a frame-wise average across runs, using only those TRs that 

survive the threshold procedure. This allows one to generate an averaged time 
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Figure 4. Analysis of head 

motion. a) A plot showing the 
frame-wise displacement (FD) 
for each run collected from S 1 

and the threshold of 0.25 
mm/TR. b) A plot showing the 
number of averages per TR for 

Sl over the course of the 

experiment. c) A plot showing 
the number of averages per TR 

for S 1 over the course of a 

flicker cycle. d) A plot showing 
the mean and SD of the group
averaged FD and absolute SD . 
e) A periodogram of the group

mean FD, with 7 cycles and 10 
cycles per scan in red, 

corresponding to the stimulus 
flicker and rotation cycles per 
run, respectively. 

series with no head displacements over 0.25 mm at any given TR. This procedure 

generally removed a relatively small number of TRs from each participant's total, as is 



demonstrated by a representative subject (Sl) in Figure 4a. Figure 4b,c show the 

number of averages per TR for the full run and mean cycle, respectively. 
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The removal of the head motion parameters in this way is important, as it 

removes any signal arising from the participant moving their head in synchrony with 

the stimulus. To test whether there was any group-level consistency in head motion, I 

calculated the FD for all runs across subjects and calculated the resulting mean and SD. I 

then calculated the periodogram of this average FD time series; both are shown in 

Figure 3d,e. At the group level, there were significant modulations of the FD at seven 

cycles per scan, which corresponds to the rate of flicker modulation (F2,83 = 5.17, p = 

.0078), but not at the rate of stimulus rotation (F2,83 = 0.155, p = .86). 

Finally, I created two sets of masked averages for each set of band-passed inputs: 

one of the full run (168 TRs), and one of the mean flicker cycle (24 TRs). Because both 

the retinotopic and flicker signals are integral within each run, any retinotopically

driven sinusoidal modulation of the BOLD signal should cancel when I average over the 

mean flicker cycle. Therefore, the mean flicker cycle is a measure of the frequency 

preferences for a given voxel. I will refer to this mean cycle as the frequency profile. 

Finally, I masked these data sets with a thalamus mask constructed from the Freesurfer 

segmentation process, removing voxels belonging to the surrounding white matter and 

ventricle masks. An example thalamus mask is shown in Figure 5. 

Figure 5. An example 
Freesurfer-derived 
thalamus mask (red 
overlay) from Sl. This 
mask was mainly used 
to limit computation 
times. 
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Chapter 3 

The Attempts Made to Identify the Human Thalamic Reticular Nucleus 

Here I describe the various analysis preformed on these data to identify the 

functional properties of the human thalamic reticular nucleus. Each subsection is 

presented as a self-contained experiment with associated method, result, and discussion. 

In Section 3.1, I describe my attempt to apply standard traveling-wave techniques and a 

Fourier analysis to define retinotopic regions and flicker preference in the thalamus. In 

Section 3.2, I introduce the utility of graph theory in tackling the present problem and. 

define subregions of the thalamus with particular flicker-frequency preferences using a 

community detection algorithm. I then further apply graph-theoretic techniques in an 

attempt to find a network property unique to the TRN in the human thalamus. In 

Section 3.3, I utilize the seed-based correlation approach to look for evidence of TRN

mediated lateral-inhibition in the human thalamus. 

3.1 Tremotopic Mapping of the Human Thalamus 

I defined visually-driven voxels as those that strongly modulate at the same 

frequency as either the rotation or flicker-modulation frequency of my stimulus. 

Retinotopy studies utilizing the travelling-wave paradigm have traditionally utilized the 

analysis proposed by (Engel et al., 1997) which finds the maximum correlation value of 

the stimulus harmonic as the amplitude of the Fourier component at frequency f divided 

by the square root of the time series power. In this case, this analysis is not appropriate 

for the data: only the largest response would be detectable in a voxel that expresses a 

large-amplitude retinotopic and moderate flicker response, or vice versa. To avoid this, I 

implemented a modified version of the local spectra-based F-test for periodicities 

proposed by (Wei and Craigmile, 2010). I used the adaptive multi-taper method as 

implemented in the MATLAB 7.13 to estimate the power spectral density for each time 

series with three orthogonal windows (Thomson, 1982). This method provides a more 

accurate estimation of the noise variance than the estimation of the power spectral 



density multiplied by a rectangular window, which introduces a large amount of 

variance into the data due to Gibbs phenomenon. An accurate estimation of the noise 

variance is required to ensure accurate F-values, in order to maximize delectability of 

visual regions. 
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Briefly, the modified local spectra-based F-test assumes that each signal is 

composed of Gaussian white noise with zero mean and a variance greater than zero, 

some known nuisance signals at particular frequencies, and a test signal at a frequency 

of interest. I conducted this test on the high-passed run, as this view of the data affords 

more degrees of freedom for the significance test. I defined the two stimulus frequencies 

and their first two harmonics as nuisance frequencies. Specifically, this procedure tests 

whether the amplitude of the test frequency is not zero using a regression-based F-test 

against a model of the noise process. I evaluated the estimated spectral power 

s<;) separately at the retinotopic and flicker modulation frequencies (7 and 10 cycles per 

scan, respectively) f ~divided by the average power of the frequencies [fhN; k = 1, ... , m], 

where mis the Nyquist frequency and fi,N -4= fk*,N; k* E {7, 10, 14, 20, 21, 30}, as 

[4] 

with n being the number of nuisance frequencies, and N the number of TRs. 

This yields an F-statistic that can be tested against the non-central F-distribution 

on 2 and 2( m - n) degrees of freedom to produce a series of p-values. In this case, the 

number of tests was large per participant (- 125,000 voxels), therefore, the number of 

expected false-positives for each participant was expected to be -6250 voxels with a 

critical p = .05. Given the goal of identifying a structure with an ambiguous physical 

location in the brain, this is unacceptable. To correct for multiple comparisons, I 

adjusted the critical p-value using the false discovery rate (FDR; Benjamini and 

Hochberg, 1995) and define the maximum number of false positives among all 

discoveries q to be 53 (- 350 voxels per participant), yielding a corrected p-value 
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threshold for each participant. This procedure is more appropriate in this case than 

stringent family-wise error rate corrections such as the Bonferroni method, as the small 

number of false positives should not be consistent among participants, while a large 

number of false negatives may not allow for the identification of the structure of 

interest (Lieberman and Cunningham, 2009). I further refined these maps by only 

retaining significant voxels participating in a contiguous cluster of at least 9 voxels, 

under the assumption that clusters smaller than this are insignificant or arise due to 

noise. Considering that the data is resampled to produce ,.., 10 x the number of voxels 

(original voxel resolution= 1.5 mm2 
x 2 mm, or 4.5 ml; resliced voxel resolution= 0.75 

mm3
, or ,..,0.42 ml), it seems appropriate to remove the influence of signal arising from a 

volume smaller than 1 voxel in the original data. The results of the multiple

comparisons corrected tests for the retinotopy and flicker analysis can be found in 

Figure 6 and 7, respectively. These figures are organized such that panel a falls on the 

anterior LGN, and panel d falls on the posterior SC, covering most of the visual 

thalamus. 

The retinotopy analysis revealed extensive visual responses in the thalamus. 

Statistical map threshold of q[FDR] = 0.05 resulted in critical p-values ranging .0014-

.0049 (x = 0.0034, SEM = 0.00053). The data shows the expected retinotopic organization 

in the LGN, intergeniculate pulvinar, lateral pulvinar, and SC in most, but not all, 

subjects (Schneider, 2011; Schneider and Kastner, 2005; Schneider et al., 2004). In the 

interest of brevity, I will only list activated RO Is outside of the LGN-TRN-pulvinar 

complex, and reference the pulvinar as a contiguous whole. Of note, one can observe 

reliable drive of all primary visual nuclei (LGN, SC, intergeniculate pulvinar) by the 

contralateral visual field, as expected. Surprisingly, the MGN also shows strong visual 

drive in multiple participants, which has not, to the best of the author's knowledge, yet 

been reported in the human thalamus. It is not completely unexpected, however, as 

multiple cortical auditory regions are known to respond to visual stimulation within 110 

ms, and the BOLD signal here may be driven by feedback from the cortex (Beauchamp 
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et al., 2004a, 2004b; Logothetis and Wandell, 2004; Proverbio et al., 2011). Furthermore, 

multiple regions of the dorsal pulvinar respond to the stimulus, are area known to have 
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Figure 6. Retinotopy of the thalamus. All maps thresholded at q[FDR] = O.OS. Slices move anterior to 
posterior from panel a to d. The data is presented with natural left and right. a,b) Panels 
demonstrating retinotopy of the LGN, intergeniculate pulvinar, lateral pulvinar, and MGN. Of note, 
primary sensory nuclei represent the contralateral visual field. c,d) Panels demonstrating retinotopy 
of the above, medial pulvinar, dorsal pulvinar, SC, and TRN. TRN retinotopy can be found in the 
following panels: a) S2 R, S3 R, S4 R, S6 R; b) S2 R&L, S3 R, S4 R, S6 R; c) Sl L, S2 L, S3 R, S4 R, SS R, 

SS R&L: d) S2 R&L, S3 R, S4 R&L. SS R, S6 L. 



widespread audio-visual connectivity in the brain, as well as dense connectivity with 

the pre-frontal cortex in the monkey (Gutierrez et al., 2000). 
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Multiple regions of the TRN respond in multiple participants just dorsal-lateral 

to the medial LGN, and in multiple locations along the lateral pulvinar. Upon visual 

inspection, it isn't clear from this analysis that the TRN is reliably driven by the present 

stimulus, ·because these significant ROis are generally lateralized to the right and appear 

to fall in inconsistent locations along the TRN. Furthermore, due to the variability in the 

relative locations of these thalamic structures, moving these data to a standard space is 

not feasible. The spatial normalization algorithms required to move the data into 

standard space do not respect the spatial fidelity required to delineate between the LGN 

and TRN, rendering them suboptimal for high resolution functional studies of this 

nature. 

The data demonstrating flicker-frequency preference in each structure also 

shows consistency across participants, but this analysis was less sensitive. Statistical 

map threshold of q[FDR] = 0.05 resulted in critical p-values ranging .0014-.0056 (x = 

0.0024, SEM = 0.00061). This analysis shows that the tremotopic method does indeed 

allow one to probe the resonance properties of various neural populations. The LGN is 

resonant at, and responds to, flicker frequencies surrounding 10 Hz stimulation, 

mirroring electrophysiology experiments (Hughes et al., 2004). This result also 

replicates the fMRI finding of (Kastner et al., 2004), demonstrating preferential LGN 

activity when presented with 3.75 or 10 Hz flicker, when compared with the responses 

elicited by 0.25 Hz. The MGN and dorsal pulvinar are seen to respond primarily to 20-

30 Hz flicker. The SC is only detectable in a few participants, but in those that it is, it 

expresses a 5-10 Hz flicker tuning. Very little of the TRN expresses flicker preference 

when analyzed in this way. However, considering that this analysis is significantly less 

sensitive than the retinotopy analysis (identifying only 71. 93 of the number of voxels 

identified by the retinotopic analysis, or 38755 of 53837), it is possible that any flicker 

modulation of the TRN is not robustly detectable by this analysis. To overcome this 



29 

limitation, I produced a third set of maps demonstrating the flicker preference of each 

significantly retinotopically-modulated voxel, shown in Figure 8. 
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Figure 7. Flicker responses of the thalamus. All maps thresholded at q[FDR] = 0.05. Slices move 
anterior to posterior from panel a to d. The data is presented with natural left and right. a,b) Panels 
demonstrating flicker responses to the LGN, intergeniculate pulvinar, and dorsal pulvinar. c,d) Panels 
demonstrating flicker preferences in the MGN, lateral pulvinar, and SC. Primary visual nuclei prefer 
flicker frequencies in the a-frequency range, while most pulvinar regions and the MGN prefer ~
frequency flicker. 
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Qualitatively, these data suggest a delineation of the thalamic nuclei into two 

groups: low-frequency responses in first order thalamic nuclei, and high-frequency 

responses in second order thalamic nuclei, as predicted (Hughes et al., 2004; Wang et al., 

2012; Wrobel et al., 2007). In order to better quantify the functional properties of the 
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Figure 8. Flicker responses of the thalamus, with the retinotopy threshold. Data thresholded at 
q[FDR] = O.OS by rotation frequency response. Slices move anterior to posterior from panel a to d. 
The data is presented with natural left and right. This analysis shows multiple regions of both high 
and low flicker frequency responses in the TRN. Both high (12.S-60 Hz) flicker frequency 
preferences can be seen in the dorsal pulvinar. TRN flicker preferences can be found in the 
following panels: a) S2 R, S3 R, S4 R, S6 R; b) S2 R&L, S3 R, S4 R, S6 R; c) Sl L, S2 L, S3 R, S4 R, SS R, 
SS R&L; d) S2 R&L, S3 R, S4 R&L, SS R, S6 L. 



31 

visual thalamus, and perform a group-level analysis, I pooled both the retinotopy and 

flicker phase statistics from the Fourier analysis across subjects within the defined 

proton-density ROI masks: the left and right LGN, TRN, and pulvinar, respectively 

(Figure 9). I divided the visual field into 36 even segments, and bin the flicker phase 

according to the 10 flicker frequencies presented. I conducted a series of Kolmogorov

Smirnov (KS) tests to compare the response properties of these RO Is. The distribution of 

polar angle responses are significantly different between ROis (LGN vs. TRN: Dn = 
0.126, p = l.2x 10-

8
; TRN vs. pulvinar: Dn = 0.167, p = 1.07x 10-

16
; LGN vs. pulvinar: Dn = 

0.170, p = 2.9x10-61
), and similarly for the flicker frequency preference (LGN vs. TRN: Dn 

= 0.450, p = 3.6x10-
62

; TRN vs. pulvinar: Dn = 0.275, p = 3.6lx10-
28

; LGN vs. pulvinar: Dn 

= 0.506, p = 3.73x 10-294
). 
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Figure 9. Group-level retinotopy and flicker responses of the LGN, TRN, and pulvinar for the thalamus
masked analysis. Black and red represent the right and left ROis, respectively. a) Polar angle 
distributions from the LGN, TRN, and pulvinar ROis. The visual field was segmented into 36 bins for 
visualization. b) Flicker frequency distributions from the LGN, TRN, and pulvinar ROis. 

This analys~s clearly shows the expected flicker frequency tuning of the LGN. 

Furthermore, the distribution of polar angle representations replicates the finding of 

(Schneider et al., 2004), including the under-representation of the vertical meridian. This 
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is of significance, as this analysis was restricted to a well-defined anatomical mask. In 

previous work, the LGN ROI was defined using a functional localizer, and was found to 

be approximately 2x the volume of the human LGN as measured during post-mortem 

studies. These data suggest that the functional under-representation of the horizontal 

meridian is not an artefact of the reliance on functional ROis, and generally that these 

two methods for defining RO Is produce similar results regardless of the extent of BOLD 

activation. The pulvinar ROI also shows an overrepresentation of the upper visual field, 

and minor contributions of the pulvinar on each side of the brain to both the 

contralateral and ipsilateral space, replicating previous animal studies (Bender, 1981). 

This overrepresentation of the upper visual field may suggest that at least some 

portions of the pulvinar are preferentially involved in the linear search of extra personal 

space: there is evidence that the upper and lower visual fields are specialized for 

processing distant and near objects, respectively (Previc, 1990). Recent evidence lends 

showing cross-frequency coupling between a-and ~-frequency LFPs in the pulvinar and 

temporal-occipital cortex during an attention task lends credence to this theory, 

suggesting the pulvinar is required for the integration of information across the senses 

(Saalmann et al., 2012). Interestingly, this data shows the pulvinar has populations with 

flicker-resonances in both the a-and high-~ ranges. 

The TRN ROis shows both ipsi and contra-lateral representations of the full 

visual field in both ROis, although the number of driven voxels is very small. To the 

best of my knowledge, this has not been shown before, but this result is also not wholly 

unexpected. The TRN participates in a thalamo-TRN-thalamo circuit which is 

hypothesized to be a thalamic lateral inhibitory circuit (Deschenes et al., 2005; Pinault 

and Deschenes, 1998). In this case, the BOLD representation of the contralateral visual 

field may be driven by inhibitory inputs during visual drive of the contralateral LGN. 

This data also shows a broad distribution of flicker-frequency preferences in the TRN, 

with slight over-representations in the a-and high-~ ranges, as seen in the pulvinar. The 

data also suggests a large preferential drive of the right TRN. It is not clear whether this 

finding is an artefact of smoothing between the pulvinar and right TRN, which lie side-
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by-side. This explanation seems plausible as it has the same visual field representation 

properties as the right pulvinar, preferring the upper visual field. An alternative 

explanation would be that, like all structures studied here, one hemisphere of the brain 
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Figure 10. Retinotopy of the LGN-TRN complex. All maps thresholded at q[FDR] = 0.05. Slices move 
anterior to posterior from panel a to d. The data is presented with natural left and right. These data 
demonstrate both contra and ipsilateral retinotopic activation in the TRN in both hemispheres. 
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tends to respond more strongly to the stimulus, and given the extreme difficulty in 

detecting TRN activity with BOLD, I may not have sufficient power to elicit a response 

from the (on average) weaker left TRN. 
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Figure 11. Retinotopy of the LGN-TRN complex. All maps thresholded at q[FDR] = 0.05. Slices move 
anterior to posterior from panel a to d. The data is presented with natural left and right. These data 
demonstrate the broad flicker frequency tuning of the TRN. 

One way to test this would be to re-run the analysis using only the LGN and 

TRN ROis, substantially reducing the number of comparisons made and therefore 

increasing the statistical power of the analysis. Furthermore, no cluster-size threshold 
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was imposed on these analysis. The results of the retinotopy, flicker preference masked 

by retinotopy, and group-level analysis are shown in Figures 10, 11, and 12, 

respectively. Statistical map threshold of q[FDR] = 0.05 resulted in critical p-values 

ranging .0057-.015. 
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Figure 12. Group-level retinotopy and flicker responses of the LGN and TRN for the TRN
LGN masked analysis. Black and red represent the right and left ROis, respectively. a) 
Polar angle distributions from the LGN and TRN ROis. The visual field was segmented into 
36 bins for visualization. b) Flicker frequency distributions from the LGN and TRN ROis. 

Figure 10 and 11 demonstrate two properties of the TRN: a full representation of the 

visual field in each hemisphere, and a broad flicker frequency tuning. Figure 12 shows 

that these findings are consistent at the group level. The distribution of polar angle 

responses are significantly different between the LGN and TRN (KS test: Dn = 0.113, p = 

4.8x 10-9>, and similarly for the flicker frequency preference (Dn = 0.356, p = 5.1x10-
86

). 

This analysis indentified substantially more voxels in the TRN, especially in the weaker 



left hemisphere (number of voxels identified: right 1.33 x, left 1.45 x ). Interestingly, the 

over-representation of the upper-left visual field remained relatively constant. To 

determine whether this is a simple artefact of smoothing, I re-ran this analysis on 

unsmoothed data. The results of this analysis can be found in Figure 13. 

a 

b 

40 -~ 
Vl v 30 :>< 

~ 
ca ..... 
0 20 E-t 

C+.. 
0 
s= 
.9 

10 ..... 
1-4 
0 
c.. 
0 

~ 
0 

LGN 
180 

'·· ...••.. , .... ··'~"> ....... .... 
270 ....... :" : . . ..... 90 

.'· .. ·. . .. : . :·. 00 
. . . : . ". 200 

- • t • • • ; ~ 

0 
Polar Angle ( 0 

) 

n right = 1236, 
n left= 1062 

TRN 
180 

0 

n right = 312, 
n left= 322 

1 25 5 7.5 10 12 15 20 30 60 1 25 5 7 5 10 12 15 20 30 60 
Flicker (Hz) 

Figure 13. Group-level retinotopy and flicker responses of the LGN and TRN for the TRN-LGN 
masked analysis with unsmoothed data. Black and red represent the right and left ROis, 
respectively. a) Polar angle distributions from the LGN and TRN ROis. The visual field was 
segmented into 36 bins for visualization. b) Flicker frequency distributions from the LGN and TRN 
ROis. 

Statistical map threshold of q[FDR] = 0.05 resulted in critical p-values ranging 

.0030-.0082. The distribution of polar angle responses are again significantly different 

between the LGN and TRN (KS test: Dn = 0.0863, p = .0011, and similarly for the flicker 

frequency preference (Dn = 0.393, p = 7.8x 10-68
). This analysis indentified substantially 

36 
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less voxels in the TRN and LGN in both hemispheres than the when using the smoothed 

data (number of TRN voxels identified: right O.S4x, left 0.76x; number of LGN voxels 

identified: right 0.64x, left 0.67 x ). From this analysis, a few things are apparent. First, it 

seems plausible that the over-representation of the upper left visual field in the TRN 

was an artefact of smoothing, and therefore it seems safe to conclude that the TRN 

represents the full visual field without preference in each hemisphere. Second, it 

appears that if the TRN does not pref er a single flicker frequency, and instead has 

regions which resonate at across those frequencies tested here. Further analysis will be 

required to determine whether there is a meaningful structure to the distribution of 

flicker preferences of the TRN. Third, even when using a small 2mm FWHM kernel, the 

procedure helps greatly for detecting visual structures with high resolution fMRI, which 

is crucial for this paper. Even the LGN was substantially less detectable when using 

unsmoothed data within the anatomically defined ROI. Since this set of experiments is 

focused on the LGN and TRN, it seems preferable to use the smoothed data for the 

detection and analysis of the TRN. However, work investigating the TRN adjacent to 

the pulvinar should take special precautions to avoid blurring these signals between 

these ROis. 

In general, this work shows that the TRN is not easily detectable in a principled 

and purely data-driven way. These participants were scanned for multiple hours on the 

same 210 s stimulus in order to obtain a very small number of TRN voxels. However, 

the inclusion of anatomical ROI masks increases the sensitivity of the analysis greatly. 

Because of participant drop-out, I was unable to obtain 30 functional runs from each 

participant. This affords us the opportunity to investigate the relationship between the 

number of runs collected and the number of visual voxels identified. I conducted a 

linear regression with the number of runs collected as my set of predictors and the 

percentage of active voxels out of the total number of voxels tested as my dependent 

variable. I preformed this test on the smoothed data within the full thalamus mask, and 

again within only the LGN-TRN complex (Figures 14 and 15, respectively). 
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While the 953 confidence interval is very large for both analysis due to the small 

n of this experiment, I nonetheless observe a significant relationship between the 

number of averaged runs and the voxels identified in the purely data-driven analysis 
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Figure 14. Relationship between number of averages and proportion of significant voxels in the data

driven analysis. Dashed line represents the 953 confidence interval. 
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(R2 
= 13.07, p =.022). This analysis suggests that more data would be beneficial for the 

development of a completely data-driven method for TRN localization, and may also 

suggest a plausible explanation for some of the variance observed between subjects 

(apparent in Figures 6-8). On the other hand, no relationship between the number of 

averages and detectable voxels was found using the ROI analysis (R2 
= 0.0012, p =. 97), 

suggesting that using a conjunction of the smoothed data and anatomically-defined 

ROis will allow one to detect these very small structures with significantly less data. 

Therefore, the time spent collecting the high-resolution proton density scans may be 



off set by the reduced required number of functional runs. This bears further 

investigation, as our sample size is very small. 
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Figure 15. Relationship between number of averages and proportion of 
significant voxels in the ROI analysis. The 953 confidence interval is not 
shown due to scale. 

3.2 Network Analysis of the Human Visual Thalamus 

The previous analysis is not sufficient to capture the full dynamics of flicker 

modulation, as voxels may express multiple flicker frequency preferences. A Fourier 

analysis will only allow one to identify the flicker frequency that drives the maximal 

response. According to my hypothesis, certain structures in the thalamus, such as the 

TRN, should show multiple flicker-frequency preferences arising from its connectivity 

with first and second order thalamic structures. Therefore I further quantified the 

39 
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similarities of flicker modulation between these visually driven voxels using the tools of 

graph theory. Graph theoretic analysis has recently be used to study the functional and 

structural organization in the brain with great success (for a review, see Bullmore and 

Sporns, 2009), providing holistic insights into the functional dynamics of neural 

networks. Here, I sought to identify the TRN via the similarity of its BOLD responses 

with those of the remaining thalamic nuclei. Another approach to this problem would 

have been to use a clustering algorithm, which would hopefully partition the data into a 

few meaningful regions of interest, including the TRN. Most clustering algorithms, 

however, are not well suited to this particular problem. A small minority of them are 

able to estimate the number of clusters in a data set, and it isn't clear exactly how many 

partitions are meaningful in this case. Those that do estimate the number of clusters 

require one to define a set of tuning parameters. These solutions are reasonable if one 

has a test data set with a known ground truth to tune the algorithm on, but in this case, 

the results of clustering algorithms become nearly impossible to interpret without bias. 

Here, we expect the visual sector of the TRN to be a densely-connected 

structure, expressing functional relationships with both first and second order thalamic 

nuclei. Furthermore, we expect that the thalamo-cortical and cortico-thalamo-cortical 

pathways to express a different flicker frequency preference. For a clustering algorithm 

to detect this, it would need to allow for "fuzzy" partitioning of the data, with each 

voxel expressing multiple potential cluster memberships depending on its relationship 

with the rest of the data. Another approach is to construct an undirected, weighted 

graph of the visually-responsive voxels via a correlation matrix. This matrix records the 

s~ilarities and differences between each voxel with every other voxel, and allows one 

to make use of sophisticated tools for the detection of densely connected voxels, as we 

would expect in the TRN. 

I first partitioned the data using a method described in Rubinov and Sporns, 

2011. Network analysis of the brain is a rapidly evolving and complex field, with 

multiple accepted best practices. Here, I opted to use a data-driven implementation that 

requires no threshold on the graph. I constructed a fully-connected and undirected 
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graph with only positive weights by finding the correlation matrix of the band-passed 

mean flicker profile data that survived the FDR-corrected retinotopy mask described in 

Section 3.1. I used the band-passed flicker profile data here as it was temporally filtered 

in a similar manner to resting-state data sets, which these network techniques are 

commonly used on (Van Dijk et al., 2010). Furthermore, I did not include the voxels 

identified by only the Fourier analysis of flicker-modulation to avoid introducing any 

bias into the analysis by way of circular reasoning. Each graph consisted of n nodes and 

_!_ n( n -1) connections, or edges. I define the weight of an edge as the correlation value 
2 

between two voxels. I discarded all negative weights, as it isn't clear that the proposed 

method has a similar effect on heamodynamics that also give rise to negatively 

correlated networks found at rest (Chai et al., 2012; Smith et al., 2012). Therefore, for the 

purposes of proof-of-concept, I only considered the positive weights of the graph, and 

defined the strength of a node's connections as the sum of all positive weights, and did 

not directly consider the number of connections (or node degree). 

Graphs can be partitioned into a set of communities to cluster a data set by 

defining a set of edge cuts that maximize the strength of the edges within a community 

and minimize the strength of the edges between non-overlapping communities 

(Fortunato, 2010; Schaeffer, 2007). One advantage of this approach is one can then find 

the modularity coefficient Q to measure the quality of a given partitioning as 

Q=_!_ L .. (w .. -e .. ~MM V I) I} I} i j 

where Wij denotes within module connection weight, and eij denotes between module 

connection weights, between node i and j. a M.M. = 1 when i and j are in the same 
I ) 

[5] 

module, and is 0 otherwise. v scales the result by the number of edges in the graph. Q 

falls in the range [ 0, 1] with Q = 0 when there is no modular structure in the graph, and 

Q = 1 when the modular structure of the graph is pure, i.e., there are no edges between 

communities (Rubinov and Sporns, 2011). Crucially, I have not regressed any global 



signals from the data, so there is no chance that I have significantly altered the 

correlation structure of the graph before this analysis (Murphy et al., 2009). 
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The graph partitioning proceeded as follows. I first generated a partition with 

the greedy modularity-maximization algorithm described by Blonde! et al., 2008. This 

algorithm was an attractive choice as it scales well to very large networks, finds a high

level modular structure with few communities, and automatically selects the number of 

communities within the graph. It should be stressed here that we have no a priori 

reason to expect a particular number of clusters to exist in the data, but also that it 

seems reasonable that multiple partition resolutions would serve as sensible solutions to 

the problem of defining the flicker response properties of the thalamus. Therefore, as a 

initial step, it seems logical to define a reliable and broad partition of the data with few 

clusters. The algorithm assigns each node to its own community, and then iteratively 

considers the increase of Q with the joining the communities of adjacent nodes. Each 

join that produces a larger Q is retained, and this procedure repeats until no further 

improvements result from further iterations. This partition is then fine-tuned using an 

algorithm that considers, once for each node, any possible improvement to Q that might 

result from moving a node into a neighbouring community (Sun et al., 2009). Both 

procedures are heuristic, and find marginally different partitions with each run. I 

therefore computed Q over 100 iterations with this procedure to generate 100 candidate 

partitions. I retained the partition with the largest Q, under the assumption that the 

partition with the largest modularity was the best partitioning of the graph. 

I quantified the similarity of the individual partitions using the variation of 

information, a measure of distance in partition space (Meila, 2007). To accomplish this, 

one first defines the entropy associated with a partition M as 

H(M) = LP(u)logP(u) [6] 
ueM 
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n 
where P(u) = _u , and nu is the number of nodes in module u. Next, one finds the 

n 

mutual information between the partitions M and M' as 

I(M M')= I Liog P(u,u') 
' ueMueM' P(u)P(u') 

[7] 

where P( U, u') = nuu' ' and nuu' is the number of nodes that simultaneously members of 
n 

partition M and M' . With this, one can define the variation of information VI as 

VI= -
1-(H{M) + H{M')- 2I(M, M')] 

logn 
[8] 

where a VI falls in the range [ 0, 1] with VI= 0 denoting equivalent partitions, and VI = 1 

denoting maximally distant partitions. This measurement is useful for checking the 

stability of the algorithm over multiple runs, and for comparing the content of runs 

with identical modularity coefficients. In the case that the algorithm returned multiple 

partitions with identical Qs, I retained a single partition from the largest set of Qs with 

. VI= 0, under the assumption that the most stable partition was the best partition of the 

graph. These algorithms are available as MATLAB code in the Brain Connectivity 

Toolbox (http://www.brain-connectivity-toolbox.net; Rubinov and Sporns, 2010). An 

overview of this strategy is presented in Figure 16. 

I next aligned the partitions across participants in the following way. I first 

ranked each community by the sum of the associated F statistics determined as 

described in Section 3.1. I next scaled each voxel time series to the range [ -1 1] by 

dividing it by its maximum absolute value. I did this because the amplitude of the BOLD 

signal between various neural populations may not convey meaningful information in 

this context, as BOLD amplitude is dependent on the density of vascularisation, and this 

could distort the computed centroid (Logothetis and Wandell, 2004). Next, I computed 

the centroid of each partition as the mean of the normalized time series within each 

partition, as well as the SD of each partition. I next sequentially aligned each the 
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partition in S 1 with the smallest distance. I finally 

computed a group centroid for each partition as 
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Here, I used voxels found using by 

analyzing the retinotopy of the smoothed data, 

and input flicker profiles also produced from the 

smoothed data. Exactly three clusters were found 

algorithmically in each subject. These clusters 
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Figure 16. Overview of the community detection pipeline. a) Sample time series from the LGN. b) 
Power spectral densitiy estimate of a, stimulus frequencies in red. c) FDR-corrected retinotopy from 
Sl. These serve as the ROis for further analysis. d) Bandpassed cycle from the same voxel as a. e) 
Matrix of cycles for all retinotopic voxels and the associated correlation matrix. f) Community 
memberships projected back into the thalamus, showing three major partitions of the graph. 
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Figure 17. Group-level community flicker profiles obtained from smoothed data. The results of the 
group analysis are found in the final row. 
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LGN ROI voxels in all participants (Figure 18). Visual inspection of Figure 19 also 

shows that this cluster represents the SC in some, but not all, participants. This 

clustering of the primary visual nuclei is the most reliable effect: patterns in the other 

clusters are more difficult to interpret. Cluster 2 is non-uniformly represented among all 

ROis across subjects, and the group average masks rather different underlying flicker 

profiles. The profile itself represents preference for very high flicker ( 60 Hz), and flicker 

from 1-7.5 Hz. In some cases, Cluster 2 appears to represent some primary visual 

nuclei, or the TRN along the lateral edge of the pulvinar, but the inconsistency amongst 

participants make this observation hard to interpret. Cluster 3, which is the smallest 
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Figure 18. Distribution of smoothed cluster memberships across ROis in percentages. 

cluster by number of voxels, appears to be more consistent among participants. It 

generally represents voxels which are most active when presented with a flicker 

between 15 and 60 Hz. Large, contiguous regions of Cluster 3 appear to represent both 

the MGN and pulvinar region in multiple participants. However, the group level 

analysis does not show any consistent pattern of preference between Cluster 1, 2 or 3 

for 
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Figure 19. Communities of flicker profiles in the human thalamus. Order of the clusters are arbitrary. 

either the pulvinar or TRN. This in essence replicates the results obtained using the 

Fourier analysis (Figure 9), and also demonstrates that the use of the flicker profile is a 
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viable alternative to the Fourier analysis for the purpose of classifying neural structured 

by their flicker frequency preference. 

These partitions were remarkably stable across iterations of the algorithm. The 

modularity coefficient was modest across all participants (Q: x = 0.283, SEM = 0.0056), 

but each iteration of the algorithm returned small variations of the resultant partition 

(VJ: x = 0.0305, SEM = 0.00031). If these voxels were, in fact, simple noise, it would seem 

unlikely that each iteration of the algorithm would produce such similar partitions of 

the graph. Instead, we would expect to see a very high VI, even in cases that produce 

similar overall distributions within ROis. One explanation for the similar distribution of 

cluster memberships between the pulvinar and TRN ROis was that the smoothed data 

blurred pulvinar or TRN-specific flicker profiles into the adjacent structure, confusing 

the results. This would particularly explain the large variability seen in cluster 

membership between participants. I tested this by re-running the analysis on the 

unsmoothed data, while re-using the retinotopy masks obtained using the smoothed 

data (therefore including the exact same voxels in both analysis). The results for this 

analysis are shown in Figures 19 and 20. 

Two things are evident from this alternative analysis. First, the registration 

procedure, which performed well for the smoothed data, does not work as well with 

noisier centroids. Of note is the mis-registration of Cluster 3 and 1 in SS. Although the 

algorithm still identified exactly three clusters for each participant, there is clearly more 

variance in the cluster centroids between participants. Nonetheless, the group-level 

mean cluster centroids are remarkably similar between the smoothed and unsmoothed 

analysis, and these partitions were very stable across iterations (Q: x = 0.243, SEM = 

0.0067; VI: x = 0.0038, SEM = 0.00065). 

Second, the LGN still preferentially clusters under a low-frequency flicker 

profile. The TRN seem to have a slight preference for Cluster 2 here (which is 

remarkably similar to Cluster 3 from the smoothed analysis), preferentially responding 

to flickers between 15-60 Hz. However, it might be safer to conclude that neither the 
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pulvinar nor TRN have any preferential flicker tuning that is observable using this 

method. Therefore, this analysis shows that the obtained cluster-centroid flicker profiles 
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Figure 20. Group-level community flicker profiles obtained from unsmoothed data. The results of 
the group analysis are found in the final row. 

are not an artefact of smoothing, and this analysis can reliably segment first order 

visual nuclei in the visual thalamus, but it remains unclear whether the findings relating 

to the TRN or pulvinar are simply due to noise, or are, in fact, due to these structures 

having a wide range of resonant frequencies. 
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Another explanation for why this analysis found no interesting cluster patterns 

would be that this data-driven approach would is highly sensitive to inter-subject 

differences in flicker profiles. In order to visualize the variability inherent in the data, I 
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Figure 21. Distribution of unsmoothed cluster memberships across ROis in percentages. 
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computed the mean and SD of the LGN flicker profile in each hemisphere from each 

participant and plot them in Figure 22. Since we are not comparing between structures, 

I present these data in percent signal change form. It is clear that there are differences 

in both BOLD amplitude and exact flicker-frequency tuning between participants in this 

structure, despite the fact that it reliably clusters in all participants. This suggests 

0.2 
-----......-.......... --.----...--.---...... inter-subject differences in either 

BOLD lag, neural-population 
0 

-0.2 

g 0.2 

~ 

resonance, or a combination of the 

two, and this poses a significant 

problem for the group-level 

analysis of this sort of data. 

Previous work shows variability of 

] 0 
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defined spindle frequency between 

participants during sleep ( 11-15 

Hz), as well as considerable 

variability of BOLD-a coupling 

between participants, which are Figure 22. Inter-participant variability of the LGN flicker 

profile. Red= left LGN, Blue= right LGN. 
normally positively correlated in 

the thalamus, but in one participant was negatively correlated (Gonc;alves et al., 2006; 

Werth et al., 1997). It seems like a reasonable next step to better quantify the 

relationship between these flicker profiles and EEG oscillations in the cortex. This 

information would be useful both for better understanding the relationship between 

flicker and neural resonance, and for understanding if there is an electrophysiological 

basis behind this inter-participant variation. If not, it may be the case that this variation 

is due to much less interesting things, such as inter-participant differences in 

physiological noise, head motion, or vigilance (Van Dijk et al., 2012; Olbrich et al., 2009; 

Shmueli et al., 2007). 
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As a follow-up analysis, I set out to determine whether the TRN serves as hub 

between the LGN and pulvinar. Specifically, I expected the LGN to prefer low 

frequencies, as shown in Figures 12-17, and at least some regions of the pulvinar to 

prefer higher ~ frequencies, as shown by (Saalmann et al., 2012). If these two regions are 

driven by the stimulus, and the visual sector of the TRN modulates communication 

between these regions, I would expect to see a bimodal flicker profile in the TRN. In the 

context of a graph, the TRN would act as a bridge between the group of voxels 

responding most to low frequencies and the group of voxels responding most to high 

frequencies (Cluster 1and3, respectively, from Figure 17). 

To accomplish this, I preformed the analysis proposed by (Guimera and Nunes 

Amaral, 2005). In essence, this procedure seeks to find nodes in a network that have a 

large number of inter-community connections, as defined in the previous analysis. First, 

one finds the degree of each node in the network, that is, the number of nodal 

connections per node. Crucially, I preformed this analysis on a modified form of the 

data. Any analysis of node degree, or similar measurements such as the clustering 

coefficient, are biased towards identifying larger structures by virtue of the 

homogenous BOLD response found within contiguous brain regions (Power et al., 2011). 

Therefore, I constructed a sub graph of the thalamus from a single time series found 

within each contiguous region of activation, as identified by the retinotopy analysis of 

the smoothed data. I selected each time series as the voxel with the maximum F statistic 

from the retinotopy analysis, under the assumption that this voxel would provide the 

cleanest signal and best representation of the surrounding region's flicker profile. In 

cases where a single contiguous region of significant retinotopy activation spanned two 

or more anatomical ROis, I subdivided along the anatomical boundaries. I next 

constructed each graph as the positive correlations derived from a correlation matrix of 

the band passed, smoothed flicker profiles. In this case, the degree of node i is simply 

the number of nodes with any positive correlation to node i. 

I identified communities in this graph using the same algorithm defined 

previously. Next, I found the normalized within-module degree for each node as 
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[9] 

where ki is the number of links of node i to other nodes within its community Si, ksj is 

the average of k over all nodes in Si, and a k; is the standard deviation of k in Si. This 

serves as a measure of how well a particular node is connected to other nodes within its 

community. I then found the participation coefficient Pi for each node i as: 

[10] 

where NM is the number of detected communities, kis is the number of links of node i to 

the nodes in community s and ki is the total degree of node i. Therefore, the 

participation coefficient of a node is close to 1 if its edges are uniformly distributed 

among all of the communities, and 0 if all its links are contained within its own 

community. 

Since this analysis makes use of data-driven RO Is, and not all of the voxels 

identified by the retinotopy analysis, I re-computed the communities for each 

participant. While the results were not drastically different from the previous analysis, 

the overall modularity was slightly higher and remained remarkably stable across 

iterations (Q: x = 0.314, SEM = 0.0053; VI: x = 0.0382, SEM = 0.0082). In S4 and SS, 4 

communities were detected. No attempt was made to register these communities across 

participants, so this discrepancy did not pose a problem. 

Briefly, I set out to define each ROI as being either peripheral (small P) or well 

connected (large P), as well as being either a non-hub (small z) or hub (large z) node. 

Based on previous work, I expected to find the TRN to be a well-connected hub, 

mediating communication between those communities that represent both low and high 

flicker frequency responses. I preformed this analysis on data considering all positive 



weights, and again only retaining the top 303 strongest weights. The results of these 

analysis are shown in Figure 23. 
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Figure 23. Modularity of the thalamic nuclei. Scatterplot depicting the participation coefficient vs. 
normalized within-module degree across all participants of the LGN, TRN, and pulvinar. a) Node degree 
calculated as the number of connected nodes with any positive correlation. b) Node degree calculated as 
the number of connected nodes with correlations in the top 303. 

The paper this method was derived from defined hub nodes as those with a 

normalized within-module degree of at least z = 2.3 (Guimera and Nunes Amaral, 2005). 

It appears that none of the RO Is defined in this analysis serve as particular hub within 

their own community. No class of ROI is obviously associated with a relatively large P, 

indicating a large number of inter-community connections relative to the other ROis. In 

Figure 24 I plot the proportion of voxels within each ROI with a particular 

participation coefficient (binned in increments of 0.1) to better visualize the differences 

between these brain regions. The data here shows a trend towards the expected effect 

with graph thresholds: approximately 153 of the identified TRN voxels have the largest 

participation coefficient (P = 0. 7) when only the top 303 of positive weights are 

considered, but not when all positive weights are considered. This is in contrast to the 

pulvinar, which only has approximately 53 of its RO Is with an equivalent P. 
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The original paper also distinguishes between peripheral nodes, with most links 

within their own community (P < 0.62), non-hub connector nodes, with many links to 

other modules (0.62 < P < 0.80), and finally non-hub 'kinless' nodes, with links 
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Figure 24. Distribution of participation coefficients within ROis. Results pooled across participants. 
Data binned in intervals of 0.1. a) Distribution of participation coefficients across the three 
identified ROis calculated using an unthresholded graph ( r > 0 ). b) Distribution of participation 
coefficients across the three identified ROis calculated using the thresholded graph (r =30th 

percentile). 

homogenously distributed among all communities. This analysis shows that the TRN 

and ·pulvinar have remarkably similar network characteristics, being composed of 

significantly more non-hub connector nodes than the LGN. That is, their respective 

flicker profiles cover a wide range of frequencies. These results fail to reject the null 

hypothesis that the TRN is not detectable as a hub in the thalamus using tremotopy. 

According to these results, the TRN cannot be isolated from the surrounding structures 

by its flicker profile connectivity with first and second order thalamic nuclei. 

Specifically, the resonance properties, and the network centrality, of the TRN are not 

unique, and the pulvinar may overshadow attempts to localize the TRN in a data-driven 

way using these measures. On the other hand, these results do support the findings of 

the Fourier analysis where both the pulvinar and TRN were found to have a broad 
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flicker frequency tuning (Figure 9). Considering that the community-detection 

algorithm detects three community centroids with flicker profiles pref erring the ex to 

high ~ range, it follows that a high participation coefficient in the pulvinar and the TRN 

would be due to broad range of flicker frequency profiles in these structures. 

Considering the vast difference in sizes between the TRN and pulvinar, it seems 

unlikely that this result was driven completely by noise: if noise was the sole 

contributor to each nodes participation coefficient, then we would expect to see a 

higher density of pulvinar nodes with large Ps than in the TRN. 

One issue that needs to be addressed in future network studies of the thalamus is 

appropriate brain coverage. The TRN is indeed an important hub in the thalamo-cortical 

loop, with widespread connections across every sensory modality and extensive 

connections with the pre-frontal cortex, but this information is not available in these 

data due to the very small region of the brain acquired. A possible solution, given the 

stimulus-driven nature of this experiment, would be to collect data sets at multiple 

resolutions and construct a whole-brain graph from parts of each image. Care would 

have to be taken to ensure similar signal-to-noise ratio across these data sets, but in 

theory this could be done. Graph analysis of the brain is a new technique and has 

almost always been used on whole-brain data (Wang Jinhui et al., 2010), so there is 

currently little evidence that this sort of analysis is useful when looking at such a 

restricted sub graph of the human brain. 

3.3 Seed-Based Correlation Analysis of the Thalamic Reticular Nucleus 

Following these failed attempts to develop a data-driven localizer for the human 

thalamic reticular nucleus, I set out to define functional properties of the TRN-LGN 

complex in the human brain using a seed-based correlation analysis commonly used in 

resting-state experiments (Raichle et al., 2001). One major advantage of this sort of 

analysis is the results are easily interpretable: positively correlated regions express 

temporally correlated metabolic demands, and negatively correlations imply that the 

two regions in question perform unrelated or opposite functions. Importantly, it isn't 
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clear how negative correlations are related to inhibitory processes in the brain. 

Modelling studies suggest that the negative BOLD response (a movement of the BOLD 

signal below baseline levels during stimulus presentation or a task), is not directly 

related to inhibitory processes, interneurons themselves require approximately 203 of 

the glucose required by pyramidal cells (suggesting inhibitory neural populations 

should express a low-amplitude positive BOLD response when contrasted with an 

excitatory process, but not negative), and GABA concentrations in the anterior 

cingulate cortex as measured using magnetic resonance spectroscopy positively 

correlates with the amplitude of negative BOLD responses seen at rest or during 

emotional processing (Logothetis and Wandell, 2004; Northoff et al., 2007; Sotero and 

Trujillo-Barreto, 2007). While this experiment is not well suited to directly address this 

question, as conclusive evidence would require causal manipulation of the TRN while 

simultaneously recording BOLD signal from the LGN (perhaps with a combination of 

optogenetics and fMRI; Lee et al., 2010), it at least provides some insight into the 

relationship between inhibitory processes and the BOLD signal. To the best of the 

author's knowledge, the TRN is the only structure in the human brain that consists 

entirely of inhibitory interneurons and is spatially distinct from other neural 

populations at a resolution of 0.75 mm. Therefore, the LGN-TRN complex seems ideally 

suited for answering this question. 

The question I sought to address here is whether the TRN participates in a 

contralateral-inhibition network within the brain. In the cortex, interhemispheric 

inhibition is well defined, but its function is poorly understood. Magnetic stimulation of 

points on cortical topographic maps produces a polarized effect on topographically

matched locations of the contralateral hemisphere, with inhibitory stimulation eliciting 

contralateral facilitation, and vice versa (Ferbert et al., 1992; Hilgetag et al., 2001). A 

recent experiment in somatosensory cortex implicates GABAB-mediated layer V 

projections to contralateral layer I apical dendrites underlies the inhibition of 

topographically-matched, contralateral evoked responses (Palmer et al., 2012). This 

provides a candidate mechanistic explanation for the perceptual phenomenon of 
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binocular rivalry, which has previously been proposed to be a form of intraocular 

suppression in areas as early in the visual stream as the LGN, but is also influenced by 

top-down object-level attention and seems to respect the topographic map (Haynes et 

al., 2005; Mitchell et al., 2004; Sengpiel et al., 1995; Wunderlich et al., 2005; Zhang et al., 

2011). Here I build the hypothesis that the TRN participates in a contralateral inhibitory 

circuit which respects the topographic map that performs a similar function to that of 

interhemispheric Layer V to Layer I inhibition in the cortex. Therefore, I predict that at 

least part of the visual TRN adjacent to the LGN contralateral to the LGN driven by the 

stimulated visual field would be driven by the flickering checkerboard. Recently, 

profound walking-driven modulation of the cat ventrolateral (somatosensory) thalamus 

and associated TRN was demonstrated: spindle frequency discharges were recorded 

from the TRN during the "stance" phase of the forepaw contralateral to the recording 

site (Marlinski et al., 2012). That is to say, while the forepaw contralateral to the TRN 

was receiving sensory input, the TRN switched to a fast-spiking mode, driving IPSPs in 

the ipsilateral thalamus (Steriade et al., 1993). This would prevent any descending 

cortical process from interrupting the motor plan of the "swing" forepaw. Here, I would 

expect to see positive correlations between the LGN contralateral to at least some TRN 

seed voxels, and negative correlations between the same TRN seed voxel and the 

ipsilateral LGN. 

I limited my analysis to the voxels identified by the FDR-corrected retinotopy 

analysis within the anatomically-defined LGN and TRN masks (Figure 12). I computed 

the correlation between a seed voxel time series taken from the TRN and each voxel in 

the LGN on either side of the brain. In some cases, this analysis produced positive 

correlations between the LGN and ipsilateral seed TRN, and negative correlations 

between the seed TRN and contralateral LGN (data not shown). This result was not 

particularly interesting: due to the close spatial proximity of the LGN and TRN in the 

human brain and the resolution of the functional data, these results could either be 

driven by the stimulus, or local correlations due to spatial smoothing, head motion, or 

both (Power et al., 2012). However, in all participants, I was also able to identify 
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retinotopic TRN voxels with the opposite pattern of correlations (Figure 25). In order to 

determine whether this effect is as all modulated by flicker frequency, I also produced 

correlation maps using the flicker profiles for each voxel. 
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Figure 25. Contralateral functional connectivity of the LGN-TRN complex. Seeds for each participant 
circled in red. Panels a & b are more anterior than c & d. a,c) Correlation maps of the LGN-TRN complex 
produced by correlating the mean runs of each voxel. b,d) Correlation maps of the LGN-TRN complex 
produced by correlating the flicker profiles of each voxel. 



This view of the data makes a few things clear. The location of the seeds 

required to produce this contralateral correlation effect is fairly consistent among 

participants. Generally, these seeds fall just dorsal lateral to the LGN and are within 
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Figure 26. Distributions of mean run correlations with the TRN seed from the ipsilateral and contralateral 
LGN pooled across all participants. 
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Figure 27. Distributions of flicker profile correlations with the TRN seed from the ipsilateral and 
contralateral LGN pooled across all participants. 

1-3 mm of the dorsal edge of the anatomically-defined LGN. No seed produced this 

effect that was found to be further than the junction where the TRN meets the lateral 

pulvinar (the closest case is seen in Panel a, S4 R). In all cases, the mean run produced 

the contralateral positive correlation expected, while the correlation of flicker profiles 
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produced mostly negative correlations with both LGN (Figure 26 and 27, respectively). 

The distribution of correlations for the contralateral and ipsilateral LGN were found to 

be significantly different in both cases, with the contralateral LGN expressing more 

positive correlations in both tests (KS test run: Dn = 0.644, p = 2.22 

xt0-
308

, KS test cycle: Dn = 0.0936, p = 2.98x10-
10

), although it should be stressed that the 

difference between distributions are order of magnitudes higher in the case of run 

correlations. 
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Figure 28. Flicker profiles of paired LGN and TRN. Flicker profiles were taken from the TRN seed 
from each participant, and averaged to produce the group-level analysis. Flicker profiles from the 
LGN represent the mean of the ipsilateral LGN to the seed. 



The finding that the flicker profiles of the TRN and the LGN are largely 

negatively correlated is unanticipated. To further investigate this relationship, I 

calculated the mean flicker profile of the ipsilateral LGN in each participant and plot 

this mean flicker profile against the seed TRN flicker profile in Figure 28. It appears 

that in most participants, these regions are maximally negatively correlated when the 

retina is driven between 10-15 Hz, with the LGN responding more vigorously and the 

TRN responding less than average, and between 20-60 Hz, where the TRN responds 

maximally and the LGN responds less so than on average. It is interesting to note that 

the mean ipsilateral LGN flicker cycle largely resembles the flicker profile obtained by 

the community detection algorithm in Section 3.2 (Figures 17 and 19), but the mean 

TRN cycle depicted here does not resemble any particular community. This may 

partially explain our negative results from Section 3.2: with a more fine-grained 

partitioning of the data, the participation coefficient might do a better job at locating 

voxels which serve as bridges between identified communities. This flicker profile 

would not correlate well with either Community 2 or 3 from Figure 17 or 19, 

depressing the Pvalue of the TRN. 
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Second, these effects would be considerably stronger if I were to exclude S2 and 

SS. S2 appears to present the same shape of flicker profile, but with a considerably 

shifted phase. While some of this effect might be due to differences in BOLD lag 

between participants, which could not be corrected for due to the design of the 

stimulus, the difference between S2 and Sl, 3, 4, & 6 is about 6 s: far greater than the 

maximum -2.5 s BOLD lag variability previously observed between participants 

(Handwerker et al., 2004; although see Aguirre et al., 1998, which found lags in visual 

cortex up to 5 s ). These results could be explained as a difference in flicker tuning 

between participants combined with differential BOLD lags. If flicker indeed gives us 

access to neural resonance, we would expect to see variability in the resonance of 

neural populations, which known to be variable in neural populations between 

participants. For instance, the optimal resonant frequency of 16 cat LGN were found to 

fall somewhere between 2 and 8 Hz (Mukherjee and Kaplan, 1995). The bias towards 
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higher flicker frequencies are clearly visible in S2's LGN in Figure 8. The results in SS 

are less easy to explain away, however this participant's data was particularly atypical 

at all levels of analysis, including basic retinotopy (Figures 8 and 17 clearly 

demonstrate the differences inherent to this participant). It may be that this data is 

different for an uninteresting reason such as fatigue at the time of scanning, a non

obvious mis-registration, or unusual blood vessel structure (see Handwerker et al., 2012 

for a review). 

Third, while the LGN and TRN appear to be co-active when the retina is 

presented with low-frequency flicker, the most consistent negative correlation between 

the seed TRN and mean LGN flicker cycle across participants was not in the spindle 

frequency range, but rather between 20-60 Hz. This is unexpected in the context of 

previous research, which has studied the LGN-TRN complex in isolation. In these 

studies, the TRN is most associated with spindle-frequency activity, and the 10 Hz 

signal is a well-understood thalamo-cortical phenomenon in the visual system 

(Fuentealba et al., 2004; Halassa et al., 2011; Pinault, 2004). There is, however, also some 

evidence of y-frequency activity in the cat TRN during a motor task, and stimulation of 

the TRN with 500 Hz trains also evokes topographically-matched y activity in the 

somatosensory and auditory cortex (Macdonald et al., 1998; Marczynski et al., 1984). 

Neither of these studies looked for such an effect in the visual TRN. Interestingly, in 

these data, we can see that the MGN (and putamen in some participants) is 

preferentially driven when the retina is presented with ~ to y-frequency flicker 

(Figures 7 and 8). 

A possible explanation for our findings is that driving the retina at these 

frequencies entrains non-visual cortical regions resonant at those frequencies-this 

would also explain the pulvinar responses observed in these data. The TRN is implicated 

in cross-modal filtering in response to ongoing attention demands (McAlonan et al., 

2006, 2008). Here, the proposal is that the TRN prevents non-relevant incoming sensory 

information from interrupting an ongoing process. Cortico-thalamic ~toy-frequency 

oscillations are associated with attention, the transient integration of stereotypical 



resting-state networks, and the execution of visual-motor behavior (de Pasquale et al., 

2012; Saahnann et al., 2012; Womelsdorf et al., 2006). In this case,~ toy-frequency 

flicker may be driving a nonsense oscillation in the cortex, mimicking an ongoing 

attention process and entraining the TRN to. inhibit visual input to the LGN. This 

feedback from the cortex would also explain the responses recorded in the MGN and 

pulvinar. 
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Furthermore, this effect acts in a lateralized fashion. That is, this flicker

frequency dependent TRN-mediated inhibition of the LGN is driven by flicker presented 

to the contralateral LGN (Figures 25 & 26). This finding has a few implications. First, 

the function of layer V to I contralateral inhibition observed in the cortex may extend to 

the thalamus, requiring the TRN (Palmer et al., 2012). While the findings of Marlinski et 

al., 2012 found TRN-mediated lateral inhibition in the walking cat, this serves as the 

first evidence of such a mechanism in the human brain, and also in the passive state. 

Curiously, while we found a spindle frequency effect in the TRN, like in the walking 

cat, but we also found a robust~ toy-frequency flicker response which drove the most 

dramatic suppression of the LGN. 

I also plotted the full run of the seed TRN voxels alongside the ipsilateral LGN 

time series maximally negatively correlated with it. I am unable to average these time 

series due to the retinotopic signal being out of phase across the LGN, which would 

render the average meaningless. As these seeds represent different points in the 

retinotopic map, it isn't easy to compare between them. However, it is at least obvious 

that these regions are only strongly negatively correlated for a small fraction of the run, 

corroborating findings evident in the flicker profile response (Figure 28). Further, we 

can visually confirm that these TRN seeds respond at the retinotopic frequency, and are 

clearly amplitude modulated. 
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Figure 29. Seed time series from the TRN and maximally negatively correlated ipsilateral LGN. 

To summarize, retinotopic analysis of the unsmoothed data (which prevents 

contamination from the adjacent pulvinar structures) revealed evidence for 

representations of each visual field in each TRN, but this finding could also have been 

due to noise. The attempt to triangulate the TRN as a structure uniquely expressing 

both low and high flicker resonances was unsuccessful, perhaps because both the TRN 

and pulvinar are heterogeneous structures. However, this approach did successfully 

identify the LGN as a structure with low-frequency flicker resonance, as well as identify 

the MGN as a structure with high-frequency flicker resonance, which suggests the 

proposed data-driven approach is valid. A seed-based correlation analysis in the TRN 

identified a sub-population of voxels exhibiting the expected bimodal flicker profile, 

suggesting these voxels mediate low and high-frequency resonance. These voxels also 

unexpectedly represent the visual field contralateral to that represented by the adjacent 

LGN, suggesting that the results of the initial retinotopic analysis were not due to noise, 

and may actually be the result of multiple neural populations in the TRN which express 

different resonance properties and visual receptive fields. Furthermore, it suggests the 

TRN is somehow involved in inter-hemispheric regulation of neural activity. 
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Chapter 4 

An Overview of the Results and Future Experiments 

Here I attempt to summarize and contextualize the results presented in Chapter 

3. In Section 4.1, I give a brief overview of the conducted analysis and their potential 

implications. In Section 4.2, I briefly discuss the limitations of this experimental 

paradigm, and suggest improvements to the design. I also suggest a series of 

experiments that would be prudent given the results of the current experiment. In 

Section 4.3, I provide a brief summary of the major findings. 

4.1 Properties of the Thalamic Reticular Nucleus 

I attempted in general to localize the human TRN using fMRI. In order to verify 

that the method was successful, I compared the recorded response properties of the 

TRN with previous work using invasive electrical methods. One of the crucial 

assumptions made in this course of analysis is that the tremotopic stimulus allows one 

to access the resonance properties of a neural population, and is proposed as a non

invasive analogous method to the ZAP function used in single cell electrophysiology 

(Hutcheon and Yarom,·2000). In these analysis, we consistently identified LGN as being 

resonant at the expected a-frequency (Figures 7-9, 11-13; Hughes et al., 2004), and 

show that one is able to largely segment the first order visual thalamic nuclei in a data 

driven way using only the flicker profiles of the retinotopic voxels and a community

detection algorithm, providing independent verification that tremotopy and the flicker 

profile does indeed provide some insight into the resonance properties of neural 

populations, at least in early visual regions. 

The retinotopic analysis suggests two general properties of the TRN. First, both 

the right and left TRN represent the entire visual field (Figure 13). This corroborates 

early labelling studies, which determined that this representation of the contralateral 

hemifield is due to cortical projections to the TRN, not projections from the LGN 
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(Montero et al., 1977). This seems a likely explanation for the present findings. Second, 

the TRN has a broad flicker frequency tuning, but has a slight preference for 7.5 Hz and 

15-30 Hz, even when using unsmoothed data (so there is presumably little chance these 

flicker properties are due to the proximity with the LGN). The results of this analysis 

alone, however, are not convincing: we might see both of these results from a Fourier 

analysis by chance if the voxels were simply noisy. To the best of the author's 

knowledge, functional retinotopy of the TRN has not been described before. For 

example, two recent experiments implicating the TRN in attentional modulation of the 

LGN analyzed single unit activity in the TRN adjacent to the LGN, and also the activity 

of neurons with overlapping receptive fields in the ipsilateral LGN (McAlonan et al., 

2006, 2008). The present results suggest concurrent recording from the TRN and LGN 

on each side of the brain may elucidate interesting interhemispheric properties of 

spatial or object-based attention. 

I next sought to identify the TRN as a hub in the thalamic network. The 

rationale was that the visual sector of the TRN should mediate communication between 

first order and second order thalamic nuclei (the LGN and pulvinar, respectively (Lam 

and Sherman, 2007). While the visually responsive regions of the pulvinar and their 

associated resonance properties are not as well defined as in the LGN, one recent study 

found that pulvinar regions with strong connections to high-order visual cortex (V 4 and 

the temporal-occipital area) express thalam<:>-cortical LFP coherence in the a to~ 

frequency range (8-15 Hz; Saalmann et al., 2012). I therefore expected the TRN to 

respond to and mediate communication with both of these structures by expressing a 

flicker tuning to both of these frequencies. I attempted triangulate the TRN using a 

graph-theoretic statistic known as the participation coefficient. This analysis found no 

difference between the TRN and pulvinar. One possible explanation for this was that 

aforementioned community detection algorithm was not able to distinguish between 

these a to ~ frequencies: the LGN in some participants even expressed preference for 15 

Hz (S2 and S6; Figure 22). Another explanation is that the pulvinar itself is a hub in the 

thalamo-cortical system, and due to the restricted field of view of the present 
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experiment (covering only a small region of the thalamus, and none of the cortex) the 

multi-modal network properties of the TRN were not accessible in this data set. 

Therefore, between the much larger number of pulvinar voxels sampled, and the 

improper coverage of the thalamic network, this analysis method was unable to identify 

any network properties unique to the TRN. 

Finally, I sought to further probe the network properties of the TRN using a 

seed-based correlation analysis while ignoring the influence of the pulvinar completely. 

I found two interesting properties of the TRN. First, I found evidence that the TRN 

participates in a lateral inhibitory circuit: drive of the contralateral LGN was correlated 

with BOLD increases in the TRN, and BOLD decreases in the ipsilateral LGN. This 

corroborates previous work (Marlinski et al., 2012), and also strengthens the present 

retinotopy findings: if the equal representation of the entire visual field in the TRN was 

simply due to noise, it would seem very unlikely that these negatively correlated 

patterns would be apparent in all participants in such similar anatomical locations 

(Figures 25 & 26). 

Second, I found a preference in the TRN to flicker in the 20-60 Hz range (Figure 

28). During this time, the LGN was also substantially less driven than average. This 

relationship seems hard to reconcile with previous work. Specifically, driving one 

hemifield with~ toy-frequency flicker drives appears to drive the contralateral TRN, 

which possibly inhibits the associated LGN. I propose two possible explanations for this 

result. 

One explanation follows from the unexpected observation that this stimulus 

drove the MGN at high flicker frequencies in most participants (20-60 Hz; Figure 8). At 

rest, the intrinsic oscillatory properties of the auditory cortex match the temporal 

properties of speech, with significant power in the 8, 0, & y-frequency bands (Giraud et 

al., 2007; Morillon et al., 2010). It has also recently been shown that abnormalities in the 

low-gamma component underlie deficits in dyslexic verbal memory performance: those 

with dyslexia tend to entrain to acoustic mo,dulations closer to 40 Hz, not 30 (Lehongre 
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et al., 2011). Therefore, low-gamma resonance is not only established in the auditory 

system, but it appears to be relevant to the active processing of the auditory world. 

Interestingly, the MGN, but not inferior colliculus, express flicker resonance in a similar 

frequency range in this data. This suggests that the origin of MGN modulation here is 

likely cortical in origin. Therefore, if low y-frequency flicker is, in fact, driving the 

auditory cortex, this may result in cross-modal activity in the visual sector of the TRN. 

Previous work has shown the visual sector of the TRN is modulated in a selective

attention task involving audio-visual stimuli (with the distracter being either auditory 

or visual, and the target being the opposite; .McAlonan et al., 2006). While any flicker

driven oscillation in the auditory system here would have no behavioural relevance, it 

remains a possibility that this nonsense signal is responsible for a cross-modal 

inhibition of visual inputs. If this is true, it suggests two things. First, it suggests that 

attention-driven cross-modal inhibition may operate in a lateralized fashion, as the 

inhibitory effect was to the hemifield contralateral to that stimulated. Second, it 

suggests that driving the visual system with different flicker frequencies entrains non

visual subsystems of the brain, and that this is determined by the resonance properties 

of a given neural population. Unexpectedly, this tremotopic stimulus may have the 

ability to map the resonance properties of a great deal more of the brain than simply the 

visual regions. 

A second explanation follows from a line of research dem~mstrating that sub

perceptual y-frequency flicker can bias the allocation of attention (Bauer et al., 2009; 

Cheadle et al., 2011; but see Bauer et al., 2012; van Diepen et al., 2010). The logic in this 

argument is that the visual cortex, which accurately entrains to oscillatory stimuli up to 

120 Hz in the tree shrew, and 100 Hz in both the monkey and human (Herrmann, 2001; 

Veit et al., 2011; Williams et al., 2004), may be driven to produce phase-locked y

frequency oscillations if driven by the correct flicker frequency. Phase-locked y-band 

activity is known to be important for the propagation of task relevant signals between 

associated visual regions (Bosman et al., 2012), and therefore this sort of cortical activity 

may also entrain TRN neural populations, if the structure indeed plays a role in sensory 
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filtering and selective attention (Crick, 1984; McAlonan et al., 2008). In this case, y-band 

flicker may have entrained attention to a particular point in visual space, driving 

suppression of the non-attended hemifield via the TRN. 

Regardless of the explanation for this curious result, it should be taken in 

context with previous work showing some lateralized function of the TRN. One group 

found the TRN to be necessary for the 'validity effect' (the decrease in reaction time 

seen when a valid cue is presented in the same spatial location as an eventual target). 

Specifically, the validity effect was abolished in the rat when the TRN was completely 

lesioned contralateral to the visual field containing the cue/target pair (Weese et al., 

1999). They also found no change in overall accuracy, suggesting this effect is not due 

to some sensory deficit. This result suggests the full retinotopic map observed in the 

present experiment may not be functionally equivalent across hemispheres, as they 

cannot compensate for one another. In light of the lateral-inhibitory BOLD connectivity 

observed here, it might be necessary for us to carefully interpret the negative BOLD 

response. In Weese et al., 1999, the TRN ipsilateral to the LGN receiving visual drive 

was responsible for the decreased observed reaction time. Therefore, filtering the 

irrelevant contralateral spatial location did not produce the decreased reaction time, but 

rather some ongoing process between the LGN and TRN representing the visual 

location of the target. In this experiment I have found some evidence that the two 

structures express negative BOLD correlations in some instances, but this should not be 

interpreted necessarily as overall decreased activity within the TRN. While the present 

experiment was not an attention task, and therefore it may well be that the present 

findings would be reversed in the case of an overt attention task, it may also imply that 

the TRN switches to a more specific, and less metabolically-demanding, firing mode 

during attentional filtering of the sensory world. 

4.2 Problems With the Present Design and Future Experiments 

Due to the task-free nature of this experiment, it remains impossible to know 

whether the presentation of y-band flicker drove an attentional signal itself, whether 
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the participants directed attention towards the stimulus during these flicker frequencies 

intentionally, or we have simply mapped potential pathways for known attention 

phenomenon, but not observed any effects due to attention. A simple attention task 

outside of the MRI could be used to determine whether attention can indeed be 

entrained using particular flicker frequencies, by attempting to suppress the allocation 

of spatial attention with full-field flicker at different (but similar) frequencies. In the 

case that attention is associated with a small range of y-band frequencies in early visual 

areas, one might be able to produce a tuning curve of distraction as the distracter flicker 

frequency deviates slightly from the resonant y-frequency of the primary visual cortex. 

The logic of this experiment is that if coherent y-frequency activity in disparate cortical 

regions is required for attention and flicker can drive meaningful oscillations in the 

brain, one might be able to inhibit spatial attention by entraining the entire visual field 

to the same frequency. 

The lack of BOLD lag estimates in the present experiment posed significant 

problems for comparing the flicker profiles between participants (Figures 17, 20, 22, & 

28). Due to the nature of the stimulus, BOLD lag would be best addressed with a second 

series of scans. I propose that each participant be presented with short presentations of 

flickering checkerboard stimuli in a blocked design as has been used before to estimate 

BOLD lag across participants (,.., 200 ms; Handwerker et al., 2004). Next an HRF model 

would be fit to all voxels, in order to determine which time from stimulus onset gives 

the smallest error in the fit. Additionally, I would propose that this be done separately 

for all flicker frequencies present in the tremotopic stimulus, to measure the lags in 

regions not normally seen in visually driven experiments. Furthermore, one could 

observe whether BOLD lag is variable with presented flicker frequency. 

While the EPI data collected here is of very high resolution, brain coverage was 

small. A number of the negative network-based results here are hard to interpret in 

light of this. In particular, we know the TRN receives inputs from every sensory system, 

the brainstem, the motor system, and limbic system in multiple mammalian species 

(Conley et al., 1991; Crabtree, 1992a, 1992b, 1996; Guillery and Harting, 2003; Kiinzle, 
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1976; Lozsadi, 1994; Montero et al., 1977; Pinault et al., 1995a, 1995b; Wang et al., 2001; 

Zikopoulos and Barbas, 2006, 2012). Our unexpected findings in the MGN suggest the 

tremotopic stimulus drives non-visual areas, and may entrain many areas of the cortex. 

If this is true, a whole-brain network constructed from high-resolution thalamic data 

and standard-resolution cortical data may be required for the expected network 

properties to be seen in the TRN. This sort of experiment would require the 

development of some new analytic techniques outside the scope of his paper in order to 

prevent biasing the results towards the higher-resolution data (as would be expected 

with more data points collected in closer spatial proximity; Power et al., 2011 ), and 

equalizing the SNR between these two data-sets. Physiological noise is a dominant 

source of noise in low-resolution data, but in high resolution data, thermal noise 

dominates (Triantafyllou et al., 2005). Therefore, sufficient temporal resolution and 

appropriate time series filtering will be required to equalize the properties of the noise 

distributions between these two data sets. Care should also be taken to use similar, if 

not identical, MRI sequences for both scans in order to minimize other differences 

between the two data sets which might be hard to detect without extensive tests. 

Fortunately, the simple stimulus-driven and task-free nature of the tremotopy design 

will make the combination of datasets across multiple resolutions otherwise trivial. 

Finally, the BOLD signal does not carry much, if any, information about the LFP 

that gives rise to it (Goense and Logothetis, 2008; Logothetis, 2008; Logothetis et al., 

2001; but see Magri et al., 2012). In these experiments we find some suggestion that 

visual flicker allows us to access the resonance properties of neural population, and 

some of the more interesting results depend on the concept of the flicker profile 

(Figures 17 & 28). These results demand further investigation using complementary 

methods. In conjunction with the whole-head cortical MRI data described above, it 

would be advantageous to collect complementary MEG data with the presentation of 

the same stimulus. This would allow one to verify that the actively presented flicker 

frequency is driving resonance in the brain at the same frequency. Unfortunately, the 

possibility remains that the BOLD signal seen here in downstream, particularly non-
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visual areas such as the TRN and MGN, are actually expressing oscillations at a 

different frequency than that used to drive the retina. In the thalamus, this possibility 

might be best addressed using invasive electrical recordings. In both cases, it seems 

premature to conclude that we can access the exact resonant frequency of non-visual 

neural populations using visual flicker without on-line electrical data to support this 

claim. A second, MRI-only approach might be to look for correspondence of resonance 

in sensory areas using modulated stimuli in the different senses. For example, the 

present finding that 30 Hz flicker drives the MGN is in agreement with recent work 

demonstrating 30 Hz modulated auditory stimuli also preferentially entrains the 

auditory cortex in healthy controls (Lehongre et al., 2011). A satisfying proof-of-concept 

might be to see whether a-frequency modulated sound waves entrain early visual 

regions. 

Finally, I did not collect eye-tracking or physiological data. This poses a 

potential confound in the interpretation of the results. Just as participants were found to 

move their heads in sync with flicker modulation (Figure 4), it seems a likely possibility 

that at least some of the participants were more likely to blink or saccade from fixation 

during particular flicker frequencies, both of which produce robust BOLD signals (Hupe 

et al., 2012; Kimmig et al., 2001). Any variability of these uninteresting events between 

participants could explain some or all of the flicker profile variability observed (Figures 

17, 20, 22, & 28), and consistent behaviour between participants could explain some of 

these results, including flicker-specific drive of the TRN (Figures 17, 20, & 28). Heart 

rate and breathing variability are both known to modulate in participants performing 

concentration tasks (Negoescu et al., 1993), and this effect may extend to a task-free but 

stimulus driven case such as this one. Future work should ensure to collect these 

measurements to rule out any influence of physiological noise. 

4.3 Summary of the Work 

This work lays the foundation for future work on the TRN, and also provides 

compelling evidence that visual flicker can be used to segment neural populations 



across their resonance properties using MRI, which is not information typically 

available in the BOLD signal. The TRN does show interesting resonance properties, 

exhibiting two different flicker resonances in the BOLD signal as predicted. However, 

its small size makes these features undetectable using data-driven segmentation 

approaches alone. For this reason, the collection of high-resolution proton density 

images is advantageous for the detection of TRN BOLD activity. 
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It is clear from the combined retinotopy and seed-based correlation analysis that 

some interesting retinotopic properties exist in the TRN, particularly the representation 

of the contralateral visual field. These functional properties have not been described 

before in the TRN, and are likely driven by descending cortical inputs. This seem 

particularly likely, as these contralateral TRN voxels are also responsive to 30 Hz 

flicker, and have negatively-correlated flicker profiles with the LGN in these high 

frequencies. These methods and findings should be of interest to those doing invasive 

recordings of the TRN, as they will allow one to triangulate ROis for recording sessions, 

as well as clinical and cognitive psychologists who might like to define the role of the 

TRN in the manifestation of disorders or attention phenomenon. Furthermore, this 

work represents the first large-scale characterization of TRN activity in any animal, and 

highlights the need for future studies to investigate the network properties of this 

poorly-characterized structure. 
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List of Abbreviations 

BOLD Blood oxygen level dependent 

Cx36 Connexin36 

EEG Electroencephalography 

EPI Echo-planar imaging 

FD Frame-wise displacement 

FDR False discovery rate 

FWHM Full-width half-max 

GABA y-Aminobutyric acid 

HRF Hemodynamic response function 

IPSP Inhibitory post-synaptic potential 

KS Kolmogorov-Smirnov 

LGN Lateral geniculate nucleus 

LPF Local field potential 

MAD Mean absolute deviation 

MEG Magnetoencephalography 

MGN Medial geniculate nucleus 

MRI Magnetic resonance imaging 

PD Proton density 

ROI Region of interest 

SC Superior colliculus 

TE Echo time 

TR Repetition time 

TRN Thalamic reticular nucleus 

Vt Primary visual cortex 

VI Variation of information 
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Table of Data Acquired for Each Participant 

St S2 S3 S4 SS S6 

Functional runs 25 30 20 30 23 30 

Proton density voxel 0.14 0.56 0.56 0.56 0.56 0.56 
volume (ml) 
Proton density runs 174 40 40 40 40 40 

Number of TRs removed 16 31 4 41 11 6 

TRs removed I run 0.64 1.03 0.2 1.36 0.48 0.2 

Sex ·M M F M M M 
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