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Diagnosis of learning difficulties is a challenging goal. There is a high number of factors involved in the
evaluation procedure that present high variance among the population with the same difficulty. Diagnosis
is usually performed by scoring subjects according to results obtained in different neuropsychological
(performance based) tests specifically designed to this end. One of the most frequent disorders is
Developmental dyslexia (DD), a specific difficulty in the acquisition of reading skills not related to
mental age or inadequate schooling. Its prevalence is estimated between 5% and 12% of the population.
Traditional tests for DD diagnosis aim to measure different behavioural variables involved in the reading
process. In this paper we propose a diagnostic method not based on behavioural variables but in
involuntary neurophysiological responses to different auditory stimuli. The experiments performed use
electroencephalography (EEG) signals to analyse the temporal behaviour and the spectral content of the
signal acquired from each electrode to extract relevant (temporal and spectral) features. Moreover, the
relationship of the features extracted among electrodes allows to infer a connectivity-like model showing
brain areas that process auditory stimuli in a synchronized way. Then an anomaly detection system
based on the reconstruction residuals of an autoencoder using these features has been proposed. Hence,
classification is performed by the proposed system based on the differences in the resulting connectivity
models that have demonstrated to be a useful tool for differential diagnosis of DD as well as a method
to step towards a better knowledge of the brain processes involved in DD. The results corroborate that
non-speech stimulus modulated at specific frequencies related to the sampling processes developed in
the brain to capture rhymes, syllabes and phonemes produce effects in specific frequency bands that
differentiate between controls and DD subjects. The proposed method showed relatively high sensitivity
above 0.6, and up to 0.9 in some of the experiments.
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1. Introduction

Developmental Dyslexia (DD) is a specific difficulty

in the acquisition of reading and writing skills not

related to mental age or inadequate schooling. DD

occur as part of a continuum and it is the low end

of a normal distribution of word reading ability.1,2

A common definition sets the cut-off for reading

achievement 1.5 standard deviations below the

mean for age. Indeed, its prevalence is estimated

between 5% and 12% of the population,3 depending

on the reading performance benchmark. It has an

important social impact and may determine school

failure. Common symptoms of dyslexia include slow

and difficult reading, unreadable handwriting, bad

spellings, letter migration or reversals.4 In addition,

it has harmful effects in the self-esteem of affected

children. Early diagnosis and prognosis to start an

adequate, early and individualized, intervention is

decisive in the personal and intellectual development

of these children. Usually, DD (as other learning

difficulties) are diagnosed by performing tests

specifically designed to measure different behavioural

variables involved in the reading process. Examples

of these variables are reading efficiency, or the ability

to split words in their constituent syllables. These

tests are individually applied by specialists who need

further time to analyse the results. Finally, diagnosis

is established by means of cut-off points computed

over not very large populations. Thus, the evaluation

process is a time-consuming and prone to error

task.5 In addition, most benchmarks are designed for

children who are already learning to read and fail,

establishing the diagnosis at a late age. research work

oriented towards early diagnosis and individualized

intervention would have a theoretical and a practical

impact.6 The development of objective diagnosis

methods is currently a challenge and an active

research field directed to find biomarkers that could

be used to improve the diagnosis accuracy by means

of neuropsychological responses associated with the

brain processes involved in reading or language

processing tasks.7 Moreover, since biological causes

and processes of DD are not well known, these

biomarkers could reveal unknown aspects of the

DD related to its neural basis.8,9 This can offer

valuable information for a better understanding

of differences between dyslexic and non-dyslexic

subjects, with special application in the design

of individualized intervention tasks. At the same

time, it provides the arena to design diagnosis

tools not only applicable to readers, but also to

pre-readers (early diagnosis). In this way, works such

as Ref.10 shows that partial learning in feedforward

neural networks can produce a behaviour that is

reminiscent of that of dyslexic persons. The search

for the neurological basis of dyslexia (that remains

unknown) has led the researchers to use different

techniques to acquire functional brain information

while the subject is developing some specifically

designed tasks. Current advances in medical imaging

acquisition systems provide different alternatives to

infer the brain functional activity. These advances

include functional neuroimaging techniques such

as functional magnetic resonance imaging (fMRI),

magneto-encephalography (MEG) or Positron

Emission Tomography (PET). On the other

hand, electroencephalography (EEG) is a popular

technique to explore the cortical brain activity that

has been used to study different neurological diseases

such as Alzheimer’s disease,11–14 Parkinsonian

syndromes,15,16 epileptic disorders,17–19 and other

psychiatric disorders such as schizophrenia.20

Nevertheless, it is not straightforward to extract

useful information contained in EEG recordings,

due to its low Signal-to-Noise ratio (SNR). In

other words, transforming EEG information into

knowledge requires different preprocessing and

processing stages to 1) remove noise and artifacts

and 2) extract descriptors. Currently, procedures to

fulfill with 1) include SNR improvement through

signal averaging and electrooculographic (EOG)

artifacts removal using Independent Component

Analysys (ICA). Unfortunately, the computation

of representative or discriminative descriptors in

search for biomarkers depends on the specific

disorder, and on the specific stimuli used to trigger

differential functional brain patterns. Thus, in

Section 2, we show an overview of different processing

and classification techniques of EEG signals for

DD diagnosis. Nevertheless, since the classification

problem tackled here is especially complex due to

the high variability of DD subjects, we propose an

anomaly detection system to classify DD subjects

as those whose patterns are different enough from

those computed for controls (CN) subjects. As

defined in Refs.21, 22, anomalies are patterns in

data that do not conform to a well defined notion
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of normal behavior that rarely occur by nature.

Indeed, anomalies can be detected as deviations from

the behaviour considered normal. Specifically, our

proposal consists on extracting time and frequency

features that describes the EEG signals on each

band, acquired during the application of different

auditory stimulus explained in Section 4. These

features are used to compute a connectivity model

based on the similarity among channels in that

feature space. Subsequently, an anomaly detection

system based on an autoencoder is proposed. This

procedure uses the reconstruction residuals to

differentiate between controls and DD subjects by

means of a SVC classifier. Our approach provides

similar performance than previous methods that use

MRI imaging or MEG signals with less electrodes

and a simpler experimental methodology.

The rest of the paper is structured as follows.

Section 3 shows details on the database used

and the applied preprocessing. Then, this section

describes the auditory stimulus, EEG preprocessing

and post-processing (feature extraction) as well as

the classification method. Section 4 describes the

auditory stimuli used during the EEG acquisitions,

along with EEG preprocessing and post-processing

(feature extraction) methods. Moreover, this Section

details the proposed methodology that includes tools

for exploratory analysis based on the similarity

between features extracted from different EEG

channels in different frequency bands. Section 5

presents and discusses the classification results, and

finally, Section 6 draws the main conclusions.

2. Related Work

The risk of DD in children is usually assessed by

behavioural tests that measure different variables

realated to writting and reading efficiency.23

This diagnosis procedure is currently standarized

(DSM-5) and includes six months of evidence-based

intervention. Nevertheless, any arbitrary cut points

obtained from behavioral measures might not

have biological validity and be compromised by

a variety of uncontrolled variables. In addition,

heritage information also results relevant due to

the genetic component of DD.24 However, current

research directions point to the exploration of the

neurological basis of DD through the search for

characteristic patterns while performing different

tasks. Thus in Ref.25, the authors study the power

distribution in each EEG band and the coherence

among electrodes during word articulation, phoneme

deletion, rapid naming letters and word spelling.

In Ref.26 EEG topography is used to obtain a

functional map of the brain cortex during a letter

writing task finding activation differences between

hemispheres. In Ref.4, a pseudo-word reading task

is used with a reduced population of adults, while

statistical features are extracted from the power

spectrum computed for each EEG band and each

electrode. These features are eventually classified

using a Support Vector Classifier (SVC).27 Other

works are focused on the study of the connectivity

patterns inferred during reading tasks. Thus, Ref.28

study disruptions of connectivity within visual and

language processing networks during visual word and

false font processing tasks. Connectivity patterns

in Ref.28 are computed according to the statistical

significance of the differences in the PSD observed

at each EEG band. Previous works are based

on EEG signals recorded while the subject is

performing a language-related task. Other works

such as Ref.29 use EEG measurements in resting

state to study differences in connectivity patterns

using graph theory. Specifically, in Ref.29 weighted

connectivity matrices are computed for multiple

frequency bands using the phase lag index (PLI).30

Previous commented works are mainly focused on

finding discriminant patters in EEG signals acquired

during reading or writing related tasks.

The main theory about dyslexia -phonological

theory- postulates that dyslexics have a specific

impairment in the representation, storage and/or

retrieval of speech sounds. While theorists have

different views about the nature of the phonological

problems, they agree on the central and causal role

of phonology in dyslexia. Learning to read requires

learning the grapheme-phoneme correspondence, i.e.

the correspondence between letters and speech

sounds. If these sounds are poorly represented, stored

or retrieved, the learning of grapheme-phoneme

correspondences will be affected accordingly.31–34

The phonological theory therefore postulates a

straightforward link between a cognitive deficit and

the behavioural problem to be explained. Other

theories are the rapid auditory processing, which

postulates that the deficit lies in the perception

of short or rapidly varying sounds.35 There is

indeed also evidence that dyslexics may have
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poorer categorical perception of certain contrasts36

(allophonic perception theory).

The search for the neural basis of DD requires to

go beyond experiments based on reading and writing

tasks, as it is a more general language processing

deficit. In fact, one of the most accepted causes of DD

in the scientific community regards to an incorrect

phonological processing5 that causes the abnormal

encoding of words in memory. These results on

inaccurate or incomplete stored phonological forms

that cause unreliable mappings, affecting to the

phoneme-grapheme conversion. Contrarily, language

processing, in particular, word encoding depends on

brain processes based on a sampling process that

split the auditory stimuli into their segmental forms:

syllable, onset-rime and phoneme.37 This way, recent

works are focused on finding neural patterns related

to defective speech encoding or faulty phonological

representation.38,39 Hence, Ref.40 proposes the use

of tasks related to the rapid neural learning

mechanism for online acquisition of novel speech

material, while measuring the neural dynamics

through Event Related Potential (ERP) responses.

Statistical test performed on the participants showed

differences in the early neural response after the word

divergence point.

Our experimental setup has been designed

according to Ref.41, under the hypothesis that

the core deficit in dyslexia is phonological. The

Temporal Sampling Framework (TSF)42 proposes

that atypical oscillatory sampling at one or more

temporal rates in children with dyslexia could cause

phonological difficulties in specifying linguistic units

such as syllables or phonemes. Indeed, temporal

sampling of synchronous activity of oscillating

networks of neurons at different frequency bands

(e.g. Delta, 1.5-4 Hz; Theta-Alpha, 4-12 Hz; and

Gamma, 30-80 Hz) could explain the perceptual

and phonological difficulties with rhymes, syllabes

and phonemes found in individuals with dyslexia.

Atypical oscillatory entrainment to rhythm and

speech in the Delta band have been identified

in several studies.43,44 However, there is evidence

of atypical oscillatory differences in Theta and

Gamma bands. Interestingly, such evidence has been

found using both speech and non-speech stimuli.41

Moreover, auditory-steady-state responses (ASSRs)

to amplitude-modulated white noise stimuli provides

a non-bias measure of the synchronization of neural

oscillations in the auditory cortex. Although previous

studies found inconclusive results in relation to

EEG and DD,45,46 the findings in latest works43,44

have directed the scientific community to focus

on the search for the neural basis of DD. In

the same line, Refs.47, 48 have shown differences

in readers due to cognitive impairment of the

phonological representation of word forms. Speech

encoding related to speech prosody and sensorimotor

synchronization problems can be revealed by finding

patterns in EEG channels at different sub-bands

as it provides enough time resolution. Moreover,44

uses speech-based stimuli to find a match between

speech features and neural dynamics through

time-frequency descriptors.

3. Database

The EEG data used in this work was provided by

the Leeduca study at the University of Malaga. The

procedure to establish the control and experimental

groups was carried out according to both, the

standard criteria used in similar studies and the

Special Education School Services (SESS) and

following the standards.49 Moreover, the procedure

contained specific guarantees from the longitudinal

study developed and applied by the Leeduca

Project.The Leeduca Project has been implementing

a Response to Intervention (RtI) system applied for

20 years in the US and 10 years in Finland. The

system applied a dynamic evaluation three times a

year from 4 to 8 years to large population samples.

Specifically, the control and experimental groups

came from a cohort (N = 700) followed from 4 years

to the second evaluation of 7 years in 20 different

primary schools (Junta de Andalućıa). This way,

SESS had a longitudinal dynamic evaluation of the

subjects, plus ATLAS (A self-report questionnaire

on reading-writing difficulties for adults) family

risk information, plus a complete report at 7 year

old, which included standard assessment tasks.

Additionally, SESS services had an official census

of other neurodevelopmental disorders, including

disorders such as Language Impairment (LI),

Speech Sound Disorder (SSD), Attention Deficit

Hyperactivity Disorder (ADHD), Autism, and other

auditory or visual sensory deficits. Moreover,

SESS collected information about other relevant

conditions which can affect reading achievement, as

immigration or bilingualism. Hence, comorbidities
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were taken into account in the screening process.

The equipment used for EEG acquisitions was

the Brainvision actiCHamp Plus with a 32 channels

amplifier that affords a sampling rate up to 100 KHz.

In addition, active electrodes were used (actiCAP,

Brain Products GmbH, Germany), as they allowed a

wider range of impedances, improving the SNR and

making the system more robust to head movement.

Hence, the experimental setup was appropiate for

working with children. On the other hand, the

equipment was powered from li-ion batteries to

ensure the isolation with the power line and to reduce

the acquisition noise. EEG signals were recorded

at a sampling rate of 500 Hz during 15-minute

sessions, while participants were presented with

auditory stimuli using headphones. As explained in

Section 4.1, a session consisted of a sequence of

white noise stimuli modulated in amplitude at a rate

of 2 Hz, 8 Hz, and 20 Hz presented sequentially

for 5 minutes each. Stimulus change was recorded

in the EEG acquisition by means of a trigger

coming from the computer that generates the stimuli.

This methodology facilitates the extraction of EEG

recordings corresponding to the response associated

to each individual stimulus for further processing.

Acquired signals signals were then pre-processed

and analyzed in the frequency domain. Spectral

features extracted from the EEG signals were

then used to classify the subjects between controls

(CN) and DD. The present experiment was

carried out with the understanding and written

consent of each child’s legal guardian and in

the presence thereof, and was approved by the

Medical Ethical Committee of the Malaga University

(ref. 05/02/2020 PND016/2020) and according to

the dispositions of the World Medical Association

Declaration of Helsinki.

Forty-eight participants took part in the present

study, including 32 skilled readers (17 males) and

16 DD readers (7 males) matched in age (t(1) =

−1.4, p > 0.05, age range: 88-100 months). The

mean age of the control group was 94, 1 ± 3.3

months, and 95, 6 ± 2.9 months for the DD group.

All participants were right-handed Spanish native

speakers with no hearing impairments and normal or

corrected–to–normal vision. Dyslexic children in this

study had all received a formal diagnosis of dyslexia

in the school. None of the skilled readers reported

reading or spelling difficulties or had received a

previous formal diagnosis of dyslexia. The location

of 32 electrodes in the 10-20 standarized system used

in the experiments is shown in Figure 1.

Fig. 1. Electrode montage in the 10-20 system used in
the experiments

4. Methods

4.1. Stimuli

DD is a reading disorder often characterized by

reduced awareness of speech units.50

Up to five types of sampling have been identified

that might be relevant to explain dyslexia and other

language disorders (for a recent review see Ref.51):

(1) On the one hand, Delta oscillations (1-4 Hz;

around 2 Hz), located in the right hemisphere,

would allow to process the prosodic aspects of

speech, that is, the rhythm of speech and its

cadence.

(2) Theta frequency oscillations (4-7 Hz; around 5

Hz) are preferably shown in the right hemisphere

and allow syllable segmentation.

(3) In the Beta frequency band (around 20 Hz)

the internal segmentation of the syllable occurs,

initially (onset) and its rhyme (coda nucleus),

that item from the vowel that contains all

syllable (for example: you; s-ol, pl-an, etc.).

(4) High Beta-Low frequency Gamma waves (20-40

Hz) allow phoneme segmentation and are

asymmetrically present in the left hemisphere.

(5) In the Alpha frequency band (8-12 hz)

differences have been found that affect attention
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control, selective inhibition and audio-visual

integration

Other models of neuronal speech coding suggest

that dyslexia originates from the atypical dominant

neuronal entrainment in the right hemisphere to

the slow-rhythmic prosodic (Delta band, 0.5-1 Hz),

syllabic (Theta band, 4-8 Hz) or the phoneme

(Beta-Gamma band, 12-40 Hz), speech modulations,

which are defined by the time of increase in

amplitude (i.e., the envelope) generated by the

speech rhythm.43,44

In our study we approach the first three for their

relevance - controversy - in the current studies. Then,

have followed the approach described in Ref.49, 52,

considering Delta, Theta and Beta bands, at rate of

2Hz, 8Hz and 20Hz to explore stress word patterns,

syllable Spanish rate and phoneme segmentation.

Thus, we compared the cortical entrainment to

Amplitude Modulated (AM) white-noise at a fixed

rates: 2 Hz, 8Hz and 20 Hz. A sample composed

of 7 year old children listened to stimuli obtained

by rhythmically modulating the amplitude (AM) of

white-noise sound either in the Delta, Theta and

Gamma band.

Unlike works that use speech-based or word

processing-based stimuli that requires the subject

interaction during the experiment, we generated

different auditory stimuli directed to trigger the

functional cortical brain networks involved in

language processing at different levels. These regions

include Broca’s area in the inferior frontal gyrus

(IFG), Wernicke’s area in the superior temporal

gyrus (STG), as well as parts of the middle

temporal gyrus (MTG) and the inferior parietal

and angular gyrus in the parietal lobe, detailed in

Ref.53. However, language processing (in general) is

a complex task that implies the interaction among

different brain areas regarding auditory, visual and

linguistic processing.54

In order to reduce interactions, and aiming to

explore differences in the auditory cortex, we used

auditory stimuli in such a way that no action is

required from the subject under test, only to listen

the audio signal in a resting state-like fashion.

This procedure aims to assess the quality of

the oscillatory neural processes measured through

AM modulations contributing to the optimal

construction of predictions of incoming auditory

information (such as linguistic sequences or their

simplification through AM modulations). These

neurophysiological responses should explain the

manifestations of the temporal processing deficits

described in dyslexia.

4.2. Signal preprocessing

EEG signals were pre-processed in order to remove

artifacts related to eye blinking and impedance

variations due to movements. Since eye blinking

signal is recorded along with EEG signals, these

artifact were removed by blind source separation

using Independent Component Analysis (ICA).55,56

Other artifacts related to movement or noise from

unknown sources required the removal of EEG

segments. Afterwards, the remaining, cleaned signals

were segmented into 5 seconds excerpts. As a result,

different number of segments were available for

different subjects. These segments are normalized

to zero mean and unit variance independently.

Subsequently, EEG bands defined in Section 2

are derived from preprocessed signals using a

Butterworth, 5th order band pass filter, allowing to

extract features from each EEG band separately.

An initial exploratory analysis of the EEG signals

revealed differences between CN and DD subjects

in the power distribution across different EEG

channels in different frequency bands. Moreover

these differences depended on the stimulus. Figures

2, 3 and 4 show the average response computed

for all the CN and DD subjects, exposing different

activation patterns for the 2Hz, 8 Hz and 20 Hz

stimulus focused in specific EEG bands.

Although average differences can be noticed,

these exist very high variability among DD subjects,

and it is very difficult to group them in the same

cluster by the only means of power distribution

profiles across different EEG channels. This way, it

is neccessary to compute more elaborated features

that characterize temporal and spectral aspects of

the signals. On the other hand, the classification

problem is treated here as an anomaly detection task,

aiming to detect significant deviations with respect

to the behaviour of the CN features. These features

are detailed in the following section.
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Fig. 2. Power distribution across EEG channels in different bands for (a) CN and (b) DD subjects, when the 2Hz stimulus
is used. Average power over all segments over 5 minutes recording is shown.

Fig. 3. Power distribution across EEG channels in different bands for (a) CN and (b) DD subjects, when the 8Hz stimulus
is used. Average power over all segments over 5 minutes recording is shown.

Fig. 4. Power distribution across EEG channels in different bands for (a) CN and (b) DD subjects, when the 20Hz
stimulus is used. Average power over all segments over 5 minutes recording is shown.

4.3. Feature extraction

Previous works have shown that statistical

features extracted from EEG signals contain

discriminative information for the diagnosis of

different pathologies.57–59 In this work, time,

frequency and fractal descriptors have been

extracted from each segment in order to characterize

the signal in the temporal domain, along with the

shape of the power spectral density distribution.

In the following, a mathematical description of the

features computed is provided. Let xci be the time

signal for a channel c, where i = {1, .., N} is the time

instant.
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Fig. 5. Feature extraction process.

(1) Time features

• Mean amplitude:

µt =
1

N

N∑
i=1

xi (1)

• Amplitude variance:

σt =

√√√√ 1

N

N∑
i=1

(xi − µt)2 (2)

• Temporal skewness:

βt =
1

N

N∑
i=1

(
xi − µt
σt

)3

(3)

(2) Frequency features Frequency features are

based on the computation of the PSD. Due to

the non-stationary nature of EEG signals, PSD

computation using classical Fourier transform

is not reliable, since EEG signals cannot be

expressed as a combination of pure tones.

Moreover, the accuracy of the PSD computed

by this method is reduced by 1) high variance of

the estimate, which makes the spectrum noisy,

and 2) the bias created by the leakage of energy

across frequencies.60 To overcome the limitations

of Fourier transform in the computation of the

PSD, more robust techniques such as Wavelet61

and Welch’s periodogram62 are commonly used

in EEG appications. Welch’s periodogram is a

robust estimator which improves the standard

periodogram by reducing the noise, but at

the cost of reducing the spectral resolution.

In order to take advantage of classical and

Welch’s periodogram methods while avoiding

their drawbacks, the solution proposed by

Thomson60 consists in using windows (also called

tapers) in the time domain, reducing the leakage

produced by multiple side lobes of a window in

the frequency domain. This is also achieved by

using tapers with low spectral power in the side

lobes. Thus PSD can be computed as:

PSD(ω) =

∣∣∣∣∣
N−1∑
i=0

xiaie
−jωi

∣∣∣∣∣
2

(4)

where xi, i = 1, ..., N is the N -samples time

series corresponding to the signal and ai is

the window (taper) in the time domain. The

total energy of these tappers is normalized to

keep the total power invariant. This approach

can be extended to reduce the variance of the

estimate at each frequency by using multiple

tapers. Especifically, Thomson proposed the use

of K orthogonal tapers, providing K orthogonal

samples of the data xi. As a result, we have

K spectral estimations PSDk(ω) that can be

averaged to reduce the variance. Furthermore,

the method devised by Thomson includes an

optimization step to find the tapers that

minimize the leakage by maximizing the energy

within a specific bandwidth. This method is also

known as multitapper method .63 Once the PSD

has been computed, it can be characterized by

different descriptors:
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• Spectral Centroid. It is the weighted mean of

the frequencies present in the signal, and can

be seen as the center of mass of the power

spectrum. In other words, it represents the

frequency at which the most part of the energy

is concentrated. It is defined as:

SC =

∑
ω
ω · PSD(ω)∑
ω
PSD(ω)

(5)

where PSD(ω) is the PSD of ω − th frequency

bin in the spectrum.

• Spectral Spread. Defines the dispersion of the

spectrum around the spectral centroid

σ2
s =

∑
ω

(ω − SC)2PSD(ω)∑
ω
PSD(ω)

(6)

• Spectral Skewness. It measures de degree of

symmetry of a distibution. It is defined as:

βs =

∑
ω

(
ω−SC
σ

)3
PSD(ω)∑

ω
PSD(ω)

(7)

• Spectral Flatness. It Measures how the power

is spreaded across the spectrum.

τs =

(∏
ω
PSD(ω)

)1/B

(1/B)
∑
ω
PSD(ω)

(8)

where B is the number of frequency bins.

(3) Fractal features

Fractal dimension aim to measure the

complexity and self-similarity of a time

series. Specifically, Higuchi fractal dimension

(HFD)64 has been demonstrated to be

the most appropiate fractal descriptor for

electrophysiological signals,65 and provides a

reasonable estimate of the fractal dimension for

short signal segments.66 Their works67–70 show

the effectiveness of fractal-based features for

the analysis of EEG signals in the diagnosis of

autism and Alzheimer’s disease or to analyse

the functional activity of frontal lobes in major

depressive disorder.71 We computed the Higuchi

dimension for a maximum scale (kmax) of 10.72

Moreover HFD was computed for time signals

and their corresponding psd. These two fractal

descriptors are noted as hft and hfs.

This way, a feature vector for each electrode and

each band b, composed of the descriptors previously

defined can be expressed as:

F b,c =
[
µt, σt, βt, hft, SC, σ

2
s , βs, τs, hfs

]
(9)

4.4. Feature similarity based
connectivity

Brain connectivity measures and graph models

computed from the correlations among EEG

channels have been successfully used for the

diagnosis of different neurological disorders.73–75

Morover, connectivity analysis also provides useful

information about the brain processes involved

during the development of different tasks76 that can

differentiate controls from subjects with a specific

disorder.77,78 According to previous works,43,44,79,80

useful information to distinguish between CN and

DD is present in the relationship among the spectral

content of different channels. Thus, we hereafter use

the term “connectivity” to referring to similarity

between the signals captured from different EEG

channels. This way, instead of using the feature

vectors F c, we compose a distance matrix for

each subject, containing the connectivity between

channels based on the correlation distance. Hence,

each element dij of the 32× 32 distance matrix for a

specific subject, is computed as:

cdist(pi, pj) = 1−

∣∣∣∣∣∣ (pi − pi) · (pj − pj)∥∥∥(pi − pi)
∥∥∥

2

∥∥∥(pj − pj)
∥∥∥

2

∣∣∣∣∣∣ (10)

where pi is the mean of the elements of pi and

pi · pj is the dot product of pi and pj . Norms

measurements |·| and ‖·‖2 refers to the absolute value

and `2 − norm, respectively. Correlation distance is

a similarity measure widely used in gene expression

analysis.81 It is defined by subtracting the Pearson

correlation coefficient from 1. The expression in

equation 10 defines a positive distance in the range

[0,1], obtaining values near to 1 when the two vectors

are most similar. The feature extraction process

along with the construction of the distance matrices

for each band is summarized in Figure 5.

Distance matrices computed from the feature

vectors for each band, can be used to determine the

relative importance of each electrode pair. The core

idea consists in computing the similarity between

distance matrices corresponding to CN and DX
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subjects for each band. Thus, the more similar

distance matrix entries, the less discriminative

the corresponding electrode pair is. Since distance

matrices are symmetric by definition, only the lower

triangle is needed to stablish the comparison.

4.5. Anomaly based classification

Early research already noted that the population

of dyslexic children is heterogeneous.82,83 Thus, the

literature of subtypes of dyslexia is voluminous,

reaching hundreds of studies since 1978. For example,

Morris et al.84 carried out a large-scale study of

the performance of normally developing and reading

disabled children on a wide set of cognitive variables.

Morris’s analyses found nine subtypes, including

five subtypes with specific reading disability, two

with impairments in oral and written language, and

just two slightly different categories representing

normal readers. As a consequence, one of the

most important challenges in Dyslexia detection

relies on the high variability among DD subjects,

while CN usually present low variances in different

measured behavioural variables.84 Indeed, it is

difficult to build accurate models including both

(CN and DD) classes.82 On the other hand, due

to the class imbalance problem (usual problem in

biomedical engineering) the database contains more

controls than experimental subjects, and it is not

straightforward to balance the database by obtaining

more experimental subjects, due to the distribution

of CN and DD subjects in the general population. As

a result, two class models generated from unbalanced

databases are biased, showing special affinity to the

most probable class. There are different methods to

mitigate the biasing effect such as using cost sensitive

objective functions by assigning different weights to

miss-classification of samples from different classes.

An alternative method to overcome the biasing effect

while taking advantage of it consists of modelling the

most probable class and then, identifying whether a

new sample belongs to that distribution or not. This

is also known as anomaly detection.

In this work, we propose an anomaly detection

system in which the core is composed of an

autoencoder. An autoencoder is a symmetric neural

network (although fully symmetrical architecture is

not mandatory) with a bottleneck in the middle,

which is trained to reconstruct the input samples

by minimizing the reconstruction error. Thus, a

trained autoencoder is only able to reconstruct

samples similar to the ones in the training set,

since dissimilar samples will lie far away from the

training samples in the projection (latent) space. In

other words, the more dissimilar the input samples

with respect to the training samples, the higher

the reconstruction error. This fact can be exploited

to construct an anomaly detection system: on the

one hand, the autoencoder can be trained with the

most numerous class (CN in our case). On the other

hand, the reconstruction residual (i.e. the difference

between the data sample and its reconstructed

version generated by the autoencoder) can be used

as a multidimensional similarity measurement of

the current sample with respect to the class of

the training samples (CN). Indeed, we tackle the

problem by detecting deviations from normal (CN)

behaviour descriptors.

Fig. 6. Architecture of the autoencoder used to compute
reconstruction residuals. The reconstruction provided
by the Decoder network should reproduce the inputs
depending on the subspace learned by the autoencoder.
The difference between an input and its reconstruction
constitutes the so called residual

The autoencoder can be formally defined as

follows. Let xi ∈ X be an input sample, fenc the

encoder function, fenc : X 7→ Z and fdec the decoder

function, fdec : Z 7→ X ′. The residual for a sample

xi can be defined as ‖fenc(xi)− fdec(x′i)‖2.

The architecture of the autoencoder is shown

in Figure 6. Encoder and decoder are composed of

three fully-connected layers, in which the number

of neurons and activation funcion for each layer

have been optimized by experimentation. Input and

output layers have 496 neurons, corresponding to the
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dimension of the feature space. On the other hand,

different classification experiments have been carried

out varying the dimension of the embedding layer

Z to find the value providing the best classification

results.

Then we use the residual computed using the

autoencoder (once it is trained with CN subjects) to

feed a support vector machine classifier. The overall

classification system is shown in Figure 7.

In this work, the data samples used to train

the autoencoder consist of vectors containing the

lower triangle entries of 32×32 distance matrices D

(distance matrices are symmetrical by definition),

computed as explained in the previous section,

resulting in feature vectors of dimension 496.

Summarizing, we follow this pipeline, once the

EEG data is preprocessed to remove EOG and

movement artifacts and segmented:

(1) Each signal segment is normalized to zero mean

and unit variance (standarization). This removes

possible DC component present in the signal and

limits the range of variation to [-1,1].

(2) All signal segments from a subject are averaged

to compose the mean segment.

(3) Time, frequency and fractal features are

computed to compose the F c,b feature vector for

each channel c and each band b.

(4) Distances among vectors F c,b from different

channels are computed, and a distance matrix D

is composed for each frequency band, with dij =

cdist(F i,b, f j,b) for band b. Since D matrices are

symmetrical we only store the lower triangle, Dt.

Training

(5) Dt matrices from CN, namely Dt
cn are used to

train the autoencoder.

(6) Residuals rcn =
∥∥∥Dt

cn −Dt′

cn

∥∥∥ for CN and rdd =∥∥Dt
dd −Dt‘

dd

∥∥ for DD subjects in the training set

are computed by using the autoencoder and used

to train a linear support vector classifier (SVC).

Test

(7) Compute residuals rcn and rdx for subjects in

the test set using the autoencoder and use them

to predict the class with the previously trained

SVC.

5. Results and Discussion

Classification experiments have been carried

out using the methods described in Section 4.

The overall procedure has been assessed using

k-fold cross-validation (k=5), to determine the

generalization ability and ensuring that training data

is never used for testing. Particularly, it can be seen

that the autoencoder is only trained with the control

subjects in the training subset. This is a popular

method to estimate the generalization error,85–87

where such estimation, in practice, will always result

in an overestimate of the true prediction error since

the entire training set is not used but just k−1 folds.

This overestimation will depend on the slope of the

learning curve of the classifier and will be reduced

when k increases.

In order to select the best embedding dimension

at the autoencoder Z layer, accuracy, sensitivity and

specificity values have been computed. These metrics

are defined in equations 11, 12 and 13, respectively.

In these equations TP, TN, FP, FN refers to True

Positives, True Negatives, False Positives and False

Negatives, respectively.

Accuracy =
TN + TP

TN + TP + FN + FP
(11)

Sensitivity =
TP

TP + FN
(12)

Specificity =
TN

TN + FP
(13)

Thus, results in Table 1 show the classification

performance obtained for the best case. Indeed,

Figure 8 shows the classification results obtained

using all EEG bands for different values of the

dimension of the embedding space generated by the

autoencoder.

Table 2 shows the best classification results

obtained with different methods. It is worth noting

that these results use different databases, different

features and different classification methods.

However, they are included in the table to provide a

view of the diagnostic accuracy achieved in previous

works using biomedical signals. In the method

proposed in this work, all the experiments have been

assessed by the k-fold cross validation strategy. As

expected, CN subjects are correctly classified in most
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Fig. 7. Classification method based on the distance matrices

Fig. 8. Classification results obtained by combining all bands for different values of the embedding dimension. Results
for (a) 2 Hz, (b) 8Hz and (c) 20 Hz are shown.

experiments, since they are the most homogeneous

group and the autoencoder is trained with CN

samples. However, sensitivity values are greatly

dependant on the band taken into account. Thus,

individual results for each band depicted in Table 1

shows that Theta band provides the best Area Under

ROC curve (AUC) value with the 2 Hz stimulus,

and sensitivity values up to 0.75. AUC is interpreted

as the probability that a randomly chosen positive

instance to obtain a higher score from the classifier

than a randomly chosen negative one.

On the contrary, although features belonging to

other EEG bands show reasonable accuracy values,

they provide low sensitivity values (i.e. are not

acutally detecting the outliers). A similar behavour

is observed with the 8 Hz stimulus, where the higher

sensitivity value is also obtained for the Theta band.

In the case of 20 Hz Stimulus, the best sensitivity

value is provided by features extracted from the Beta

band.

Previous experiments using each individual

band have been carried out to explore the

discriminative capabilities of each band for each

stimulus. However, experiments combining the five

EEG bands have been also performed, concatenating

the corresponding feature vectors belonging to the

same channel, and eventually composing the all-band

descriptor:

F c =
[
F c,∆, F c,Θ, F c,α, F c,β , F c,γ

]
(14)

Thus, we can notice that the combination of

features from all bands increases the classification

rates in all cases except for the 8 Hz stimulus

due to the very low sensitivity values obtained

for Alpha and Beta bands that decreases the

overall performance. In fact, the highest gain when

combining the features are obtained for the 20 Hz

stimulus, where each individual EEG band provides

higher sensitivity values.

Receiver Operating Curves (ROC) provides
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Table 1. Summary of the best classification results obtained for the different EEG bands.
Results combining all the bands are marked in bold. Bands providing the best sensitivity values
are highlighted in gray. Error values shown in table are computed from the standard deviation.

Stimulus Band Accuracy Sensitivity Specificity AUC

2 Hz Delta 0.85 ± 0.05 0.65 ± 0.17 0.97 ± 0.05 0.82 ± 0.22
Theta 0.86 ± 0.04 0.75 ± 0.14 0.97 ± 0.05 0.85 ± 0.05
Alpha 0.77 ± 0.10 0.31 ± 0.30 1.00 ± 0.01 0.61 ± 0.15
Beta 0.69 ± 0.13 0.20 ± 0.20 0.93 ± 0.07 0.73 ± 0.20
Gamma 0.78 ± 0.11 0.43 ± 0.32 0.97 ± 0.05 0.74 ± 0.10
All bands 0.92 ± 0.11 0.75 ± 0.32 1.00 ± 0.05 0.86 ± 0.10

8 Hz Delta 0.85 ± 0.08 0.53 ± 0.26 1.00 ± 0.05 0.84 ± 0.15
Theta 0.88 ± 0.08 0.63 ± 0.24 1.00 ± 0.01 0.88 ± 0.11
Alpha 0.68 ± 0.01 0.10 ± 0.10 1.00 ± 0.01 0.62 ± 0.14
Beta 0.70 ± 0.05 0.06 ± 0.13 1.00 ± 0.01 0.71 ± 0.29
Gamma 0.85 ± 0.05 0.53 ± 0.16 1.00 ± 0.01 0.73 ± 0.16
All bands 0.83 ± 0.05 0.60 ± 0.24 1.00 ± 0.32 0.87 ± 0.10

20 Hz Delta 0.83 ± 0.80 0.59 ± 0.38 0.94 ± 0.06 0.82 ± 0.09
Theta 0.85 ± 0.04 0.66 ± 0.05 0.94 ± 0.06 0.85 ± 0.05
Alpha 0.77 ± 0.10 0.26 ± 0.32 1.00 ± 0.01 0.72 ± 0.26
Beta 0.85 ± 0.10 0.70 ± 0.19 0.94 ± 0.06 0.87 ± 0.13
Gamma 0.85 ± 0.04 0.53 ± 0.16 0.97 ± 0.05 0.86 ± 0.11
All bands 0.96 ± 0.11 0.86 ± 0.32 1.00 ± 0.01 0.92 ± 0.10

Table 2. Comparison of the performance obtained by different methods. GC: Network Global Cost, GE: network
Global Efficiency, CI: Network Complexity Index, wIFCG: weighted Integrated Functional Connectivity Graph.
(*) Data not provided by the source

Method Sensors Acq.Time Accuracy Sensitivity Specificity AUC

MRI+SVC88 T1-MRI * 0.8 ± * 0.82 ± * 0.78 ± * *

MEG+SVC+GC89 253 3 minutes 0.63 ± 4.13 0.64 ± 4.01 0.65 ± 4.15 *

MEG+SVC+GE89 253 3 minutes 0.94 ± 1.78 0.93 ± 1.39 0.93 ± 2.32 *

MEG+SVC+CI89 253 3 minutes 0.80 ± 1.14 0.80 ± 1.41 0.79 ± 2.17 *

MEG+SVC+wIFCG89 253 3 minutes 0.97 ± 1.89 0.96 ± 1.89 0.95 ± 1.98 *
Proposed 32 5 minutes 0.96 ± 0.11 0.86 ± 0.32 1.00 ± 0.01 0.92 ± 0.10

relevant information regarding the performance of a

binary classifier, as they show the trade-off between

sensitivity and specificity. Figure 9 shows the ROC

curves obtained for all the EEG bands when different

stimulus are used. As can be seen, the combination

of the features extracted from all EEG bands

enhances the classification capabilities of each band

separately. According to Ref.41, atypical oscillatory

entrainment in Delta and Theta bands are associated

to difficulties in rhymes and syllabes while differences

in Gamma band are associated to difficulties with

phoneme sampling. However specific frequencies

depend on the language due to differences in the

sampling processes in the brain during language

and auditory processing tasks. Then, results for

each frequency band provide valuable exploratory

information regarding the brain processes involved

in DD indicating the level of the sampling processes

(rhyme, syllabe or phoneme) at which there are

more differences between CN and DD subjects.

Thus, although band-wise results contain relevant

and interesting information (especially related to the
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sensitivity values), all the bands are simultaneously

used for the best classification performance. A

discussion about the relevance of the exploratory

analysis regarding the channels and EEG bands is

provided later in this section.

Exploring inter-channel relationships

As explained above, classification has been addressed

by linear SVC using the feature vectors consisting

of distances among channels. A linear SVC classifier

aims to classify a m-dimensional labeled set of n

data samples {si, li}, i = {1, .., n}, where si ∈ Rm
and the output label is l = {−1,+1}. This is

addressed by computing a linear decision hyperplane

by maximizing its margin. In the standard SVC

formulation, `2-norm is used in this optimization

problem.27 However, the use of `1-norm produces

sparser w coefficient sets,90 which are the weights

assigned to each feature during the minimization

process. The SVC version using the `1 norm, called

LP-SVC, enhances the feature selection abilities of

the SVC, and can be formulated as

min
w,b
‖w‖1 =

p∑
j=1

|wj | subject to li(w
T si + c) ≥ 1

(15)

Since the SVC (now, LP-SVC) is trained

with vectors containing the entries of the distance

matrix, the features selected during the minimization

process will indicate the most relevant relationships

between EEG channels. Figure 10 shows the most

relevant connections according to the mean coeffients

of the LP-SVC along the cross-validation loop.

Additionally, these figures depict the stimulus/band

combinations providing the best sensitivity values

according to the classification experiments.

This experiment directed to compute the

most relevant EEG channels for the classification

task aims to reveal not only the specific

electrodes, but also the intra-hemisphere and

inter-hemisphere connections. As a result, we

noticed 5 inter-hemisphere and 7 intra-hemisphere

connections for the 2Hz stimulus in Theta

band, 5 inter-hemisphere and 10 intra-hemisphere

connections for the 8Hz stimulus in the Theta band,

and 5 inter-hemisphere and 10 intra-hemisphere

connections for the 20Hz stimulus in the Beta band.

As a conclusion, different stimuli not only activate

different brain areas, but also promote different

relationships among channels. Thus, while the most

relevant relationships with the 2 Hz stimulus / Theta

band are focused between occipital and temporal

regions, 8Hz/Theta generates a more symmetric

connectivity in between occipital hemispheres and

frontal-central channels. Previous fMRI and EEG

studies have found abnormal activity in prefrontal

and occipital areas,28,91,92 although these studies

also refer to different subcortical areas. On the other

hand, differences in channels located at auditory

cortex areas with respect to those at frontal and

occipital areas have also been reported. Differences

in these areas have been previously explained during

phonetic processing,93 although these studies were

not developed for Spanish speakers. This could imply

differences in the frequency band involved (due to

differences in the sampling processes in the brain).41

In the case of 20Hz Stimulus, connections appears

in Beta band, being more noticeable in the frontal

area, slightly biased to the right hemisphere. This

effect is also linked to phonetic processing tasks.94

Table 1 shows the classification performance

achieved by different methods in the literature.

Specifically, Gray matter distribution obtained by

Magnetic Resonance Imaging (MRI) segmentation is

used in Ref.88 along with non-linear SVC classifier

to detect differences in the brain anatomy. On the

other hand, functional measures using sensor-specific

and network-level measures are used in Ref.89.

Our proposal outperforms the classification results

obtained in Ref.88 although MEG-derived features

provide best results, the number of sensors is

noticeably higher (253 in MEG vs. 32 in our case)

and the experimental setup used in our case is

considerably simpler, while providing high sensitivity

and AUC values.

6. Conclusions and Future Work

In this paper, we tackled the problem of dyslexia

diagnosis using EEG signals. This has been

addressed by a simple experimental setup using

non-interactive, non-speech auditory stimulus

consisting on bandwidth limited white noise

modulated in amplitude with 2 Hz, 8Hz and 20Hz

signals, corresponding to the sampling processes

developed in the brain during language processing.

Indeed, we proposed the use of temporal and

spectral features to describe EEG signals and the
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Fig. 9. ROC curves and their corresponding AUC values obtained for different EEG bands for (a) 2 Hz Stimulus, (b) 8
Hz Stimulus and (c) 20 Hz Stimulus. Curves are assessed by cross-validation. Mean and standard deviation AUC values
are provided in Table 1.

Fig. 10. Most relevant relationships between EEG channels, according to the features selected by LP-SVC. Figures shown
here correspond to the Stimulus and band pairs providing the best sensitivity. (a) 2 Hz auditory stimulus / EEG Theta
band, (b) 8 Hz auditory stimulus / EEG Theta band, (c) 20 Hz auditory stimulus/ EEG Beta band.

relationships among different acquired channels.

These features were used to compose distance

matrices by means of the correlation distance, in

order to characterize the connectivity among EEG

channels (i.e. electrodes showing similar features)

with exploratory and discriminant purposes. On the

one hand, they helped us to identify the bands

that generated the most dissimilar features for

each stimulus. On the other hand, the distance

matrices were used to classify the subjects. Due

to the high variability present in DD subjects, the

classification methodology proposed here resembles

an anomaly detection system, with the aim to

identify DD subjects as outliers. This has been

implemented by an autoencoder trained using only

the CN, to compute the reconstruction residual for

both CN and DD subjects. Subsequently, these

reconstruction residuals were classified using a

support vector classifier. Distance matrices aimed

to find patterns in the relationship among EEG

channels, searching for those channels that share

similar temporal and spectral features in the different

bands. Indeed, although differences in the power

distribution were not enough to correctly classify

the subjects, the similarity among feature vectors

corresponding to different EEG channels provide

discriminant information to obtain reasonable

AUC values. The experiments carried out also

corroborate that non-speech stimulus modulated

at specific frequencies related to the sampling

processes developed in the brain to capture rhymes,

syllabes and phonemes produce differences in specific

frequency bands. Specifically, 2 Hz and 8 Hz stimulus

focuses the activation in the Theta band, 20 Hz

stimuli produces. Moreover, the exploratory analysis

performed by computing the power distribution
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at different electrodes showed differences between

CN and DD subjects. The proposed classification

method, based on detecting anomalies in the

connection between EEG channels has demonstrated

a relatively high sensitivity (above > 0.6 and up to

0.9 in some experiments). In addition, the feature

selection of the Sparse SVC (LP-SVC) to obtain

sparse sets of coefficients to determine the most

discriminative connections between EEG channels

provide a new and effective tool to reveal brain areas

with similar temporal and spectral responses under

a specific stimulus.

In the near future, we plan to extend the current

study, including a larger database and increasing the

number of DD subjects. Moreover, since the Leeduca

research group owns extensive neuropsychological

data for all the subjects in the database, we plan

to use information fusion techniques to combine

EEG data with behavioural descriptors, searching for

brain areas with different responses in CN and DD

subjects, during the performance of different tasks.
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