899 research outputs found

    Chaotic single neuron model with periodic coefficients with period two

    Get PDF
    Our goal is to investigate the piecewise linear difference equation xn+1 = βnxn – g(xn). This piecewise linear difference equation is a prototype of one neuron model with the internal decay rate β and the signal function g. The authors investigated this model with periodic internal decay rate βn as a period-two sequence. Our aim is to show that for certain values of coefficients βn, there exists an attracting interval for which the model is chaotic. On the other hand, if the initial value is chosen outside the mentioned attracting interval, then the solution of the difference equation either increases to positive infinity or decreases to negative infinity

    How Chaotic is the Balanced State?

    Get PDF
    Large sparse circuits of spiking neurons exhibit a balanced state of highly irregular activity under a wide range of conditions. It occurs likewise in sparsely connected random networks that receive excitatory external inputs and recurrent inhibition as well as in networks with mixed recurrent inhibition and excitation. Here we analytically investigate this irregular dynamics in finite networks keeping track of all individual spike times and the identities of individual neurons. For delayed, purely inhibitory interactions we show that the irregular dynamics is not chaotic but stable. Moreover, we demonstrate that after long transients the dynamics converges towards periodic orbits and that every generic periodic orbit of these dynamical systems is stable. We investigate the collective irregular dynamics upon increasing the time scale of synaptic responses and upon iteratively replacing inhibitory by excitatory interactions. Whereas for small and moderate time scales as well as for few excitatory interactions, the dynamics stays stable, there is a smooth transition to chaos if the synaptic response becomes sufficiently slow (even in purely inhibitory networks) or the number of excitatory interactions becomes too large. These results indicate that chaotic and stable dynamics are equally capable of generating the irregular neuronal activity. More generally, chaos apparently is not essential for generating the high irregularity of balanced activity, and we suggest that a mechanism different from chaos and stochasticity significantly contributes to irregular activity in cortical circuits

    Metabifurcation analysis of a mean field model of the cortex

    Full text link
    Mean field models (MFMs) of cortical tissue incorporate salient features of neural masses to model activity at the population level. One of the common aspects of MFM descriptions is the presence of a high dimensional parameter space capturing neurobiological attributes relevant to brain dynamics. We study the physiological parameter space of a MFM of electrocortical activity and discover robust correlations between physiological attributes of the model cortex and its dynamical features. These correlations are revealed by the study of bifurcation plots, which show that the model responses to changes in inhibition belong to two families. After investigating and characterizing these, we discuss their essential differences in terms of four important aspects: power responses with respect to the modeled action of anesthetics, reaction to exogenous stimuli, distribution of model parameters and oscillatory repertoires when inhibition is enhanced. Furthermore, while the complexity of sustained periodic orbits differs significantly between families, we are able to show how metamorphoses between the families can be brought about by exogenous stimuli. We unveil links between measurable physiological attributes of the brain and dynamical patterns that are not accessible by linear methods. They emerge when the parameter space is partitioned according to bifurcation responses. This partitioning cannot be achieved by the investigation of only a small number of parameter sets, but is the result of an automated bifurcation analysis of a representative sample of 73,454 physiologically admissible sets. Our approach generalizes straightforwardly and is well suited to probing the dynamics of other models with large and complex parameter spaces

    Neuron model with a period three internal decay rate

    Get PDF
    In this paper we will study a non-autonomous piecewise linear difference equation that describes a discrete version of a single neuron model. We will investigate the periodic behavior of solutions relative to the sequence periodic with period three internal decay rate. In fact, we will show that only periodic cycles with period 3k3k, k=1,2,3,k=1,2,3,\dots can exist and also show their stability character

    Periodic and Chaotic Orbits of a Neuron Model

    Get PDF
    In this paper we study a class of difference equations which describes a discrete version of a single neuron model. We consider a generalization of the original McCulloch-Pitts model that has two thresholds. Periodic orbits are investigated accordingly to the different range of parameters. For some parameters sufficient conditions for periodic orbits of arbitrary periods have been obtained. We conclude that there exist values of parameters such that the function in the model has chaotic orbits. Models with chaotic orbits are not predictable in long-term

    Temporal synchronization of CA1 pyramidal cells by high-frequency, depressing inhibition, in the presence of intracellular noise

    Get PDF
    The Sharp Wave-associated Ripple is a high-frequency, extracellular recording observed in the rat hippocampus during periods of immobility. During the ripple, pyramidal cells synchronize over a short period of time despite the fact that these cells have sparse recurrent connections. Additionally, the timing of synchronized pyramidal cell spiking may be critical for encoding information that is passed on to post-hippocampal targets. Both the synchronization and precision of pyramidal cells is believed to be coordinated by inhibition provided by a vast array of interneurons. This dissertation proposes a minimal model consisting of a single interneuron which synapses onto a network of uncoupled pyramidal cells. It is shown that fast decaying, high-frequency, depressing inhibition is capable of rapidly synchronizing the pyramidal cells and modulating spike timing. In addition, these mechanisms are robust in the presence of intracellular noise. The existence and stability of synchronous, periodic solutions using geometric singular perturbation techniques are proven. The effects of synaptic strength, synaptic recovery, and inhibition frequency are discussed. In contrast to prior work, which suggests that the ripple is produced by homogeneous populations of either pyramidal cells or interneurons, the results presented here suggest that cooperation between interneurons and pyramidal cells is necessary for ripple genesis
    corecore