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Abstract. In this paper we study a class of difference equations which describes a
discrete version of a single neuron model. We consider a generalization of the original
McCulloch-Pitts model that has two thresholds. Periodic orbits are investigated
accordingly to the different range of parameters. For some parameters sufficient
conditions for periodic orbits of arbitrary periods have been obtained. We conclude
that there exist values of parameters such that the function in the model has chaotic
orbits. Models with chaotic orbits are not predictable in long-term.
Keywords: chaotic mapping, dynamical system, iterative process, nonlinear problem, sta-

bility.
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1 Introduction

The number of neurons in the human brain is 86 billion [4]. Although the
proverbial forest is not seen because of the trees, a detailed study of single
neurons is both a significant and interesting subject itself, and it is not neces-
sary to understand the macroscopic dynamics and function of neural networks.
In [19] a delay differential equation

x′(t) = −g
(
x(t− τ)

)
(1.1)

is used as a model for a single neuron with no internal decay where g : R→ R
is a signal (or activation, or amplification) function and τ ≤ 0 is a synaptic
transmission delay. Equation (1.1) as a differential equation has been analysed
in many papers, for example, [6, 7, 13, 17] and has applications in biology, eco-
nomics, ecology, engineering. From (1.1) we obtain a model for a single neuron
with no internal decay as the following equation

x′(t) = −g
(
x
(
[t]
))
, (1.2)
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where [t] denotes a greatest integer function. When we integrate (1.2) from n
to t ∈ [n, n+ 1[ we get

x(t) = x(n)−
∫ t

n

g
(
x
(
[s]
))
ds = x(n)− g

(
x(n)

)
(t− n).

Letting t→ n+ 1 and denoting x(n) = xn, we obtain a difference equation

xn+1 = xn − g(xn).

The same as in [20,22] we consider a single neuron model

xn+1 = βxn − g(xn), (1.3)

where β is interpreted as an internal decay rate and g is a signal function.
Typical signal functions (activation functions, amplification functions or input-
output functions) are step functions, piecewise linear functions or sigmoid func-
tions.

Models involving a step signal function are referred as McCulloch-Pitts
models, in recognition of the pioneering work of McCulloch and Pitts from
1943 (the function describes an all-or-none property of a neuron in the model
of McCulloch-Pitts). A sigmoid function is the most common form of a sig-
nal function. It is defined as a strictly increasing smooth bounded function
satisfying certain concavity and asymptotic properties.

In [22], Zhou considered a single neuron model (1.3) with a signal function
in a very simple form

g(x) =

{
1, x ≥ 0,
−1, x < 0.

(1.4)

In [3], the authors investigated a neuron model (1.3) with parameter 0 <
β ≤ 1 and a signal function (a function that is a little bit similar to the sigmoid
function in comparison with (1.4))

g(x) =


−b, x ≤ −α,
−a, −α < x < 0,
0, x = 0,
a, 0 < x < α,
b, α ≤ x,

(b > a > 0 and α > 0),

where −α, 0, α are three thresholds. In [3] some results about the periodicity
of solutions of difference equation (1.3) were proved. In the case when β > 1
there are difficulties to study the behavior of solutions because there is a great
number of periodic orbits. Therefore in this paper we consider a single neuron
model (1.3) but we propose to look at a different step signal function with two
thresholds:

g(x) =

−a, x ≤ −α,
0, −α < x < α,
a, α ≤ x,

(a > 0 and α > 0).

Math. Model. Anal., 20(1):30–52, 2015.
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Some results about the periodicity of solutions of difference equation (1.3)
accordingly to β and parameters α and a of the signal function will be proved.
Oscillations are temporal periodic changes in the state of a system. In nonlinear
systems like brain, oscillations define a stable state. If β > 1 then it is possible
to find cases when the model has chaotic orbits.

2 Basic Concepts and Definitions of Difference Equations

To analyse the behavior of model (1.3) some basic concepts of difference equa-
tion theory (see [9, 10,12,22]) are required.

We consider a first-order difference equation

xn+1 = f(xn), n = 0, 1, . . . , (2.1)

where f : R→ R is a given function. A solution of equation (2.1) is a sequence
(xn)n∈N that satisfies equation (2.1) for all n = 0, 1, . . .. If an initial condition
x0 ∈ R is given, then the orbit O(x0) of a point x0 is defined as a set of points

O(x0) = {x0, x1 = f(x0), x2 = f(x1) = f2(x0), x3 = f(x2) = f3(x0), . . .}.

Definition 1. A point xs is said to be a fixed point of the map f or an equi-
librium or a stationary state of equation (2.1) if f(xs) = xs.

Note that for a stationary state xs the orbit consists only of the point xs.

Definition 2. A stationary state of (2.1) is stable if

∀ε > 0 ∃δ > 0 ∀x0 ∈ R ∀n ∈ N |x0 − xs| < δ ⇒
∣∣fn(x0)− xs

∣∣ < ε.

Otherwise, the stationary state xs is called unstable.

Definition 3. A stationary state xs of (2.1) is asymptotically stable if it is
stable and attracting, i.e., it is stable and if there exists ν > 0 such that
|x0 − xs| < ν implies lim

n→∞
fn(x0) = xs.

Definition 4. An orbit O(x0), x0 ∈ R, is said to be eventually stationary
state to xs if

∃N ∀n ≥ N xn+1 = xn = xs.

Definition 5. An orbit O(x0), x0 ∈ R, is said to be asymptotically stationary
state to xs if limn→∞ fn(x0) = xs.

Definition 6. An orbit O(x0) of the initial point x0 of equation (2.1) is said
to be periodic of period p ≥ 2 if

xp = x0 and xi 6= x0, 1 ≤ i ≤ p− 1.

Definition 7. A periodic orbit {x0, x1, x2, . . . , xp−1, . . .} of period p is stable
if each point xi, i = 0, 1, . . . , p− 1, is a stable stationary state of the difference
equation xn+1 = fp(xn). A periodic orbit of period p which is not stable is said
to be unstable.
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Definition 8. A point z is said to be a limit point of O(x0) if there exists a
subsequence (xnk

)k=0,1,2,... of O(x0) such that limk→+∞ |xnk
− z| = 0. The

limit set L(x0) of the orbit O(x0) is a set of all limit points of the orbit.

Definition 9. An orbit O(x0) is said to be asymptotically periodic if its limit
set is a periodic orbit. An orbit O(x0) such that xn+p = xn for some n ≥ 1
and some p ≥ 2 is said to be eventually periodic.

Next theorems [9] are an important tool for the analysis of the stability.

Theorem 1. Let xs be a stationary state of the difference equation (2.1), where
f is continuously differentiable at xs. Then the following statements hold:

1. If |f ′(xs)| < 1, then xs is an asymptotically stable point,

2. If |f ′(xs)| > 1, then xs is unstable.

Theorem 2. Let O(x0) be a periodic orbit of period p of the difference equation
(2.1), where f is continuously differentiable at all points of orbit. Then the
following statements hold:

1. If |f ′(x0) · f ′(x1) · · · · · f ′(xp−1)| < 1, then the orbit O(x0) is stable,

2. If |f ′(x0) · f ′(x1) · · · · · f ′(xp−1)| > 1, then the orbit O(x0) is unstable.

3 Results

We consider a model
xn+1 = βxn − g(xn) (3.1)

with a signal function in the following form

g(x) =

−a, x ≤ −α,
0, −α < x < α,
a, α ≤ x,

(a > 0 and α > 0), (3.2)

where −α, α are two thresholds (see Figure 1).

Figure 1. Step signal function g(x).

Further we analyze model (3.1) with a signal function (3.2) depending on the
internal decay rate β. We consider three different situations: β = 1, 0 < β < 1
and β > 1.

Math. Model. Anal., 20(1):30–52, 2015.
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3.1 Model with β = 1

In this section we consider a model xn+1 = xn − g(xn), when the parameter
β = 1.

Theorem 3. Assume that β = 1. Then the following statements hold:

1) If a < 2α then every positive point x0 is a stationary state or an eventually
stationary state;

2) Every x0 ∈ [0, α[ is a stationary state, i.e., O(x0) = {x0, x0, . . .};

3) If x0 = α and a ≥ 2α then the orbit O(x0) is a periodic orbit of period 2,
i.e., O(x0) = {x0, x0 − a, x0, x0 − a, . . .};

4) If there exists a positive integer k such that x0 = ka > α and

a) a ≥ α then the point x0 is an eventually stationary state, i.e.,

O(x0) =
{
ka, (k − 1)a, . . . , 2a, a, 0, 0, . . .

}
;

b) a natural number m such that ma < α and (m + 1)a ≥ α then the point
x0 is an eventually stationary state, i.e.,

O(x0) =
{
ka, (k − 1)a, . . . , (m+ 1)a,ma,ma, . . .

}
;

5) If there exists a positive integer k and a real number k1 ∈ ]−α, 0[ ∪ ]0, α[
such that x0 = ka+ k1 ≥ α and ∃m ∈ N∪ {0} such that −α < ma+ k1 < α
and (m+ 1)a ≥ α, then the point x0 is an eventually stationary state, i.e.,

O(x0) =
{
ka+ k1, (k − 1)a+ k1, . . . , (m+ 1)a+ k1,ma+ k1,ma+ k1, . . .

}
;

6) For all other positive x0 the orbit O(x0) is periodic of period 2 or eventually
periodic of period 2.

Proof. The first five statements are obvious. We prove only Statement 6). It
is clear that a > 2α and x0 > α. Then g(x0) = a and x1 = x0 − a.

Two cases are possible:
Case 1. If x1 = x0 − a ≤ −α then g(x1) = −a and

x2 = x1 + a = x0 − a+ a = x0 > α.

Thus we have obtained a periodic orbit of period 2:

O(x0) = {x0, x0 − a, x0, x0 − a, . . .}.

Case 2. If x1 = x0 − a ≥ α then g(x1) = a and x2 = x1 − a = x0 − 2a. Two
cases are possible:
Case 2.1. If x2 = x0−2a ≤ −α then g(x2) = −a and x3 = x2 +a = x0−a ≥ α.
We have obtained an eventually periodic orbit of period 2:

O(x0) = {x0, x0 − a, x0 − 2a, x0 − a, x0 − 2a, . . .}.
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Case 2.2. If x2 = x0 − 2a ≥ α then g(x2) = a and x3 = x2 − a = x0 − 3a. Two
cases are possible. Generally, since x0 > α is fixed there exists an integer k
such that xk = x0−ka ≤ −α, g(xk) = −a and xk+1 = xk+a = x0− (k−1)a =
xk−1 ≥ α, i.e., the orbit O(x0) is an eventually periodic orbit of period 2:

O(x0)=
{
x0, x0 − a, . . . , x0 − (k − 1)a, x0 − ka, x0 − (k − 1)a, x0 − ka, . . .

}
. ut

Corollary 1. If x0 is negative and in the symmetric form as in Theorem 3, then
conclusions are the same as in Theorem 3 (orbits are symmetric according to 0).

3.2 Model with 0 < β < 1

The situation with 0 < β < 1 is more complicated. We begin with the study
of the stability of the stationary state 0 and periodic orbits.

Figure 2. Illustration of Theorem 4: example of a graph of function h(x) = βx− g(x), if
0 < β < 1.

Let h(x) = βx− g(x).

Theorem 4. Assume that 0 < β < 1 (see Figure 2). Then the point 0 is an
asymptotically stable stationary state.

Proof. In this case δ = min{ε, α} and

∀x0 ∈ ]−δ, δ[ : lim
n→∞

hn(x0) = lim
n→∞

βnx0 = 0. ut

Theorem 5. Assume that 0 < β < 1 and a
β+1 > α. Then the periodic orbit

O( a
β+1 ) is a stable periodic orbit of period 2.

Proof. Since a
β+1 ≥ α then g( a

β+1 ) = a and

h

(
a

β + 1

)
=

βa

β + 1
− a =

βa− βa− a
β + 1

=
−a
β + 1

.

Since −a
β+1 ≤ −α then g( −aβ+1 ) = −a and

h

(
−a
β + 1

)
=
−βa
β + 1

+ a =
−βa+ βa+ a

β + 1
=

a

β + 1
.

Math. Model. Anal., 20(1):30–52, 2015.
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Figure 3. Illustration of Theorem 6 Statement 2: if x0 belongs to dotted intervals, then
∃n1 xn1 ∈ [0;α[; if x0 belongs to bold intervals, then ∃n2 xn2 ∈ ]−α, 0].

This implies that O( a
β+1 ) = { a

β+1 ,
−a
β+1 , . . .} is a periodic orbit of period 2.

Since a
β+1 > α then h(x) = βx− g(x) is a continuously differentiable func-

tion in both points of the orbit and h′( a
β+1 ) = β, h′( −aβ+1 ) = β. Since β < 1

then by Theorem 1 O( a
β+1 ) is a stable periodic orbit of period 2. ut

Theorem 6. Assume that 0 < β < 1. Then the following statements hold:

1) If x0 ∈ ]0, α[ then the orbit O(x0) is an asymptotically stationary state to 0,
i.e., limn→∞ xn = 0 and O(x0) = {x0, βx0, β2x0, . . . , β

nx0, . . .}.

2) If a
β+1 < α then the orbit O(x0) is an asymptotically stationary state to 0

or an eventually stationary state to 0 (see Figure 3).

3) If a
β+1 = α and

a) x0 ∈ Ω0 = { aβ ,
a(β+1)
β2 , . . . ,

a
∑n

s=0 β
s

βn+1 , . . . |n = 0, 1, 2, . . .} then the orbit

O(x0) is an eventually stationary state to 0;

b) x0 ∈ Ωp2 = {α+aβ , α+a(β+1)
β2 , . . . ,

α+a
∑n

s=0 β
s

βn+1 , . . . |n = 0, 1, 2, . . .} then the

orbit O(x0) is an eventually periodic orbit of period 2:

{x0, x1, . . . , xk, α,−α, α,−α, . . .} or {x0, x1, . . . , xk,−α, α,−α, α, . . .};

c) x0 = α then the orbit O(x0) is a periodic orbit of period 2:

{α,−α, α,−α, . . .};

d) If a)–c) are not fulfilled then for positive x0 the orbit O(x0) is an asymp-
totically stationary state to 0.

4) If a
β+1 > α (see Figure 4) and

a) x0 ∈ ]0, α[ then the orbit O(x0) is an asymptotically stationary state to 0;

b) x0 ∈ Ω0 = { aβ ,
a(β+1)
β2 , . . . ,

a
∑n

s=0 β
s

βn+1 , . . . | n = 0, 1, 2, . . .} then the orbit

O(x0) is an eventually stationary state to 0;

c) x0 ∈ Ωp2 = { a
β+1 ,

a(β+2)
β(β+1) ,

a(β2+2β+2)
β2(β+1) , . . . ,

a(βn+1+2
∑n

s=0 β
s)

βn+1(β+1) , . . . | n = 0, 1,

2, . . .} then the orbit O(x0) is an eventually periodic of period 2;

d) x0 ∈
⋃∞
k=0 ]

−α+a
∑k

s=0 β
s

βk+1 ,
α+a

∑k
s=0 β

s

βk+1 [ \Ω0 then the orbit O(x0) is an
asymptotically stationary state to 0;
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Figure 4. Illustration of Theorem 6 Statement 4: according to the choice of x0 the orbit
O(x0) may be asymptotically stationary state 0 or eventually stationary state 0 or

eventually periodic of period 2 or asymptotically periodic of period 2.

e) x0 ∈ [α, −α+aβ ] ∪
⋃∞
k=0 [

α+a
∑k

s=0 β
s

βk+1 ,
−α+a

∑k+1
s=0 β

s

βk+2 ] \Ωp2 then the orbit

O(x0) is asymptotically periodic with the limit set L(x0) = { a
β+1 ,

−a
β+1}.

6) Situation with negative x0 is similar.

Proof.
Statement 1. If x0 ∈ ]0, α[ then g(x0) = 0 and x1 = βx0 ∈ ]0, α[. Gener-

ally, xn = βnx0 for all n ≥ 0. Thus O(x0) = {x0, βx0, β2x0, . . . , β
nx0, . . .}.

Since 0 < β < 1, we have limn→∞ xn = limn→∞ βnx0 = 0.
Statement 2.
Case 1. Assume a

β > α. If x0 ∈ Ω0 = { aβ ,
a(β+1)
β2 , . . . ,

a
∑n

s=0 β
s

βn+1 , . . . | n =

0, 1, 2, . . .} then O(x0) = {x0, x1, . . . , xk, 0, 0, . . .}, i.e., the orbit O(x0) is an
eventually stationary state to 0.

If x0 ∈ ]α, a/β[ then

−α < −a
β + 1

=
aβ

β + 1
− a < βα− a < x1 = βx0 − a < β

a

β
− a = 0.

Since −α < x1 < 0, then xn = βn−1(βx0−a) for all n ≥ 2 and the orbit O(x0)
is an asymptotically stationary state to 0.

If x0 ∈ ]
α+a

∑k
s=0 β

s

βk+1 ,
a
∑k+1

s=0 β
s

βk+2 [ then x1 = βx0 − a:

x1 > β
α+ a

∑k
s=0 β

s

βk+1
− a =

α+ a
∑k
s=0 β

s − aβk

βk
=
α+ a

∑k−1
s=0 β

s

βk
,

x1 <
βa
∑k+1
s=0 β

s

βk+2
− a =

a
∑k+1
s=0 β

s − aβk

βk+1
=
a
∑k
s=0 β

s

βk+1
,

that is, if x0 belongs to the k-th interval, then x1 belongs to the (k − 1)-th
interval, x2 belongs to the (k − 2)-th interval, . . . , xk ∈ ]α, aβ [. Therefore in

this case the orbit O(x0) is an asymptotically stationary state to 0.

Proof for x0 ∈ ] aβ ,
a+α
β [ and x0 ∈ ]

a
∑k

s=0 β
s

βk+1 ,
α+a

∑k
s=0 β

s

βk+1 [ is similar.

Case 2. If
a
∑k

s=0 β
s

βk+1 > α for k = 1, 2, 3, . . . then the situation and proof is
similar as in Case 1.
Case 3. Assume a

β ≤ α. Let x0 ≥ α. Then x1 = βx0 − a ≥ βa
β − a = 0. Since

x0 is fixed, then exists an integer k such that xk−1 ≥ α and 0 ≤ xk < α. Thus
we have obtained that the orbit O(x0) is an asymptotically stationary state to
0.

Math. Model. Anal., 20(1):30–52, 2015.



38 A. Anisimova, M. Avotina and I. Bula

Statement 3. Statements a)–c) are obvious. We prove Statement d) for
positive x0. Let a

β+1 = α < x0 <
a
β . Then

−α =
−a
β + 1

=
aβ

β + 1
− a < x1 = βx0 − a <

aβ

β
− a = 0.

Thus

x2 = βx1 = β(βx0 − a), −α < x2 < 0,

. . .

xn = βxn−1 = βn−1(βx0 − a), −α < xn < 0,

. . .

Since 0 < β < 1, we have limn→∞ xn = limn→∞ βnx0 = 0.

If x0 ∈ ]
α+a

∑k
s=0 β

s

βk+1 ,
a
∑k+1

s=0 β
s

βk+2 [ then x1 = βx0 − a:

x1 > β
α+ a

∑k
s=0 β

s

βk+1
− a =

α+ a
∑k
s=0 β

s − aβk

βk
=
α+ a

∑k−1
s=0 β

s

βk
,

x1 <
βa
∑k+1
s=0 β

s

βk+2
− a =

a
∑k+1
s=0 β

s − aβk

βk+1
=
a
∑k
s=0 β

s

βk+1
,

that is, if x0 belongs to the k-th interval, then x1 belongs to the (k − 1)-th
interval, x2 belongs to the (k − 2)-th interval, . . . , xk ∈ ]α, aβ [. Therefore in

this case the orbit O(x0) is an asymptotically stationary state to 0.

Proof for x0 ∈ ] aβ ,
a+α
β [ and x0 ∈ ]

a
∑k

s=0 β
s

βk+1 ,
α+a

∑k
s=0 β

s

βk+1 [ is similar.

Statement 4. We prove only Statement e) for x0 ∈ [α, −α+aβ ]. Proofs of

the statements a)–d) and the rest of the values x0 are similar as for Statement
3) and 4). Assume α ≤ x0 ≤ −α+aβ . Then

α− a
β

< αβ − a ≤ x1 = βx0 − a ≤ β
−α+ a

β
− a = −α.

We show that the inequality α−a
β < αβ − a holds by making equivalent trans-

formations:

α

β
− a

β
− αβ + a < 0, −α

β
+
a

β
+ αβ − a > 0,

− α
(

1

β
− β

)
+ a

(
1

β
− β

)
> 0, (a− α)

(
1

β
− β

)
> 0.

Last inequality holds as both multipliers are positive, that is, since 0 < β < 1
then 1

β − β > 0 and a > a
β+1 > α.

Since α−a
β < x1 ≤ −α then

x2 = βx1 + a = β(βx0 − a) + a = β2x0 + a(1− β) = β2x0 +
a(1− β2)

1 + β

= β2

(
x0 −

a

β + 1

)
+

a

1 + β
.
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But on the other hand

α =
β(α− a)

β
+ a < x2 = βx1 + a ≤ β(−α) + a <

a− α
β

.

Generally, we have

α < x2n = β2n(x0 −
a

β + 1
) +

a

β + 1
<
a− α
β

, n = 1, 2, . . . ,

α− a
β

< x2n+1 = β2n+1(x0 −
a

β + 1
)− a

β + 1
< −α, n = 0, 1, 2, . . . .

Therefore limn→∞ x2n = a
β+1 and lim

n→∞
x2n+1 =

−a
β + 1

. Thus we have proved

that L(x0) = { a
β+1 ,

−a
β+1}. ut

3.3 Model with β > 1

In this section we consider a situation with β > 1 and obtain periodic orbits of
period 2, 4 and others for difference equation (3.1). This case is very interesting
while it is possible to find a periodic orbit of an arbitrary chosen period.

Figure 5. If β = 3, a = 8 and α = 1.5, then we have three periodic orbits of period 2:
{−1,−3}, {1, 3} and {2,−2}.

At first we notice that a periodic orbit of period 2 depends on parameters.
Four cases are possible:

1) If a
β+1 ≥ α and a

β2−1 < α, then there exists three periodic orbits of

period 2, i.e., {− a
β2−1 ,−

aβ
β2−1}, {

a
β2−1 ,

aβ
β2−1} and { a

β+1 ,−
a

β+1}. We have an
arrangement

− aβ

β2 − 1
< − a

β + 1
≤ −α < − a

β2 − 1
< 0 <

a

β2 − 1
< α ≤ a

β + 1
<

aβ

β2 − 1
.

For example, if β = 3, a = 8 and α = 1.5, then we have three periodic orbits
of period 2: {−1,−3}, {1, 3} and {2,−2}, see Figure 5.
2) If a

β+1 ≥ α and a
β2−1 ≥ α, then there exists one periodic orbit of period 2,

which is { a
β+1 ,−

a
β+1}.
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3) If a
β2−1 < α ≤ aβ

β2−1 and a
β+1 < α, then there exists two periodic orbits of

period 2, that are, {− a
β2−1 ,−

aβ
β2−1} and { a

β2−1 ,
aβ
β2−1}.

4) If aβ
β2−1 < α, there are no periodic orbits of period 2.

For the periodic orbit of period 4 more cases are possible. We consider some
of them:

1) {x0 = a(β3+β2+β)
β4−1 , x1 = a(β3+β2+1)

β4−1 , x2 = a(β3+β+1)
β4−1 , x3 = a(β2+β+1)

β4−1 }; in
this case it is necessary that x3 < α ≤ x2 < x1 < x0. For example, if β = 2,
a = 15, α = 8, then {14, 13, 11, 7} is a periodic orbit of period 4 (see Figure 6).

2) {x0 = a(β3+β2)
β4−1 , x1 = a(β3+1)

β4−1 , x2 = a(β+1)
β4−1 , x3 = a(β2+β)

β4−1 }; in this case it
is necessary that x2 < x3 < α ≤ x1 < x0. For example, with the same
parameters as above β = 2, a = 15, α = 8 there exists a periodic orbit of
period 4: {12, 9, 3, 6} (see Figure 6).

3) {x0 = aβ3

β4−1 , x1 = a
β4−1 , x2 = aβ

β4−1 , x3 = aβ2

β4−1}; in this case it is necessary
that x1 < x2 < x3 < α ≤ x0. For example, with the same parameters as above
β = 2, a = 15, α = 8 there exists a periodic orbit of period 4: {8, 1, 2, 4} (see
Figure 6).

Figure 6. If β = 2, a = 15, α = 8, then there exists at least three periodic orbit of period
4: {14, 13, 11, 7}, {12, 9, 3, 6} and {8, 1, 2, 4}.

4) another type of the orbit is: if α < a(β−1)
β2+1 , then{

a(β + 1)

β2 + 1
,
a(β − 1)

β2 + 1
,−a(β + 1)

β2 + 1
,−a(β − 1)

β2 + 1

}
is a periodic orbit of period 4. For example, β = 2, a = 15 and α = 2 forms a
periodic orbit {9, 3,−9,−3} (see Figure 7 a)).

5) more interesting orbit is {x0 = a(β3−β2−1)
β4−1 , x1 = a(−β3−β+1)

β4−1 , x2 =
a(−β2+β−1)

β4−1 , x3 = a(−β3+β2−β)
β4−1 }. In this case we need x1 < x3 ≤ −α < x2 <

0 < α ≤ x0. For example, if β = 3, a = 80, α = 10, then {17,−29,−7,−21} is
a periodic orbit of period 4 (see Figure 7 b)).
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Figure 7. a) If β = 2, a = 15 and α = 2, then there exists periodic orbit with period 4:
{9, 3,−9,−3} and all points of orbit belong to external lines. b) If β = 3, a = 80 and

α = 10, then there exists periodic orbit with period 4: {17,−29,−7,−21}.

But even more strong result can be proved: we can construct periodic orbits
of an arbitrary period.

Theorem 7. If there exists a positive integer k ≥ 2 such that

β2k − 2β2k−2 + 1

β2k − 1
>
α(β + 1)

a
, (3.3)

then difference equation (3.1) has a periodic orbit of period 2k and all periodic
orbits are unstable.

Proof. Suppose (3.3) holds. We construct a periodic orbit O(x0) of period 2k
such that

x0 > α, x1 > α, x2 < −α, x3 < −α,
(−1)ixi > α for i = 4, . . . , 2k − 1, x2k = x0. (3.4)

Then

x0 > α, x1 = βx0 − a > α,

x2 = β2x0 − aβ − a < −α,
x3 = β3x0 − aβ2 − aβ + a < −α,
x4 = β4x0 − aβ3 − aβ2 + aβ + a > α,

x5 = β5x0 − aβ4 − aβ3 + aβ2 + aβ − a < −α,
x6 = β6x0 − aβ5 − aβ4 + aβ3 + aβ2 − aβ + a > α,

. . .

x2k−1 = β2k−1x0 − aβ2k−2 − aβ2k−3 + aβ2k−4 + aβ2k−5 − aβ2k−6

+ aβ2k−7 − · · ·+ aβ − a < −α,
x2k = β2kx0 − aβ2k−1 − aβ2k−2 + aβ2k−3 + aβ2k−4 − aβ2k−5

+ aβ2k−6 − aβ2k−7 + · · ·+ aβ2 − aβ + a = x0 > α.
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Since x2k = x0, then

x0 =
a(β2k−1 + β2k−2 − β2k−3 − β2k−4 + β2k−5 − β2k−6 + · · · − β2 + β − 1)

β2k − 1
,

(3.5)
therefore

x0 =
a(β2k + 2β2k−1 − 2β2k−3 − 1)

(β2k − 1)(β + 1)
. (3.6)

Since (3.3) holds, then x0 > α. Then

x1 = βx0 − a =
a(β2k+1 + 2β2k − 2β2k−2 − β)

(β2k − 1)(β + 1)
− a

=
a(β2k+1 + 2β2k − 2β2k−2 − β − β2k+1 − β2k + β + 1)

(β2k − 1)(β + 1)

=
a(β2k − 2β2k−2 + 1)

(β2k − 1)(β + 1)
> α.

We show that

min{x0, x1, x4, x6, . . . , x2k−2} = x1 > α.

At first we notice that

x1 =
a(β2k − 2β2k−2 + 1)

(β2k − 1)(β + 1)
< x0 =

a(β2k + 2β2k−1 − 2β2k−3 − 1)

(β2k − 1)(β + 1)

because for all k = 2, 3, . . . and β > 1

β2k−1 − β2k−3 + β2k−2 − 1 > 0.

Further we show that x1 < x4. We notice that x4 = β3x1−β2a+βa+a. Then

x1 < x4 = β3x1 − β2a+ βa+ a

⇔ 0 <
(
β3 − 1

)
x1 − β2a+ βa+ a

⇔ 0 <
a(β2k − 2β2k−2 + 1)(β3 − 1)

(β2k − 1)(β + 1)
− β2a+ βa+ a

⇔ 0 < β2k+3 − 2β2k+1 + β3 − β2k + 2β2k−2 − 1− β2k+3 + β2k+2

+ β2k+1 − β2k+2 + β2k+1 + β2k + β3 − β2 − β + β2 − β − 1

= 2β2k−2 + 2β3 − 2β − 2 = 2β
(
β2k−3 − 1

)
+ 2
(
β3 − 1

)
because β > 1 and k ≥ 2. Finally we show that x2m−2 < x2m, 3 ≤ m < k.
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Indeed

x2m−2 = β2m−2x0 − aβ2m−3 − aβ2m−4 + aβ2m−5 + aβ2m−6 − aβ2m−7

+ aβ2m−8 − · · · − aβ + a

< x2m = β2mx0 − aβ2m−1 − aβ2m−2 + aβ2m−3 + aβ2m−4 − aβ2m−5

+ aβ2m−6 − · · · − aβ + a

⇔ 0 <
(
β2m − β2m−2)x0 − aβ2m−1 − aβ2m−2 + 2aβ2m−3

+ 2aβ2m−4 − 2aβ2m−5

⇔ 0 <
β2m−2(β2 − 1)a(β2k + 2β2k−1 − 2β2k−3 − 1)

(β2k − 1)(β + 1)

− aβ2m−1 − aβ2m−2 + 2aβ2m−3 + 2aβ2m−4 − 2aβ2m−5

=
2aβ2m−5

β2k − 1

(
β3 − β2 − β + 1

)
=

2aβ2m−5

β2k − 1
(β − 1)

(
β2 − 1

)
. (3.7)

Since β > 1 is greater than 0 therefore

2aβ2m−5

β2k − 1
(β − 1)

(
β2 − 1

)
> 0.

We show that

x2 < −α and max{x3, x5, x7, . . . , x2k−1} = x2k−1 < −α.

Since (3.3) holds, then a(2β2k−2−β2k−1)
(β2k−1)(β+1)

< −α. At first we show that x2 < −α:

x2 = β2x0 − aβ − a =
β2a(β2k + 2β2k−1 − 2β2k−3 − 1)

(β2k − 1)(β + 1)
− a(β + 1)

=
a(−β2k − 2β2k−1 + 2β + 1)

(β2k − 1)(β + 1)

=
a(2β2k−2 − β2k − 1− 2β2k−2 − 2β2k−1 + 2β + 2)

(β2k − 1)(β + 1)

< −α− 2a(β2k−2 + β2k−1 − β − 1)

(β2k − 1)(β + 1)
< −α.

By construction x2k−1 = x0−a
β , then

x2k−1 =
a(β2k + 2β2k−1 − 2β2k−3 − 1)

(β2k − 1)(β + 1)β
− a

β

=
a(2β2k−1 − 2β2k−3 − β2k+1)

(β2k − 1)(β + 1)β
=
a(2β2k−2 − 2β2k−4 − β2k)

(β2k − 1)(β + 1)

=
a(2β2k−2 − β2k − 1 + 1− 2β2k−4)

(β2k − 1)(β + 1)
< −α− a(2β2k−4 − 1)

(β2k − 1)(β + 1)
< −α,

because β > 1 and k ≥ 2. Similar as (3.7) it is possible to show that x2m−3 <
x2m−1 for all 3 ≤ m ≤ k.
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If the assumptions of Theorem 7 hold, the orbit O(x0) where x0 is defined
by (3.5) (or (3.6)), satisfies (3.4) and is periodic orbit of period 2k for (3.1).

By construction the orbit O(x0) does not contain −α and α therefore func-
tion h(x) = βx− g(x) is differentiable in all points of orbit O(x0). Since β > 1
then by Theorem 2 the orbit O(x0) is an unstable periodic orbit of period 2k.
ut

Theorem 8. If there exists a positive integer k such that

β2k+1 − 2β2k−1 − 1

β2k+1 − 1
>
α(β + 1)

a
, (3.8)

then the difference equation (3.1) has a periodic orbit of period 2k + 1 and all
periodic orbits are unstable.

Proof. Suppose (3.8) holds. We will construct a periodic orbit O(x0) of period
2k + 1 such that

x0 > α, x1 < −α, x2 < −α,
(−1)ixi < −α for i = 3, . . . , 2k, x2k+1 = x0.

Then

x0 > α, x1 = βx0 − a < −α,
x2 = β2x0 − aβ + a < −α,
x3 = β3x0 − aβ2 + aβ + a > α,

x4 = β4x0 − aβ3 + aβ2 + aβ − a < −α,
. . .

x2k = β2kx0 − aβ2k−1 + aβ2k−2 + aβ2k−3 − aβ2k−4 + aβ2k−5

− aβ2k−6 + · · ·+ aβ − a < −α,
x2k+1 = β2k+1x0 − aβ2k + aβ2k−1 + aβ2k−2 − aβ2k−3 + aβ2k−4

− aβ2k−5 + aβ2k−6 + · · ·+ aβ2 − aβ + a = x0 > α.

Since x2k+1 = x0, then

x0 =
a(β2k − β2k−1 − β2k−2 + β2k−3 − β2k−4 + β2k−5 − · · · − β2 + β − 1)

β2k+1 − 1
,

(3.9)
therefore

x0 =
a(β2k+1 − 2β2k−1 − 1)

(β2k+1 − 1)(β + 1)
. (3.10)

Since (3.8) holds, then x0 > α. We show that

α < x0 < x2k−1 < x2k−3 < · · · < x5 < x3.
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At first we show that

x0 < x2k−1 = β2k−1x0 − aβ2k−2 + aβ2k−3 + aβ2k−4 − aβ2k−5

+ aβ2k−6 − · · · − aβ + a.

Because (3.10) holds we prove that

0 <
(β2k−1 − 1)a(β2k+1 − 2β2k−1 − 1)

(β2k+1 − 1)(β + 1)
− aβ2k−2 + aβ2k−3

+ aβ2k−4 − · · · − aβ + a.

The right side of the last inequality by algebraic transformations is equal to

a(2β2k−1 − 2β2k−3)

(β2k+1 − 1)(β + 1)
=

2aβ2k−3(β − 1)

β2k+1 − 1
,

which is greater than 0 since β > 1 and k ≥ 2.

Secondly we show that x2m−1 < x2m−3, 3 ≤ m < k. Indeed(
x2m−1 = β2m−1x0 − aβ2m−2 + aβ2m−3 + aβ2m−4 − aβ2m−5 + aβ2m−6

− aβ2m−7 − · · · − aβ + a

< x2m−3 = β2m−3x0 − aβ2m−4 + aβ2m−5 + aβ2m−6 − aβ2m−7

+ aβ2m−8 − aβ2m−9 − · · · − aβ + a
)

⇔ 0 <
(
β2m−3 − β2m−1)x0 + aβ2m−2 − aβ2m−3 − 2aβ2m−4 + 2aβ2m−5

⇔ 0 <
β2m−3(1− β2)a(β2k+1 − 2β2k−1 − 1)

(β2k+1 − 1)(β + 1)

+ aβ2m−2 − aβ2m−3 − 2aβ2m−4 + 2aβ2m−5

⇔ 0 <
2aβ2m−5(β − 1)

β2k+1 − 1
. (3.11)

Since β > 1 and m ≥ 3, the last inequality holds.

Now we need to show that

max{x1, x2, x4, . . . , x2k} < −α.

In this case it is possible to prove that x1 < x2k < x2k−2 < · · · < x2 < −α.

From (3.10) follows that

x1 = βx0 − a =
aβ(β2k+1 − 2β2k−1 − 1)

(β2k+1 − 1)(β + 1)
− a. (3.12)

By the construction

x2k =
x0
β
− a

β
=
aβ(β2k+1 − 2β2k−1 − 1)

β(β2k+1 − 1)(β + 1)
− a

β
.
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Inequality x1 < x2k is fulfilled, if the following inequalities holds

β2(β2k+1 − 2β2k−1 − 1)

(β2k+1 − 1)(β + 1)
− β < β(β2k+1 − 2β2k−1 − 1)

(β2k+1 − 1)(β + 1)
− 1

⇔ β2k+3 − 2β2k+1 − β2 − β2k+3 − β2k+2 + β2 + β

(β2k+1 − 1)(β + 1)

<
β2k+1 − 2β2k−1 − 1− β2k+2 − β2k+1 + β + 1

(β2k+1 − 1)(β + 1)

⇔ 0 <
2β2k1(β2 − 1)

(β2k+1 − 1)(β + 1)
.

The last inequality holds since β > 1 and therefore x1 < x2k.
Now we show that x2 < −α. We note that from (3.8) follows that

a(2β2k−2 − β2k + 1)

(β2k+1 − 1)(β + 1)
< −α.

Then (considering (3.12))

x2 = βx1 + a =
aβ2(β2k+1 − 2β2k−1 − 1)

(β2k+1 − 1)(β + 1)
− aβ + a

=
a(β2k+3 − 2β2k+1 − β2 − β2k+3 + β2k+1 + β2 − 1)

(β2k+1 − 1)(β + 1)
=

a(−β2k+1 − 1)

(β2k+1−1)(β+1)

=
a(2β2k−2 − β2k + 1− 2β2k−2 + β2k − β2k+1 − 2)

(β2k+1 − 1)(β + 1)

< −α− a(β2k+1 − β2k + 2β2k−2 + 2)

(β2k+1 − 1)(β + 1)
< −α.

Similar as (3.11) it is possible to show that x2m < x2m−2 for all 2 ≤ m ≤ k.
If the assumptions of Theorem 8 hold, the orbit O(x0) where x0 is defined by

(3.9) (or (3.10)), satisfies (3.3) and is a periodic orbit of period 2k+1 for (3.1).
Since β > 1 then by Theorem 2 the orbit O(x0) is an unstable periodic orbit
of period 2k + 1. ut

In both Theorem 7 and 8 we have found periodic orbits for (3.1) such that
points of orbits are greater or equal to α or less or equal to −α, i.e., the points
of the orbit belong to external lines of the function h. For example, if β = 2,
a = 21, α = 3 and k = 3, then by Theorem 7 we can find x0 = 12 1

3 which is a
point of a periodic orbit of period 6: {12 1

3 , 3
2
3 ,−13 2

3 ,−6 1
3 , 8

1
3 ,−4 1

3}. But for
these parameters there exists another orbit of period 6: {4,−13,−5, 11, 1, 2}
(see Figure 8).

An interesting fact is that if we use formula (3.5) to find the initial point
of a periodic orbit in the case when inequality (3.3) is not satisfied it is
possible that we detect a periodic orbit as well. For example, if β = 2,
a = 21, α = 9 and k = 3, then x0 = 12 1

3 gives a periodic orbit of period
6: {12 1

3 , 3
2
3 , 7

1
3 , 14 2

3 , 8
1
3 , 16 2

3}. But there exists another periodic orbit of pe-
riod 6: {16, 11, 1, 2, 4, 8} (see Figure 9).
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Figure 8. If β = 2, a = 21, α = 3, then by Theorem 7 there exists periodic orbit of
period 6: {12 1

3
, 3 2

3
,−13 2

3
,−6 1

3
, 8 1

3
,−4 1

3
}, but there exists another orbit of period 6:

{4,−13,−5, 11, 1, 2} too.

Figure 9. If β = 2, a = 21, α = 9, then there exists periodic orbits of period 6:
{12 1

3
, 3 2

3
, 7 1

3
, 14 2

3
, 8 1

3
, 16 2

3
} and {16, 11, 1, 2, 4, 8} — both with only positive points.

This means that by formulas (3.6) and (3.10) we can find some periodic
orbits but not all. Furthermore we remark that in the situation with β > 1
there exists infinitely many eventually periodic orbits.

4 Chaotic Orbits

More interesting cases involve bounded orbits that are not asymptotically or
eventually periodic. If such orbit has a positive Lyapunov exponent (see [10,
12,14,15,16]), then by definition [1] it is a chaotic orbit.

Definition 10. Let f be a smooth map on R. The Lyapunov exponent λ(x0)
of the orbit {x0, x1, x2, . . .} is defined as

λ(x0) = lim
n→∞

1

n

n−1∑
k=0

ln
∣∣f ′(xk)

∣∣,
whenever the limit exists.
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Lyapunov exponent measure the infinitesimal exponential rate at which
nearby orbits are moving apart. Note that if the application of the map to two
nearby points leads to two points further apart, then the absolute value of the
derivative of the map is greater than 1 when evaluated at these orbit points,
and hence its logarithm is positive. If orbit points continue to diverge, then
the rate of change of the logarithm of absolute values of derivatives is positive,
and hence we have the presence of sensitive dependence on initial conditions.
The Lyapunov exponent λ(x0) is a powerful experimental device to separate
unstable, chaotic behavior from the one which is stable and predictable, and
to measure these properties [10,14].

Usually it is very difficult to calculate Lyapunov exponents exactly. One
exception is a general tent map

Tp(x) =

{
px, x ≤ 1

2 ,
p(1− x), 1

2 < x.

For any orbit of the tent map that does not contain a point 1
2 , we have L(x0) =

ln p [12, 15]. For the logistic map L(x) = 4x(1 − x) Lyapunov exponent is the
same as for T2(x), it is ln 2 [12,15].

Function

h(x) =

βx+ a, x ≤ −α,
βx, −α < x < α,
βx− a, α ≤ x,

considered in this article is similar to the tent map. In this case λ(x0) = lnβ
for all x0 for which the orbit does not contain points −α and α.

By [16] when the Lyapunov exponent is positive, this indicates that the
system has sensitive dependence, when the Lyapunov exponent is negative,
this indicates that the orbit is going to an attracting periodic orbit. In the
case if β < 1 then all orbits go to an attracting periodic point, also to a
stationary point. If β > 1 then system has sensitive dependence. We have
observed in previous section that all periodic orbits are unstable. But usually
with term “chaotic mapping” we understand much more. By the definition of
R. Devaney [8] a function f : X → X ((X, ρ) is a metric space) is chaotic if the
function f is topologically transitive, exhibits sensitive dependence on initial
conditions and the set of periodic points of f are dense in X. In this definition
it is not essentially for the function to be continuous. Further we work with
term “chaotic orbit” which is slightly another concept for chaotic behavior.

Definition 11. [1] Let f be a map of the real line R and let {x0, x1, x2, . . .}
be a bounded orbit of f . The orbit is chaotic if

1. {x0, x1, x2, . . .} is not asymptotically or eventually periodic,

2. the Lyapunov exponent λ(x0) is greater than zero.

By [1] for the tent map T2 and doubling map D(x) = 2x (mod 1) in the
interval [0, 1] each orbit that forever avoids 1

2 and is not asymptotically or
eventually periodic is a chaotic orbit (with Lyapunov exponent ln 2). Very
similar to the doubling map is Baker’s map [9, 10, 15] or Saw-Tooth map [14]
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that differ from doubling map with a definition in points 1
2 and 1 – values of

function are equal to 0 and 1. One special case of our model with parameters
β = 2, α = 1

2 and a = 1 in the interval [0, 1] is equal to the considered Baker’s
mapping

B(x) =

{
2x, 0 ≤ x < 1

2 ,
2x− 1, 1

2 ≤ x ≤ 1,

therefore contains chaotic orbits.
In our model Lyapunov exponent λ(x0) is greater than zero. By Defini-

tion 11 we need to find bounded orbits which are not asymptotically or even-
tually periodic. In other words, we need to find an invariant set A for the
function h, then for every point of the set the orbit will be bounded. Here we
consider some cases when exists invariant set and when does not exist.

If we want to find the invariant set [A,B] (A < B) that contains interval
[−α, α] then conditions should hold:

A ≤ −αβ, A ≤ αβ − a, A ≤ βA+ a,

−αβ + a ≤ B, αβ ≤ B, βB − a ≤ B.

From the third and sixth conditions follows that
−a
β − 1

≤ A < B ≤ a

β − 1
,

that is, the invariant set is located between the stationary states. Since here
is too many parameters, it is difficult to establish all cases. One case is if
a

β−1 = αβ, then the invariant interval is [−αβ, αβ].

Figure 10. [−αβ, αβ] is invariant set of function h. a) a = 2αβ b) a = αβ.

In Figure 10 we consider two situations with the invariant set [−αβ, αβ]. In
the first case a = 2αβ, from this follows that 2αβ

β−1 = αβ therefore this situation
is only when β = 3. Similarly we obtain that in the second case β = 2, α and a
are freely chosen. In the second case an invariant set is also [0, αβ]. This case
is similar to Baker’s map.

From the second case it follows that we can find an invariant set in the
interval [0, a

β−1 ]. One situation is when

0 < αβ − a < αβ2 − a < αβ,
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Figure 11. a)Invariant set of function h is interval [0, B] where B ∈ [αβ, a
β−1

]. b)For

function h does not exist invariant set.

then mapping h is invariant in the set [0, B] where B ∈ [αβ, a
β−1 ] (see Fig-

ure 11 a)). We conclude that in this situation for mapping h exist chaotic
orbits. Obviously that for a function in the form y = cx+ d does not exist an
invariant set. Therefore the mapping h does not have an invariant set if

0 < a < αβ − α

(see Figure 11 b)). This means that in this situation there is no chaotic orbits.
Therefore we can formulate a following theorem.

Theorem 9. There exists parameters β, α and a such that the function h has
chaotic orbits in [ −aβ−1 ,

a
β−1 ].

5 Conclusions

In the paper we proved some results about the periodicity of solutions of differ-
ence equation (3.1) accordingly to parameters β, α and a of the signal function.
The main conclusions are
1) if β = 1 then every point x0 ∈ R is a stationary state or an eventually
stationary state or the orbit O(x0) is a periodic orbit of period 2 or eventually
periodic orbit of period 2;
2) if β < 1 then the point 0 is an unique stationary state, there exists periodic
orbit of period 2 { −aβ+1 ,

a
β+1} and other orbits are asymptotically or eventually

stationary state to 0 or asymptotically or eventually periodic orbit of period 2,
3) if β > 1 then the point 0 always is a stationary state but it is possible to
have two more stationary states; there exists maximum three periodic orbits
of period 2 but it is possible that there are no periodic orbits of period 2; for
some parameters we have constructed periodic orbits of an arbitrary period and
finally we have concluded that there exists parameters such that there exists
chaotic orbits.

With respect to parameters our model has different behavior. By [19] x de-
notes the activation level of a neuron. If one neuron works as the considered
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model then we can interpret a stationary state as an equilibrium state in which
activation level is constant, then the periodic orbit means periodic changes of
activation level. A chaotic orbit means not predictable changes of activation
level but for the orbit that goes to infinity we cannot give a good interpretation
(activation level grow in time without restriction).

We conclude that model (3.1) with the signal function (3.2) describes more
general situation as considered in [22] (also [5, 18,20,23,24]).

Chaotic mappings can be applied, for example, in cryptography. Chaos-
based image encryption has become one of efficient encryption methods. This
is because chaotic maps have high sensitivity on the initial values and control
parameters [2,21]. Similar functions as h are used to study the power spectral
density of signals with applications in telecommunications and transmission
security [11].
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