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Abstract. Our goal is to investigate the piecewise linear difference equation xn+1 = βnxn−g(xn).
This piecewise linear difference equation is a prototype of one neuron model with the internal decay
rate β and the signal function g. The authors investigated this model with periodic internal decay
rate βn as a period-two sequence. Our aim is to show that for certain values of coefficients βn, there
exists an attracting interval for which the model is chaotic. On the other hand, if the initial value is
chosen outside the mentioned attracting interval, then the solution of the difference equation either
increases to positive infinity or decreases to negative infinity.

Keywords: neuron model, difference equation, periodic solution, unbounded solution, chaotic
atractor.

1 Introduction

We study the following nonautonomous piecewise linear difference equation:

xn+1 = βnxn − g(xn), (1)

where (βn)
∞
n=0 is a periodic sequence with period two, where

βn =

{
β0 if n is even,
β1 if n is odd,

β0 6= β1, β0 > 0, β1 > 0,
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112 I. Bula, M.A. Radin

and the function g presents the properties in the following form:

g(x) =

{
1, x > 0,

−1, x < 0.
(2)

The studies on Eq. (1) commenced in [15], where J. Wu investigated the delayed
differential equation

x′(t) = −g
(
x(t− τ)

)
(3)

that is used to model a single neuron with no internal decay. In this case, g : R → R
is either a sigmoid function or a piecewise linear signal function, and τ 6 0 is a synaptic
transmission delay. From (3) the corresponding piecewise difference equation was ob-
tained as a discrete-time network of a single neuron model [7]

xn+1 = βxn − g(xn), n = 0, 1, 2, . . . , (4)

where β > 0 is an internal decay rate, and g is a signal function. Several authors in-
vestigated Eq. (4) (e.g., [3, 7, 14, 16–22]). In addition, Eq. (4) has been investigated as
a single neuron model, where the signal function g is the piecewise constant function
with McCulloch–Pitts nonlinearity (2).

In [1, 2], the authors studied the models by applying a different signal function (with
more than one threshold). In [4–6], the authors investigated the periodic solutions of
a discrete neuron model when (βn)

∞
n=0 is periodic with periods two and three.

If we consider the right side of difference equation (1) as a function h : R → R and
let xn = hn(x0), x0 ∈ R, n = 1, 2, . . . , then we obtain the first-order difference equation
xn+1 = h(xn) with initial condition x0 ∈ R. From the definition of difference equation
(1) it follows that first iteration of function h is in the form

h(x) =

{
β0x− 1, x > 0,

β0x+ 1, x < 0.

On the other hand, the second iteration emerges in the corresponding form

h2(x) =

{
β1h(x)− 1, h(x) > 0,

β1h(x) + 1, h(x) < 0,

=


β0β1x− β1 − 1, x > 1

β0
,

β0β1x− β1 + 1, 0 6 x < 1
β0
,

β0β1x+ β1 − 1, − 1
β0
6 x < 0,

β0β1x+ β1 + 1, x < − 1
β0
.

Observe that replacing the difference equation (1) with a function h does not do much.
However, depending on the circumstance, sometimes it is more convenient to describe
the dynamics more easily with the behavior of a function, and at other times – with
a difference equation.
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Our aim is to perform a qualitative analysis of difference equation (1) or function h.
This includes the possibilities of chaotic behavior of the dynamical system. The chaotic
behavior of Eq. (4) has not been studied so far and is of paramount interest.

The paper outlines the following results. Section 2 will present results about differ-
ence equation (1). Section 3 will analyze the Lyapunov exponent and find this exponent
for dynamical system with (1). We will show that for certain values of coefficients β0 and
β1, there exists a chaotic attractor. Finally, we present conclusions about our model and
future work.

2 Some results about difference equation with period-two coefficients

First, notice that the difference equation (1) has no equilibrium points when (βn)
∞
n=0 is

a periodic two sequence. In [4], we proved that Eq. (1) with (2) has no periodic orbits of
odd period and has periodic orbits only with an even period. More precisely, we showed
that if the coefficients 0 < β0 6 1 and 0 < β1 6 1, that is, coefficients are in region I
(see Fig. 1), then only period-two solutions exist. If coefficients belong to region II,
then period-four solutions exist. If the coefficients belong to region III, then period-two
solutions exist. However, in this case, solutions with an arbitrary even period may also
exist. The surprising situation emerges in the case when β1 = 1/β0 (except for β1 =
β0 = 1). In this situation, there exist segments of initial conditions from which period-
four solutions arise.

Theorem 1. (See [4].) If β0β1 > 1, then the difference equation (1) has the corresponding
two unstable periodic cycles with period two:{

− 1 + β1
β0β1 − 1

, − 1 + β0
β0β1 − 1

}
and

{
1 + β1
β0β1 − 1

,
1 + β0
β0β1 − 1

}
.

Theorem 2. (See [4].) Suppose β0 > 1 and β1 > 1. If there exists a positive integer
n > 2 such that

βn0 β
n
1 − 2βn−10 βn−11 + 1 > 0,

then the difference equation (1) has an unstable periodic orbit of period 2n.

-

6

β0

β1

1

1

β1 = 1
β0

q
I

II

II
III

Figure 1. Existence of cycles depending on coefficients β0 > 0 and β1 > 0.
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Note that by assumption β0 > 1 and β1 > 1 the inequality

βn−10 βn−11 (β0β1 − 2) + 1 > 0, n > 2,

will hold only if β0β1 − 2 > 0. If n = 2, then

β2
0β

2
1 − 2β0β1 + 1 = (β0β1 − 1)2 > 0.

The above inequality holds always if β0β1 > 1. Indeed, the condition β1 > 1 as in
Theorem 2 does not need to hold for a cycle with period four to exist. For period four
to exist, it is sufficient that conditions β0 > 1 is fulfilled. For example, the cycle with
a period four is formed by the following points:

x0 =
1 + β1
β0β1 + 1

> 0, x2 = − 1 + β1
β0β1 + 1

= −x0 < 0,

x1 =
β0 − 1

β0β1 + 1
> 0, x3 = − β0 − 1

β0β1 + 1
= −x1 < 0.

Nothing can be said precisely about other cycles.
Next, we will prove that every solution with an initial condition that does not belong

to an interval what boundaries are points of periodic cycle in Theorem 1 is unbounded.

Theorem 3. Let β0β1 > 1. Then for any initial condition

x0 /∈
[
− 1 + β1
β0β1 − 1

,
1 + β1
β0β1 − 1

]
of difference equation (1), the solution is unbounded. More precisely,

lim
n→∞

xn =

{
−∞ if x0 < − 1+β1

β0β1−1 ,

+∞ if x0 > 1+β1

β0β1−1 .

Proof. We will consider the following two cases: x0 < −(1 + β1)/(β0β1 − 1) or x0 >
(1 + β1)/(β0β1 − 1).

First, we assume that x0 > (1 + β1)/(β0β1 − 1). The proof for other case is similar
and will be omitted.

As we assumed that β0β1 > 1, then x0 > (1 + β1)/(β0β1 − 1) > 0. Therefore

x1 = β0x0 − 1 >
β0(1 + β1)

β0β1 − 1
− 1 =

1 + β0
β0β1 − 1

> 0.

Consequently, we obtain

x2 = β1x1 − 1 >
β1(1 + β0)

β0β1 − 1
− 1 =

1 + β1
β0β1 − 1

> 0.

By iterations and induction we procure

x2k >
1 + β1
β0β1 − 1

> 0 and x2k+1 >
1 + β0
β0β1 − 1

> 0, k = 0, 1, 2, . . . , .

https://www.journals.vu.lt/nonlinear-analysis
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On the other hand,

x0 > 0,

x1 = β0x0 − 1 > 0,

x2 = β0β1x0 − β1 − 1 > 0,

x3 = β2
0β1x0 − β0β1 − β0 − 1 > 0,

x4 = β2
0β

2
1x0 − β0β2

1 − β0β1 − β1 − 1 > 0,

. . . ,

x2k = βk0β
k
1x0 − βk−10 βk1 − βk−10 βk−11 − · · · − β0β1 − β1 − 1 > 0,

x2k+1 = βk+1
0 βk1x0 − βk0βk1 − βk0βk−11 − · · · − β0β1 − β0 − 1 > 0,

x2k+2 = βk+1
0 βk+1

1 x0 − βk0βk+1
1 − βk0βk1 − · · · − β0β1 − β1 − 1 > 0,

x2k+3 = βk+2
0 βk+1

1 x0 − βk+1
0 βk+1

1 − βk+1
0 βk1 − · · · − β0β1 − β0 − 1 > 0,

. . . .

Since x0 > (1 + β1)/(β0β1 − 1) > 0, then there exists ε > 0 such that x0 =
((1 + β1) + ε)/(β0β1 − 1). We then obtain the corresponding difference between the
neighboring even-ordered terms x2k and x2k+2:

x2k+2 − x2k = βk+1
0 βk+1

1 x0 − βk0βk+1
1 − βk0βk1 − βk0βk1x0

= βk0β
k
1

(
(β0β1 − 1)x0 − β1 − 1

)
= βk0β

k
1

(
(β0β1 − 1)((1 + β1) + ε)

β0β1 − 1
− β1 − 1

)
= βk0β

k
1 · ε > 0, k = 0, 1, 2, . . . .

Since β0β1 > 1, then we see that limk→∞(β0β1)
k = +∞ and therefore

x0 < x2 < x4 < · · · < x2k < x2k+2 < · · · and lim
k→∞

x2k = +∞.

Similarly, we procure the difference between the neighboring odd-ordered terms x2k+1

and x2k+3

x2k+3 − x2k+1 = βk+2
0 βk+1

1 x0 − βk+1
0 βk+1

1 − βk+1
0 βk1 − βk+1

0 βk1x0

= βk+1
0 βk1

(
(β0β1 − 1)x0 − β1 − 1

)
= βk+1

0 βk1

(
(β0β1 − 1)((1 + β1) + ε)

β0β1 − 1
− β1 − 1

)
= βk0β

k
1 · β0 · ε > 0, k = 0, 1, 2, . . . .

In addition, we get

x1 < x3 < x5 < · · · < x2k+1 < x2k+3 < · · · and lim
k→∞

x2k+1 = +∞.

We then conclude that if (1 + β1)/(β0β1 − 1) < x0, then limn→∞ xn = +∞.

Nonlinear Anal. Model. Control, 29(1):111–123, 2024
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Our goal is to determine the largest possible invariant set.

Definition 1. Let f : X → X be a map. A set A ⊂ X is said to be invariant under the
map f if f(A) = A.

Although we are interested in all such coefficients β0 and β1 for which β0β1 > 1, it is
obvious that there is no invariant interval for all such coefficients. For example, let β0 = 2
and β1 = 3, then the significant period-two cycles are {−0.8,−0.6} and {0.8, 0.6}.
However, the solutions with an initial value x0 from the interval I = [−0.8, 0.8] may not
belong to the interval I. For example, if x0 = 0.7, then we procure

x1 = 2 · 0.7− 1 = 0.4,

x2 = 3 · 0.4− 1 = 0.2,

x3 = 2 · 0.2− 1 = −0, 6,
x4 = 3 · (−0.6) + 1 = −0.8,
x5 = 2 · (−0.8) + 1 = −0.6,
x6 = 3 · (−0, 6) + 1 = −0.8, . . . .

Observe that this solution is eventually periodic with the corresponding period-two cycle
{−0.8,−0.6}. On the other hand, if we start with x0 = 0, then

x1 = 2 · 0− 1 = −1,
x2 = 3 · (−1) + 1 = −2,
x3 = 2 · (−2) + 1 = −3,
x4 = 3 · (−3) + 1 = −8, . . . .

Notice that xn+1 < xn for all n > 1 and limn→∞ xn = −∞.
The last example shows that invariant interval always contains 0 and−1. The invariant

interval must contain the entire interval [−1, 1].
It is easy to prove. In fact, if 0 < β0 6 2, 0 < β1 6 2, then the function h is invariant

in [−1, 1] (that is, h : [−1, 1]→ [−1, 1]).
Now suppose that x0 ∈ [−1, 1]. Then the following statements hold true:

(i) if 0 6 x0 6 1, then −1 = 0− 1 6 h(x0) = βix0 − 1 6 2 · 1− 1 = 1, i = 0, 1;
(ii) if −1 6 x0 < 0, then −1 = 2 · (−1) + 1 6 h(x0) = βix0 + 1 < 0 + 1 = 1,

i = 0, 1.

Is it possible to extend the invariant interval and the set of coefficients β0 and β1?
By Theorem 3 it follows that

[−1, 1] ⊂
[
− 1 + β1
β0β1 − 1

,
1 + β1
β0β1 − 1

]
and [−1, 1] ⊂

[
− 1 + β0
β0β1 − 1

,
1 + β0
β0β1 − 1

]
.

Then we see that
1 + β1
β0β1 − 1

> 1,
1 + β0
β0β1 − 1

> 1.

https://www.journals.vu.lt/nonlinear-analysis
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Figure 2. Area of coefficients β0 and β1 that satisfies the inequalities β0β1 > 1, 2 + β1 − β0β1 > 0 and
2 + β0 − β0β1 > 0.

Since β0β1 > 1, then

1 + β1 > β0β1 − 1,

1 + β0 > β0β1 − 1
or

2 + β1 − β0β1 > 0,

2 + β0 − β0β1 > 0.

The area satisfying the system of inequalities is shown in Fig. 2.

Theorem 4. Let β0β1 > 1. Let (1 + β1)/(β0β1 − 1) > 1 and (1 + β0)/(β0β1 − 1) > 1.
Then for any initial condition

x0 ∈ I =

[
− 1 + β1
β0β1 − 1

,
1 + β1
β0β1 − 1

]
of difference equation (1), the solution is bounded. More precisely,

xn ∈

{
I, n = 0, 2, 4, . . . ,

I1, n = 1, 3, 5, . . . ,
I1 =

[
− 1 + β0
β0β1 − 1

,
1 + β0
β0β1 − 1

]
.

Proof. If x0 = −(1 + β1)/(β0β1 − 1) or (1 + β1)/(β0β1 − 1), then x1 = −(1 + β0)/
(β0β1 − 1) or (1 + β0)/(β0β1 − 1), respectively, where the endpoints of interval I are
initial points of a period-two cycle, and hence x1 ∈ I1.

If 0 6 x0 < (1 + β1)/(β0β1 − 1), then

−1 = 0− 1 6 x1 = β0x0 − 1 <
β0(1 + β1)

β0β1 − 1
− 1 =

1 + β0
β0β1 − 1

.

Similarly, if −(1 + β1)/(β0β1 − 1) < x0 < 0, then

− 1 + β0
β0β1 − 1

= −β0(1 + β1)

β0β1 − 1
+ 1 < x1 = β0x0 + 1 < 0 + 1 = 1.

Hence x1 ∈ I1.

Nonlinear Anal. Model. Control, 29(1):111–123, 2024
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If 0 6 x0 6 (1 + β0)/(β0β1 − 1), then

−1 = 0− 1 6 x2 = β1x1 − 1 6
β1(1 + β0)

β0β1 − 1
− 1 =

1 + β1
β0β1 − 1

.

Similarly, if −(1 + β0)/(β0β1 − 1) 6 x1 < 0, then

− 1 + β1
β0β1 − 1

= −β1(1 + β0)

β0β1 − 1
+ 1 6 x2 = β1x1 + 1 < 0 + 1 = 1.

Hence x2 ∈ I . For all other xn, n > 2, the proof is similar.

Remark. If β1 > β0, then I1 ⊂ I . If β1 < β0, then I ⊂ I1. This means that if β1 > β0,
then h : I → I , but in second case, h : I → I1. We remark that if we choose x0 ∈ I1 \ I
in second case, then this solution by Theorem 3 will tend to infinity.

3 Lyapunov exponent and chaotic attractor

Let f be function with domain I . The orbit of point x0 ∈ I is a set {x0, x1 = f(x0), x2 =
f(x1), . . . }.

Definition 2. The Lyapunov exponent λ(x0) of the orbit {x0, x1, x2, . . . } is defined as

λ(x0) = lim
n→∞

1

n

n−1∑
k=0

ln
∣∣f ′(xk)∣∣,

provided that the limit exists.

In [8], the authors showed that if the Lyapunov exponent λ > 0, then the sensitivity
dependence on initial conditions exists. The Lyapunov exponent at a point xmeasures the
growth in error per iteration. As the Lyapunov exponent becomes larger, the magnification
of error becomes greater.

Theorem 5. If β0β1 > 1, then function h have a positive Lyapunov exponent for all
x0 /∈ C = {0} ∪ {x: ∃j ∈ N, xj = hj(x) = 0}.

Proof. If x0 is 0 or such that xj = hj(x0) = 0 for some j, then λ(x0) is not defined
because the derivative is not defined. Such points make up a countable set C. For every
β0 > 0 and β1 > 0 and arbitrary initial point x0 /∈ C, the Lyapunov exponent is

λ(x0) = lim
n→∞

1

n

n−1∑
k=0

ln
∣∣h′(xk)∣∣

= lim
n→∞

1

n
(lnβ0 + lnβ1 + · · ·+ lnβ0 + lnβ1 + j · lnβ0)

= lim
n→∞

1

n

(
ln(β0β1) · (n− j)

2
+ j · lnβ0

)
=

ln(β0β1)

2
,

https://www.journals.vu.lt/nonlinear-analysis
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where

j =

{
0 if n is even,
1 if n is odd.

�

The authors in [9] show that the first nonequilibrium chaotic system has been intro-
duced by Sprott [13] in 1994. We will show that for certain values of the coefficients β1
and β2, Eq. (1) forms a chaotic system.

A discrete dynamical system, denoted by DDS for short, is the description of an
evolutive phenomenon in terms of a map f whose image is contained in its domain I .
Then the pair {I, f} is called DDS.

Definition 3. (See [12] and [10,11].) A set A ⊂ I is called an attractor for a DDS {I, f}
if the following conditions hold:

(i) A is closed;
(ii) A is invariant;

(iii) there exists η > 0 such that, for any x ∈ I fulfilling dist(x,A) < η, we have
limk→∞ dist(fk(x), A) = 0;

(iv) A is a minimal, that is, there are no proper subsets of A fulfilling (i), (ii) and (iii).

In previous definition, the distance from a point x ∈ R to a closed set K ⊂ R is
defined as

dist(x,K) = min
{
|x− y|, y ∈ K

}
.

Definition 4. (See [12].) If A is an attractor of function f , then the set{
x ∈ R: lim

k→∞
fk(x) ∈ A

}
is called an attraction basin of attractor A.

Definition 5. (See [10, 11].) An invariant set A is called a chaotic attractor, provided
that it is an attractor and f has sensitive dependence on initial conditions on A (or f have
a positive Lyapunov exponent on A).

So far, in our research, we have not identified all possible cycles for any parameter val-
ues β0 > 1 and β1 > 1. Before we prove the next theorem, we note that for all β0 > 1 and
β1 > 1, there exists a cycle with period two {(β1−1)/(β0β1−1), (1−β0)/(β0β1−1)}
and there exists a cycle with period four {(1 + β1)/(β0β1 + 1), (β0 − 1)/(β0β1 + 1),
−(1 + β1)/(β0β1 + 1), −(β0 − 1)/(β0β1 + 1)}. Both cycles lie inside the interval
[−1, 1]. Although the sets consisting of points of one cycle are invariant, they do not
form attractors here because, due to the fact that β0 > 1 and β1 > 1, cycles are unstable,
property (iii) of the definition of an attractor is not fulfilled.

Theorem 6. Let 1 < β0 6 2, 1 < β1 6 2 and β0 6= β1. Then [−1, 1] is a chaotic
attractor of function h, and attraction basin is]

− 1 + β1
β0β1 − 1

,
1 + β1
β0β1 − 1

[
.

Nonlinear Anal. Model. Control, 29(1):111–123, 2024
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Proof. If 1 < β0 6 2, 1 < β1 6 2 and β0 6= β1, then (1 + β1)/(β0β1 − 1) > 1 as

1 + β1 > β0β1 − 1 ⇐⇒ 2 > β1(β0 − 1).

Our aim is to show that for all x0 ∈]−(1+β1)/(β0β1−1), (1+β1)/(β0β1−1)[\[−1, 1],
the orbit by the function h eventually falls in the interval [−1, 1]. We will only consider
the case when 1 < x0 < (1 + β1)/(β0β1 − 1). The case when −(1 + β1)/(β0β1 − 1) <
x0 < −1 is similar and will be omitted.

If 1 < x0 < (1 + β1)/(β0β1 − 1), then

0 < β0 − 1 < x1 = β0x0 − 1 <
β0(1 + β1)

β0β1 − 1
− 1 =

1 + β0
β0β1 − 1

.

If 0 < x1 6 1, then the proof is complete. If this is not the case, then 1 < x1 < (1+β0)/
(β0β1 − 1) and therefore

0 < β1 − 1 < x2 = β1x1 − 1 <
β1(1 + β0)

β0β1 − 1
− 1 =

1 + β1
β0β1 − 1

.

Provided that xn /∈ [−1, 1], by induction we then conclude that

1 < x2k <
1 + β1
β0β1 − 1

and 1 < x2k+1 <
1 + β0
β0β1 − 1

, k = 0, 1, 2, . . . .

Notice that all the points are in form

1 < x0 <
1 + β1
β0β1 − 1

,

1 < x1 = β0x0 − 1 <
1 + β0
β0β1 − 1

,

1 < x2 = β0β1x0 − β1 − 1 <
1 + β1
β0β1 − 1

,

1 < x3 = β2
0β1x0 − β0β1 − β0 − 1 <

1 + β0
β0β1 − 1

,

1 < x4 = β2
0β

2
1x0 − β0β2

1 − β0β1 − β1 − 1 <
1 + β1
β0β1 − 1

,

. . . ,

1 < x2k = βk0β
k
1x0 − βk−10 βk1 − βk−10 βk−11 − · · · − β0β1 − β1 − 1 <

1 + β1
β0β1 − 1

,

1 < x2k+1 = βk+1
0 βk1x0 − βk0βk1 − βk0βk−11 − · · · − β0β1 − β0 − 1 <

1 + β0
β0β1 − 1

,

1 < x2k+2 = βk+1
0 βk+1

1 x0 − βk0βk+1
1 − βk0βk1 − · · · − β0β1 − β1 − 1 <

1 + β1
β0β1 − 1

,

1 < x2k+3 = βk+2
0 βk+1

1 x0 − βk+1
0 βk+1

1 − βk+1
0 βk1 − · · · − β0β1 − β0 − 1 <

1 + β0
β0β1 − 1

,

. . . .
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Next, note that the difference between the even-ordered iterations x2k and x2k+2 is

x2k − x2k+2 = βk0β
k
1x0 −

(
βk+1
0 βk+1

1 x0 − βk0βk+1
1 − βk0βk1

)
= βk0β

k
1

(
(1− β0β1)x0 + β1 + 1

)
= βk0β

k
1 (β0β1 − 1)

(
β1 + 1

β0β1 − 1
− x0

)
, k = 0, 1, 2, . . . .

Since β0β1 > 1 and 1 < x0 < (1 + β1)/(β0β1 − 1), then we obtain limk→∞(β0β1)
k =

+∞ and (β1 + 1)/(β0β1 − 1) − x0 > 0. Hence the difference between x2k and x2k+2

increases, and we then get x0 > x2 > x4 > · · · > x2k > x2k+2 > · · · . Thus we
conclude that there exists k ∈ N such that x2k 6 1.

Similarly, the difference between odd-ordered iterations x2k+1 and x2k+3 is

x2k+1 − x2k+3 = βk0β
k
1 (β0β1 − 1)

(
β0 + 1

β0β1 − 1
− x0

)
, k = 0, 1, 2, . . . .

The difference between x2k+1 and x2k+3 increases, and we get x1 > x3 > x5 > · · · >
x2k+1 > x2k+3 > · · · . Thus we conclude that there exists k ∈ N such that x2k+1 6 1.

From what has just been proved it follows that all periodic points (cycles) lie in the
interval [−1, 1]. Since β0 > 1 and β1 > 1, then all cycles are unstable. It is impossible
to choose an even smaller set than [−1, 1] that satisfies the definition of an attractor. In
case 1 < β0 6 2, 1 < β1 6 2 and β0 6= β1, the interval [−1, 1] is an invariant set for
the function h, and the Lyapunov exponent is positive ln(β0β1)/2 > ln 1 = 0 for all
x0 /∈ C = {0} ∪ {x: ∃j ∈ N, xj = hj(x) = 0}. C is countable set (similar as for Tent
map). η = (1 + β1)/(β0β1 − 1)− 1 > 0 – this was proved above. The interval [−1, 1] is
a chaotic attractor of function h.

Example. Suppose that β0 = 1.9 and β1 = 1.35. In this case, we obtain the period-two
cycle {1.501597444, 1.853035144} and the basin of attraction ]−1.501597444,
1.501597444[. If we start with initial condition x0 = 1.49 (a point close to the boundary
of the interval), then we observe the situation described in Theorem 6, where the first
seven iterations of the solution are greater than 1. Then x8 = 0.99958814 < 1, and all
other points of the solution lie in the interval [−1, 1]. In Fig. 3, we see that x0 > x2 >
x4 > x6 > x8 and x1 > x3 > x5 > x7. The behavior of the other points cannot be
clearly described, but all other points of the solution lie in the interval [−1, 1].

Figure 3. First 120 values of solution of difference equation (1) when β0 = 1.9, β1 = 1.35 and x0 = 1.49.
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4 Conclusion

In this article, we investigated the boundedness and the chaotic character of solutions of
Eq. (1). First, we determined the necessary and sufficient conditions for every solution
to either diverge to +∞ or to diverge to −∞ as two subsequences. This then led us to
determining the existence of invariant and attracting intervals, where the chaotic behavior
of solutions of Eq. (1) arise. The most important result of the article is the last Theorem
6, which shows the possibility of constructing a chaotic attractor with noncontinuous
functions.

Our aim is to proceed with the examination of the boundedness and the chaotic
character of solutions of Eq. (1) when (βn)

∞
n=0 is a periodic sequence with period three

and higher. In particular, it is of paramount interest to investigate the monotonic properties
of Eq. (1), that is, into how many subsequences to decompose the solution of Eq. (1).
Furthermore, our objectives are to determine the existence of invariant and the attracting
intervals of Eq. (1).
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